扈桂燕
摘要:根據(jù)《中國(guó)學(xué)生發(fā)展核心素養(yǎng)》的內(nèi)容,結(jié)合學(xué)科的特點(diǎn)和學(xué)生的年齡特征,小學(xué)數(shù)學(xué)教學(xué)中的核心素養(yǎng)就是小學(xué)生在數(shù)學(xué)學(xué)習(xí)中所需的必備品質(zhì)和關(guān)鍵能力。本論文從現(xiàn)實(shí)問題出發(fā),結(jié)合小學(xué)數(shù)學(xué)實(shí)際 在教學(xué)中更好地去應(yīng)用轉(zhuǎn)化思想方法的策略,希望可以為一線的小學(xué)數(shù)學(xué)教師提供一些可行性的建議和實(shí)際應(yīng)用的價(jià)值。
關(guān)鍵詞:小學(xué)數(shù)學(xué);轉(zhuǎn)化思想方法;策略研究
中圖分類號(hào):A 文獻(xiàn)標(biāo)識(shí)碼:A
前言
一種學(xué)習(xí)方式對(duì)另一種學(xué)習(xí)方式的影響是對(duì)學(xué)習(xí)轉(zhuǎn)化思想的一種解釋。在面對(duì)眾多學(xué)習(xí)理論,學(xué)會(huì)轉(zhuǎn)化學(xué)習(xí)思想是非常重要的。學(xué)生將所學(xué)的知識(shí)進(jìn)行不斷轉(zhuǎn)化,不僅有利于豐富學(xué)習(xí)內(nèi)容,而且還有利于提高學(xué)生解決問題的能力。在學(xué)習(xí)中,學(xué)生是否能舉一反三,是否能繞過(guò)類比用所學(xué)知識(shí)解決問題,這不僅是知識(shí)轉(zhuǎn)化的問題,也是學(xué)習(xí)思維轉(zhuǎn)化的問題。因此,在數(shù)學(xué)教學(xué)中,最重要的任務(wù)就是讓學(xué)生在學(xué)會(huì)知識(shí)時(shí)促進(jìn)知識(shí)之間的轉(zhuǎn)化,從而達(dá)到調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性的目的。
一、小學(xué)數(shù)學(xué)教學(xué)中轉(zhuǎn)化思想方法的問題分析
(一)教師“新”數(shù)與“舊”數(shù)之間銜接不緊密
一般來(lái)說(shuō),數(shù)學(xué)思維方法比較抽象,小學(xué)生正處于從形象思維到抽象思維的過(guò)渡階段。因此,在數(shù)學(xué)教學(xué)過(guò)程中,教師尤其需要在“新”數(shù)和“舊”數(shù)之間建立良好的關(guān)系。但在日常教學(xué)中,建立新舊教學(xué)知識(shí)之間仍然存在著一些不足。例如,當(dāng)學(xué)生學(xué)習(xí)十進(jìn)制除法的計(jì)算方法時(shí),教師應(yīng)及時(shí)讓學(xué)生在舊知識(shí)的整數(shù)除法和新知識(shí)的十進(jìn)制除法之間建立聯(lián)系,這就是這節(jié)課程思想和方法的轉(zhuǎn)化。若教師忽視了其中蘊(yùn)含的變革理念和方法,這樣的教學(xué)就存在些許不足。
(二)學(xué)生數(shù)的基礎(chǔ)知識(shí)掌握不牢
小學(xué)生在運(yùn)用轉(zhuǎn)化思想和方法解決問題時(shí),應(yīng)具備扎實(shí)的基礎(chǔ)知識(shí)。因?yàn)橛^念和方法的轉(zhuǎn)化是把未知的問題以某種方式轉(zhuǎn)化為已知的問題,也就是把新知識(shí)轉(zhuǎn)化為舊知識(shí)的過(guò)程。有些學(xué)生學(xué)習(xí)數(shù)學(xué)非常努力,但在做了大量的練習(xí)題后,他們的成績(jī)?nèi)匀粵]有提高,這個(gè)問題的根源在于學(xué)生沒有牢牢掌握數(shù)學(xué)的基礎(chǔ)知識(shí)和數(shù)學(xué)理論知識(shí)之間的關(guān)系。例如,學(xué)生若沒有扎實(shí)的整數(shù)基礎(chǔ)知識(shí),學(xué)習(xí)小數(shù)便非常困難,這就意味著能夠掌握舊知識(shí)的學(xué)生,在牢固的基礎(chǔ)之上,更容易學(xué)會(huì)對(duì)新知識(shí)的“轉(zhuǎn)化”,也就更容易建立數(shù)與數(shù)之間的關(guān)系,逐步實(shí)現(xiàn)數(shù)與數(shù)之間的轉(zhuǎn)化;反之,學(xué)生的數(shù)學(xué)學(xué)習(xí)將陷入困境??梢钥闯觯环矫?,學(xué)生對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的掌握會(huì)影響他們的進(jìn)一步學(xué)習(xí);另一方面,它也會(huì)影響學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性和自信心。然而數(shù)學(xué)基礎(chǔ)知識(shí)薄弱的現(xiàn)象源于學(xué)生在學(xué)習(xí)新知識(shí)后未能及時(shí)復(fù)習(xí)和總結(jié)所學(xué)的知識(shí)點(diǎn)。對(duì)他們而言,數(shù)學(xué)理論之間的知識(shí)點(diǎn)是斷裂的,無(wú)法形成完整的知識(shí)體系。因此,學(xué)生不能有效地運(yùn)用轉(zhuǎn)化思想的方法來(lái)解決問題。
二、小學(xué)數(shù)學(xué)教學(xué)中轉(zhuǎn)化思想方法的應(yīng)用策略
(一)化新知為舊知,理解“新”數(shù)
小學(xué)生正處于從形象思維向抽象思維發(fā)展最快的時(shí)期。其中,學(xué)生的對(duì)于新知識(shí)的轉(zhuǎn)化能力在教學(xué)中尤為重要。當(dāng)學(xué)生面對(duì)新的學(xué)習(xí)情境和問題情境時(shí),他們可以利用自己原有的知識(shí)來(lái)獲取新知識(shí)或解決新問題。在小學(xué)數(shù)學(xué)中,絕大多數(shù)知識(shí)是量與量的關(guān)系,內(nèi)容的完整性很強(qiáng),新舊知識(shí)之間有著密切的關(guān)系。這不僅體現(xiàn)了學(xué)習(xí)轉(zhuǎn)化思想的完整性,而且使學(xué)生對(duì)數(shù)學(xué)知識(shí)有了更系統(tǒng)的理解。
在小學(xué)數(shù)學(xué)教學(xué)中,不僅要注意學(xué)生對(duì)數(shù)學(xué)知識(shí)之間聯(lián)系的掌握,還要讓學(xué)生通過(guò)參與教學(xué)活動(dòng)的過(guò)程中,能夠獨(dú)立思考、合作與交流,逐步的完善數(shù)學(xué)思維方法。然而,在整個(gè)教材中,轉(zhuǎn)化思想和方法本身并沒有單獨(dú)的教學(xué)內(nèi)容,而是包含在小學(xué)數(shù)學(xué)教材的每一部分中。當(dāng)然,在教授一些數(shù)學(xué)理論知識(shí)時(shí),教師應(yīng)該充分利用并完善教材,結(jié)合生活素材。對(duì)于學(xué)生的實(shí)際情況來(lái)說(shuō),利用新舊知識(shí)之間的聯(lián)系來(lái)理解新的數(shù)學(xué)尤為重要。
(二)化困難為容易,感悟算理
將難題轉(zhuǎn)化為簡(jiǎn)單問題是思維方式轉(zhuǎn)變的最大特點(diǎn)。簡(jiǎn)化是指學(xué)生利用簡(jiǎn)化原理改變思維方式,仔細(xì)觀察數(shù)學(xué)問題之間的關(guān)系,然后利用這些關(guān)系進(jìn)行簡(jiǎn)單運(yùn)算。在低年級(jí)教學(xué)時(shí),例如:少年隊(duì)員去植樹,每人植7棵,余11棵后來(lái)安排其中2人每人植6棵,其余每人植8棵正好植完。有多少名少先隊(duì)員?多少棵樹?,像這樣將問題結(jié)合實(shí)際生活,能夠讓學(xué)生更好地產(chǎn)生實(shí)際的思維,并提高思維轉(zhuǎn)化的效率,像這樣將難題轉(zhuǎn)化為簡(jiǎn)單問題是思維方式轉(zhuǎn)變的最大特點(diǎn)。學(xué)生可以增強(qiáng)對(duì)數(shù)量關(guān)系的理解,積極探索并收獲知識(shí)的樂趣。因此,在教學(xué)實(shí)踐中,教師要更多地引導(dǎo)學(xué)生有意識(shí)地使用思維轉(zhuǎn)換法進(jìn)行計(jì)算。在數(shù)學(xué)的運(yùn)算中,教師可以引導(dǎo)學(xué)生觀察問題,發(fā)現(xiàn)數(shù)學(xué)問題之間的微妙關(guān)系和問題的本質(zhì),結(jié)合運(yùn)算思想和方法的轉(zhuǎn)化,了解它們對(duì)數(shù)學(xué)學(xué)習(xí)的益處,從而提高學(xué)生的運(yùn)算能力。
總結(jié)
數(shù)學(xué)思維方法是人類思想文化的瑰寶,是數(shù)學(xué)文化素養(yǎng)的精髓。因此,基礎(chǔ)數(shù)學(xué)教育的關(guān)鍵是強(qiáng)化數(shù)學(xué)思維方法。轉(zhuǎn)化思想方法是以具體數(shù)學(xué)內(nèi)容為載體,高于具體數(shù)學(xué)內(nèi)容的指導(dǎo)思想和普遍適用的方法。它能讓學(xué)生理解數(shù)學(xué)的真正含義,學(xué)會(huì)從數(shù)學(xué)的角度思考和處理問題。它是學(xué)習(xí)知識(shí)、發(fā)展智力和培養(yǎng)能力的結(jié)合,是學(xué)生未來(lái)發(fā)展的重要基礎(chǔ)。
參考文獻(xiàn)
[1]〔匈〕羅莎·彼得著,朱梧橙,袁相碗,鄭毓信譯.無(wú)窮的玩藝[M].大連:大連理工大學(xué),2008. 92.
[2]徐樹道.數(shù)學(xué)方法論[M].桂林:廣西師范大學(xué)出版社,2001. 85.
[3]朱成杰.數(shù)學(xué)思想方法教學(xué)研究導(dǎo)論[M]上海:文匯出版社,2001. 1.