楊 瓊,劉青云,李強(qiáng)勇,彭 敏,楊春玲,童艷梅,曾地剛,陳秀荔,陳曉漢,趙永貞
基于人工神經(jīng)網(wǎng)絡(luò)的凡納濱對(duì)蝦分子標(biāo)記育種值預(yù)測(cè)
楊 瓊,劉青云,李強(qiáng)勇,彭 敏,楊春玲,童艷梅,曾地剛,陳秀荔,陳曉漢,趙永貞
(廣西壯族自治區(qū)水產(chǎn)科學(xué)研究院/廣西水產(chǎn)遺傳育種與健康養(yǎng)殖重點(diǎn)實(shí)驗(yàn)室,廣西 南寧 530021)
【】探討逆?zhèn)鞑ト斯ど窠?jīng)網(wǎng)絡(luò)(BPANN)算法用于預(yù)測(cè)分子標(biāo)記育種值的可行性。采用高通量測(cè)序技術(shù)對(duì)284尾F1代凡納濱對(duì)蝦及其父母本進(jìn)行特定長(zhǎng)度擴(kuò)增片段測(cè)序(SLAF-seq),隨機(jī)取200尾對(duì)蝦樣品的數(shù)量性狀基因座(QTL)基因型和體質(zhì)量數(shù)據(jù),構(gòu)建BPANN預(yù)測(cè)模型,利用該模型分別對(duì)其余84尾凡納濱對(duì)蝦進(jìn)行體質(zhì)量性狀預(yù)測(cè)。構(gòu)建了1個(gè)高密度的單核苷酸多態(tài)性(SNP)遺傳連鎖圖譜,鑒定出6個(gè)與體質(zhì)量相關(guān)的QTL,對(duì)此QTL的BPANN育種值預(yù)測(cè)結(jié)果顯示,育種值的平均誤差為0.032 0±0.006 4,低于貝葉斯線性回歸模型預(yù)測(cè)的平均誤差值(0.046 2±0.005 6)。BPANN用于預(yù)測(cè)凡納濱對(duì)蝦分子標(biāo)記育種值效果良好。
人工神經(jīng)網(wǎng)絡(luò); 凡納濱對(duì)蝦; 分子標(biāo)記; 育種值
新品種選育是動(dòng)物養(yǎng)殖業(yè)最重要的工作之一。分子標(biāo)記輔助選擇(Marker-assisted selection,MAS)技術(shù)可直接選擇基因型進(jìn)行育種,顯著提高選育效率[1]。MAS主要用分子標(biāo)記構(gòu)建高密度遺傳連鎖圖譜,再鑒定與目標(biāo)性狀關(guān)聯(lián)的數(shù)量性狀基因座(QTL)。用QTL選擇育種時(shí)需準(zhǔn)確預(yù)測(cè)分子標(biāo)記基因型組合的育種值。傳統(tǒng)的分子標(biāo)記育種值的預(yù)測(cè)方法主要是線性回歸分析,如嶺回歸分析(Ridge regression,RR)、貝葉斯估計(jì)(Bayesian estimation,BE)、最佳無(wú)偏預(yù)測(cè)(Best linear unbiased prediction,BLUP)等[2]。嶺回歸線性預(yù)測(cè)忽略了分子標(biāo)記與目標(biāo)性狀的交互作用和非線性[3]。貝葉斯預(yù)測(cè)、BLUP預(yù)測(cè)等模型允許通過(guò)差異收縮估計(jì)分子標(biāo)記效果,可更靈活描述復(fù)雜分子標(biāo)記與目標(biāo)性狀的關(guān)系[4]。人工神經(jīng)網(wǎng)絡(luò)(Artificial neural network,ANN)是一種由大量處理單元連接組成的非線性、自適應(yīng)數(shù)據(jù)處理算法,可模仿人類神經(jīng)單元網(wǎng)絡(luò)進(jìn)行分布式并行信息處理[5]。逆?zhèn)鞑ト斯ど窠?jīng)網(wǎng)絡(luò)(Back propagation artificial neural network,BPANN)是目前應(yīng)用最廣泛的神經(jīng)網(wǎng)絡(luò)[6]。近年來(lái)ANN已廣泛用于構(gòu)建非線性復(fù)雜問(wèn)題的優(yōu)化解計(jì)算模型[7-9],在小鼠[10]、奶牛[11]和小麥[12]等物種分子標(biāo)記育種值預(yù)測(cè)方面已取得一定進(jìn)展,但在水產(chǎn)動(dòng)物分子標(biāo)記育種值預(yù)測(cè)方面未見報(bào)道。
凡納濱對(duì)蝦()又稱南美白對(duì)蝦,是世界上養(yǎng)殖產(chǎn)量最大的蝦種。生長(zhǎng)性狀是對(duì)蝦最重要經(jīng)濟(jì)性狀之一,構(gòu)建凡納濱對(duì)蝦遺傳連鎖圖譜并鑒定生長(zhǎng)性狀的QTL,開發(fā)用于育種的分子標(biāo)記,建立預(yù)測(cè)分子標(biāo)記育種值方法,對(duì)凡納濱對(duì)蝦新品種選育較為重要。過(guò)去遺傳圖譜構(gòu)建主要基于隨機(jī)擴(kuò)增多態(tài)性DNA(RAPD)、限制性片段長(zhǎng)度多態(tài)性(RFLP)、擴(kuò)增片段長(zhǎng)度多態(tài)性(AFLP)、簡(jiǎn)單序列重復(fù)(SSR)和簡(jiǎn)單序列重復(fù)區(qū)間(ISSR)等[13-14]傳統(tǒng)分子標(biāo)記,這些標(biāo)記生成的遺傳圖譜密度相對(duì)較低。隨著高通量測(cè)序技術(shù)的發(fā)展,基因分型測(cè)序(GBS)、限制性位點(diǎn)相關(guān)DNA測(cè)序(RAD-seq)、特定長(zhǎng)度擴(kuò)增片段測(cè)序(Specific length amplified fragment sequencing,SLAF-seq)等第2代測(cè)序技術(shù)開始用于構(gòu)建單核苷酸多態(tài)性(Single nucleotide polymorphism,SNP)遺傳連鎖圖譜,這些標(biāo)記比傳統(tǒng)標(biāo)記更密集,更一致,更有效,成本更低[15]。
本研究采用第2代高通量測(cè)序技術(shù)對(duì)凡納濱對(duì)蝦進(jìn)行SLAF-seq,構(gòu)建SNP遺傳連鎖圖譜,鑒定體質(zhì)量相關(guān)QTL,構(gòu)建BPANN預(yù)測(cè)模型并進(jìn)行分子標(biāo)記育種值預(yù)測(cè),探討B(tài)PANN用于預(yù)測(cè)分子標(biāo)記育種值的可行性,為凡納濱對(duì)蝦MAS育種提供基礎(chǔ)。
凡納濱對(duì)蝦由廣西水產(chǎn)科學(xué)研究院凡納濱對(duì)蝦遺傳育種中心提供。用人工授精方法,使1尾雄性親蝦和1尾雌性親蝦交配,孵化的F1代群體用作遺傳連鎖圖譜的作圖群體。
隨機(jī)采集作圖群體的284尾凡納濱對(duì)蝦及其父母本,用電子稱測(cè)量體質(zhì)量,用剪刀剪下背部的肌肉,放入液氮中保存。
用海洋動(dòng)物基因組DNA提取試劑盒(天根生物,中國(guó))提取肌肉DNA。用NanoDrop分光光度計(jì)和瓊脂糖凝膠電泳對(duì)DNA進(jìn)行定量。
用HaeⅢ和Hpy166Ⅱ消化對(duì)蝦的基因組DNA,將測(cè)序接頭通過(guò)T4連接酶連接到消化獲得的DNA片段,PCR擴(kuò)增這些片段,純化擴(kuò)增產(chǎn)物。在Illumina HiSeq系統(tǒng)上進(jìn)行SLAF測(cè)序。對(duì)原始測(cè)序讀數(shù)進(jìn)行質(zhì)量控制,以獲得高質(zhì)量序列。將高質(zhì)量序列與凡納濱對(duì)蝦基因組(https://www.ncbi.nlm.nih. gov/genome/?term=Vannamei)比對(duì),鑒定基于SNP的多態(tài)性SLAF標(biāo)記。將多態(tài)性的SLAF標(biāo)記用HighMap軟件構(gòu)建遺傳連鎖圖譜[12]。使用R/qtl軟件包進(jìn)行QTL分析,每個(gè)數(shù)據(jù)集的檢測(cè)限(limit of detection,LOD)閾值基于排列組合測(cè)試(1 000個(gè)排列組合,< 0.05)建立。LOD值高于此閾值的QTL是顯著的QTL。估計(jì)QTL解釋的表型變異:1–10–2LOD/n(為樣本數(shù))[16]。遺傳圖譜構(gòu)建和QTL分析由百邁客生物技術(shù)公司(北京)進(jìn)行。
每個(gè)QTL LOD值選擇最大SNP作為分子標(biāo)記,并隨機(jī)選擇作圖群體的200個(gè)凡納濱對(duì)蝦樣品,SNP基因型及體質(zhì)量數(shù)據(jù)分別用于構(gòu)建BPANN預(yù)測(cè)和貝葉斯線性回歸(Bayesian linear regression)模型[3]。
BPANN預(yù)測(cè)模型:用MATLAB7.0的人工神經(jīng)網(wǎng)絡(luò)程序包構(gòu)建BPANN模型,該模型包括1個(gè)輸入層、2個(gè)隱含層和1個(gè)輸出層(圖1)。用凡納濱對(duì)蝦樣品SNP基因型及體質(zhì)量數(shù)據(jù)訓(xùn)練神經(jīng)網(wǎng)絡(luò)1 000次。
w、v、u分別為各層的各個(gè)單元的連接權(quán);Y為輸出的值
貝葉斯線性回歸預(yù)測(cè)模型:用R/BLR程序包(http://cran.r-project.org/web/packages/BLR/index.html)建立貝葉斯線性回歸預(yù)測(cè)模型(Bayes A):?=+1i1+2i2+e,其中是總體平均值,Y為群體中第個(gè)體的表型值(= 1, 2, 3, ...,),1和2為分子標(biāo)記基因型,對(duì)于QQ基因型,1= 1,2= 0;對(duì)于Qq基因型,1= 0,2= 1;對(duì)于qq基因型,1= -1,2= 0;為分子標(biāo)記的遺傳效應(yīng);為殘差。分別用建立的BPANN預(yù)測(cè)模型和貝葉斯線性回歸預(yù)測(cè)模型對(duì)剩余的84尾凡納濱對(duì)蝦進(jìn)行體質(zhì)量預(yù)測(cè),比較兩者的預(yù)測(cè)效果。
SLAF測(cè)序產(chǎn)生439.77 Gb數(shù)據(jù),平均30為95.81%,有57.83%的序列被成功匹配到凡納濱對(duì)蝦基因組(數(shù)據(jù)已上傳NCBI數(shù)據(jù)庫(kù),登錄號(hào):PRJNA545592)。結(jié)果表明,SLAF文庫(kù)的構(gòu)建和測(cè)序正常。過(guò)濾并聚類所有序列,鑒定出807 505個(gè)SLAF標(biāo)記,用SLAF的多態(tài)性標(biāo)記構(gòu)建遺傳連鎖圖譜。結(jié)果共有17 338個(gè)SLAF標(biāo)記定位在遺傳連鎖圖譜上??倛D距為6 360.12 cM,標(biāo)記間平均圖距為0.37 cM,包含44個(gè)連鎖群。
利用遺傳圖譜,對(duì)凡納濱對(duì)蝦體質(zhì)量性狀進(jìn)行QTL分析。LOD閾值確定為5.2,在連鎖群7和16鑒定了2個(gè)與體質(zhì)量相關(guān)的QTL(圖2)。
灰色橫線顯示LOD閾值The grey horizontal line shows the LOD threshold
Fig .2 Quantitative trait loci for weight in
為用更多分子標(biāo)記進(jìn)行預(yù)測(cè)分析,將LOD降至3.5,鑒定得6個(gè)QTL。在6個(gè)鑒定的體質(zhì)量相關(guān)的QTL區(qū)間中,分別取LOD最大的6個(gè)SLAF標(biāo)記(Marker10241515、Marker4729146、Marker2125004、Marker3571091、Marker1700932、Marker4067002)。剩余84尾對(duì)蝦的標(biāo)記基因型數(shù)據(jù)育種值(體質(zhì)量)預(yù)測(cè)結(jié)果見表1。表1可見,貝葉斯線性回歸預(yù)測(cè)的平均誤差為0.046 2 ± 0.005 6,BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)的平均誤差為0.032 0 ± 0.006 4。
表1 用貝葉斯線性回歸和BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)的凡納濱對(duì)蝦育種值
與傳統(tǒng)的育種方法相比,分子標(biāo)記輔助育種可提高育種效果,加快育種進(jìn)程。本研究用SLAF-seq構(gòu)建凡納濱對(duì)蝦的高密度遺傳圖譜,相鄰標(biāo)記間平均距離為0.37 cM,而用RAPD、FLP和SSR開發(fā)的凡納濱對(duì)蝦遺傳圖譜的相鄰標(biāo)記間平均距離為1 ~ 5 cM[17-20],本研究構(gòu)建的凡納濱對(duì)蝦遺傳連鎖圖譜密度更高。本研究的遺傳連鎖圖譜包括44個(gè)連鎖群,與之前報(bào)道的凡納濱對(duì)蝦遺傳連鎖圖譜的連鎖群數(shù)量一致[21],表明凡納濱對(duì)蝦有44對(duì)染色體。本研究鑒定了2個(gè)與生長(zhǎng)相關(guān)的QTL,而之前報(bào)道的凡納濱對(duì)蝦生長(zhǎng)相關(guān)QTL數(shù)量不同[21],可能由所用凡納濱對(duì)蝦群體不同,QTL閾值不同所致。
準(zhǔn)確預(yù)測(cè)分子標(biāo)記育種值對(duì)于分子標(biāo)記輔助選育較為重要。González-Recio等[22]用人工神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)基于全基因組數(shù)據(jù)的荷斯坦種公牛壽命,發(fā)現(xiàn)比用貝葉斯算法更準(zhǔn)確。Okut等[10]用人工神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)使用密集分子標(biāo)記的小鼠體質(zhì)量指數(shù),認(rèn)為人工神經(jīng)網(wǎng)絡(luò)至少與其他預(yù)測(cè)方法效果相當(dāng),其捕獲非線性關(guān)系的潛在能力對(duì)研究復(fù)雜基因控制的數(shù)量性狀較為有用。Yao等[23]用人工神經(jīng)網(wǎng)絡(luò)算法識(shí)別影響奶牛采食量的QTL,顯示了機(jī)器學(xué)習(xí)方法的巨大靈活性。Ehret等[24]使用人工神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)德國(guó)奶牛的產(chǎn)奶育種值,預(yù)測(cè)效果與GBLUP(基因組最佳線性無(wú)偏預(yù)測(cè))相當(dāng)。本研究進(jìn)行了284尾凡納濱對(duì)蝦及其父母本的SLAF測(cè)序,并利用其中200個(gè)樣品的分子標(biāo)記基因型數(shù)據(jù)和體質(zhì)量數(shù)據(jù)建立了貝葉斯線性回歸預(yù)測(cè)和BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型。利用模型對(duì)剩余的84個(gè)樣品進(jìn)行6個(gè)分子標(biāo)記育種值的預(yù)測(cè),結(jié)果表明BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)的誤差小于貝葉斯預(yù)測(cè),這可能是因?yàn)楸狙芯坎捎玫?個(gè)分子標(biāo)記間存在非線性疊加關(guān)系,而BP人工神經(jīng)網(wǎng)絡(luò)算法有很強(qiáng)的預(yù)測(cè)復(fù)雜非線性關(guān)系的能力[6]。本研究結(jié)果顯示了人工神經(jīng)網(wǎng)絡(luò)算法在分子標(biāo)記育種值預(yù)測(cè)的潛力。不過(guò),本研究神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)誤差仍較大,這可能與分子標(biāo)記數(shù)量較少有關(guān);同時(shí),本研究用于建模的樣本和用于預(yù)測(cè)的樣本來(lái)源于同一群體,因此可能會(huì)存在預(yù)測(cè)準(zhǔn)確性偏高的問(wèn)題。此外,神經(jīng)網(wǎng)絡(luò)算法類型、隱含層數(shù)量、神經(jīng)單元數(shù)量、用于機(jī)器訓(xùn)練的樣本選擇等均對(duì)預(yù)測(cè)的效果有一定的影響,還需進(jìn)一步研究?jī)?yōu)化。
本研究應(yīng)用高通量測(cè)序技術(shù)構(gòu)建了高密度的凡納濱對(duì)蝦遺傳連鎖圖譜,鑒定了生長(zhǎng)相關(guān)的QTL,并探索應(yīng)用神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)分子標(biāo)記育種值的可行性,結(jié)果表明,BPANN用于預(yù)測(cè)凡納濱對(duì)蝦分子標(biāo)記育種值效果良好。本研究結(jié)果可為凡納濱對(duì)蝦分子標(biāo)記輔助育種研究提供基礎(chǔ)數(shù)據(jù)。
[1] 孫效文, 魯翠云, 賈智英, 等. 水產(chǎn)動(dòng)物分子育種研究進(jìn)展[J]. 中國(guó)水產(chǎn)科學(xué), 2009, 16(6): 981-990.
[2] MEUWISSEN T H E, HAYES B J, GODDARD M E. Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157(4): 1819-1829.
[3] OKUT H, WU X L, ROSA G J M, et al. Predicting expected progeny difference for marbling score in Angus cattle using artificial neural networks and Bayesian regression models[J]. Genetics, Selection, Evolution: GSE, 2013, 45(1): 34.
[4] GIANOLA D, DE LOS CAMPOS G, HILL W G, et al. Additive genetic variability and the Bayesian alphabet[J]. Genetics, 2009, 183(1): 347-363.
[5] ARYA S, HO CHUNG Y. Artificial neural network estimation of data and channel characteristics in free-space ultraviolet communications[J]. Applied Optics, 2020, 59(13): 3806-3818.
[6] YAO L T, ZHONG Y F, WU J Y, et al. Multivariable logistic regression and back propagation artificial neural network to predict diabetic retinopathy[J]. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2019, 12: 1943-1951.
[7] CHON K H, COHEN R J. Linear and nonlinearmodel parameter estimation using an artificial neural network[J]. IEEE Transactions on Bio-Medical Engineering, 1997, 44(3): 168-174.
[8] ZHANG W, BAO Z M, JIANG S, et al. An artificial neural network-based algorithm for evaluation of fatigue crack propagation considering nonlinear damage accumulation[J]. Materials (Basel, Switzerland), 2016, 9(6): 483.
[9] TALEBI N, NASRABADI A M, MOHAMMAD- REZAZADEH I, et al. nCREANN: nonlinear causal relationship estimation by artificial neural network; applied for autism connectivity study[J]. IEEE Transactions on Medical Imaging, 2019, 38(12): 2883-2890.
[10] OKUT H, GIANOLA D, ROSA G J M, et al. Prediction of body mass index in mice using dense molecular markers and a regularized neural network[J]. Genetics Research, 2011, 93(3): 189-201.
[11] GIANOLA D, OKUT H, WEIGEL K A, et al. Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat[J]. BMC Genetics, 2011, 12: 87.
[12] LIU D Y, MA C X, HONG W G, et al. Construction and analysis of high-density linkage map using high-throughput sequencing data[J]. PLoS One, 2014, 9(6): e98855.
[13] MAUGHAN P J, BONIFACIO A, JELLEN E N, et al. A genetic linkage map of quinoa () based on AFLP, RAPD, and SSR markers[J]. TAG Theoretical and Applied Genetics Theoretische and Angewandte Genetik, 2004, 109(6): 1188-1195.
[14] KUIPER M T. Building a high-density genetic map using the AFLP technology[J]. Methods in Molecular Biology (Clifton, N J), 1998, 82: 157-171.
[15] SUN X W, LIU D Y, ZHANG X F, et al. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing[J]. PLoS One, 2013, 8(3): e58700.
[16] BROMAN K W, GATTI D M, SIMECEK P, et al. R/qtl2: software for mapping quantitative trait loci with high-dimensional data and multiparent populations[J]. Genetics, 2019, 211(2): 495-502.
[17] GARCIA D K, DHAR A K, ALCIVAR-WARREN A. Molecular analysis of a RAPD marker (B20) reveals two microsatellites and differential mRNA expression in[J]. Molecular Marine Biology and Biotechnology, 1996, 5(1): 71-83.
[18] PéREZ F, ORTIZ J, ZHINAULA M, et al. Development of EST-SSR markers by data mining in three species of shrimp:,, andbirdy[J]. Marine Biotechnology (New York, N Y), 2005, 7(5): 554-569.
[19] ANDRIANTAHINA F, LIU X L, HUANG H. Genetic map construction and quantitative trait locus (QTL) detection of growth-related traits infor selective breeding applications[J]. PLoS One, 2013, 8(9): e75206.
[20] ZHANG L S, YANG C J, ZHANG Y, et al. A genetic linkage map of Pacific white shrimp (): sex-linked microsatellite markers and high recombination rates[J]. Genetica, 2007, 131(1): 37-49.
[21] YU Y, ZHANG X, YUAN J, et al. Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific White Shrimp[J]. Scientific Reports, 2015, 5: 15612.
[22] GONZáLEZ-RECIO O, WEIGEL K A, GIANOLA D, et al. L2-Boosting algorithm applied to high-dimensional problems in genomic selection[J]. Genetics Research, 2010, 92(3): 227-237.
[23] YAO C, SPURLOCK D M, ARMENTANO L E, et al. Random Forests approach for identifying additive and epistatic single nucleotide polymorphisms associated with residual feed intake in dairy cattle[J]. Journal of Dairy Science, 2013, 96(10): 6716-6729.
[24] EHRET A, HOCHSTUHL D, GIANOLA D, et al. Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle[J]. Genetics, Selection, Evolution: GSE, 2015, 47(1): 22.
Prediction of Breeding Value of Molecular Markers inUsing Artificial Neural Network
YANG Qiong, LIU Qing-yun, LI Qiang-yong, PENG Min, YANG Chun-ling, TONG Yan-mei, ZENG Di-gang,CHEN Xiu-li,CHEN Xiao-han, ZHAO Yong-zhen
(/,530021,)
【】To explore the feasibility of the back propagation artificial neural network (BPANN) algorithm for predicting the breeding value of molecular markers,【】High-throughput sequencing technology was used to perform specific length amplified fragment sequencing (SLAF-seq) on 284 F1 generation ofand their parents, and the QTL genotype and weight data of 200 shrimp samples were randomly selected to construct a BPANN prediction model. The model was used to respectively predict the weight traits of the remaining 84 shrimps.【】A high-density single nucleotide polymorphism (SNP) genetic linkage map was constructed, and 6 weight-related QTLs were identified, and used to predict breeding values by the BPANN. The average error of the breeding value predicted by the BPANN prediction model was 0.032 0 ± 0.006 4, which was lower than the average error value of the Bayesian linear regression model (0.046 2 ± 0.005 6).【】The BPANN algorithm has a good effect on predicting the breeding value of molecular markers in.
artificial neural network;; molecular marker; breeding value
楊瓊,劉青云,李強(qiáng)勇,等. 基于人工神經(jīng)網(wǎng)絡(luò)的凡納濱對(duì)蝦分子標(biāo)記育種值預(yù)測(cè)[J]. 廣東海洋大學(xué)學(xué)報(bào),2022,42(3):122-126.
Q959.223+.633
A
1673-9159(2022)03-0122-05
10.3969/j.issn.1673-9159.2022.03.016
2021-11-09
廣西創(chuàng)新驅(qū)動(dòng)發(fā)展專項(xiàng)資金項(xiàng)目(桂科AA17204080);國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系廣西創(chuàng)新團(tuán)隊(duì)建設(shè)任務(wù)書(nycytxgxcxtd-14-01);國(guó)家蝦產(chǎn)業(yè)技術(shù)體系建設(shè)任務(wù)書(CARS-48)
楊瓊(1968―),女,學(xué)士,高級(jí)工程師,主要研究方向?yàn)榭萍脊芾?。E-mail: 421059417 @qq.com
趙永貞(1978―),男,博士,研究員,研究方向?yàn)樗a(chǎn)遺傳育種。E-mail:fisher1152002@126.com。
(責(zé)任編輯:劉慶穎)