• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hybrid-anode structure designed for a high-performance quasi-vertical GaN Schottky barrier diode

    2022-05-16 07:12:02QiliangWang王啟亮TingtingWang王婷婷TaofeiPu蒲濤飛ShaohengCheng成紹恒XiaoboLi李小波LiuanLi李柳暗andJinpingAo敖金平
    Chinese Physics B 2022年5期
    關(guān)鍵詞:王婷婷金平

    Qiliang Wang(王啟亮) Tingting Wang(王婷婷) Taofei Pu(蒲濤飛) Shaoheng Cheng(成紹恒)Xiaobo Li(李小波) Liuan Li(李柳暗) and Jinping Ao(敖金平)

    1State Key Laboratory of Superhard Materials,Jilin University,Changchun 130012,China

    2Shenzhen Research Institute,Jilin University,Shenzhen 518057,China

    3National Key Discipline Laboratory of Wide Band-gap Semiconductor,School of Microelectronics,Xidian University,Xi’an 710071,China

    4Institute of Technology and Science,Tokushima University,Tokushima 770-8506,Japan

    Keywords: Schottky barrier diode,hybrid anode,dielectric,edge termination

    1. Introduction

    The GaN-based vertical power devices have emerged as the promising candidates for next-generation high-efficiency power electronics because they can realize higher breakdown voltage in small areas,free of surface traps,and good thermal properties.[1–3]Among the GaN-based power devices, Schottky barrier diodes (SBDs) possess the advantages of low forward turn-on voltage (Von) and no minority carrier storage,which are beneficial to realize low conduction/switching loss and fast-switching speed.[4,5]Although high-performance vertical GaN-on-GaN SBDs have been investigated extensively along with the development of the freestanding GaN substrate,the commercial GaN substrate is still limited by the high cost and the small diameter.[6]

    On the other hand, GaN epitaxy on low-cost and largearea foreign substrates (silicon, sapphire, etc.) provides the feasibility of quasi-vertical GaN SBDs.[7,8]However, the breakdown voltage of the quasi-vertical SBDs at reverse bias is far below the GaN material limit.The premature breakdown is ascribed to some critical issues such as high dislocation density, high background doping concentration of the drift layer,leakage current from the etched mesa sidewall,and the termination techniques. The former issues can be effectively solved by improving the crystalline quality of GaN epitaxy material and optimizing the device fabrication process.In addition,different kinds of termination technologies are developed to improve the breakdown voltage in recent years.[9,10]

    Generally,the junction barrier Schottky structure by partially replacing the drift layer with p+region is the most effective route based on the charge-coupling. The reversely biased p–n junction results in a lateral depletion of the drift layer,which can effectively shield the strong electric field at the Schottky contact. However, the p+region obtained by epitaxy growth or ion-implantation encounters significant technical challenge during the thermally activation.[11–13]Some alternative methods such as nitrogen or the fluorine plasma treatment, field plate (FP) structure, and trench metal-oxidesemiconductor (MOS) barrier-controlled Schottky have been developed.[14–16]The introduction of dielectric layer is effective to reduce the peak electrical field with a simple fabrication process.

    In this work,we proposed a hybrid anode structure to realize the high-performance quasi-vertical GaN Schottky barrier diode. The SiN dielectric is not only used at the mesa edge, but also adopted in the main Schottky contact area. By optimizing the thickness and length of SiN,a balance between on-resistance and breakdown voltage is obtained. In addition,the SiN dielectric on the side wall is also covered by the anode metal as a FP structure. The effect of SiN dielectric on the performance of the diode has been evaluated extensively through Silvaco technology computer-aided design (TCAD)2-D device simulation.

    2. Experiment

    The SBDs structures used for simulation are shown in Fig. 1. The epi-wafer comprises a 2 μm n+-GaN layer (impurity density over 1×1018cm-3)and a 6 μm n--GaN drift layer (impurity density of 1×1016cm-3) on sapphire. The dimensions of the ohmic cathode contact, the cathode–anode distance,and the mesa width are 2 μm,10 μm,and 20 μm,respectively. For the reference diode,the anode metal is 18 μm without the SiN dielectric. While for the hybrid anode structure, the SiN dielectric (thickness of 20 nm) covers all the mesa area and patterned on the surface with different lengths(L=0.5 μm, 2 μm, and 4 μm, respectively). Furthermore,to fabricate the FP,the anode metal(Ni in our experiment)is expanded into 21 μm with 0.5 μm overlap at the two edges of mesa. The device width along thez-axis(perpendicular to the paper)is defaulted as 1 μm. The current–voltage(I–V)curves of the SBDs were obtained by the TCAD simulation, including the parallel-electric-field-dependent mobility model, the Auger recombination model,and the impact ionization model.A universal phonon-assisted tunneling model is also defined at the anode region.[17]

    Fig. 1. The schematic structure of the hybrid anode SBDs without (a) and with(b)a side-wall field plate.

    3. Results and discussion

    Firstly,we evaluated the effect of the SiN dielectric layer on the electrical behaviors of the SBDs. The thickness and length of the SiN were set to 20 nm and 0.5 μm,respectively.The obtainedI–Vcurves were plotted in the linear and the semi-logarithm coordination as shown in Figs. 2(a) and 2(b),respectively. It demonstrates that theI–Vcurves at the forward bias region are nearly the same for two SBDs,implying the hybrid anode shows a weak effect on the current conduction path. The current density distribution of the reference and the hybrid-anode SBDs under 0.5 V,1.0 V,and 2.0 V bias were simulated by TCAD(Fig.3). It clearly shows that the current density is relatively smaller beneath the dielectric layer,[18]but this effect is very weak especially at a relatively high forward bias.

    Fig.2. The forward I–V characteristics in linear(a)and semi-logarithm(b)coordinate of the reference and hybrid anode diode. The inset of (b) is the electric field obtained along cutline AA′ under-1000 V.

    Fig. 3. The current density distribution at 0.5 V, 1 V, and 2 V forward bias for the diode without(a)–(c)and with SiN dielectric pattern(d)–(f).

    On the other hand,the introduction of the SiN decreases the reverse leakage current effectively(approximately 2 orders of magnitude)(Fig.2(b)). The electric field distribution under-1000 V shows an obvious electric field crowding effect at the edge of anode for the diode without SiN (Fig. 4), presenting a maximum electric field of approximately 4.5 MV/cm (inset of Fig. 2(b)). This value is much higher than the critical electric field of GaN, implying the breakdown voltage of the reference SBD is smaller than 1000 V.For the diode with a patterned SiN dielectric,the electric field crowding is effectively suppressed with the maximum electric field of approximately 2.5 MV/cm. It is worth noting that the minimum electric field occurs beneath the SiN dielectric. The charge-coupling effect between the insulation layer dielectric and GaN generates a 2-D depletion in the drift layer,which could correspondingly reduce the electric field magnitude and enhance the breakdown voltage.[15]In addition, it can be found that the increase of SiN thickness could weaken this charge-coupling effect (not shown), which is consistent with previous reports.[15]Based on those results,the thickness of the SiN is set to 20 nm in the following investigations.

    Fig.4. The electric field distribution of the reference diode(a)and the hybrid anode diode(b)under-1000 V.The electric field of both diodes are obtained along the cutline AA′ for comparison.

    Fig.6. The current density distribution under 2 V forward bias for the diode with 0.5 μm(a),2 μm(b),and 4 μm(c)SiN dielectric layer.

    Fig. 7. The electric field distribution of the reference (a) and hybrid anode(b)diode under-1000 V.

    Another key parameter of the SiN is the length under the Schottky anode on the top surface. Herein,we evaluated three lengths of 0.5 μm,2 μm,and 4 μm when kept a thickness of 20 nm of SiN.The simulatedI–Vcharacteristics were plotted in the linear and the logarithm coordinate,showing good rectification characteristics for all the diodes(Fig.5). The current density at the forward bias region decreases obviously with the increasing SiN length, while the turn-on voltages are nearly the same(Fig.5(a)). The possible reason may be ascribed to the increasing series resistance as discussed in our previous work.[5,18]Based on the thermionic emission(TE)model,the series resistances are deduced as shown in inset of Fig. 5(b).To reveal the mechanism more detailly,the current density distribution at 2.0 V bias were simulated by TCAD to evaluate the SiN length on the current density of hybrid-anode SBDs(Fig.6). It clearly shows that the current density is relatively small beneath the dielectric layer. However,this effect is very weak when the dielectric layer is relatively short but became strong when the length is long especially for the 4 μm sample.At the reverse bias region,a longer SiN helps to suppress the leakage slightly until-1000 V(Fig.5(b)). This phenomenon can be attributed to the expending low electric field regions beneath the SiN with the increasing length. In addition, the electric field beneath the SiN is obviously smaller than that of Ni/Au metal contact(Fig.7).

    Fig.8. The forward I–V characteristics in semi-logarithm(a)and linear(b)coordinate of the hybrid anode diode with and without the FP. Inset of (a)is the electric field distribution under -1000 V and the inset of (b) is the corresponding parameters by fitting the curves with the TE model.

    Fig.9. The current density distribution under 10 V forward bias for the diode without(a)and with(b)a sidewall field plate structure.

    Figure 8 shows the effect of the field plate on the electrical behaviors of the SBDs. It demonstrates that theI–Vcurves of the SBDs without and with a field plate present comparable rectification characteristics excepting slight discrepancy. At the reverse bias region, the FP structure(20 nm SiN,LFP=0.5 μm)helps to suppress the leakage slightly until-1000 V (Fig. 8(a)). On the other hand, the two curves are nearly the same at the forward bias below 1.5 V,while the current density increases slightly at higher forward bias for the diode with the field plate(Fig.8(b)). By fitting the curves with TE model,the key parameters shown in inset of Fig.8(b)are comparable for both diodes. However,the introduction of the FP decreases the series resistance. The current density distribution for the two kinds of SBDs at a relatively higher forward bias(10 V)is also shown in Fig.9. Obviously,the diode with the FP structure forms a MOS channel along the side wall with a higher current density,while the current density in the central drift layer is suppressed. This phenomenon is also confirmed from Fig. 10 (obtained along cutline BB′and CC′). This appearance of the sidewall channel leads to a smaller resistance,especially when the forward bias is relatively larger.

    Fig. 10. The current density distribution around the top (a) and bottom (b)region of the mesa at 10 V forward bias for the diode without and with a sidewall field plate structure.

    Fig.11. The electric field distribution under a reverse voltage of-1000 V of the diode without(a)and with(b)a sidewall field plate structure.

    To understand the mechanism of those results,the distribution of the electric field was simulated by TCAD as shown in Fig. 11. At-1000 V, the electric field distribution in the diode without the FP is relatively even with slight crowding effect at the edge of mesa. In addition, the electric field beneath the SiN is obvious smaller than that of Ni/Au metal contact. This result can also be confirmed from inset of Fig.8(a)(obtained along cutline BB′),in which the maximum and minimum electric field are approximately 2.5 MV/cm and 2.0 MV/cm around the edge and the dielectric, respectively.For comparison,the FP structure can suppress the electric field effectively especially at the sidewall. However, the electric field distribution shows an obvious crowding effect at the bottom of mesa for the diode with the FP structure(Fig.4). In the vertical diode, it was reported that a deep mesa is beneficial to suppress the electric field.[16]The possible reasons for this discrepancy may be ascribed as follows. On the one hand,the conduction path and the electric field will generate a sharp turn at the bottom of the mesa due to the quasi-vertical structure.On the other hand, a vertical mesa is adopted in our simulation with an angle of 90°. A beveled mesa with a relatively small angle is required for the further optimization.[19]Owing to the lack of native dielectric for GaN-base materials. The introduction of the dielectric needs to cope with the inferior film bulk and interface quality,especially as many etching damages exist on the side wall during the mesa fabrication. The highquality LPCVD-SiN with a remote plasma treatment presents an obvious enhanced reliability,[20]which is promising for the device proposed in this work.

    4. Conclusion and perspectives

    In conclusion,a hybrid anode structure is proposed to improve the electrical properties of the quasi-vertical GaN Schottky barrier diode.For the conventional diode without a SiN dielectric layer,an obvious electric field crowding occurs at the edge of anode and decreases the breakdown voltage. The introduction of a small length SiN dielectric is beneficial to suppress the electric field crowding to enhance breakdown voltage. In addition, the forward current density is comparable although the dielectric layer diminishes the conduction path slightly. However, the conduction path decreases drastically for the diode with an increasing SiN dielectric length, resulting in a high on-resistance. Finally,the introduction of a field plate on the side wall forms a MOS channel and decreases the series resistance, but also shows an obvious electric field crowding effect at the bottom of the mesa. A beveled mesa with a relatively small angle is required for further optimization.

    Acknowledgment

    Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0101690001) and the Natural Science Foundation of Sichuan Province,China(Grant No.22YYJC0596).

    猜你喜歡
    王婷婷金平
    SiC trench MOSFET with dual shield gate and optimized JFET layer for improved dynamic performance and safe operating area capability
    Design of Rehabilitation Training Device for Finger-Tapping Movement Based on Trajectory Extraction Experiment
    Rapid identification of volatile organic compounds and their isomers in the atmosphere
    《健聽女孩》:無聲世界里的有情人生
    意林彩版(2022年1期)2022-05-03 10:25:07
    奧本大學:一個教會你熱愛生活的地方
    意林彩版(2022年2期)2022-05-03 10:23:56
    Effect of anode area on the sensing mechanism of vertical GaN Schottky barrier diode temperature sensor
    Clinical observation of sinew-regulating bone-setting manipulations plus exercise therapy for chronic non-specific low back pain
    My Family,My Harbor
    Mercury Exposures in Population from Tieling Coal M ine Area,Liaoning,China
    TheCommodificationoftheBodyinConfessionsofaShopaholic
    久热久热在线精品观看| 内地一区二区视频在线| 最近中文字幕高清免费大全6| 久久久亚洲精品成人影院| 中文精品一卡2卡3卡4更新| 亚洲av电影在线进入| 天堂俺去俺来也www色官网| 亚洲精品国产色婷婷电影| 国产成人精品久久久久久| 夜夜爽夜夜爽视频| 伦理电影免费视频| www.av在线官网国产| 国内精品宾馆在线| 色94色欧美一区二区| 男女国产视频网站| 边亲边吃奶的免费视频| 日本91视频免费播放| 大片免费播放器 马上看| 26uuu在线亚洲综合色| 亚洲国产日韩一区二区| 成人二区视频| 一区二区三区四区激情视频| 日本午夜av视频| 色94色欧美一区二区| 十八禁高潮呻吟视频| 国产免费一区二区三区四区乱码| 亚洲成国产人片在线观看| 亚洲图色成人| 春色校园在线视频观看| 大香蕉97超碰在线| 亚洲av综合色区一区| 亚洲精品国产av蜜桃| 亚洲精品一区蜜桃| 在线观看一区二区三区激情| 成年人免费黄色播放视频| 欧美日韩综合久久久久久| 国产免费福利视频在线观看| 日产精品乱码卡一卡2卡三| 亚洲欧美精品自产自拍| 久久久久久久久久人人人人人人| 久久亚洲国产成人精品v| 亚洲精品中文字幕在线视频| 婷婷色av中文字幕| 狠狠精品人妻久久久久久综合| 伊人久久国产一区二区| 少妇的逼水好多| 久久久久国产网址| 国产在线免费精品| 亚洲欧美精品自产自拍| 国产精品无大码| 26uuu在线亚洲综合色| 日韩伦理黄色片| 爱豆传媒免费全集在线观看| 亚洲内射少妇av| 国产成人免费无遮挡视频| 欧美 亚洲 国产 日韩一| 国产精品欧美亚洲77777| 一级毛片电影观看| 视频中文字幕在线观看| 欧美日韩av久久| 大码成人一级视频| 国产av一区二区精品久久| 免费黄网站久久成人精品| 天堂俺去俺来也www色官网| av国产久精品久网站免费入址| 18禁在线无遮挡免费观看视频| 在线观看免费高清a一片| 日本猛色少妇xxxxx猛交久久| 日韩成人av中文字幕在线观看| 亚洲国产精品成人久久小说| 建设人人有责人人尽责人人享有的| 黄色 视频免费看| 亚洲精品456在线播放app| 三上悠亚av全集在线观看| 国产日韩欧美亚洲二区| 美女视频免费永久观看网站| av片东京热男人的天堂| 免费播放大片免费观看视频在线观看| 午夜日本视频在线| 国产在线视频一区二区| 日韩精品免费视频一区二区三区 | videossex国产| 日本爱情动作片www.在线观看| 欧美日韩视频高清一区二区三区二| 最近中文字幕高清免费大全6| 美女国产高潮福利片在线看| 久久 成人 亚洲| 成人漫画全彩无遮挡| av电影中文网址| 热99国产精品久久久久久7| 人妻少妇偷人精品九色| 午夜老司机福利剧场| 亚洲精品av麻豆狂野| 人成视频在线观看免费观看| av网站免费在线观看视频| 久久国产精品大桥未久av| 边亲边吃奶的免费视频| 五月开心婷婷网| 99国产综合亚洲精品| 男女无遮挡免费网站观看| 大话2 男鬼变身卡| 汤姆久久久久久久影院中文字幕| 久久99一区二区三区| 色网站视频免费| 国产av码专区亚洲av| 伦理电影大哥的女人| 成人漫画全彩无遮挡| 免费观看a级毛片全部| 国产精品国产三级国产av玫瑰| 国精品久久久久久国模美| av在线播放精品| 成人漫画全彩无遮挡| 久久 成人 亚洲| 国产成人精品一,二区| 男人添女人高潮全过程视频| 人人妻人人爽人人添夜夜欢视频| 色网站视频免费| 一区二区三区精品91| 一级毛片 在线播放| 午夜久久久在线观看| √禁漫天堂资源中文www| 热re99久久国产66热| 99久久人妻综合| 久久国产精品大桥未久av| 一本色道久久久久久精品综合| 老司机影院成人| 少妇被粗大的猛进出69影院 | 啦啦啦在线观看免费高清www| 成年人午夜在线观看视频| 免费人成在线观看视频色| 精品人妻偷拍中文字幕| 青青草视频在线视频观看| 亚洲成人一二三区av| 性高湖久久久久久久久免费观看| 一区二区av电影网| 51国产日韩欧美| 国产精品不卡视频一区二区| 亚洲天堂av无毛| 免费观看无遮挡的男女| 国产xxxxx性猛交| 一级,二级,三级黄色视频| 大码成人一级视频| 妹子高潮喷水视频| 日韩,欧美,国产一区二区三区| 精品国产乱码久久久久久小说| 国产精品久久久久久av不卡| 国产色婷婷99| 日韩一本色道免费dvd| 搡老乐熟女国产| 激情视频va一区二区三区| 精品人妻熟女毛片av久久网站| 免费在线观看黄色视频的| av电影中文网址| 一区二区日韩欧美中文字幕 | 老司机亚洲免费影院| 男女无遮挡免费网站观看| 日产精品乱码卡一卡2卡三| av天堂久久9| 婷婷色av中文字幕| 男女免费视频国产| 国产亚洲最大av| 亚洲精品成人av观看孕妇| 亚洲久久久国产精品| 亚洲欧洲国产日韩| 中文乱码字字幕精品一区二区三区| 国产精品久久久av美女十八| www.av在线官网国产| 亚洲精品视频女| 一本色道久久久久久精品综合| 最近中文字幕高清免费大全6| 亚洲欧美一区二区三区国产| 亚洲国产看品久久| 狠狠婷婷综合久久久久久88av| 欧美人与性动交α欧美精品济南到 | 丝袜美足系列| 三上悠亚av全集在线观看| 国产精品人妻久久久久久| 大话2 男鬼变身卡| 五月玫瑰六月丁香| 国产精品久久久久久久久免| 欧美精品人与动牲交sv欧美| 男男h啪啪无遮挡| 日本欧美视频一区| 亚洲欧洲国产日韩| 人妻系列 视频| 黄色配什么色好看| 日本猛色少妇xxxxx猛交久久| 国产精品久久久久久精品古装| 九九在线视频观看精品| 人人澡人人妻人| 如何舔出高潮| 久久久久久久久久久久大奶| 最后的刺客免费高清国语| 秋霞伦理黄片| 人人妻人人澡人人看| 国产精品久久久久久精品电影小说| 人妻一区二区av| 亚洲国产av新网站| 人妻少妇偷人精品九色| 夫妻性生交免费视频一级片| 午夜激情久久久久久久| 久久精品国产鲁丝片午夜精品| 日韩av不卡免费在线播放| 国产免费视频播放在线视频| 午夜免费观看性视频| 免费观看a级毛片全部| 婷婷色综合www| 两个人免费观看高清视频| 国产精品无大码| 中文字幕精品免费在线观看视频 | 久久av网站| 久久99精品国语久久久| 春色校园在线视频观看| av有码第一页| 久久人人爽av亚洲精品天堂| 午夜免费观看性视频| 又大又黄又爽视频免费| 国产亚洲一区二区精品| 午夜福利网站1000一区二区三区| 免费av中文字幕在线| 亚洲精品456在线播放app| 亚洲欧美一区二区三区黑人 | 最近的中文字幕免费完整| 国产精品.久久久| av又黄又爽大尺度在线免费看| 婷婷色av中文字幕| 久久久亚洲精品成人影院| 国产精品久久久久久av不卡| 亚洲成av片中文字幕在线观看 | 黑人猛操日本美女一级片| 国产精品久久久久久久久免| 午夜日本视频在线| 女性被躁到高潮视频| 国产探花极品一区二区| 男女高潮啪啪啪动态图| 国产一区有黄有色的免费视频| 只有这里有精品99| a级毛片黄视频| 黄色一级大片看看| 中文字幕最新亚洲高清| 涩涩av久久男人的天堂| 中文字幕人妻丝袜制服| 久久影院123| 精品人妻一区二区三区麻豆| 国产熟女午夜一区二区三区| 亚洲内射少妇av| 久久久久久久大尺度免费视频| 亚洲性久久影院| 国产精品一国产av| 亚洲国产精品成人久久小说| 美女脱内裤让男人舔精品视频| av片东京热男人的天堂| 亚洲精品国产av蜜桃| 中文天堂在线官网| 男男h啪啪无遮挡| 久久久欧美国产精品| 国产国语露脸激情在线看| 精品一区二区三区视频在线| 插逼视频在线观看| 久久精品久久精品一区二区三区| 久久久欧美国产精品| 女人精品久久久久毛片| 九九爱精品视频在线观看| 久久免费观看电影| 国产免费一区二区三区四区乱码| 日韩,欧美,国产一区二区三区| 九色成人免费人妻av| 久久精品久久久久久久性| 99国产综合亚洲精品| 视频中文字幕在线观看| 国产成人午夜福利电影在线观看| 欧美bdsm另类| 免费看av在线观看网站| 亚洲精品aⅴ在线观看| 美女福利国产在线| 人人妻人人爽人人添夜夜欢视频| 免费av中文字幕在线| 丁香六月天网| 一区二区av电影网| 午夜精品国产一区二区电影| 街头女战士在线观看网站| 男人爽女人下面视频在线观看| 日韩,欧美,国产一区二区三区| 欧美国产精品一级二级三级| 夜夜爽夜夜爽视频| 少妇人妻 视频| 在线免费观看不下载黄p国产| 国产精品一区二区在线观看99| 国产片内射在线| 极品少妇高潮喷水抽搐| 最黄视频免费看| 欧美日韩av久久| 在线天堂最新版资源| 黄片播放在线免费| 欧美变态另类bdsm刘玥| 大码成人一级视频| 自线自在国产av| 最新的欧美精品一区二区| 日本欧美国产在线视频| 亚洲成人av在线免费| 国产日韩一区二区三区精品不卡| 日韩一区二区视频免费看| 一级毛片 在线播放| 久久久久久人人人人人| 在线观看免费日韩欧美大片| 美女国产高潮福利片在线看| 日本免费在线观看一区| 日韩av免费高清视频| 男人舔女人的私密视频| 蜜臀久久99精品久久宅男| 国产片特级美女逼逼视频| 捣出白浆h1v1| 亚洲av电影在线观看一区二区三区| 免费黄频网站在线观看国产| 国产精品成人在线| 秋霞在线观看毛片| 男女边摸边吃奶| 在线 av 中文字幕| 精品熟女少妇av免费看| 午夜老司机福利剧场| 久久久久国产网址| 欧美日韩视频高清一区二区三区二| 欧美变态另类bdsm刘玥| 一级毛片电影观看| 少妇的逼水好多| 又粗又硬又长又爽又黄的视频| 久久人人97超碰香蕉20202| 国产精品无大码| 99热全是精品| 日韩av不卡免费在线播放| 在线 av 中文字幕| 男女下面插进去视频免费观看 | 美女大奶头黄色视频| 咕卡用的链子| 久久女婷五月综合色啪小说| 美女内射精品一级片tv| 国产成人精品福利久久| 日本爱情动作片www.在线观看| 最新的欧美精品一区二区| 制服人妻中文乱码| 久久亚洲国产成人精品v| 日韩av免费高清视频| 欧美精品高潮呻吟av久久| 亚洲伊人久久精品综合| 欧美日韩亚洲高清精品| 久久99蜜桃精品久久| 日本欧美国产在线视频| 久久久久久久久久成人| 国产欧美另类精品又又久久亚洲欧美| 大片免费播放器 马上看| 亚洲国产毛片av蜜桃av| 成人午夜精彩视频在线观看| 欧美日韩精品成人综合77777| 国产成人aa在线观看| 日韩,欧美,国产一区二区三区| 九色成人免费人妻av| 麻豆精品久久久久久蜜桃| 亚洲久久久国产精品| 亚洲欧洲国产日韩| 一级毛片我不卡| 精品视频人人做人人爽| 纵有疾风起免费观看全集完整版| 大码成人一级视频| 国产日韩欧美视频二区| 精品一区二区三卡| 永久网站在线| 桃花免费在线播放| 最近手机中文字幕大全| 成年动漫av网址| 国产一区二区三区av在线| 91久久精品国产一区二区三区| 国产精品一二三区在线看| 人妻一区二区av| 亚洲国产av新网站| 国产精品嫩草影院av在线观看| 久久精品aⅴ一区二区三区四区 | 色5月婷婷丁香| 国产麻豆69| 高清欧美精品videossex| 赤兔流量卡办理| 日本-黄色视频高清免费观看| 少妇人妻久久综合中文| av在线播放精品| 国产又爽黄色视频| 国产女主播在线喷水免费视频网站| 久久人人爽人人爽人人片va| 国产在视频线精品| 欧美成人精品欧美一级黄| 久久精品人人爽人人爽视色| 国产亚洲欧美精品永久| 婷婷色综合www| h视频一区二区三区| 大香蕉久久成人网| 国产视频首页在线观看| 久久精品夜色国产| 免费大片黄手机在线观看| 精品一区二区三卡| 久久精品久久久久久噜噜老黄| 人妻人人澡人人爽人人| 80岁老熟妇乱子伦牲交| 一区在线观看完整版| 大香蕉97超碰在线| 午夜免费观看性视频| 男人操女人黄网站| 看免费av毛片| 国产一级毛片在线| 性高湖久久久久久久久免费观看| 精品一区在线观看国产| 秋霞在线观看毛片| 成人亚洲精品一区在线观看| 日韩中字成人| 老司机亚洲免费影院| 国产毛片在线视频| 亚洲综合色网址| 9热在线视频观看99| 亚洲精品久久成人aⅴ小说| 肉色欧美久久久久久久蜜桃| 99香蕉大伊视频| 丝袜脚勾引网站| 夫妻性生交免费视频一级片| 久久ye,这里只有精品| 免费黄色在线免费观看| 人人妻人人澡人人爽人人夜夜| 爱豆传媒免费全集在线观看| 妹子高潮喷水视频| 日本黄色日本黄色录像| 纵有疾风起免费观看全集完整版| 亚洲国产av影院在线观看| 我要看黄色一级片免费的| 成年人免费黄色播放视频| 七月丁香在线播放| 国产在视频线精品| 亚洲精品美女久久久久99蜜臀 | 免费不卡的大黄色大毛片视频在线观看| 亚洲国产精品成人久久小说| 黄色一级大片看看| 97在线视频观看| 国产日韩欧美亚洲二区| 国产精品国产三级专区第一集| av国产久精品久网站免费入址| 久久久久久久久久成人| 免费av中文字幕在线| 国产亚洲av片在线观看秒播厂| 女性生殖器流出的白浆| 26uuu在线亚洲综合色| 在线免费观看不下载黄p国产| 中文字幕另类日韩欧美亚洲嫩草| 精品国产国语对白av| 国产成人一区二区在线| av天堂久久9| 男女无遮挡免费网站观看| 99久久中文字幕三级久久日本| 中文字幕免费在线视频6| 日产精品乱码卡一卡2卡三| a 毛片基地| 最近中文字幕2019免费版| 99久国产av精品国产电影| 男女边摸边吃奶| 美女视频免费永久观看网站| 哪个播放器可以免费观看大片| 99久久人妻综合| 国产男人的电影天堂91| 久久狼人影院| 搡女人真爽免费视频火全软件| 国产精品麻豆人妻色哟哟久久| 欧美精品国产亚洲| 高清视频免费观看一区二区| videossex国产| 日本黄色日本黄色录像| 又黄又粗又硬又大视频| 男女免费视频国产| 久久精品久久久久久久性| 少妇人妻 视频| 日本欧美视频一区| 久久人人爽av亚洲精品天堂| 免费大片黄手机在线观看| 丝袜美足系列| 国产免费现黄频在线看| 制服人妻中文乱码| 国产精品人妻久久久久久| 五月玫瑰六月丁香| 久久久久久久大尺度免费视频| 制服丝袜香蕉在线| 观看美女的网站| 精品亚洲成a人片在线观看| 极品人妻少妇av视频| 美女内射精品一级片tv| 午夜免费观看性视频| 亚洲色图 男人天堂 中文字幕 | 另类精品久久| 欧美日韩综合久久久久久| 激情五月婷婷亚洲| 韩国精品一区二区三区 | 色婷婷久久久亚洲欧美| 精品国产一区二区三区久久久樱花| 多毛熟女@视频| 韩国精品一区二区三区 | 国产精品蜜桃在线观看| 蜜臀久久99精品久久宅男| 国产乱来视频区| 国产永久视频网站| 亚洲av免费高清在线观看| av有码第一页| 色视频在线一区二区三区| 高清视频免费观看一区二区| 青春草亚洲视频在线观看| 蜜桃在线观看..| 欧美精品国产亚洲| 日韩精品免费视频一区二区三区 | 国产成人aa在线观看| 伊人亚洲综合成人网| 一本大道久久a久久精品| 狠狠婷婷综合久久久久久88av| 亚洲国产最新在线播放| 精品少妇黑人巨大在线播放| 黄色怎么调成土黄色| 色5月婷婷丁香| 综合色丁香网| 在线观看一区二区三区激情| 久久久久久久久久久免费av| 只有这里有精品99| 亚洲国产成人一精品久久久| 欧美最新免费一区二区三区| 精品卡一卡二卡四卡免费| 欧美+日韩+精品| 国产成人精品婷婷| 亚洲人成网站在线观看播放| 丰满迷人的少妇在线观看| 十八禁高潮呻吟视频| 桃花免费在线播放| 久久久久久久国产电影| 久久免费观看电影| 老司机影院毛片| 青春草亚洲视频在线观看| 久热这里只有精品99| 精品国产一区二区久久| 国产亚洲精品久久久com| 色5月婷婷丁香| 大片电影免费在线观看免费| 乱人伦中国视频| 2022亚洲国产成人精品| 嫩草影院入口| 亚洲国产看品久久| 日韩伦理黄色片| 国产精品一区www在线观看| 99re6热这里在线精品视频| 亚洲综合色网址| 天天躁夜夜躁狠狠躁躁| 亚洲精品自拍成人| 男男h啪啪无遮挡| 亚洲国产精品999| 国产国拍精品亚洲av在线观看| 国产成人欧美| 寂寞人妻少妇视频99o| 久久韩国三级中文字幕| 免费看不卡的av| 精品久久久久久电影网| 国产精品一二三区在线看| 在线看a的网站| av在线播放精品| 亚洲在久久综合| 久久韩国三级中文字幕| 大陆偷拍与自拍| 精品国产国语对白av| 香蕉丝袜av| av女优亚洲男人天堂| 精品福利永久在线观看| 亚洲五月色婷婷综合| 如日韩欧美国产精品一区二区三区| 国产69精品久久久久777片| 又大又黄又爽视频免费| 99久久人妻综合| 免费久久久久久久精品成人欧美视频 | 亚洲国产成人一精品久久久| 国产一区亚洲一区在线观看| 国产在线视频一区二区| 欧美日韩av久久| 少妇人妻 视频| 国产精品人妻久久久久久| 午夜老司机福利剧场| 国产精品无大码| 免费人成在线观看视频色| 少妇猛男粗大的猛烈进出视频| 1024视频免费在线观看| 精品亚洲成a人片在线观看| 免费大片18禁| 亚洲一码二码三码区别大吗| 久久久久久人人人人人| 精品一区在线观看国产| 国产有黄有色有爽视频| 香蕉精品网在线| 国产成人精品婷婷| 人人妻人人澡人人爽人人夜夜| a级毛色黄片| 成人国产av品久久久| 亚洲精品第二区| 亚洲av男天堂| 免费看光身美女| 下体分泌物呈黄色| 少妇人妻久久综合中文| 中国美白少妇内射xxxbb| 亚洲四区av| 视频区图区小说| 少妇的逼水好多| 亚洲国产最新在线播放| 只有这里有精品99| 精品国产一区二区三区四区第35| 在线观看免费高清a一片| av在线观看视频网站免费| 日韩视频在线欧美| 毛片一级片免费看久久久久| 大香蕉久久成人网| 精品国产一区二区三区四区第35| 嫩草影院入口| 香蕉国产在线看|