• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Strong chirality in twisted bilayer α-MoO3

    2022-04-12 03:44:16BiYuanWu吳必園ZhangXingShi石章興FengWu吳豐MingJunWang王明軍andXiaoHuWu吳小虎
    Chinese Physics B 2022年4期
    關(guān)鍵詞:王明

    Bi-Yuan Wu(吳必園) Zhang-Xing Shi(石章興) Feng Wu(吳豐)Ming-Jun Wang(王明軍) and Xiao-Hu Wu(吳小虎)

    1School of Automation and Information Engineering,Xi’an University of Technology,Xi’an 710048,China

    2Shandong Institute of Advanced Technology,Jinan 250100,China

    3School of Optoelectronic Engineering,Guangdong Polytechnic Normal University,Guangzhou 510665,China

    4School of Physics and Telecommunications Engineering,Shaanxi University of Technology,Hanzhong 723001,China

    Keywords: chirality,twisted bilayer,α-MoO3

    1. Introduction

    Chirality means that an object cannot coincide with its mirror image through any rotation or translation operation,which is widespread in nature.[1-3]Like human hands,the left hand does not overlap with the right hand that mirrors each other.The chiral enantiomers in drugs have the same chemical formula and physical properties,but they have different spatial arrangement. However, this asymmetry can lead to inactivity or even toxicity.[4]For example, the thalidomide incident in history results from insufficient understanding of chirality.[5]Therefore,it is very desirable to strengthen the ability to recognize the chiral objects.

    The conventional technical means for distinguishing chiral structures is to measure the absorptivity/transmissivity spectra of their interactions with circularly polarized wave.[6]The difference in absorptivity/transmissivity between the lefthand circular polarization (LCP) and the right-hand circular polarization (RCP) is defined as circular dichroism (CD).Once the circular dichroism is detected, the chirality can be well judged. However, naturally occurring chirality is very weak, which would not only lead to the low sensitivity of measurement technology, but also result in the waste of materials and long acquisition time. Realizing the strong chirality is of critical importance in applications such as analytical chemistry,[7]polarization optics,[8-11]and biological sensing.[12-15]To obtain the strong chirality, many effective methods have been proposed.[16-21]Wanget al.designed a chiral structure combining bilayer of anisotropic metamaterial structures. Moreover,in that work it was proposed and proved that the destroying of the rotational and mirror symmetry simultaneously is the necessary condition for chiral structures through the framework of Jones calculus.[22]Their work provides a convincing theoretical basis for designing chiral structures. Based on Ref.[22],various bilayered chiral nanostructures have attracted great attention and been designed.[23-33]For example,Donget al.proposed a chiral metamaterial composed of square-periodic array pairs of mutually twisted metallic crosses separated by dielectric layer.[34]Although the giant circular dichroism can be excited in chiral metamaterials,the fabrication of three-dimensional(3D)metamaterials is not easy.

    In fact, the chiral response can be excited in the nanostructures with in-plane anisotropy. If there is a material with in-plane anisotropy itself, it will greatly simplify the chiral structures. Theα-MoO3is a kind of naturally biaxial hyperbolic crystal with intrinsic in-plane anisotropy.[35-39]Furthermore, the fabrication ofα-MoO3films is easier than that of 3D metamaterials. Chemical vapor transport technique with low cost is often used to fabricate it. Theα-MoO3has attracted a great deal of attention in recent decades for its profound applications in various disciplines, such as radiation heat transfers[40-42]and plasmonic biosensors.[43]Recently,Wuet al. studied extrinsic chirality resulting from the relative orientation of theα-MoO3film and the incident light in a singleα-MoO3film,[39]where the CD (about 0.77) is still not strong enough. Combining with the viewpoint of the literature,[22]an idea about chirality based on the twisted bilayer structure comes into our mind. Very recently, Linet al.realized chiral plasmons in van der Waals heterostructures comprised of twisted atomic bilayers,[44]which is determined by the interlayer quantum coupling. Stauberet al.investigated the chiral response in twisted bilayer graphene,[45]and the chiral character is associated with a longitudinal magnetic moment.Besides,the CD in Ref.[45]is extremely small(smaller than 0.001).

    In this paper, we systematically investigate the chiral response of the twisted bilayerα-MoO3. The thickness values of twoα-MoO3slabs and the relative rotation angle between them are the two main parameters affecting the CD. In order to enhance the chirality of the structure,we optimize these parameters according to two methods. It is found that the CD of the structure can reach 0.89. Furthermore, the polarization conversion is calculated to reveal the underlying physical mechanism, which is completely different from the counterparts in Refs. [44,45]. Finally, the influence of the relative rotation angle and the angle of incidence on CD are studied as well.

    2. Modeling and methods

    Figure 1(a)schematically shows the model to be studied in this paper. The structure consists of two layers ofα-MoO3with a relative rotation angle to break the overall mirror symmetry. In the figure,d1andd2are the thickness of the top and bottomα-MoO3, respectively, andδrepresents the relative rotation angle between the twoα-MoO3slabs. The light incident is along thezdirection. For the bottomα-MoO3slab,crystallographic axes [100], [001], and [010] are along thex,y,andzdirections,respectively. Thus,the permittivity tensor can be expressed asε=diag(εx,εy,εz). The expressions ofεx,εy,andεzare described by the Lorentz equation[46]as follows:

    Fig. 1. (a) Schematic diagram of twisted bilayer α-MoO3, (b) real parts of the principal permittivities of α-MoO3.

    The transfer matrix method (TMM) is used to calculate the transmissivity of the proposed structure.[47]According to Jones vector, elliptically polarization wave is defined as follows:

    whereψis the angle between the incident plane and the electric field vector,andηis the phase difference between the electric fields parallel and perpendicular to the plane of incidence.The incident electric field is defined as wheren1andn2represent the refractive index of incident medium andα-MoO3slab, respectively,φis the azimuthal angle,andθrefers to the wave incidence angle.

    The electric field in the incident medium(z <0)and that of transmitted wave(z >d=d1+d2)are calculated from

    wherek0is the wavevector in vacuum,k1,zandk2,zare the wavevector component along thezdirection inz <0 andz >d,respectively. The electromagnetic fields in anyα-MoO3slab are given by

    whereSx,Sy,Sz,Ux,Uy,andUzare the amplitudes of electromagnetic field components.ε0andμ0represent the permittivity and permeability of vacuum, respectively. Supposing that the permittivity tensor of one anisotropic slab is

    whereKx=kx/k0andKy=ky/k0. For the bottom layer, theεxyandεyxare both equal to zero. For the top layer,εxyandεyxare non-zero complex numbers related to the rotation angleδ,which can be found in Eq.(2).By calculating the matrixA,we can obtain the eigenvaluesqmand the eigenvector matrixW. The tangential electromagnetic field components are described as

    3. Results and discussion

    The CD is a vital parameter to measure the chiral response,which is equal to the difference in transmissivity(absorptivity/reflectivity)between LCP wave and RCP wave. We take the transmissivity into consideration in this work. Hence,the CD can be obtained from

    whereTLCPandTRCPare the transmissivity for LCP wave and RCP wave,respectively.

    Figure 2 shows the curves of transmissivity as a function of wavelength,respectively,for LCP wave,RCP wave and the corresponding CD under normal incidence. Here the relative rotation angle is fixed at 45°. The thickness values of the top and bottom slabs are both 1 μm. It can be seen that the relatively large CD appears at the wavelengths of 14.4 μm and 20.3μm. Since the rotational symmetry and mirror symmetry have been destroyed simultaneously by the relative rotation between the two layers,the twisted bilayerα-MoO3is a chiral structure.

    Fig. 2. Transmissivity spectrum for LCP wave (red line), RCP wave (blue line), and the corresponding CD(green line)under normal incidence, with relative rotation angle fixed at 45°.

    Taking wavelengthλ=14.4μm for example,we further enhance the CD at this wavelength. Two parameters can affect the CD,which are the thickness values of two slabs, and the relative rotation angle between them. Here, we optimize first the thickness and then the relative rotation angle. When the relative rotation angle is 45°,the transmissivity as a function ofd1andd2is plotted in Fig. 3(a) for LCP wave and in Fig.3(b)for RCP wave. Obviously,the transmissivity has the periodic enhancement with the increasing of thicknessd1andd2for both LCP wave and RCP wave. The phenomenon originates from Fabry-Per′ot(FP)resonance. When thed1(ord2)equals zero,the model is simplified into a free standing singleα-MoO3slab. The circularly polarized wave can be decoupled into TM wave and TE wave. Besides, both of them can excite the FP resonance. The quantization condition for any two adjacent orders of FP resonances can be described as

    whereφis the reflection phase at the interface between the air and theα-MoO3slab,t1andt2are the thickness of theα-MoO3slab when the two adjacent orders of FP resonances occur, respectively,mis an integral number,kz=nk0, withnrepresenting the refractive index andk0=2π/λwith wavelengthλ. Therefore,the difference(Δt=|t1-t2|)in thickness of theα-MoO3slab between the two adjacent orders of FP resonances can be calculated from

    It is worth noting that theα-MoO3possesses different refractive indices in three principal directions since it is an anisotropic material. In our simulation, we define the plane of incidence as thex-zplane. Thus, the electric field vector is parallel to theyaxis for the TE wave, while thexaxis is for TM wave under normal incidence. According to Eq.(27),Δtis equal to 2.28 μm and 2.75 μm for TM wave and TE wave when the wavelengthλis 14.4 μm, respectively. The results are in good agreement with the scenarios in Figs.3(a)and 3(b). Back to Fig. 3, for RCP wave, it is found that the transmissivity is enhanced periodically with the increase ind2when the thicknessd1is less than 1 μm, while the transmissivity is small at the same thickness under the illumination of LCP wave. Figure 3(c)shows the corresponding CD.One can see that the CD improves periodically asd2increases, which comes from FP resonance as well. In addition,the CD reaches its maximum value when the thickness of top layer and bottom layer are 0.8μm and 3.4μm,respectively.

    Based on the above optimization results (d1= 0.8 μm andd2=3.4 μm), the influence of the relative rotation angle on circular dichroism atλ=14.4 μm is discussed. Figure 4 shows the transmissivity under the illumination of LCP wave, RCP wave and the corresponding CD as relative rotation angle increases from 0°to 90°.One can see that the CD is zero when the relative rotation angle equals 0°. When the relative angle becomes bigger,the CD increases gradually at first and reaches its maximum at 57°, then drops down to nearly zero when relative rotation angle approaches to 90°. Since the bilayer structure we proposed with relative rotation angle 0°or 90°possesses the rotational symmetry or mirror symmetry, the chiral response disappears. In addition, it is found that the maximum CD is smaller than 0.5. In order to acquire the stronger circular dichroism, the parameters of the model should be further optimized.

    Fig.3. Transmissivity as function of thickness of top slab d1 and bottom slab d2 at wavelength 14.4μm when relative rotation angle is 45°,for(a)LCP wave,(b)RCP wave,and(c)corresponding CD.

    Fig.4. Curves of transmissivity versus relative rotation angle for LCP wave(red line), RCP wave (blue line), and corresponding CD (green line) when thickness d1 and d2 are 0.8μm and 3.4μm,respectively.

    Here, we optimize first the relative rotation angle, and then the thickness. Considering different relative rotation angles,we plot the curves of CD as a functions of thickness for the two slabs as shown in Fig.5. It is found that the CD is extremely small at any thickness when the relative rotation angle is 10°, and the CD rises with relative rotation angle increasing. The results show that the CD can be flexibly tuned via changing the relative rotation angle between the two layers. In addition,one can see that the CD reaches its maximum value when the relative rotation angle is 70°. Therefore,we further optimize the relative rotation angle around 70°by using the same method, but the results are not shown here. It is found that the CD can reach a maximum value of 0.89 at a relative rotation angle of 75°when the thickness of the bottom slab and the top slabs are 2.72μm and 0.6μm,respectively.

    Now,at the optimized parameters(φ=75°,d1=0.6μm andd2=2.72 μm), the transmissivity spectra and CD spectra are investigated and shown in Fig. 6. At a wavelength of 14.4μm,a large transmissivity can be observed for RCP wave while the transmissivity is almost zero for LCP wave. One can see that the CD can reach 0.89,indicating a strong chirality.

    Fig.5. Variations of CD with thickness of top slab d1 and bottom slab d2 at different relative rotation angles: (a)10°,(b)20°,(c)30°,(d)40°,(e)50°,(f)60°,(g)70°,and(h)80°.

    Fig. 6. Transmissivity spectrum for LCP wave (red line), RCP wave (blue line), and the corresponding CD (green line), with relative rotation angle being 75°, and top slab and bottom slab 0.6μm and 2.72μm in thickness,respectively.

    To better illustrate the underlying physical mechanisms of the strong chirality, the polarization conversion curves for LCP wave and RCP wave under normal incidence are shown in Fig.7. When circularly polarized light with different handedness is incident on the structure,the transmitted wave contains the components of both LCP wave and RCP wave. For the incident RCP wave, the amplitude of LCP wave in the transmitted wave is greater than 0.4 at a wavelength of 14.4 μm,and the amplitude of RCP wave reaches 0.5. However, both LCP wave and RCP wave in transmitted wave are close to zero under the illumination of LCP wave. It can be found that there is a huge difference in polarization conversion efficiency between the two circularly polarized waves, resulting in the strong circular dichroism in Fig.6. Nevertheless,we can also find that no matter whether it is incident LCP wave or RCP wave, the difference between polarization conversion and no polarization conversion in the transmitted wave is very small.Hence,their physical mechanisms can be further studied.

    Fig.7. Components of LCP wave and RCP wave in transmitted wave.

    To further explain the strong chirality of the bilayer structure, the components of TE wave and TM wave of the transmitted wave for normal incidence of an LCP wave and an RCP wave are shown in Figs.8(a) and 8(b). Here, the wavelength we concerned is still 14.4μm. It is found that the TM component in the transmitted wave is relatively small for an incident LCP wave, while the TM component can reach 0.9 for an incident RCP wave at the wavelength of 14.4 μm. Moreover,one can see that the TE component in the transmitted wave is almost zero for both the incident LCP wave and the incident RCP wave in a wavelength range from 11.8 μm to 18.3 μm.According to Ref. [49], the response of the structure for normal incidence of the TE wave and the TM wave are related toεyandεx, respectively. Since the sign of the real part of theεyis negative in the wavelength range of 11.8 μm-18.3 μm,now theα-MoO3behaves like metal,resulting in a strong reflection for TE wave. Thus, the anisotropic properties of theα-MoO3guarantee the giant chirality of the bilayer structure.

    Fig. 8. Components of TE wave and TM wave in transmitted waves: (a)LCP wave and(b)RCP wave.

    Here,the influence of the relative rotation angle on CD is discussed in the same situation as that in Fig.6,and displayed in Fig. 9. As the relative rotation angle increases, the CD slowly rises from 0 to the maximum value 0.89, and then decreases to nearly zero when the relative rotation angle is close to 90°. It is worth noting that the structure can still maintain strong CD over 0.8 when the relative rotation angle approximately ranges from 69°to 80°. Therefore,the CD is not very sensitive to the relative rotation angle, which reduces the requirement for angle in fabrication.

    In fact, the influence of incident angle on the chirality is of vital importance. Thus, it is necessary to keep strong circular dichroism even at a large incident angle. Based on the optimized results as shown in Fig. 10, we discuss the transmissivity and CD varying with incident angle. When the incident angle increases from 0°to 90°, the transmissivity for LCP wave always keeps a low level while the transmissivity for RCP wave first maintains a large value and then decreases.It can be seen from the green line in Fig.10 that the CD can be larger than 0.85 when the incident angle is smaller than 40°,indicating that the chirality of the structure is robust against the incident angle.

    Fig.9. Curves of transmissivity versus relative rotation angle for LCP wave for LCP wave(red line), RCP wave(blue line), and the corresponding CD(green line), with bottom slab and top slab being 0.6 μm and 2.72 μm in thickness,respectively.

    Fig. 10. Curve of transmissivity versus incident angle for LCP wave (red line), RCP wave (blue line), and the corresponding CD (green line), with wavelength being 14.4 μm, and bottom slab and top slabs 0.6 μm and 2.72μm in thickness,respectively.

    4. Conclusions

    In summary,a chiral structure based on twisted bilayerα-MoO3has been proposed and investigated. Through the optimization of parameters,the circular dichroism of the structure can reach 0.89. To reveal more in-depth physical mechanism,we analyze the polarization conversion between LCP wave and RCP wave. Furthermore,we discuss the influence of the relative rotation angle and the angle of incidence on the CD.The results show that the CD can keep a high level (CD>0.8)when the relative rotation angle approximately ranges from 69°to 80°. Besides,the CD is robust against the incident angle. It is believed that this work not only provides a new idea for chiral structure,but also promotes the development of the manipulation of circularly polarized wave.

    Acknowledgements

    Project supported by the Training Program of the Major Research Plan of the National Natural Science Foundation of China (Grant No. 92052106), the National Natural Science Foundation of China (Grant Nos. 61771385 and 52106099),the Science Foundation for Distinguished Young Scholars of Shaanxi Province, China (Grant No. 2020JC-42), the Science and Technology on Solid-State Laser Laboratory, China(Grant No.6142404190301),the Science and Technology Research Plan of Xi’an City, China (Grant No. GXYD14.26),the Shandong Provincial Natural Science Foundation, China(Grant No. ZR2020LLZ004), and the Start-Up Funding of Guangdong Polytechnic Normal University, China (Gtrant No.2021SDKYA033).

    猜你喜歡
    王明
    The(1+1)-dimensional nonlinear ion acoustic waves in multicomponent plasma containing kappa electrons
    Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress
    Degradation mechanisms for a-InGaZnO thin-film transistors functioning under simultaneous DC gate and drain biases
    Higher Derivative Estimates for a Linear Elliptic Equation
    走過(guò)318
    追問(wèn)高原
    “看不見(jiàn)”的王明華
    海峽姐妹(2019年3期)2019-06-18 10:37:22
    SOLUTIONS TO NONLINEAR ELLIPTIC EQUATIONS WITH A GRADIENT?
    龍門這邊(47)
    棋藝(2014年1期)2014-05-20 02:07:43
    Optimization of Two-species Whole-cell Immobilization System Constructed with Marine-derived Fungi and Its BiologicalDegradation Ability*
    午夜福利在线观看免费完整高清在| 亚洲欧美日韩卡通动漫| 成人毛片a级毛片在线播放| 成年女人在线观看亚洲视频| 欧美成人精品欧美一级黄| 欧美xxxx性猛交bbbb| 亚洲精品第二区| av在线播放精品| 99久久精品热视频| 午夜福利在线观看免费完整高清在| 亚洲人成网站在线观看播放| 免费少妇av软件| 男人和女人高潮做爰伦理| 亚洲人成网站在线观看播放| 在线观看美女被高潮喷水网站| 不卡视频在线观看欧美| 日日摸夜夜添夜夜爱| 国产黄片美女视频| 亚洲高清免费不卡视频| 人妻制服诱惑在线中文字幕| 国产av国产精品国产| 少妇高潮的动态图| 女人久久www免费人成看片| 一级毛片我不卡| 中文字幕人妻丝袜制服| 我要看黄色一级片免费的| 国产永久视频网站| 日韩一区二区三区影片| 中文欧美无线码| 国产精品女同一区二区软件| 99re6热这里在线精品视频| 高清不卡的av网站| 亚洲中文av在线| 欧美日韩国产mv在线观看视频| 欧美三级亚洲精品| 欧美xxxx性猛交bbbb| 亚洲美女黄色视频免费看| 在线亚洲精品国产二区图片欧美 | 国产爽快片一区二区三区| 视频区图区小说| 国产乱人偷精品视频| 国产一区亚洲一区在线观看| h视频一区二区三区| 国产精品女同一区二区软件| 伦理电影大哥的女人| 国产在视频线精品| 欧美精品一区二区大全| 久久精品国产亚洲网站| 婷婷色综合大香蕉| 老女人水多毛片| 激情五月婷婷亚洲| 十八禁网站网址无遮挡 | 日韩精品免费视频一区二区三区 | 久久综合国产亚洲精品| 欧美激情极品国产一区二区三区 | 午夜影院在线不卡| 免费av中文字幕在线| 一个人看视频在线观看www免费| 久久韩国三级中文字幕| 大话2 男鬼变身卡| 亚洲欧美日韩另类电影网站| 精华霜和精华液先用哪个| videos熟女内射| 男女国产视频网站| www.av在线官网国产| 高清欧美精品videossex| 亚洲精品乱码久久久久久按摩| 国产一级毛片在线| 精品一区二区免费观看| 国产av一区二区精品久久| 少妇裸体淫交视频免费看高清| 免费av不卡在线播放| 人妻少妇偷人精品九色| 久久国产乱子免费精品| 涩涩av久久男人的天堂| 亚洲欧美中文字幕日韩二区| 3wmmmm亚洲av在线观看| 国产日韩欧美在线精品| 亚洲情色 制服丝袜| 国产有黄有色有爽视频| 99热6这里只有精品| 色婷婷av一区二区三区视频| 亚洲国产欧美在线一区| 国产一区二区在线观看日韩| 91久久精品电影网| 亚洲经典国产精华液单| 人妻一区二区av| 99国产精品免费福利视频| av不卡在线播放| 精品国产一区二区久久| 亚洲精华国产精华液的使用体验| 亚洲婷婷狠狠爱综合网| 2022亚洲国产成人精品| 在线观看人妻少妇| 久久久久久久精品精品| 天天操日日干夜夜撸| 亚洲精品乱码久久久v下载方式| 91久久精品国产一区二区三区| 视频中文字幕在线观看| 草草在线视频免费看| 欧美亚洲 丝袜 人妻 在线| 成年美女黄网站色视频大全免费 | 人妻一区二区av| 国产乱来视频区| 97超视频在线观看视频| 日本黄色日本黄色录像| 男人爽女人下面视频在线观看| 最黄视频免费看| 午夜福利,免费看| 国产片特级美女逼逼视频| 国产伦精品一区二区三区视频9| 97超碰精品成人国产| 人人澡人人妻人| 人妻夜夜爽99麻豆av| 在线观看www视频免费| 国产男女内射视频| 久久精品国产亚洲av涩爱| 男人爽女人下面视频在线观看| 亚洲伊人久久精品综合| av免费在线看不卡| 青青草视频在线视频观看| 婷婷色综合www| 卡戴珊不雅视频在线播放| 中文欧美无线码| 亚洲精品一二三| 下体分泌物呈黄色| 一本—道久久a久久精品蜜桃钙片| 日本黄色日本黄色录像| 久久精品久久久久久久性| 精品久久久久久久久av| 在线天堂最新版资源| 亚洲人成网站在线播| 久久人人爽av亚洲精品天堂| 精品人妻偷拍中文字幕| 亚洲国产毛片av蜜桃av| 午夜老司机福利剧场| 免费播放大片免费观看视频在线观看| a级片在线免费高清观看视频| 国内精品宾馆在线| 国产成人91sexporn| 久久女婷五月综合色啪小说| 美女视频免费永久观看网站| 狂野欧美激情性xxxx在线观看| 亚洲国产精品一区二区三区在线| 国产乱人偷精品视频| 99久久综合免费| 又大又黄又爽视频免费| 国产一区二区三区综合在线观看 | 内射极品少妇av片p| 人妻系列 视频| 国产视频首页在线观看| av网站免费在线观看视频| 26uuu在线亚洲综合色| 亚洲在久久综合| 另类精品久久| 国产精品女同一区二区软件| 久久99蜜桃精品久久| 国产精品不卡视频一区二区| 国产成人aa在线观看| 亚洲av福利一区| 日本-黄色视频高清免费观看| 一个人免费看片子| 一级毛片我不卡| 亚州av有码| 高清黄色对白视频在线免费看 | 街头女战士在线观看网站| 亚洲,欧美,日韩| 久热久热在线精品观看| 校园人妻丝袜中文字幕| 欧美日韩视频精品一区| 免费大片黄手机在线观看| 香蕉精品网在线| 久久6这里有精品| 亚洲欧美成人综合另类久久久| 伦理电影大哥的女人| 亚洲精品一区蜜桃| 国模一区二区三区四区视频| 最近最新中文字幕免费大全7| 亚洲第一区二区三区不卡| 男人添女人高潮全过程视频| 国产 精品1| 精品一区在线观看国产| 日产精品乱码卡一卡2卡三| 欧美激情国产日韩精品一区| 特大巨黑吊av在线直播| 91久久精品国产一区二区成人| 日韩精品有码人妻一区| 欧美最新免费一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 国产精品嫩草影院av在线观看| 99热这里只有精品一区| 少妇熟女欧美另类| 99热6这里只有精品| 亚洲精品中文字幕在线视频 | 在线播放无遮挡| 熟妇人妻不卡中文字幕| 大香蕉97超碰在线| 我要看日韩黄色一级片| 久久精品国产自在天天线| 色网站视频免费| av专区在线播放| 欧美 日韩 精品 国产| videossex国产| 男女边吃奶边做爰视频| 亚洲美女黄色视频免费看| 老司机影院毛片| a级毛片在线看网站| 亚洲综合色惰| 国产一区亚洲一区在线观看| a级毛片免费高清观看在线播放| 噜噜噜噜噜久久久久久91| av国产精品久久久久影院| 精品少妇内射三级| 啦啦啦中文免费视频观看日本| 各种免费的搞黄视频| 在线观看免费日韩欧美大片 | 大又大粗又爽又黄少妇毛片口| 欧美3d第一页| 亚洲四区av| 国产黄片视频在线免费观看| 日韩中文字幕视频在线看片| 中文欧美无线码| 欧美日韩一区二区视频在线观看视频在线| videos熟女内射| a 毛片基地| 日日爽夜夜爽网站| 国产男人的电影天堂91| 日本av免费视频播放| 在线天堂最新版资源| 中国美白少妇内射xxxbb| 乱人伦中国视频| 亚洲人与动物交配视频| 精品少妇内射三级| 激情五月婷婷亚洲| 精品一区二区免费观看| 老司机影院成人| 免费久久久久久久精品成人欧美视频 | 色婷婷久久久亚洲欧美| 久久久久久久精品精品| 欧美精品国产亚洲| 日韩伦理黄色片| 天天操日日干夜夜撸| 看十八女毛片水多多多| 另类亚洲欧美激情| 国产日韩欧美亚洲二区| 99热全是精品| 午夜91福利影院| av天堂久久9| 久久久久视频综合| 成人黄色视频免费在线看| 三级国产精品欧美在线观看| 十八禁网站网址无遮挡 | 久久国产乱子免费精品| 制服丝袜香蕉在线| 久久久久久久久久久免费av| 欧美高清成人免费视频www| 99久久人妻综合| 亚洲精品成人av观看孕妇| 丰满少妇做爰视频| 久久综合国产亚洲精品| 国产成人精品婷婷| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品自拍成人| av.在线天堂| 国产成人freesex在线| 国产淫语在线视频| 国产深夜福利视频在线观看| 麻豆乱淫一区二区| 亚洲av免费高清在线观看| 久久精品久久精品一区二区三区| 精品久久国产蜜桃| 国产成人91sexporn| 免费观看a级毛片全部| 美女大奶头黄色视频| 成人亚洲欧美一区二区av| 欧美+日韩+精品| 国产精品国产av在线观看| 在线观看一区二区三区激情| 亚洲精品国产av蜜桃| 久久精品久久久久久久性| 乱系列少妇在线播放| 热99国产精品久久久久久7| 毛片一级片免费看久久久久| 天美传媒精品一区二区| 国产亚洲午夜精品一区二区久久| 少妇人妻久久综合中文| 99热国产这里只有精品6| 自拍偷自拍亚洲精品老妇| 日韩一本色道免费dvd| 中文字幕人妻丝袜制服| .国产精品久久| 女性生殖器流出的白浆| 亚洲欧美日韩东京热| 国产伦在线观看视频一区| 久久这里有精品视频免费| 在线观看一区二区三区激情| 精品亚洲乱码少妇综合久久| 狠狠精品人妻久久久久久综合| 妹子高潮喷水视频| 三级国产精品片| 久久人人爽人人片av| 精品一区二区三区视频在线| 亚洲综合精品二区| 好男人视频免费观看在线| 一区二区三区四区激情视频| 丰满迷人的少妇在线观看| 免费观看a级毛片全部| 欧美三级亚洲精品| 插逼视频在线观看| 日韩精品有码人妻一区| 久久人人爽av亚洲精品天堂| 简卡轻食公司| 乱码一卡2卡4卡精品| 内射极品少妇av片p| 亚洲精品自拍成人| 国产精品一区二区在线不卡| 久久人人爽av亚洲精品天堂| 色视频在线一区二区三区| 视频中文字幕在线观看| av国产精品久久久久影院| 日日摸夜夜添夜夜爱| 91精品伊人久久大香线蕉| 日日爽夜夜爽网站| 久久午夜福利片| 能在线免费看毛片的网站| 婷婷色综合www| 在现免费观看毛片| 曰老女人黄片| 乱系列少妇在线播放| 精品人妻一区二区三区麻豆| 久久人妻熟女aⅴ| 五月玫瑰六月丁香| av国产久精品久网站免费入址| 18禁动态无遮挡网站| 尾随美女入室| freevideosex欧美| 国产精品三级大全| 国产淫片久久久久久久久| 日韩视频在线欧美| 久久久久国产网址| 大陆偷拍与自拍| 亚洲欧美一区二区三区黑人 | 欧美一级a爱片免费观看看| 美女中出高潮动态图| 成年女人在线观看亚洲视频| 少妇被粗大的猛进出69影院 | 少妇高潮的动态图| 熟女电影av网| 日韩人妻高清精品专区| 国产精品国产三级专区第一集| 街头女战士在线观看网站| 26uuu在线亚洲综合色| 国产成人免费观看mmmm| 精品午夜福利在线看| 日韩强制内射视频| 啦啦啦视频在线资源免费观看| 国产免费一区二区三区四区乱码| 日本欧美国产在线视频| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久精品古装| 亚洲精品乱码久久久v下载方式| 久久久国产欧美日韩av| 两个人免费观看高清视频 | 亚洲自偷自拍三级| 欧美另类一区| 一级二级三级毛片免费看| 国产成人a∨麻豆精品| 国产精品熟女久久久久浪| 免费在线观看成人毛片| 蜜桃久久精品国产亚洲av| 日本91视频免费播放| av视频免费观看在线观看| www.av在线官网国产| 午夜福利在线观看免费完整高清在| 亚洲一区二区三区欧美精品| 国产 一区精品| 七月丁香在线播放| 精品一区在线观看国产| 久久国产亚洲av麻豆专区| 中文字幕精品免费在线观看视频 | 欧美人与善性xxx| 插逼视频在线观看| 2022亚洲国产成人精品| 一区二区av电影网| 欧美国产精品一级二级三级 | 亚洲丝袜综合中文字幕| 伊人久久精品亚洲午夜| 天堂中文最新版在线下载| 久久99蜜桃精品久久| 一级毛片 在线播放| 亚洲精品国产成人久久av| 毛片一级片免费看久久久久| 精品人妻熟女av久视频| 精品99又大又爽又粗少妇毛片| 日韩电影二区| 亚洲中文av在线| 久久久亚洲精品成人影院| av福利片在线| 国产国拍精品亚洲av在线观看| 国精品久久久久久国模美| 曰老女人黄片| 丝瓜视频免费看黄片| 人人妻人人看人人澡| 欧美区成人在线视频| 国产精品福利在线免费观看| 丰满人妻一区二区三区视频av| 免费大片18禁| 在线 av 中文字幕| 特大巨黑吊av在线直播| 国产欧美日韩精品一区二区| 看免费成人av毛片| a级毛片在线看网站| 色婷婷av一区二区三区视频| 亚洲国产精品一区三区| 热99国产精品久久久久久7| 欧美日韩亚洲高清精品| 一级爰片在线观看| 久久鲁丝午夜福利片| 精品人妻偷拍中文字幕| 久久久久久伊人网av| 18禁在线播放成人免费| 五月天丁香电影| 久久精品国产鲁丝片午夜精品| 日日摸夜夜添夜夜添av毛片| 免费观看av网站的网址| 少妇丰满av| 美女xxoo啪啪120秒动态图| 成年人午夜在线观看视频| 九九爱精品视频在线观看| 国产精品人妻久久久久久| 精品熟女少妇av免费看| 成人国产麻豆网| 观看美女的网站| 久久久久国产精品人妻一区二区| 国产高清三级在线| 性高湖久久久久久久久免费观看| 韩国av在线不卡| 日韩电影二区| 国产精品久久久久久久电影| 精品久久久久久久久亚洲| 我要看日韩黄色一级片| 久久久久精品性色| 丝袜喷水一区| .国产精品久久| 26uuu在线亚洲综合色| 青青草视频在线视频观看| 免费黄色在线免费观看| 中文字幕久久专区| 亚洲电影在线观看av| 免费播放大片免费观看视频在线观看| 偷拍熟女少妇极品色| 免费观看性生交大片5| 国产成人精品一,二区| 男人舔奶头视频| 久久99热这里只频精品6学生| 亚洲精品一区蜜桃| 久久免费观看电影| 9色porny在线观看| 久久精品国产a三级三级三级| 日韩欧美 国产精品| 啦啦啦在线观看免费高清www| 插逼视频在线观看| 免费久久久久久久精品成人欧美视频 | av不卡在线播放| 少妇被粗大的猛进出69影院 | 日韩三级伦理在线观看| 一级毛片我不卡| 观看免费一级毛片| 日韩熟女老妇一区二区性免费视频| 最黄视频免费看| 日日爽夜夜爽网站| 国产爽快片一区二区三区| 女性生殖器流出的白浆| 日韩中字成人| 午夜免费观看性视频| 国产无遮挡羞羞视频在线观看| 国产美女午夜福利| 成年av动漫网址| 在线 av 中文字幕| 久久久久久久久久久丰满| 欧美+日韩+精品| 边亲边吃奶的免费视频| 我的女老师完整版在线观看| 天美传媒精品一区二区| 三级国产精品片| 亚洲人成网站在线观看播放| 国产av精品麻豆| 69精品国产乱码久久久| 天堂8中文在线网| 久久久久国产精品人妻一区二区| 在线观看人妻少妇| 成人免费观看视频高清| 五月伊人婷婷丁香| 久久精品久久精品一区二区三区| 国产亚洲一区二区精品| 97超碰精品成人国产| av在线观看视频网站免费| 噜噜噜噜噜久久久久久91| 久久久久国产精品人妻一区二区| 99视频精品全部免费 在线| 天堂8中文在线网| 日韩成人伦理影院| 亚洲av男天堂| 午夜福利影视在线免费观看| 黄色欧美视频在线观看| 亚洲av国产av综合av卡| 久久影院123| 香蕉精品网在线| 成年美女黄网站色视频大全免费 | 欧美精品一区二区大全| 日本猛色少妇xxxxx猛交久久| 国产精品99久久99久久久不卡 | 免费观看在线日韩| 五月玫瑰六月丁香| 成年人午夜在线观看视频| 秋霞伦理黄片| 免费高清在线观看视频在线观看| 国产日韩一区二区三区精品不卡 | 看非洲黑人一级黄片| 久久韩国三级中文字幕| 免费看不卡的av| av又黄又爽大尺度在线免费看| 丰满饥渴人妻一区二区三| 夜夜看夜夜爽夜夜摸| av一本久久久久| 狠狠精品人妻久久久久久综合| 精品国产一区二区三区久久久樱花| 十分钟在线观看高清视频www | 啦啦啦啦在线视频资源| 精品国产露脸久久av麻豆| 精品一区在线观看国产| 亚洲av综合色区一区| 成人亚洲精品一区在线观看| 一本—道久久a久久精品蜜桃钙片| 久久久久网色| 日日摸夜夜添夜夜添av毛片| 69精品国产乱码久久久| 一区二区三区免费毛片| 男人添女人高潮全过程视频| 自拍偷自拍亚洲精品老妇| 亚洲欧美日韩卡通动漫| videos熟女内射| 肉色欧美久久久久久久蜜桃| 五月玫瑰六月丁香| 色视频www国产| 老司机影院毛片| 欧美另类一区| 欧美日韩亚洲高清精品| 高清午夜精品一区二区三区| 九九久久精品国产亚洲av麻豆| 日本欧美国产在线视频| 欧美变态另类bdsm刘玥| 五月伊人婷婷丁香| 五月天丁香电影| 欧美+日韩+精品| 各种免费的搞黄视频| 久久人人爽人人片av| 国产白丝娇喘喷水9色精品| 777米奇影视久久| 成人二区视频| 免费观看av网站的网址| av天堂久久9| 观看免费一级毛片| 亚洲精品日韩在线中文字幕| 91在线精品国自产拍蜜月| 久久久a久久爽久久v久久| 汤姆久久久久久久影院中文字幕| 91精品国产国语对白视频| 黄色欧美视频在线观看| 精华霜和精华液先用哪个| 人妻人人澡人人爽人人| 97超碰精品成人国产| 国产成人免费观看mmmm| 秋霞在线观看毛片| 国产高清不卡午夜福利| 亚洲欧洲精品一区二区精品久久久 | 成人漫画全彩无遮挡| 亚洲av在线观看美女高潮| 日韩熟女老妇一区二区性免费视频| 日韩不卡一区二区三区视频在线| 欧美精品亚洲一区二区| 女性生殖器流出的白浆| 黑人猛操日本美女一级片| 亚洲精品国产av蜜桃| 久久久久久久久久久久大奶| 免费观看无遮挡的男女| 成年女人在线观看亚洲视频| 看非洲黑人一级黄片| 免费黄色在线免费观看| 黑丝袜美女国产一区| 亚洲国产精品一区三区| 成人综合一区亚洲| 26uuu在线亚洲综合色| 亚洲欧美一区二区三区国产| 亚洲成色77777| 欧美日韩视频高清一区二区三区二| 亚洲av成人精品一区久久| 亚洲天堂av无毛| 精品人妻熟女av久视频| 久久国产精品大桥未久av | 观看免费一级毛片| 久久精品久久久久久噜噜老黄| 国产亚洲一区二区精品| 青春草视频在线免费观看| 又大又黄又爽视频免费| 日韩一区二区三区影片| 人妻夜夜爽99麻豆av| 99九九在线精品视频 | 大码成人一级视频| 亚洲精品一区蜜桃| 精华霜和精华液先用哪个| 三级国产精品片| 男女边摸边吃奶| 中文乱码字字幕精品一区二区三区| av福利片在线观看|