• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Defect engineering for high-selection-performance of NO reduction to NH3 over CeO2(111)surface:A DFT study

    2022-03-14 09:30:36ChaozhengHeRishengSunLingFuJinrongHuoChenxuZhaoXiuyuanLiYanSongSuminWang
    Chinese Chemical Letters 2022年1期

    Chaozheng He,Risheng Sun,Ling Fu,Jinrong Huo,Chenxu Zhao,Xiuyuan Li,Yan Song,Sumin Wang

    aShaanxi Key Laboratory of Optoelectronic Functional Materials and Devices,School of Materials Science and Chemical Engineering,Xi’an Technological University,Xi’an 710021,China

    bInstitute of Environmental and Energy Catalysis,School of Materials Science and Chemical Engineering,Xi’an Technological University,Xi’an 710021,China

    cCollege of Resources and Environmental Engineering,Tianshui Normal University,Tianshui 741001,China

    dSchool of Sciences,Xi’an Technological University,Xi’an 710021,China

    ABSTRACT To reduce the greenhouse effect caused by the surgery of nitrogen-oxides concentration in the atmosphere and develop a future energy carrier of renewables,it is very critical to develop more efficient,controllable,and highly sensitive catalytic materials.In our work,we proposed that nitric oxide(NO),as a supplement to N2 for the synthesis of ammonia,which is equipped with a lower barrier.And the study highlighted the potential of CeO2(111)nanosheets with La doping and oxygen vacancy(OV)as a highperformance,controllable material for NO capture at the site of Vo site,and separation the process of hydrogenation.We also reported that the Eads of -1.12 eV with horizontal adsorption and the Bader charge of N increasing of 0.53|e| and O increasing of 0.17|e| at the most active site of reduction-OV predicted.It is worth noting that ΔG of NORR(NO reduction reaction)shows good performance(thermodynamically spontaneous reaction)to synthesize ammonia and water at room temperature in the theoretical calculation.

    Keywords:La-doping CeO2 Bader analysis Oxygen vacancy(OV)Single atom catalysis Synergistic effect NO reduction reaction(NORR)

    Ammonia(NH3),as a future carrier of renewable energy and a source of fertilizer in agriculture,is the key aspects and anticipated stages in promising technologies for decades,which is provided with large hydrogen content and high energy density[1–3].Although electrosynthesis of NH3from N2composing of 78%of the atmosphere,which is a fertile source for synthetic ammonia,it exists in chemically and biologically unusable gaseous form.Haber,who break through the triple bond of dinitrogen with hydrogen in the presence of the Fe and discovered the process by high temperatures and pressures,explained that his main motivation for the study of synthesizing ammonia was the growing demand for food,and is awarded a Nobel Prize in 1931[4].Recently,more and more researchers are paying attention to the approach to replace the Haber-Bosch process by searching for the befitting catalyst support of ceria under ambient conditions.Doping single metals of chromium(Cr),copper(Cu),iron(Fe),molybdenum(Mo)and rubidium(Ru)can enhance the performance of electrocatalytic N2to NH3in comparison to the pure CeO2(111)surfaces efficiently,which the single Mo atoms in Mo-N3C are also reported for the reason of the best capability of N2adsorption for further electrochemical N2reduction[5–9].Lee and co-workers explored the new way called the reticular chemistry approach which exploiting MOFs water-repelling and molecular-concentrating effects to overcome HER-imposed bottlenecks to accelerate synthesis yield of ammonia in theory[10].Also,Guoet al.focus on the atomically dispersed Bi-catalysts for nitrogen reduction reaction to tackle the activity and selectivity[11].As well as Mxene-based materials,which have been noticed as highlighted catalysts for electrochemical N2reduction recently,are investigated rapidly due to satisfactory catalytic activity[12].Analogously,the process of Ammonia borane(AB)hydrolysis generates H2and NH3on the transition metal Fe@Co coreshell structure has been obtained[13,14].

    However,we will have to admit and should not ignore that the difficulty of a strong N-N bond is the biggest problem in the synthesis of ammonia.In a word,it makes us provide the ideas for seeking another supplementary scheme.As a nitrogen supplement,nitric oxide(NO)has the advantage of bond energy over nitrogen molecules,which consumes much less energy to synthesize ammonia.Especially on the surfaces of CeO2(111),oxygen vacancies play an important role in good catalytic performance,which comes from the interconversion between Ce(III)and Ce(IV)oxidation states with the storage and release of 4f electronic orbits[14–19].In this work,our study demonstrates that we built a 3 × 3 × 1 supercell of CeO2(111)surface by doping La atom with oxygen vacancy for adsorbing NO molecules to study geometry,electronic structures,and NO reduction reaction coordinate to propose a new idea of N-element reduction reaction(NORR):

    The calculations were performed by a spin-polarized DFT + U approach using the Vienna ad initio simulation package(VASP)[20],which employing the generalized gradient approximation(GGA)with Perdew-Burke-Ernzerh of(PBE)function.Also,we use DFT-D2 to describe the van der Waals bonds.For guaranteeing a good convergence of total energies,the plane-wave cutoff was 400 eV,which uses the Brillouin zone sampled with 5 × 5 × 1 of k-points with allowing the convergence of total energy to set 0.01 eV,and the Part valence-electron configurations include Ce(5s,5p,6p,5d,4f),La(5d,6s)and O(2s,2p).And we consider the 4f states of the reduced cerium and doped-La atoms,where the value of the Hubbard U terms was used as 5.0 eV and 7.5 eV effectively[21],and we first predicted bulk lattice constant of the pure CeO2is 5.42 ?A,which compared it and the agreement with the experimental value(5.41 ?A)and the theoretical results(5.43 ?A)[22,23].For the surface selection,we studied only the surface(111)among the low-index surfaces of CeO2(111),(110)and(100),which surface(111)is the most stable[24,25].As depicted in Fig.S1(Supporting information),the circular area of the dotted line represents the possible NO adsorption sites of Ce-top,O-top,Ce-O-bridge and hollow sites.

    For purpose of better understanding the transition metal(TMs)doped CeO2(111)surfaces the formation energies of each surface slab by using the following equation:

    whereEM?CeO2andECeO2are total energies of TMs doped and stoichiometric CeO2(111)surface,respectively.ECeandEMare the energies of single Ce atom and the selected metal atom(M=K,Ca,Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Mo,Cs,Ba,La,Pr,Nd and Sm),respectively.Clearly,the negative value presents the exothermic process,leading to the stable structure.When the values were calculated to be positive,it explained that doping process is thermodynamically unfavorable.

    As shown in Fig.S2(Supporting information),all the formation energies of the metal-doped CeO2(111)surfaces are plotted,we actually see that except Cs elements,the dopant formation energies of K to Ba atoms(>2 eV)are higher than those(<1.5 eV)which doped with rare metals(La,Pr,Nd and Sm).To further compare with rare metals,La-doped CeO2(111)surface with the lowest formation energy of 0.67 eV indicating that the syntheses of La-doped-CeO2(111)systems are relatively easy in the experiment.Our results are completely consistent with the radii between the M and Ce atoms,that the larger the size difference is,the larger the formation energy is[26].

    Generally,oxygen vacancy(OV)plays an important role in good catalytic performance,which coming from the interconversion between Ce(III)and Ce(IV)oxidation states with the storage and release of 4f electronic orbits.Thus,for investigating the formation energy of oxygen vacancies(OVs)on the CeO2(111)surface,the defect energyEvacis defined as following[27,28]:

    The adsorption energy(Eads)is defined as[33,36]:

    whereEadsorbate/sub,EadsorbateandEsubare the total energies of adsorbate-substrate,isolated adsorbate and substrate system,respectively.And the negative value ofEadsindicates the better stable configuration and exothermic process.

    As shown in Fig.1a and Fig.S1,in order to further elucidate and study the nature of the CeO2systems for NO activation,we have testedEadsof and bond length of NO,thex-axis coordinates indicate the possible adsorption locations,which are Ce-top,O-top,bridge,hollow and OV sites and they-axis is the energy of adsorption.Also,we can see that red and black lines,which show NO molecule can be adsorbed over different sites through its O and N atom,respectively.The bar chart shows the bond length of NO after adsorption through N atom,and the date by O atom is listed in Table S1(Supporting information)due to the minor change.Our computations demonstrated that NO chemisorption occurs on the N site preferably,which the value of N-site shows better adsorption than O-site withEadsunder ?0.40 eV in general.Moreover,when the OV occurs on the surface,the adsorption energy is significantly reduced,and the bond length is also increased of 1.211 ?A.In all,the results indicate that the existence of OV can well improve the ability of NO activation.Especially,adsorption energy and bond length are significantly improved when metals are doped with oxygen vacancy.By comparison of different adsorption energyEadsof NO and bond length after different metals doping on MxCe1-xO2-δsurfaces(M=K,Ca,Sc,Ti,V,Cr,Mn,Fe,Cu,Zn,Mo,Cs,Ba,La,Pr,Nd and Sm),what is noteworthy is that the bond length of NO molecule increased to 1.245 ?A from its original length of 1.117 ?A and the adsorption energy decreased to ?1.12 eV by activating over La-doping with OV surface(Fig.1b).

    In a word,according to Fig.1,Tables S1 and S2(Supporting information),we found that direct generation of OV can also achieve the result of NO activation(the formation energy of oxygen vacancy(Eads)is 3.01 eV,the bond length of NO is 1.211 ?A and theEadsis–0.85 eV),except the system of low formation energy doping La atom with OV(the formation energy of oxygen vacancy(Eads)is 2.85 eV,the bond length of NO is 1.245 ?A and theEadsis–1.12 eV).As shown in Fig.S4(Supporting information),NO molecule prefers to adopt an end-on way with Ce-N bonding distance of 2.491 ?A on the OV surface and a side-on mode with Ce-O,Ce-N and La-N bonding distances of 2.703,2.542 and 2.661 ?A.It is obvious that the defect area is large,the distance of Ce3+-O is too far to bond on pure OV surface.Conversely,duo to the La ion is bigger that the Ce and the defect area is smaller,N and O atom can contact with more reductive active sites at the same time to pull the NO bond.Therefore,in order to further study the difference between them for NORR,we carried out the HER study over La doped CeO2(111)surface with an oxygen vacancy and CeO2(111)surface only with OV,respectively(Fig.S5 in Supporting information),which is an important side reaction to hinder the process of NORR.Ulteriorly,we can see that the first hydrogen is adsorbed on the La doped CeO2(111)surface with an oxygen vacancy and CeO2(111)surface only with Vo with the free energy change of?0.73 and ?0.81 eV,respectively,which the calculated equation isΔGH=Eads+ 0.24[36].In other words,the results reveal the practical free energies change of?H are ?0.97 eV over La-doped CeO2with Vo,which is smaller than that of?NO(?1.12 eV)and theEadsof?H are ?1.05 eV over pure CeO2with Vo,which is bigger than that of?NO(?0.85 eV).The calculation indicates that the La-doped CeO2(111)with OV can dominantly attract more NO than H,where the defected surface can expose more active sites for NORR.

    Fig.1.(a)The adsorption energy of NO(Eads)for different sites and corresponding bond length on the clean CeO2 surface and CeO2-δ urface with an oxygen vacancy,as well as the calculation of the value on the MxCe1-xO2-δ surfaces(M=K,Ca,Sc,Ti,V,Cr,Mn,Fe,Cu,Zn,Mo,Cs,Ba,La,Pr,Nd and Sm).Thus the results for Co and Ni doping are not shown in the work because of nonconvergent.

    Fig.2.(a)Difference charge density of CeO2(111)surface with defect,and red color(0.003 eV/?A3)in the plot indicates electron density increase after formation,and blue represents the opposite.(b)The calculated geometries of dCe-O, dLa-O and dCe?M(M=Ce and La)are shown to compare with pure CeO2(111)surfaces.(c)The spin-polarized density of states(DOS)of the optimized stoichiometric ceria.The fermi level is set at 0 eV.

    To speculate the mechanism of the adsorption sites of the NOmolecule,it is necessary to calculate the difference charge density after doping La atom and forming an oxygen vacancy.We thus investigate the electronic structures of interaction between NO and defected species and densities of states(DOS)of N and O atoms which guiding us to determine the location of the reduction sites[37].According to the Fig.2a,the charge transference from OV site to La2+(Bader charge of 1.71|e|)and Ce3+(Bader charge of 2.81|e|)sites,respectively.Now therefore,the existence of chemical adsorptive sites may at the position of Ce3+and La2+.

    For defected systems containing a single metal atom doping and an oxygen vacancy,only the lanthanide element is used,which the value ofEadsis lowest and degree of NO bond activation shows the best performance of 1.245 ?A,giving smaller to the volume of dopant hole,where is enclosed by i,ii and iii in Fig.S1,which considering the reason of the similar ion radius sizes between Ce and La atom.Thus,the combination of Ce3+and La2+active reduced sites together can accelerate NO molecules activation,were reacting on a finite scale.As shown in Fig.2b,the red and blue patterns indicate the distances of neighboring atoms each other on the pure surface and defective surfaces,respectively.The distances between M and Ox(x=I,II and III)atoms(M=Ce and La)are 2.371,2.369,2.339 and 2.241 ?A as shown in Fig.S1 and Fig.2b,which are closed to the distance of pure surface(2.348 ?A)[38–40].To better describe the situation of the active sites,it is worth mentioning that the density of states(DOS)to study the influence of doping La atom with an oxygen vacancy on the electronic structure of defected CeO2surface.Fig.2c shows that the orbital electronics of Ce(f)contributed between ?0.2 eV and 0 eV,and La(d)orbital electronics contributed between ?1.85 eV and 0 eV apparently with both VB occupied by states in spin up closed to the Fermi level,that the result is well consistent with the value[41].

    For further understanding activation of NO molecule,we make the Bader charge analysis that N atom accepts the charge of 0.53|e|from the Ce and La cation and O atom receives the charge of 0.17|e|(Fig.2b).The evidence of chemical adsorption can be confirmed by the charge density difference and is calculated using the expression[42–46]:

    Fig.3.All calculation for electronic structure analysis.(a,b)Optimized structure of adsorption configurations and charge density differences about NO chemisorbed on the CeO2(111)partial slab models from the top views.The isosurfaces value is 0.003 eV/?A3.(c–e)The simplified schematic with bonding in NO molecule and metal atoms(La and Ce)on the defective surfaces.(f,g)The projected electronic of states(PDOS)with spin-polarized density.The fermi level is set at 0 eV.

    whereρtotal,ρsurandρNOare the charge densities of the NO adsorption on the OV site with metal-La doping,the charge density of the pure surface,and the charge density of studied gas molecule-NO,respectively[33].

    The Gibbs free energy change(ΔG)for each elementary step was obtained using the computational hydrogen electrode(CHE)model by the following equation[45]:

    whereΔE,ΔEZPEandΔSare the reaction energy by the DFT calculation and the changes in zero-point energy and entropy,respectively.Tis the temperature(298.15 K).

    In a word,the adsorption energy of NO on the OV site indicates that the CeO2(111)surface is modified by metal La and vacancy of O atom with a synergistic effect.Charge density difference plots(Figs.3a and b)show that adsorbed NO can interact with these active and occupied orbitals of La and Ce atoms,in which the lone pair electrons from the Ce3+and La2+are injecting into the electrons from the Ce3+and La2+are injecting into the antibonding orbitals of NOviaN and O atoms by the so-called as the “push” hypothesis.The more interaction is thus for the lower dissociation barrier than NO adsorption on the pure surface.Our calculation is further performed to provide more details of such chemical change between isolated La and NO by fragment orbital analysis as shown in Figs.3c–g[11,46–52].Also,the projected densities of states(PDOS)of NO adsorption on defected species show thatα-,β- andαβ-spin states represent pure substrate surface,a gaseous NO molecule,and the adsorption configuration for comparison(Figs.3f and g)[53].

    For the interaction between the two main states of 4f-5d for Ce3+atom and O2pstates for O atoms,we present in Figs.3c,e and g that the energy levels of Ce3+majority f spin states involved in the interaction with p-spin orbitals of O atom with the energy ofαβ-states lower which becoming more stable.Obviously,the fx3orbitals electrons are donated to the O2porbitals,which proving up to the hilt that surface generated an OV possess the capability of redox.Also,for interaction between Ce3+,La2+and O atoms,we present in Figs.3d–f the spin densities are strongly localized on Ce4f,5d,La5dand 2p of N states,the energy levels of Ce3+majority 4f spin states and La2+5d-states involved in the interaction with2p-spin orbitals of N atom with the energy ofαβ-states lower which becoming more stable,too.Similarly,as our previous analysis,the 4fx3orbitals of Ce and 5dz3orbitals of La electrons are donated to the 2p orbitals of N indicates that surface-anchored La also owns the capability of redox.

    Critically,the investigation into the mechanism of ammonia synthesis over the defected surface with the raw material(NO)is essential.Hence,to explore the reaction path of NORR on La-doped CeO2catalysts,the associative hydrogenation of pathways,which the proton-electron pair(H++ e?)attacks the N atom firstly and then O atom continuously until the NH3is generated,was considered according to the analysis of the degree of activation mechanism between N and O atom and the horizontal adsorption configuration,thus the barrier of NO direct dissociation greater than associative hydrogenation.And the Gibbs free energy of each reaction intermediate was calculated as shown in Fig.4a.

    Different from the value on the O site,ΔG(?NHO)of ?0.62 eV is lower than theΔG(?NOH)of 0.59 eV as shown in Fig.4a which comparing with other theoretical calculation of positive value and showing the excellent performance[54,55].We further examine the “enzymatic” pathway that the applied potential forU=0 V andT=298.15 K to study the true condition[56,57].And the detailed thermodynamic date we calculated the Gibbs free energy of all the adsorption and desorption structures are considered as shown in Fig.4b,which the length of NO bond changes of 1.244,1.334,1.487 and 2.863 ?A in the process of hydrogenation until breaking.Remarkably,due to the degree of NO activation and its own activity,whose?NxOy(x=1,2 and 3;y=1,2)intermediate is substantially low,resulting in a smaller energy barrier of ?0.62 eV for the first hydrogenation of?NO into?NHO,which is an exothermic reaction.For the second and third step of?NHOH and?NH2OH,the reactions are both exothermic energies of ?0.09 and ?0.26 eV to promote the dissociation of NO,that the third step(?NH3+?OH with the NO bond splitting up)is also downhill.It is presented in Fig.4a that Vo with La doping favors the?NH3+?H2O stabilization with ?1.85 eV downhill for?HH2+?OH →?NH3+?OH substantially.By the step of fifth for?NH3+?H2O,we also found that NORR activity of La-CeO2-OV over surface(111)can construct H2O.For the last step,the reason that we ignored the consideration for NORR process is its form of NH4+.Thus,the NORR process we conclude is thermodynamically spontaneous.

    Fig.4.(a)Free energy diagram of the NORR on the surface of La-doped CeO2(111)with OV,and all the calculations of free energy are at U=0 V and T=298.15 K.(b)The top and side views of optimized structures of NO adsorption on the defect CeO2(111)following the NORR pathways.

    Based on the theoretical findings,the NORR performance of La-CeO2-OV on the associative hydrogenation reaction coordinate can be described as illustrated in Fig.4.Firstly,the direction of alternation is determined by the activation mechanisms between N and O atoms and the horizontal adsorption configuration.Second,the situations of La-dopants and OV will effectively push the orbitals electrons of the sites of Ce and La to the NO molecular orbitals,resulting in the accelerated transmission of proton-coupled electrons and the spontaneous reaction that synthesis of the ammonia and water.

    Subsequently,we find that the effect of atomic radii is a critical factor for altering and ensuring the appropriate size of the NO molecule adsorption.We have also recorded that the most active reduction surface predicted is OV site,and investigated the CeO2(111)with doping the La metals from the ab initio DFT calculations by studying geometric and electronic structure properties.The results show thatEadsis of ?1.12 eV with relative horizontal adsorption,the Bader charge analysis of N atom accepting the charge of 0.53|e| from the Ce and La cation and O atom receiving the charge of 0.17|e|.Importantly,ΔGis less than zero of NORR(NO + 5(H++ e?)→NH3+ H2O),which indicating thermodynamically spontaneous reaction to synthesize ammonia and water under ambient conditions.

    In summary,we have demonstrated the good structural engineering of reduction surface by ceria when La-doping with Vo.Comparing with NRR coordinates,NORR has lower energy consumption as confirmed by the theoretical results[46].And thus,we anticipate that such metals-La including oxygen vacancies can be extended over new ideas for efficient electrocatalytic NO to ammonia as a feedstock of nitrogen supplement.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This study was funded by the Natural Science Foundation of China(No.21603109),the Henan Joint Fund of the National Natural Science Foundation of China(No.U1404216),the Scientific Research Program Funded by Shaanxi Provincial Education Department(No.20JK0676)and the Special Fund of Tianshui Normal University,China(No.CXJ2020-08).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.05.072.

    亚洲精品一区蜜桃| 精品久久久久久电影网| 精品熟女少妇av免费看| 欧美激情国产日韩精品一区| av在线老鸭窝| 9热在线视频观看99| 99九九在线精品视频| 999精品在线视频| 天天影视国产精品| 香蕉精品网在线| 一二三四在线观看免费中文在 | 免费高清在线观看日韩| 国产精品不卡视频一区二区| 伊人久久国产一区二区| 国产深夜福利视频在线观看| 少妇精品久久久久久久| 捣出白浆h1v1| 国产成人精品福利久久| 久久久久久久久久久免费av| 热re99久久精品国产66热6| 性色avwww在线观看| xxxhd国产人妻xxx| 一本色道久久久久久精品综合| 免费在线观看黄色视频的| av免费在线看不卡| 亚洲成人手机| av线在线观看网站| 狠狠婷婷综合久久久久久88av| 日韩伦理黄色片| 久久久国产一区二区| 99久久中文字幕三级久久日本| 80岁老熟妇乱子伦牲交| 99热全是精品| 观看美女的网站| 菩萨蛮人人尽说江南好唐韦庄| 丝袜人妻中文字幕| 男女啪啪激烈高潮av片| 国产熟女午夜一区二区三区| 极品人妻少妇av视频| 久久免费观看电影| 两个人免费观看高清视频| 久久精品久久久久久久性| 最后的刺客免费高清国语| 久久99热这里只频精品6学生| 日韩三级伦理在线观看| 啦啦啦在线观看免费高清www| 亚洲欧美日韩卡通动漫| 亚洲综合精品二区| 校园人妻丝袜中文字幕| 久久精品国产自在天天线| 亚洲av欧美aⅴ国产| 精品久久久久久电影网| 永久免费av网站大全| 欧美人与性动交α欧美精品济南到 | 寂寞人妻少妇视频99o| 亚洲人成77777在线视频| 欧美激情极品国产一区二区三区 | 一级毛片 在线播放| 超色免费av| 大香蕉久久成人网| 国产欧美另类精品又又久久亚洲欧美| 五月伊人婷婷丁香| 亚洲av中文av极速乱| 老司机影院毛片| 午夜免费男女啪啪视频观看| 一区二区日韩欧美中文字幕 | 亚洲,欧美精品.| 亚洲性久久影院| 午夜日本视频在线| av在线播放精品| 国产爽快片一区二区三区| 免费少妇av软件| 国产精品国产av在线观看| 国产一区二区激情短视频 | 精品福利永久在线观看| 老司机影院毛片| 日本-黄色视频高清免费观看| 国产福利在线免费观看视频| 一本—道久久a久久精品蜜桃钙片| 人人妻人人添人人爽欧美一区卜| 人人澡人人妻人| 精品一区二区免费观看| 黄片无遮挡物在线观看| 一级,二级,三级黄色视频| 国产精品久久久久久久电影| 两个人免费观看高清视频| 亚洲国产看品久久| 国产黄色免费在线视频| 综合色丁香网| 国产午夜精品一二区理论片| 国产无遮挡羞羞视频在线观看| 亚洲色图综合在线观看| 最近中文字幕高清免费大全6| 国产成人av激情在线播放| 制服人妻中文乱码| 国产综合精华液| 成人无遮挡网站| 又黄又粗又硬又大视频| 国产午夜精品一二区理论片| 久久精品久久久久久噜噜老黄| 大片免费播放器 马上看| 国产日韩欧美亚洲二区| 91精品三级在线观看| 五月开心婷婷网| 亚洲国产精品一区二区三区在线| 蜜桃在线观看..| 亚洲性久久影院| 免费大片黄手机在线观看| 女人久久www免费人成看片| 两个人免费观看高清视频| 久久久欧美国产精品| 蜜臀久久99精品久久宅男| 精品第一国产精品| 久久久久久久大尺度免费视频| 在线精品无人区一区二区三| 男的添女的下面高潮视频| 国产 一区精品| 黑丝袜美女国产一区| 精品国产一区二区三区久久久樱花| 国产在线视频一区二区| 99视频精品全部免费 在线| 国产成人精品福利久久| 成人亚洲精品一区在线观看| 永久网站在线| 欧美日韩成人在线一区二区| 黄色怎么调成土黄色| 亚洲精品456在线播放app| 一个人免费看片子| 精品亚洲成国产av| 热re99久久精品国产66热6| 亚洲av综合色区一区| 十八禁高潮呻吟视频| 日韩一区二区视频免费看| 精品一区二区三卡| 黄色配什么色好看| 你懂的网址亚洲精品在线观看| 22中文网久久字幕| 亚洲一级一片aⅴ在线观看| 成人国语在线视频| 免费大片18禁| 两个人看的免费小视频| 在线观看国产h片| 国精品久久久久久国模美| 久久精品国产综合久久久 | 新久久久久国产一级毛片| 中国美白少妇内射xxxbb| 蜜臀久久99精品久久宅男| 午夜久久久在线观看| 久久97久久精品| 精品卡一卡二卡四卡免费| 毛片一级片免费看久久久久| 日韩 亚洲 欧美在线| 三级国产精品片| 久久久久久久国产电影| 国产精品久久久久久精品古装| 久久久国产欧美日韩av| 久久精品国产亚洲av涩爱| 久久精品国产自在天天线| 美女内射精品一级片tv| 国产精品不卡视频一区二区| 美女主播在线视频| 精品第一国产精品| 久久国内精品自在自线图片| 啦啦啦视频在线资源免费观看| 黑人欧美特级aaaaaa片| 久久国产亚洲av麻豆专区| 日韩免费高清中文字幕av| 久久久精品区二区三区| 黑人巨大精品欧美一区二区蜜桃 | 国国产精品蜜臀av免费| 韩国av在线不卡| 少妇的逼水好多| 熟女电影av网| 男人操女人黄网站| av免费观看日本| 最黄视频免费看| 国产精品三级大全| 久久99热这里只频精品6学生| 一级毛片我不卡| 99热6这里只有精品| 国产欧美日韩一区二区三区在线| 90打野战视频偷拍视频| 一级片'在线观看视频| 久久韩国三级中文字幕| 国产片特级美女逼逼视频| 最后的刺客免费高清国语| 亚洲精品国产av成人精品| 色婷婷久久久亚洲欧美| 秋霞在线观看毛片| 黑人巨大精品欧美一区二区蜜桃 | 精品一区二区免费观看| 男人爽女人下面视频在线观看| 国产不卡av网站在线观看| 免费观看av网站的网址| 日本av免费视频播放| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品一区三区| 最近中文字幕高清免费大全6| 欧美xxxx性猛交bbbb| 香蕉精品网在线| 一本久久精品| 国产乱来视频区| 国产色婷婷99| 国产有黄有色有爽视频| 久久人人爽av亚洲精品天堂| 高清在线视频一区二区三区| 久久人妻熟女aⅴ| 免费播放大片免费观看视频在线观看| 国产日韩一区二区三区精品不卡| 久久97久久精品| 一本久久精品| 九九爱精品视频在线观看| 国产不卡av网站在线观看| 免费观看av网站的网址| 只有这里有精品99| 久久久久视频综合| 国产精品一区www在线观看| 欧美激情极品国产一区二区三区 | 丰满饥渴人妻一区二区三| 欧美精品高潮呻吟av久久| 日韩在线高清观看一区二区三区| 人人妻人人澡人人爽人人夜夜| 欧美亚洲 丝袜 人妻 在线| 久久人人爽人人爽人人片va| 精品国产国语对白av| 少妇熟女欧美另类| 成人综合一区亚洲| 国产免费福利视频在线观看| xxxhd国产人妻xxx| videos熟女内射| 国产av码专区亚洲av| 18在线观看网站| 国产一区亚洲一区在线观看| 亚洲欧洲日产国产| 最近的中文字幕免费完整| 久久亚洲国产成人精品v| 日本黄大片高清| 亚洲国产av新网站| 亚洲国产精品一区三区| 久久人人爽人人片av| 秋霞伦理黄片| 亚洲成色77777| 美女主播在线视频| 久久影院123| 9热在线视频观看99| 国产精品久久久av美女十八| 欧美最新免费一区二区三区| 欧美xxⅹ黑人| 在线观看三级黄色| 在线免费观看不下载黄p国产| 国产精品.久久久| 一本色道久久久久久精品综合| 美国免费a级毛片| 日韩成人伦理影院| www.色视频.com| 一本久久精品| 亚洲成色77777| 黑人欧美特级aaaaaa片| 久久久欧美国产精品| 亚洲精品乱久久久久久| 精品人妻一区二区三区麻豆| 亚洲欧洲国产日韩| 久久久久久人人人人人| 国产黄频视频在线观看| 成人无遮挡网站| 美女中出高潮动态图| 亚洲精品aⅴ在线观看| 久久这里只有精品19| 国产日韩一区二区三区精品不卡| www日本在线高清视频| 久久久a久久爽久久v久久| 欧美xxⅹ黑人| 亚洲av男天堂| 久久国内精品自在自线图片| 91成人精品电影| 国产福利在线免费观看视频| 国产激情久久老熟女| 女人被躁到高潮嗷嗷叫费观| 日本与韩国留学比较| 咕卡用的链子| 久久国产精品大桥未久av| 黄片播放在线免费| 国产成人午夜福利电影在线观看| 精品午夜福利在线看| 亚洲美女搞黄在线观看| 最新中文字幕久久久久| 妹子高潮喷水视频| 性高湖久久久久久久久免费观看| 一本—道久久a久久精品蜜桃钙片| 一本久久精品| 91成人精品电影| 亚洲久久久国产精品| 伊人亚洲综合成人网| 大码成人一级视频| 九色亚洲精品在线播放| 免费黄频网站在线观看国产| 肉色欧美久久久久久久蜜桃| 久久久久久久久久久久大奶| 精品久久国产蜜桃| 秋霞在线观看毛片| 国产淫语在线视频| 亚洲国产精品一区二区三区在线| 久久人人爽人人爽人人片va| 少妇熟女欧美另类| 久久亚洲国产成人精品v| 婷婷色综合大香蕉| 亚洲成人手机| 日本欧美视频一区| 五月开心婷婷网| 亚洲美女视频黄频| 亚洲国产最新在线播放| 自线自在国产av| 亚洲第一区二区三区不卡| 大码成人一级视频| 亚洲欧美色中文字幕在线| 日韩中字成人| 国内精品宾馆在线| h视频一区二区三区| 中文欧美无线码| 亚洲av成人精品一二三区| 亚洲综合色网址| 亚洲欧美中文字幕日韩二区| 美女中出高潮动态图| 男的添女的下面高潮视频| 亚洲精品色激情综合| 99九九在线精品视频| 亚洲伊人色综图| 大话2 男鬼变身卡| xxxhd国产人妻xxx| 久久精品国产亚洲av涩爱| 国产日韩一区二区三区精品不卡| 久久亚洲国产成人精品v| 色吧在线观看| 国产69精品久久久久777片| 亚洲在久久综合| 国产精品一国产av| 人人妻人人添人人爽欧美一区卜| 街头女战士在线观看网站| 丰满乱子伦码专区| 婷婷色av中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 日韩中文字幕视频在线看片| 日韩 亚洲 欧美在线| 亚洲第一av免费看| 天堂中文最新版在线下载| 日韩av免费高清视频| 亚洲精品日本国产第一区| 国产亚洲精品第一综合不卡 | 欧美bdsm另类| 亚洲精品国产av成人精品| 尾随美女入室| 一级毛片 在线播放| 国产精品久久久久久精品古装| 人体艺术视频欧美日本| 精品久久国产蜜桃| 一本大道久久a久久精品| 男女无遮挡免费网站观看| 成年美女黄网站色视频大全免费| 国产国拍精品亚洲av在线观看| 曰老女人黄片| 亚洲成av片中文字幕在线观看 | 亚洲精品国产av蜜桃| 熟女电影av网| 桃花免费在线播放| 午夜福利影视在线免费观看| 高清在线视频一区二区三区| 全区人妻精品视频| √禁漫天堂资源中文www| 欧美成人午夜精品| 亚洲在久久综合| 亚洲综合色网址| 成人综合一区亚洲| 免费av中文字幕在线| 欧美变态另类bdsm刘玥| 丰满迷人的少妇在线观看| 一区二区日韩欧美中文字幕 | 丰满迷人的少妇在线观看| 国产无遮挡羞羞视频在线观看| 亚洲久久久国产精品| 美女主播在线视频| 一本久久精品| 人人妻人人爽人人添夜夜欢视频| av免费在线看不卡| 五月天丁香电影| 18禁国产床啪视频网站| 蜜臀久久99精品久久宅男| 国精品久久久久久国模美| 国产色婷婷99| 黑人猛操日本美女一级片| 欧美变态另类bdsm刘玥| 久久人人爽av亚洲精品天堂| 国产不卡av网站在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产精品99久久99久久久不卡 | 亚洲一级一片aⅴ在线观看| 五月天丁香电影| 国产一区二区三区综合在线观看 | 在线亚洲精品国产二区图片欧美| av.在线天堂| 精品第一国产精品| 午夜影院在线不卡| 美女国产视频在线观看| 亚洲第一av免费看| 国产片内射在线| 久久av网站| 欧美性感艳星| 美女中出高潮动态图| 草草在线视频免费看| 51国产日韩欧美| 亚洲,欧美,日韩| 国产一区二区在线观看av| 亚洲欧美清纯卡通| 欧美人与善性xxx| 国产成人精品婷婷| 国产精品久久久久久精品古装| 性高湖久久久久久久久免费观看| 国产亚洲午夜精品一区二区久久| 亚洲国产欧美日韩在线播放| 亚洲av欧美aⅴ国产| av在线播放精品| 国产欧美亚洲国产| 国产在视频线精品| 日韩人妻精品一区2区三区| 亚洲精品日本国产第一区| 老司机影院毛片| 亚洲情色 制服丝袜| 久久精品熟女亚洲av麻豆精品| 国产成人精品久久久久久| 青青草视频在线视频观看| 午夜精品国产一区二区电影| 成人毛片60女人毛片免费| 亚洲欧美日韩卡通动漫| h视频一区二区三区| 又大又黄又爽视频免费| 99热6这里只有精品| 国产免费福利视频在线观看| 国产成人免费无遮挡视频| 欧美精品高潮呻吟av久久| 国产精品国产三级专区第一集| 美女福利国产在线| 亚洲三级黄色毛片| 精品一区二区三区四区五区乱码 | 久久这里只有精品19| 侵犯人妻中文字幕一二三四区| 插逼视频在线观看| 香蕉国产在线看| 亚洲婷婷狠狠爱综合网| 国产成人精品一,二区| 国产精品无大码| 国产成人aa在线观看| 国产av码专区亚洲av| 亚洲精品久久午夜乱码| 成人综合一区亚洲| 人人妻人人澡人人看| 99热全是精品| 亚洲国产精品一区二区三区在线| 亚洲色图综合在线观看| 亚洲国产看品久久| 一级毛片 在线播放| 婷婷成人精品国产| freevideosex欧美| 女性被躁到高潮视频| 国产av码专区亚洲av| 水蜜桃什么品种好| 69精品国产乱码久久久| 久久久a久久爽久久v久久| 夫妻午夜视频| 国产精品国产av在线观看| 夫妻午夜视频| 日韩精品免费视频一区二区三区 | 少妇的丰满在线观看| 性色av一级| 成年美女黄网站色视频大全免费| xxxhd国产人妻xxx| 亚洲三级黄色毛片| 亚洲综合色惰| 99热6这里只有精品| 国产成人精品无人区| 日日爽夜夜爽网站| 美女主播在线视频| 精品一区二区三区视频在线| 人妻一区二区av| 自拍欧美九色日韩亚洲蝌蚪91| 黄色 视频免费看| 2022亚洲国产成人精品| 亚洲精品日本国产第一区| 色网站视频免费| av国产久精品久网站免费入址| 久久鲁丝午夜福利片| 男女国产视频网站| 老熟女久久久| 五月伊人婷婷丁香| 韩国高清视频一区二区三区| 久久久亚洲精品成人影院| 女性被躁到高潮视频| 欧美精品一区二区大全| 成人二区视频| 久久久久视频综合| 亚洲性久久影院| 咕卡用的链子| 国产精品国产三级专区第一集| 免费黄网站久久成人精品| 菩萨蛮人人尽说江南好唐韦庄| 久久人人97超碰香蕉20202| 观看av在线不卡| 免费看av在线观看网站| 母亲3免费完整高清在线观看 | 免费在线观看黄色视频的| 亚洲精品中文字幕在线视频| 国产免费一级a男人的天堂| 午夜91福利影院| 精品国产露脸久久av麻豆| 国产1区2区3区精品| 亚洲精品美女久久久久99蜜臀 | 久久热在线av| 日韩精品免费视频一区二区三区 | 在线观看美女被高潮喷水网站| 国产xxxxx性猛交| 中国三级夫妇交换| 在线亚洲精品国产二区图片欧美| 在线观看免费日韩欧美大片| 最近的中文字幕免费完整| 国产永久视频网站| 免费日韩欧美在线观看| 国产免费现黄频在线看| 国产成人免费无遮挡视频| 精品酒店卫生间| 我要看黄色一级片免费的| 汤姆久久久久久久影院中文字幕| 日韩 亚洲 欧美在线| 日韩av在线免费看完整版不卡| 黄色视频在线播放观看不卡| 高清黄色对白视频在线免费看| 久久韩国三级中文字幕| 十八禁网站网址无遮挡| 久久综合国产亚洲精品| 久热这里只有精品99| 男女边吃奶边做爰视频| 国产xxxxx性猛交| 桃花免费在线播放| 自线自在国产av| 成人国产麻豆网| 三上悠亚av全集在线观看| 成人黄色视频免费在线看| 国产日韩欧美视频二区| 日韩人妻精品一区2区三区| 99热6这里只有精品| 亚洲国产av影院在线观看| 亚洲人成网站在线观看播放| 91精品伊人久久大香线蕉| 一级,二级,三级黄色视频| 国产在线一区二区三区精| 黑人高潮一二区| 国产色婷婷99| 夫妻午夜视频| 国产成人午夜福利电影在线观看| 亚洲欧洲精品一区二区精品久久久 | 欧美丝袜亚洲另类| 国产精品国产三级专区第一集| 九色亚洲精品在线播放| 免费观看在线日韩| 日韩免费高清中文字幕av| 熟女电影av网| 国产精品熟女久久久久浪| av网站免费在线观看视频| 欧美成人午夜精品| 中国三级夫妇交换| 免费看光身美女| 欧美日韩av久久| 精品国产一区二区久久| 宅男免费午夜| 国内精品宾馆在线| 26uuu在线亚洲综合色| 两个人免费观看高清视频| 久久午夜福利片| 18在线观看网站| 丁香六月天网| 亚洲欧洲日产国产| 国产成人一区二区在线| 亚洲色图综合在线观看| 亚洲中文av在线| 性色avwww在线观看| 一级毛片黄色毛片免费观看视频| 99九九在线精品视频| 精品熟女少妇av免费看| 大香蕉97超碰在线| 欧美精品一区二区大全| 99热这里只有是精品在线观看| 日本与韩国留学比较| 啦啦啦啦在线视频资源| 日本午夜av视频| 亚洲少妇的诱惑av| 十分钟在线观看高清视频www| 日本欧美视频一区| 亚洲精品国产色婷婷电影| 久久久久精品人妻al黑| 最近手机中文字幕大全| 只有这里有精品99| 日韩视频在线欧美| 热re99久久国产66热| 欧美精品一区二区大全| 久久99热6这里只有精品| 国产一区二区在线观看日韩| 久久人人97超碰香蕉20202| 国产欧美另类精品又又久久亚洲欧美| 欧美精品高潮呻吟av久久| 黑人高潮一二区| 免费人成在线观看视频色| 伦理电影免费视频| 国产探花极品一区二区| 亚洲成人手机| 成人毛片60女人毛片免费| 一级黄片播放器| 日本av免费视频播放| 999精品在线视频|