• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular engineering of s-triazine and its derivatives applied in surface modification strategy for enhancing photoelectric performance of all-inorganic perovskites

    2022-03-14 09:30:46YifeiYueShengnanLiuNingZhangZhongminSuDongxiaZhu
    Chinese Chemical Letters 2022年1期

    Yifei Yue,Shengnan Liu,Ning Zhang,Zhongmin Su,Dongxia Zhu

    Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province,Department of Chemistry,Northeast Normal University,Changchun 130024,China

    ABSTRACT We develop the effective modification strategy based on molecular engineering of s-triazine and its derivatives to improve the photoelectric performance of all-inorganic perovskites(AIP)for the first time.The surface modification strategy with cyanuric acid successfully increases the PLQY of AIP from 40.55%to 88.15%,and significantly enhances the current of the AIP film under 3 V by almost 20-fold(from 4.44 mA to 81.20 mA).This work has proven the effectiveness of improving the photoelectric performances of AIP via s-triazine and its derivatives and also suggested the potential risks of reducing the photoelectric performance of AIP due to inappropriate substituents in conjugated organic ligands.

    Keywords:All-inorganic perovskites Surface modification s-Triazine Substituents Photoelectric performance

    Since the first example of all-inorganic perovskites(AIP)nanomaterials were reported in 2015[1],researchers have prepared a series of AIP with excellent photoelectric performances[2–5].Although the photoluminescence quantum yield(PLQY)of AIP has reached near-unity[6],the low charge-transport property caused by non-conjugated organic ligands still makes a certain gap between AIP and traditional semiconductor quantum dots(QDs)[7]and organic luminescent materials[8],which seriously hindered the development level of AIP in many application field[9].The ligand exchange reactions in polar solvents were used to improve the charge-transport property of traditional semiconductor QDs[10],which was useless for AIP with low stability in the polar solvents[11].Therefore,researching effective methods for improving the charge-transport property of the AIP is imperative to promote the application of AIP.

    In recent years,researchers have actively explored methods to improve the charge-transport property of AIP and have made certain progress.In the early studies,less polar solvents and inorganic ligands have been applied in the preparation process of CsPbBr3QDs to decrease the density of oleic acid(OA)and oleylamine(OLA)[12,13].In order to avoid the loss of PLQY caused by the decrease of OA and OLA density during the purification process,short-chain organic ligands have been used to instead of longchain organic ligands to modify the surface of AIP to increase the charge-transport property[14,15].In follow-up researches,the organic ligands with conjugated structure have been used to further increase charge-transport property of AIPviathe intermolecularπ-πinteraction to avoid the insulation caused by aliphatic carbon chains[16,17].Compared with the phenethylammonium iodide,the aniline iodide without a carbon chain between the benzene ring and the substituent has shown more excellent modification property[18,19],which indicates the substituent in conjugated organic ligands will also play an important role on the surface modification effect.Although a series of derivatives ofs-triazine have shown outstanding charge-transport property in the application of perovskite solar cell[20,21]and organic light-emitting diodes[22,23],it is ignored based on them to modify AIP luminescent nanomaterials.Therefore,the surface modification strategy withs-triazine is expected to improve luminescence performance and charge-transport property of AIP simultaneously.

    Here,s-triazine(TZ)and its derivatives(cyanuric acid named as CA and trithiocyanuric acid named as TA)were applied in surface modification strategy for enhancing photoelectric performance of AIP for the first time.The PLQY of AIP was increased to 88.15% and the current under 3V of the AIP film was enhanced from 4.44 mA to 81.20 mA with the modification of cyanuric acid(CA).Under the influence of hydroxyl group,CA has shown better modification ability than TZ.However,the effect of TA on the photoelectric performance of the AIP is negative for the sulfhydryl group will introduce extra free Pb2+to cause more surface defects.The completely different surface modification results of CA and TA has shown the effectiveness of the improving the photoelectric performances and also indicated the potential risk of reducing PLQY of AIP either based on conjugated organic ligands at the meanwhile.

    Fig.1.The structures of AIP before and after surface modification strategy:CsPbBr3-0,CsPbBr3-TA,CsPbBr3-TZ and CsPbBr3-CA.

    The AIP without the modification with 3N ligands was named as CsPbBr3-0.The AIP modified by TA,TZ and CA were named as CsPbBr3-TA,CsPbBr3-TZ and CsPbBr3-CA,respectively,the whole of which was named as CsPbBr3-3N.The CsPbBr3-0 and CsPbBr3-3N were are prepared with hot-injection method and the dosages of surface ligands were listed in Tables S1-S3(Supporting information).The structures of AIP before and after modified with 3N ligands were shown in Fig.1.

    The solid powder X-ray diffraction(XRD)measurements were used to study the effect of three conjugated organic ligands on the host lattice of AIP.The obvious diffraction peaks can be found in the XRD patterns of the three organic ligands(Fig.S2 in Supporting information),indicating that AIP show goodish crystallization ability due to large polarity chemical bonds and the strong intermolecularπ-πinteraction happened in the 3N ligands.(Table S4 in Supporting information).

    Before modified with 3N ligands,the characteristic diffraction peaks of CsPbBr3around 15°,22° and 30° can be observed in the XRD pattern of CsPbBr3-0,and the diffraction peaks between 30° and 31° are double peaks(Fig.S3 in Supporting information),which means the lattice structure of CsPbBr3-0 is orthogonal[24].With the increasing the contents of TA,the double-peak diffraction peak around 30° moves to the low-angle region indicating that TA only induces the crystalline interplanar spacing to increase(Fig.S3).Compared with CsPbBr3-TA,the diffraction peaks located around 30° move to the low-angle region with a smaller amplitude in the XRD patterns of CsPbBr3-TZ(Fig.S4 in Supporting information).Especially when the dosage of TZ is increased to more than 0.09 mmol,the double diffraction peaks around 30° gradually become a single diffraction peak,indicating that TZ will induce AIP to form cubic crystal lattice(Fig.S4)[25].The diffraction peaks of CA can be observed in the XRD patterns of CsPbBr3-CA(Figs.2a and b),which indicates that CA will form crystalline layer on the crystal surface because of intermolecular hydrogen bonds and stronger intermolecularπ-πinteraction according to the theoretical calculation results(Table S4)[26].Correspondingly,the position change of the peak around 30° in the XRD patterns of CsPbBr3-CA is the smallest among the three CsPbBr3-3N(Figs.2a and b).When modified with 0.06 mmol CA,the diffraction peak around 30° becomes a single peak(Figs.2a and b),meaning that CsPbBr3-CA has cubic crystal lattice.Thus,different substituents make these ligands have different influence on the host lattice.

    Fig.2.(a)Full and(b)enlarged(from 30° to 32°)solid XRD patterns of CsPbBr3-0 and CsPbBr3-CA.(c)Full and(d)enlarged(from 480 cm?1 to 600 cm?1)FT-IR spectra of CsPbBr3-0 and CsPbBr3-CA.

    The compositions of the organic ligands in CsPbBr3-3N were analyzed on the basis of fourier transform infrared spectroscopy(FT-IR)measurements.The characteristic peak of C-S bond at 1120 cm?1can be observed in the FT-IR spectrum of TA,which also can be found in that of CsPbBr3-TA(Fig.S5 in Supporting information).Moreover,there is a new peak at 1220 cm?1in the FT-IR spectra of CsPbBr3-TA(Fig.S5).The intensity of the peak at 1220 cm?1increases as the amount of TA increases,while the intensity of the peak at 1120 cm?1decreases(Fig.S5),suggesting that the C-S bond in TA changes during the modification process with TA.In the FT-IR spectra of CsPbBr3-TZ,the characteristic peak of TZ located in the fingerprint region of 520 cm?1can be directly observed,which moves to a low wavenumber region,indicating that the vibration of the chemical bond is limited after TZ adsorbing on the host lattice(Fig.S6 in Supporting information).Due to the tautomer of CA,there are characteristic peaks of hydroxyl group and carbonyl group in the FT-IR spectrum of CA,which are also found in the FT-IR spectra of CsPbBr3-CA without any change(Fig.2c).The characteristic peak of CA located in the fingerprint area appears in the FT-IR spectra of CsPbBr3-CA and changes to a certain extent(Figs.2c and d),meaning that CA interacts with the host lattice through the triazine ring instead of hydroxyl group or carbonyl group.

    1H nuclear magnetic resonance(1H NMR)measurements were performed on CsPbBr3-0 and CsPbBr3-3N to obtain the chemical environment of the protons in these materials(Fig.S7 in Supporting information).The chemical environment of the proton hydrogen in CsPbBr3-TA is as same as CsPbBr3-0(Fig.S7),indicating that the sulfhydryl group in TA will lose protons during the reaction,which changes the vibration state of the C-S bond.Compared with CsPbBr3-0,the proton signal of TZ can be clearly found in the1H NMR spectrum of CsPbBr3-TZ(Fig.S7),which further suggests TZ have adsorbed on the host lattice.Meanwhile,the proton signals of the tautomers of CA in Fig.S7 suggest CA adsorb on the host lattice by triazine ring which is consisted with the analysis of FT-IR.

    The effect of 3N ligands on the nanotopography of AIP was studied through transmission electron microscope(TEM)images.Before the modification with 3N ligands,CsPbBr3-0 shows various nanotopography in the TEM image,such as nanowires and nanocubes(Fig.3a).Many regular nanospheres can be found in Figs.3b and c,showing TA and TZ are beneficial to form the uniform nanotopography.The nanotopography of CsPbBr3-CA appears as a large cross-linked network(Fig.3d),due to the crystalline layer on the surface of the host lattice.Therefore,CA exhibit significantly different influence on the nanotopography due to hydroxyl group.

    Fig.3.TEM images(scale bar is 50 nm)of(a)CsPbBr3-0,(b)CsPbBr3-TA 0.09 mmol,(c)CsPbBr3-TZ 0.09 mmol and(d)CsPbBr3-CA 0.09 mmol.

    The elemental composition on the surface of the AIP was obtained by energy dispersive spectroscopy(EDS)measurements.As the amount of TA increases,the ratio of Br:Pb decreased from 3.26 to 3.07,2.84 and 1.37(Table S6 in Supporting information).The proton-losing sulfhydryl groups of TA will adsorb a large amount of free Pb2+[27],which will increase surface defects of AIP to reduce PLQY[28].The ratios of Br:Pb on the surface of CsPbBr3-TZ and CsPbBr3-CA are increased to 3.95,4.27,4.25,4.09,3.98 and 4.14,respectively(Tables S7 and S8 in Supporting information),which will enhance PLQY of AIP by decreasing surface defects[29].Therefore,the surface structure and defect states of AIP have shown obviously opposite modification results under the influence of the 3N ligands with different substituents.

    The absorption and photoluminescence(PL)spectra of AIP show different changes due to the different substituents on triazine ring.In the absorption spectra,maximum absorption wavelength of TA is the largest and that of CA is the smallest(Fig.S8 in Supporting information),which is consistent with the results of theoretical calculation(Table S5 in Supporting information).When the dosage of TA increases to 0.09 and 0.12 mmol,an absorption peak of 315 nm appears in the absorption spectra of CsPbBr3-TA,which is also present in the absorption spectra of CsPbBr3-TZ and CsPbBr3-CA,indicating that triazine ring will induce quasi-2D structure in the AIP(Fig.S8)[30].It is worth noting that the absorption peak at 315 nm is unconspicuous in the absorption spectra of CsPbBr3-TA 0.09 mmol and CsPbBr3-TA 0.12 mmol,which is even barely visible in the absorption curve of CsPbBr3-TA 0.06 mmol,indicating that the modification ability of the triazine ring in TA is weakened due to the sulfydryl group(Fig.S8a).The emission peak of CsPbBr3-TA occurs blue-shift with the increase of ligand content,while the emission peaks of CsPbBr3-TZ and CsPbBr3-CA show red-shift first and then blue-shift(Figs.S9a,c,e in Supporting information).

    Fig.4.(a)PLQY of CsPbBr3-0 and CsPbBr3-3N 0.09 mmol solid powder(λex=390 nm).(b)Electricity of CsPbBr3-0 and CsPbBr3-3N 0.09 mmol films under 3 V.

    The PLQYs and fluorescence decay curves were obtained to study the effects of 3N ligands on the exciton recombination process of AIP(Figs.S9b,d,f in Supporting information),with which the radiation transition rate(kr)and the non-radiative transition rate(knr)of AIP were calculated.Theknrof CsPbBr3-TA is larger than CsPbBr3-0(Table S9 in Supporting information),indicating that the defect density on the surface of CsPbBr3-TA is greater than that of CsPbBr3-0,which is caused by excessive free Pb2+on the surface.These changes result in that the PLQY of CsPbBr3-TA(1.24%-33.35%)is lower than CsPbBr3-0(40.55%).When the amount of TA is 0.06 mmol and 0.12 mmol,thekrof CsPbBr3-TA is smaller than that of CsPbBr3-0,while thekrof CsPbBr3-TA 0.09 mmol is larger than that of CsPbBr3-0(Table S9),for which the PLQY of CsPbBr3-TA 0.09 mmol(33.35%)is the highest among CsPbBr3-TA.Theknrof CsPbBr3-TZ is smaller than CsPbBr3-0(Table S10),indicating that TZ can well reduce the defect density on the surface of AIP.When the amount of TZ increases to 0.12 mmol,knrof the corresponding material began to increase(Table S10 in Supporting information),indicating that the excessive TZ at this time causes the interplanar spacing of the host lattice to change too much,which would increase the defect density on the surface.Similar to CsPbBr3-TA,thekrof CsPbBr3-TZ shows a trend of first decreasing,then increasing and then decreasing with the increase of TZ dosage(Table S10).As for CsPbBr3-TZ 0.09 mmol,thekrreaches the maximum andknris at the minimum,achieving the highest PLQY among CsPbBr3-TZ(85.47%).After modifying the host lattice with CA,theknrof AIP decreases with the amount of CA increasing(Table S11 in Supporting information),which means that CA can significantly reduce the surface defect density of AIP.Different from CsPbBr3-TA and CsPbBr3-TZ,theknrof CsPbBr3-CA 0.12 mmol is less than CsPbBr3-CA 0.09 mmol(Table S11).Combined with the XRD analysis results,CA has little effect on the interplanar spacing of the host lattice,which can be inferred that 0.12 mmol of CA will not cause a large interplanar change and increase surface defects.Thekrof CsPbBr3-CA shows the same trend as CsPbBr3-TA and CsPbBr3-TZ(Table S11).Correspondingly,CsPbBr3-CA 0.09 mmol exhibits the largest PLQY(88.15%).Since the three organic ligands all contain triazine ring,it can be inferred that an appropriate amount of triazine ring can effectively increase thekrof AIP.These three triazine ring-based organic ligands exhibit different influence on PLQY of AIP due to the different substituents(Fig.4a).

    Since thekrof CsPbBr3-TA 0.09 mmol,CsPbBr3-TZ 0.09 mmol,and CsPbBr3-CA 0.09 mmol are all higher than CsPbBr3-0,variable temperature fluorescence measurements were performed on these four materials to further explore the reasons.In Fig.S10(Supporting information),CsPbBr3-0 shows four emission peaks at low temperature,while CsPbBr3-TA 0.09 mmol,CsPbBr3-TZ 0.09 mmol and CsPbBr3-CA 0.09 mmol all maintained single emission peak(Fig.S10),indicating that the nanotopography of CsPbBr3-3N is more uniform,which coincides with the TEM images.In Fig.S10,the emission intensity of CsPbBr3-0 begins to decrease rapidly at 115 K as the temperature rises,while this temperature is increased to 230 K(CsPbBr3-TA 0.09 mmol),150 K(CsPbBr3-TZ 0.09 mmol)and 150 K(CsPbBr3-CA 0.09 mmol)after the surface modification with 3N ligands.This result means that all of the 3N ligands can increase the exciton binding energy of AIP to increase thekrof AIPs[31].Although CsPbBr3-TA 0.09 mmol has shown the largest exciton binding energy,due to the influence of surface defects caused by sulfhydryl group,thekrof CsPbBr3-TA 0.09 mmol is smaller than that of CsPbBr3-CA 0.09 mmol.Therefore,the surface state of the AIP can be tuned through controlling the amount of ligand and the type of substituent,so as to realize the optimization on the luminescence performance of AIP.

    In the discussion about luminescence performance,CsPbBr3-TA 0.09 mmol,CsPbBr3-TZ 0.09 mmol and CsPbBr3-CA 0.09 mmol have shown better luminescence performance(Fig.4a).Therefore,the content of OA and OLA in these three materials and CsPbBr3-0 and the charge-transport property of the material films were tested respectively.The contents of organic ligands in these four materials were obtained through DTG measurements(Table S12 in Supporting information).The mass percentage of OA and OLA in the CsPbBr3-0 totals 27.7%,which is significantly reduced in CsPbBr3-3N,suggesting that the 3N ligands can significantly reduce the density of OA and OLA on the surface of AIP.The charge-transport property of these four kinds of AIP films were measured through a device with a structure of ITO/AIP/Al.The current-voltage curve in the film under the forward voltage is shown in Fig.S11(Supporting information).The currents in CsPbBr3-0,CsPbBr3-TA 0.09 mmol,CsPbBr3-TZ 0.09 mmol and CsPbBr3-CA 0.09 mmol films gradually increase under the same voltage(Fig.4b),which proves that the organic ligands containing the triazine ring exhibit two notable advantages for the great enhancement on the charge-transport property of AIP:strong intermolecularπ-πinteraction and lowering the density of OA and OLA on the surface of AIP[32].Among the CsPbBr3-3N films,CsPbBr3-TA 0.09 mmol shows the worst chargetransport property,because the more surface defects caused by TA will reduce the charge-transport property of AIP[33].The CsPbBr3-CA 0.09 mmol shows the best charge-transport property due to the stronger modification ability and intermolecularπ-πinteraction of CA inferred from the results of theoretical calculation.Therefore,3N ligands can greatly improve the charge-transport property of AIP,and CA shows the best the optimization effect.

    We successfully improve the photoelectric performance of AIPviachanging the substituents to optimize the modification ability of conjugated organic ligand.According to the results of XRD,FT-IR,PL and other measurements,it can be proved that the surface modification strategy withs-triazine can effectively improve the luminescence performance and charge transport performance of AIP through the triazine ring structure.The addition of appropriate groups(such as hydroxyl)to the triazine ring structure can significantly enhance the modification effect of organic ligands.Meanwhile,the inappropriate substituents(such as sulfhydry)will introduce additional surface defects on the surface of AIP and reduce the modification effect of organic ligands.This study leads researchers to notice the great influence of molecular design strategy on the modification effect of organic ligand in surface modification strategy of AIP.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was funded by National Natural Science Foundation of China(No.52073045),the Key Scientific and Technological Project of Jilin Province(No.20190701010GH),and the Development and Reform Commission of Jilin Province(No.2020C035-5).D.Zhu is grateful for the support from the Key Laboratory of Nanobiosensing and Nanobioanalysis at the Universities of Jilin Province.The authors acknowledge the support from the Jilin Provincial Department of Education.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.066.

    国产精品人妻久久久影院| 国产黄色小视频在线观看| 一区福利在线观看| 久久精品国产自在天天线| 国产极品天堂在线| 亚洲精品自拍成人| 中文字幕av成人在线电影| 精品人妻偷拍中文字幕| 22中文网久久字幕| 91aial.com中文字幕在线观看| 国产精品免费一区二区三区在线| 欧美激情在线99| 非洲黑人性xxxx精品又粗又长| 亚洲成人久久性| 婷婷色综合大香蕉| 噜噜噜噜噜久久久久久91| 久久久色成人| 久久人妻av系列| 伦精品一区二区三区| 午夜福利高清视频| av免费在线看不卡| 国产精品久久久久久精品电影| 国产伦精品一区二区三区视频9| 少妇丰满av| 97在线视频观看| 午夜免费激情av| 国产精品蜜桃在线观看 | 自拍偷自拍亚洲精品老妇| 欧美精品国产亚洲| 午夜老司机福利剧场| 老司机福利观看| 日韩在线高清观看一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 波多野结衣高清无吗| 久久人人爽人人爽人人片va| 亚洲国产精品成人久久小说 | 亚洲最大成人av| 1024手机看黄色片| 精品久久久久久久久久久久久| 黄色配什么色好看| 久久99蜜桃精品久久| 在线免费观看的www视频| 青青草视频在线视频观看| 一本久久中文字幕| 三级毛片av免费| 国产在线精品亚洲第一网站| 国产一级毛片七仙女欲春2| 久久精品国产亚洲av香蕉五月| 亚洲av第一区精品v没综合| 久久精品国产亚洲网站| 99热精品在线国产| 日本黄大片高清| 高清日韩中文字幕在线| 日本av手机在线免费观看| 日韩一区二区三区影片| 国产成人精品一,二区 | 韩国av在线不卡| 日韩一区二区视频免费看| 亚洲中文字幕一区二区三区有码在线看| 99久久精品热视频| 日日摸夜夜添夜夜爱| 男人狂女人下面高潮的视频| 亚洲在久久综合| 亚洲精品久久久久久婷婷小说 | 日本av手机在线免费观看| 99热这里只有是精品在线观看| av专区在线播放| 悠悠久久av| 国产私拍福利视频在线观看| 精品欧美国产一区二区三| 老女人水多毛片| 黄色配什么色好看| 久久国产乱子免费精品| 亚洲av一区综合| 国产亚洲欧美98| 亚洲欧美成人精品一区二区| 亚洲精品成人久久久久久| 国产黄色小视频在线观看| 成人鲁丝片一二三区免费| 日日摸夜夜添夜夜添av毛片| 亚洲精品乱码久久久久久按摩| 色综合亚洲欧美另类图片| 超碰av人人做人人爽久久| 国产av不卡久久| 啦啦啦观看免费观看视频高清| 99热这里只有是精品50| 欧美xxxx性猛交bbbb| 亚洲欧美精品综合久久99| 日本一本二区三区精品| 久久久久久久久中文| 少妇高潮的动态图| 亚洲一区二区三区色噜噜| 国产精品久久久久久亚洲av鲁大| 91av网一区二区| 免费不卡的大黄色大毛片视频在线观看 | 偷拍熟女少妇极品色| 最后的刺客免费高清国语| 欧美色欧美亚洲另类二区| 高清在线视频一区二区三区 | 国产亚洲精品久久久久久毛片| 久久婷婷人人爽人人干人人爱| 久久午夜福利片| 直男gayav资源| 在线天堂最新版资源| 国产精品,欧美在线| 亚洲五月天丁香| 国产综合懂色| ponron亚洲| 亚洲国产欧美人成| 热99re8久久精品国产| 日韩一区二区视频免费看| 一进一出抽搐gif免费好疼| 五月玫瑰六月丁香| 性色avwww在线观看| 久久精品国产鲁丝片午夜精品| 网址你懂的国产日韩在线| 哪个播放器可以免费观看大片| 九色成人免费人妻av| 久久久国产成人免费| 免费观看精品视频网站| 成人毛片a级毛片在线播放| 五月玫瑰六月丁香| 一进一出抽搐动态| 国产激情偷乱视频一区二区| 亚洲成人精品中文字幕电影| 性插视频无遮挡在线免费观看| 久久精品国产清高在天天线| 麻豆国产97在线/欧美| 男女视频在线观看网站免费| 午夜久久久久精精品| 成人特级黄色片久久久久久久| 亚洲精品色激情综合| 一本一本综合久久| 日韩大尺度精品在线看网址| 日韩欧美 国产精品| 美女国产视频在线观看| 国产成人影院久久av| 国产综合懂色| 2022亚洲国产成人精品| 国产精品三级大全| 久久韩国三级中文字幕| 国产片特级美女逼逼视频| 国产一级毛片在线| 看十八女毛片水多多多| 亚洲综合色惰| 精品无人区乱码1区二区| 国产午夜精品论理片| 亚洲精品日韩av片在线观看| 男人的好看免费观看在线视频| 国产成人a区在线观看| 国产女主播在线喷水免费视频网站 | 三级男女做爰猛烈吃奶摸视频| 日日撸夜夜添| 日韩一区二区三区影片| 看免费成人av毛片| 久久婷婷人人爽人人干人人爱| 久久久久九九精品影院| 亚洲在线观看片| 22中文网久久字幕| 日本免费a在线| 亚洲国产精品久久男人天堂| 日韩av不卡免费在线播放| 青青草视频在线视频观看| 亚洲美女搞黄在线观看| 亚洲欧美精品自产自拍| 狂野欧美激情性xxxx在线观看| 成人鲁丝片一二三区免费| 国产白丝娇喘喷水9色精品| 我的女老师完整版在线观看| 三级毛片av免费| 亚洲最大成人中文| 亚洲av男天堂| 日韩一区二区三区影片| 网址你懂的国产日韩在线| 亚洲自偷自拍三级| 午夜激情福利司机影院| 成人高潮视频无遮挡免费网站| 99久久精品热视频| 久99久视频精品免费| 91狼人影院| 精品一区二区免费观看| 一本一本综合久久| 91狼人影院| 国产蜜桃级精品一区二区三区| 1024手机看黄色片| 久久这里有精品视频免费| 日韩欧美精品v在线| 卡戴珊不雅视频在线播放| 久久人妻av系列| 欧美+亚洲+日韩+国产| 日韩成人av中文字幕在线观看| 免费黄网站久久成人精品| 成人特级黄色片久久久久久久| 日韩强制内射视频| 老司机福利观看| 永久网站在线| 丝袜美腿在线中文| 又黄又爽又刺激的免费视频.| 大型黄色视频在线免费观看| 亚洲欧洲国产日韩| 毛片一级片免费看久久久久| 亚洲av中文字字幕乱码综合| 亚洲av.av天堂| 亚洲人与动物交配视频| 亚洲最大成人中文| 国产精品一区二区三区四区久久| 极品教师在线视频| 亚洲第一区二区三区不卡| 久久久久久大精品| 内地一区二区视频在线| 男的添女的下面高潮视频| 亚洲18禁久久av| 亚洲欧美清纯卡通| 欧美xxxx性猛交bbbb| 国产久久久一区二区三区| 欧美日韩国产亚洲二区| 国产成人精品久久久久久| 久久精品久久久久久噜噜老黄 | 嫩草影院入口| 一卡2卡三卡四卡精品乱码亚洲| 免费看光身美女| 国产 一区精品| 青春草亚洲视频在线观看| 国产美女午夜福利| 欧美潮喷喷水| 身体一侧抽搐| 国产精品日韩av在线免费观看| 乱系列少妇在线播放| 在线国产一区二区在线| 哪个播放器可以免费观看大片| 在线观看美女被高潮喷水网站| 国产 一区 欧美 日韩| 精品人妻偷拍中文字幕| 免费搜索国产男女视频| 99热精品在线国产| 18禁黄网站禁片免费观看直播| 免费观看的影片在线观看| 亚洲欧美成人精品一区二区| 亚洲国产欧美在线一区| 91精品国产九色| 亚洲中文字幕一区二区三区有码在线看| 黄色视频,在线免费观看| 天堂影院成人在线观看| 国产极品天堂在线| 最近手机中文字幕大全| 成人永久免费在线观看视频| 波多野结衣高清作品| 国产69精品久久久久777片| 女同久久另类99精品国产91| 两个人视频免费观看高清| 成人综合一区亚洲| 男女下面进入的视频免费午夜| 国产人妻一区二区三区在| 日本熟妇午夜| 国产视频首页在线观看| 亚洲第一电影网av| 此物有八面人人有两片| 69av精品久久久久久| 大又大粗又爽又黄少妇毛片口| 亚洲精品日韩av片在线观看| 精品一区二区三区视频在线| 国产成人a区在线观看| 久久精品人妻少妇| 69av精品久久久久久| 99久久精品一区二区三区| 搡女人真爽免费视频火全软件| 中文字幕精品亚洲无线码一区| 亚洲欧美日韩卡通动漫| 久久久a久久爽久久v久久| 五月伊人婷婷丁香| 国产麻豆成人av免费视频| 亚洲色图av天堂| 97在线视频观看| 国产乱人偷精品视频| 国产亚洲5aaaaa淫片| 给我免费播放毛片高清在线观看| 亚洲色图av天堂| АⅤ资源中文在线天堂| 成人性生交大片免费视频hd| 伦精品一区二区三区| 国产精品av视频在线免费观看| 能在线免费看毛片的网站| 青春草视频在线免费观看| 97人妻精品一区二区三区麻豆| 午夜福利在线观看吧| 国产伦理片在线播放av一区 | 欧美极品一区二区三区四区| 欧美日本亚洲视频在线播放| 国产成人aa在线观看| 夫妻性生交免费视频一级片| 国产视频首页在线观看| 黄色欧美视频在线观看| 亚洲欧美成人综合另类久久久 | 国产亚洲精品av在线| 国产精品免费一区二区三区在线| 直男gayav资源| 91aial.com中文字幕在线观看| 日本一二三区视频观看| 亚洲最大成人中文| 一边亲一边摸免费视频| 精品99又大又爽又粗少妇毛片| 波多野结衣高清无吗| 99久久精品国产国产毛片| 国内精品一区二区在线观看| av在线天堂中文字幕| 十八禁国产超污无遮挡网站| 国产 一区精品| 精品人妻熟女av久视频| 国产精品人妻久久久久久| 国产午夜精品久久久久久一区二区三区| 久久久久网色| 国产一级毛片七仙女欲春2| 99国产精品一区二区蜜桃av| 99热这里只有是精品50| 久久99蜜桃精品久久| 亚洲国产色片| 亚洲第一区二区三区不卡| av卡一久久| 国产伦在线观看视频一区| 有码 亚洲区| 老女人水多毛片| 成人国产麻豆网| 成人鲁丝片一二三区免费| 22中文网久久字幕| 在现免费观看毛片| av天堂中文字幕网| 日本爱情动作片www.在线观看| 中文字幕av在线有码专区| 亚洲国产欧洲综合997久久,| 十八禁国产超污无遮挡网站| 搡女人真爽免费视频火全软件| 午夜免费激情av| 熟妇人妻久久中文字幕3abv| 青春草亚洲视频在线观看| 成人美女网站在线观看视频| 久久中文看片网| 特大巨黑吊av在线直播| 免费看a级黄色片| 国产人妻一区二区三区在| 国产精品久久久久久久电影| videossex国产| www.av在线官网国产| 深爱激情五月婷婷| 日韩欧美在线乱码| 久久久久久国产a免费观看| 又黄又爽又刺激的免费视频.| 成人国产麻豆网| 嘟嘟电影网在线观看| 91午夜精品亚洲一区二区三区| 精品欧美国产一区二区三| 欧美日韩综合久久久久久| 欧美成人a在线观看| av专区在线播放| 看非洲黑人一级黄片| 国产精品一区www在线观看| 国产极品精品免费视频能看的| 最后的刺客免费高清国语| 夫妻性生交免费视频一级片| 午夜免费激情av| 九九在线视频观看精品| 国模一区二区三区四区视频| 精品不卡国产一区二区三区| 欧美xxxx黑人xx丫x性爽| 白带黄色成豆腐渣| 夜夜爽天天搞| 一级黄色大片毛片| 一区二区三区免费毛片| 亚洲人成网站在线播放欧美日韩| 国内精品宾馆在线| 黄色日韩在线| 欧美性猛交黑人性爽| 国产淫片久久久久久久久| 在线播放无遮挡| 亚洲欧美成人综合另类久久久 | 久久午夜亚洲精品久久| 欧美人与善性xxx| 黑人高潮一二区| 蜜桃亚洲精品一区二区三区| 国产成人精品久久久久久| 两个人视频免费观看高清| 成人欧美大片| 国内揄拍国产精品人妻在线| 51国产日韩欧美| 熟女电影av网| 一级毛片久久久久久久久女| 亚洲在线自拍视频| 看非洲黑人一级黄片| 国产片特级美女逼逼视频| 亚洲一区二区三区色噜噜| 亚洲欧美日韩高清专用| 午夜福利高清视频| 麻豆乱淫一区二区| 亚洲国产精品sss在线观看| 极品教师在线视频| 国产高清激情床上av| 99久久成人亚洲精品观看| 亚洲综合色惰| 日本一本二区三区精品| 国产国拍精品亚洲av在线观看| 国内精品久久久久精免费| 国产高清视频在线观看网站| 国产在线男女| 国产成人福利小说| 久久精品国产亚洲av天美| 亚洲真实伦在线观看| 美女cb高潮喷水在线观看| 欧美激情久久久久久爽电影| 欧美一区二区亚洲| 国产又黄又爽又无遮挡在线| 3wmmmm亚洲av在线观看| 高清毛片免费看| avwww免费| 日本三级黄在线观看| 91麻豆精品激情在线观看国产| 天堂影院成人在线观看| 黑人高潮一二区| 亚洲丝袜综合中文字幕| 我要看日韩黄色一级片| 少妇熟女aⅴ在线视频| 国产成人a∨麻豆精品| 亚洲成人av在线免费| 男女视频在线观看网站免费| 国产精品一区二区在线观看99 | 在线a可以看的网站| 亚洲自拍偷在线| 国产精品伦人一区二区| 一级黄色大片毛片| 深夜精品福利| 亚洲国产精品久久男人天堂| 国产精品人妻久久久影院| av专区在线播放| 我的女老师完整版在线观看| 国产精品野战在线观看| 欧美性猛交╳xxx乱大交人| 国产精品伦人一区二区| 亚洲国产精品sss在线观看| 国产单亲对白刺激| 午夜福利高清视频| av免费观看日本| 成熟少妇高潮喷水视频| 日韩精品有码人妻一区| 国产在线精品亚洲第一网站| 欧美性猛交黑人性爽| 天堂av国产一区二区熟女人妻| 日韩强制内射视频| 天天一区二区日本电影三级| 国产一区二区在线av高清观看| 蜜桃久久精品国产亚洲av| 亚洲欧洲国产日韩| 国产色爽女视频免费观看| av免费在线看不卡| 波多野结衣巨乳人妻| 超碰av人人做人人爽久久| 久久久欧美国产精品| 一夜夜www| 少妇的逼水好多| 国产一区二区激情短视频| 丝袜喷水一区| 国产成人91sexporn| 精品一区二区三区视频在线| 亚洲经典国产精华液单| 性色avwww在线观看| 91久久精品电影网| 给我免费播放毛片高清在线观看| 国产精品国产高清国产av| videossex国产| 在线a可以看的网站| 国产片特级美女逼逼视频| 国内精品美女久久久久久| 精品欧美国产一区二区三| 日日啪夜夜撸| 一级黄片播放器| 欧美bdsm另类| 中文字幕免费在线视频6| 国产精品一区二区性色av| 久久九九热精品免费| 亚洲国产高清在线一区二区三| 熟女人妻精品中文字幕| 在线观看av片永久免费下载| 色视频www国产| 日产精品乱码卡一卡2卡三| 性欧美人与动物交配| 美女大奶头视频| 国产精品久久电影中文字幕| АⅤ资源中文在线天堂| 一个人看视频在线观看www免费| 欧美在线一区亚洲| 国产精品一区二区在线观看99 | 亚洲国产高清在线一区二区三| 久久午夜福利片| 久久久久久九九精品二区国产| 亚洲人与动物交配视频| 少妇丰满av| 国产精品一二三区在线看| 最新中文字幕久久久久| 欧美一级a爱片免费观看看| 日韩欧美三级三区| 亚洲人成网站在线观看播放| 一级二级三级毛片免费看| 欧美最新免费一区二区三区| 国产美女午夜福利| 一区福利在线观看| 国产欧美日韩精品一区二区| 欧美激情在线99| 不卡一级毛片| 美女高潮的动态| 搡女人真爽免费视频火全软件| 久久精品国产鲁丝片午夜精品| 久久久久久国产a免费观看| 国产成人午夜福利电影在线观看| 欧美在线一区亚洲| 一个人看的www免费观看视频| 在线免费十八禁| 久久欧美精品欧美久久欧美| 亚洲人成网站在线播| 97人妻精品一区二区三区麻豆| 亚洲欧美精品综合久久99| 深夜精品福利| 一个人看视频在线观看www免费| 午夜亚洲福利在线播放| 免费看光身美女| 亚洲av免费高清在线观看| 成人特级黄色片久久久久久久| 1024手机看黄色片| 哪个播放器可以免费观看大片| 99热这里只有是精品50| 成人特级av手机在线观看| h日本视频在线播放| 国产精品美女特级片免费视频播放器| 久久精品久久久久久噜噜老黄 | 亚洲人成网站在线播| 又粗又硬又长又爽又黄的视频 | 亚洲精品久久久久久婷婷小说 | 禁无遮挡网站| 日韩精品青青久久久久久| 非洲黑人性xxxx精品又粗又长| 99久久精品热视频| 级片在线观看| 国产一区二区三区在线臀色熟女| 日韩欧美在线乱码| 少妇猛男粗大的猛烈进出视频 | 国内精品美女久久久久久| 久99久视频精品免费| 精品久久久久久久久亚洲| 女人被狂操c到高潮| 自拍偷自拍亚洲精品老妇| 中文字幕精品亚洲无线码一区| 在线天堂最新版资源| 青春草亚洲视频在线观看| 午夜视频国产福利| 五月玫瑰六月丁香| 啦啦啦韩国在线观看视频| 青春草亚洲视频在线观看| 欧美日韩综合久久久久久| 能在线免费看毛片的网站| 在线观看av片永久免费下载| 高清在线视频一区二区三区| 九色成人免费人妻av| videosex国产| 丰满少妇做爰视频| 久久久午夜欧美精品| 高清在线视频一区二区三区| 2018国产大陆天天弄谢| 亚洲在久久综合| 色视频在线一区二区三区| 一级毛片黄色毛片免费观看视频| 韩国高清视频一区二区三区| 精品久久久久久久久亚洲| 精品视频人人做人人爽| 国产综合精华液| 天堂中文最新版在线下载| 午夜激情av网站| 亚洲欧美成人综合另类久久久| 女的被弄到高潮叫床怎么办| av福利片在线| 在线观看www视频免费| 精品久久久久久电影网| 久久精品熟女亚洲av麻豆精品| av国产精品久久久久影院| 91久久精品电影网| 99热6这里只有精品| 国产成人免费观看mmmm| 久久精品国产鲁丝片午夜精品| 少妇的逼好多水| 中文字幕亚洲精品专区| 国产成人免费观看mmmm| 久久久国产一区二区| 亚洲国产av新网站| 日日啪夜夜爽| 欧美国产精品一级二级三级| 天堂俺去俺来也www色官网| 交换朋友夫妻互换小说| 亚洲高清免费不卡视频| 成人毛片60女人毛片免费| 亚洲综合精品二区| 男女边摸边吃奶| 蜜桃国产av成人99| 视频区图区小说| 精品一区二区三卡| 亚洲av.av天堂| 免费人成在线观看视频色| av免费在线看不卡| 建设人人有责人人尽责人人享有的| 哪个播放器可以免费观看大片| 久久精品国产a三级三级三级| 一区二区av电影网| 婷婷成人精品国产| 国产一区二区在线观看日韩| av黄色大香蕉| 美女主播在线视频| 国产精品久久久久久久久免| 亚洲美女黄色视频免费看| 精品亚洲乱码少妇综合久久| 日韩大片免费观看网站| 午夜视频国产福利|