• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular engineering of s-triazine and its derivatives applied in surface modification strategy for enhancing photoelectric performance of all-inorganic perovskites

    2022-03-14 09:30:46YifeiYueShengnanLiuNingZhangZhongminSuDongxiaZhu
    Chinese Chemical Letters 2022年1期

    Yifei Yue,Shengnan Liu,Ning Zhang,Zhongmin Su,Dongxia Zhu

    Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province,Department of Chemistry,Northeast Normal University,Changchun 130024,China

    ABSTRACT We develop the effective modification strategy based on molecular engineering of s-triazine and its derivatives to improve the photoelectric performance of all-inorganic perovskites(AIP)for the first time.The surface modification strategy with cyanuric acid successfully increases the PLQY of AIP from 40.55%to 88.15%,and significantly enhances the current of the AIP film under 3 V by almost 20-fold(from 4.44 mA to 81.20 mA).This work has proven the effectiveness of improving the photoelectric performances of AIP via s-triazine and its derivatives and also suggested the potential risks of reducing the photoelectric performance of AIP due to inappropriate substituents in conjugated organic ligands.

    Keywords:All-inorganic perovskites Surface modification s-Triazine Substituents Photoelectric performance

    Since the first example of all-inorganic perovskites(AIP)nanomaterials were reported in 2015[1],researchers have prepared a series of AIP with excellent photoelectric performances[2–5].Although the photoluminescence quantum yield(PLQY)of AIP has reached near-unity[6],the low charge-transport property caused by non-conjugated organic ligands still makes a certain gap between AIP and traditional semiconductor quantum dots(QDs)[7]and organic luminescent materials[8],which seriously hindered the development level of AIP in many application field[9].The ligand exchange reactions in polar solvents were used to improve the charge-transport property of traditional semiconductor QDs[10],which was useless for AIP with low stability in the polar solvents[11].Therefore,researching effective methods for improving the charge-transport property of the AIP is imperative to promote the application of AIP.

    In recent years,researchers have actively explored methods to improve the charge-transport property of AIP and have made certain progress.In the early studies,less polar solvents and inorganic ligands have been applied in the preparation process of CsPbBr3QDs to decrease the density of oleic acid(OA)and oleylamine(OLA)[12,13].In order to avoid the loss of PLQY caused by the decrease of OA and OLA density during the purification process,short-chain organic ligands have been used to instead of longchain organic ligands to modify the surface of AIP to increase the charge-transport property[14,15].In follow-up researches,the organic ligands with conjugated structure have been used to further increase charge-transport property of AIPviathe intermolecularπ-πinteraction to avoid the insulation caused by aliphatic carbon chains[16,17].Compared with the phenethylammonium iodide,the aniline iodide without a carbon chain between the benzene ring and the substituent has shown more excellent modification property[18,19],which indicates the substituent in conjugated organic ligands will also play an important role on the surface modification effect.Although a series of derivatives ofs-triazine have shown outstanding charge-transport property in the application of perovskite solar cell[20,21]and organic light-emitting diodes[22,23],it is ignored based on them to modify AIP luminescent nanomaterials.Therefore,the surface modification strategy withs-triazine is expected to improve luminescence performance and charge-transport property of AIP simultaneously.

    Here,s-triazine(TZ)and its derivatives(cyanuric acid named as CA and trithiocyanuric acid named as TA)were applied in surface modification strategy for enhancing photoelectric performance of AIP for the first time.The PLQY of AIP was increased to 88.15% and the current under 3V of the AIP film was enhanced from 4.44 mA to 81.20 mA with the modification of cyanuric acid(CA).Under the influence of hydroxyl group,CA has shown better modification ability than TZ.However,the effect of TA on the photoelectric performance of the AIP is negative for the sulfhydryl group will introduce extra free Pb2+to cause more surface defects.The completely different surface modification results of CA and TA has shown the effectiveness of the improving the photoelectric performances and also indicated the potential risk of reducing PLQY of AIP either based on conjugated organic ligands at the meanwhile.

    Fig.1.The structures of AIP before and after surface modification strategy:CsPbBr3-0,CsPbBr3-TA,CsPbBr3-TZ and CsPbBr3-CA.

    The AIP without the modification with 3N ligands was named as CsPbBr3-0.The AIP modified by TA,TZ and CA were named as CsPbBr3-TA,CsPbBr3-TZ and CsPbBr3-CA,respectively,the whole of which was named as CsPbBr3-3N.The CsPbBr3-0 and CsPbBr3-3N were are prepared with hot-injection method and the dosages of surface ligands were listed in Tables S1-S3(Supporting information).The structures of AIP before and after modified with 3N ligands were shown in Fig.1.

    The solid powder X-ray diffraction(XRD)measurements were used to study the effect of three conjugated organic ligands on the host lattice of AIP.The obvious diffraction peaks can be found in the XRD patterns of the three organic ligands(Fig.S2 in Supporting information),indicating that AIP show goodish crystallization ability due to large polarity chemical bonds and the strong intermolecularπ-πinteraction happened in the 3N ligands.(Table S4 in Supporting information).

    Before modified with 3N ligands,the characteristic diffraction peaks of CsPbBr3around 15°,22° and 30° can be observed in the XRD pattern of CsPbBr3-0,and the diffraction peaks between 30° and 31° are double peaks(Fig.S3 in Supporting information),which means the lattice structure of CsPbBr3-0 is orthogonal[24].With the increasing the contents of TA,the double-peak diffraction peak around 30° moves to the low-angle region indicating that TA only induces the crystalline interplanar spacing to increase(Fig.S3).Compared with CsPbBr3-TA,the diffraction peaks located around 30° move to the low-angle region with a smaller amplitude in the XRD patterns of CsPbBr3-TZ(Fig.S4 in Supporting information).Especially when the dosage of TZ is increased to more than 0.09 mmol,the double diffraction peaks around 30° gradually become a single diffraction peak,indicating that TZ will induce AIP to form cubic crystal lattice(Fig.S4)[25].The diffraction peaks of CA can be observed in the XRD patterns of CsPbBr3-CA(Figs.2a and b),which indicates that CA will form crystalline layer on the crystal surface because of intermolecular hydrogen bonds and stronger intermolecularπ-πinteraction according to the theoretical calculation results(Table S4)[26].Correspondingly,the position change of the peak around 30° in the XRD patterns of CsPbBr3-CA is the smallest among the three CsPbBr3-3N(Figs.2a and b).When modified with 0.06 mmol CA,the diffraction peak around 30° becomes a single peak(Figs.2a and b),meaning that CsPbBr3-CA has cubic crystal lattice.Thus,different substituents make these ligands have different influence on the host lattice.

    Fig.2.(a)Full and(b)enlarged(from 30° to 32°)solid XRD patterns of CsPbBr3-0 and CsPbBr3-CA.(c)Full and(d)enlarged(from 480 cm?1 to 600 cm?1)FT-IR spectra of CsPbBr3-0 and CsPbBr3-CA.

    The compositions of the organic ligands in CsPbBr3-3N were analyzed on the basis of fourier transform infrared spectroscopy(FT-IR)measurements.The characteristic peak of C-S bond at 1120 cm?1can be observed in the FT-IR spectrum of TA,which also can be found in that of CsPbBr3-TA(Fig.S5 in Supporting information).Moreover,there is a new peak at 1220 cm?1in the FT-IR spectra of CsPbBr3-TA(Fig.S5).The intensity of the peak at 1220 cm?1increases as the amount of TA increases,while the intensity of the peak at 1120 cm?1decreases(Fig.S5),suggesting that the C-S bond in TA changes during the modification process with TA.In the FT-IR spectra of CsPbBr3-TZ,the characteristic peak of TZ located in the fingerprint region of 520 cm?1can be directly observed,which moves to a low wavenumber region,indicating that the vibration of the chemical bond is limited after TZ adsorbing on the host lattice(Fig.S6 in Supporting information).Due to the tautomer of CA,there are characteristic peaks of hydroxyl group and carbonyl group in the FT-IR spectrum of CA,which are also found in the FT-IR spectra of CsPbBr3-CA without any change(Fig.2c).The characteristic peak of CA located in the fingerprint area appears in the FT-IR spectra of CsPbBr3-CA and changes to a certain extent(Figs.2c and d),meaning that CA interacts with the host lattice through the triazine ring instead of hydroxyl group or carbonyl group.

    1H nuclear magnetic resonance(1H NMR)measurements were performed on CsPbBr3-0 and CsPbBr3-3N to obtain the chemical environment of the protons in these materials(Fig.S7 in Supporting information).The chemical environment of the proton hydrogen in CsPbBr3-TA is as same as CsPbBr3-0(Fig.S7),indicating that the sulfhydryl group in TA will lose protons during the reaction,which changes the vibration state of the C-S bond.Compared with CsPbBr3-0,the proton signal of TZ can be clearly found in the1H NMR spectrum of CsPbBr3-TZ(Fig.S7),which further suggests TZ have adsorbed on the host lattice.Meanwhile,the proton signals of the tautomers of CA in Fig.S7 suggest CA adsorb on the host lattice by triazine ring which is consisted with the analysis of FT-IR.

    The effect of 3N ligands on the nanotopography of AIP was studied through transmission electron microscope(TEM)images.Before the modification with 3N ligands,CsPbBr3-0 shows various nanotopography in the TEM image,such as nanowires and nanocubes(Fig.3a).Many regular nanospheres can be found in Figs.3b and c,showing TA and TZ are beneficial to form the uniform nanotopography.The nanotopography of CsPbBr3-CA appears as a large cross-linked network(Fig.3d),due to the crystalline layer on the surface of the host lattice.Therefore,CA exhibit significantly different influence on the nanotopography due to hydroxyl group.

    Fig.3.TEM images(scale bar is 50 nm)of(a)CsPbBr3-0,(b)CsPbBr3-TA 0.09 mmol,(c)CsPbBr3-TZ 0.09 mmol and(d)CsPbBr3-CA 0.09 mmol.

    The elemental composition on the surface of the AIP was obtained by energy dispersive spectroscopy(EDS)measurements.As the amount of TA increases,the ratio of Br:Pb decreased from 3.26 to 3.07,2.84 and 1.37(Table S6 in Supporting information).The proton-losing sulfhydryl groups of TA will adsorb a large amount of free Pb2+[27],which will increase surface defects of AIP to reduce PLQY[28].The ratios of Br:Pb on the surface of CsPbBr3-TZ and CsPbBr3-CA are increased to 3.95,4.27,4.25,4.09,3.98 and 4.14,respectively(Tables S7 and S8 in Supporting information),which will enhance PLQY of AIP by decreasing surface defects[29].Therefore,the surface structure and defect states of AIP have shown obviously opposite modification results under the influence of the 3N ligands with different substituents.

    The absorption and photoluminescence(PL)spectra of AIP show different changes due to the different substituents on triazine ring.In the absorption spectra,maximum absorption wavelength of TA is the largest and that of CA is the smallest(Fig.S8 in Supporting information),which is consistent with the results of theoretical calculation(Table S5 in Supporting information).When the dosage of TA increases to 0.09 and 0.12 mmol,an absorption peak of 315 nm appears in the absorption spectra of CsPbBr3-TA,which is also present in the absorption spectra of CsPbBr3-TZ and CsPbBr3-CA,indicating that triazine ring will induce quasi-2D structure in the AIP(Fig.S8)[30].It is worth noting that the absorption peak at 315 nm is unconspicuous in the absorption spectra of CsPbBr3-TA 0.09 mmol and CsPbBr3-TA 0.12 mmol,which is even barely visible in the absorption curve of CsPbBr3-TA 0.06 mmol,indicating that the modification ability of the triazine ring in TA is weakened due to the sulfydryl group(Fig.S8a).The emission peak of CsPbBr3-TA occurs blue-shift with the increase of ligand content,while the emission peaks of CsPbBr3-TZ and CsPbBr3-CA show red-shift first and then blue-shift(Figs.S9a,c,e in Supporting information).

    Fig.4.(a)PLQY of CsPbBr3-0 and CsPbBr3-3N 0.09 mmol solid powder(λex=390 nm).(b)Electricity of CsPbBr3-0 and CsPbBr3-3N 0.09 mmol films under 3 V.

    The PLQYs and fluorescence decay curves were obtained to study the effects of 3N ligands on the exciton recombination process of AIP(Figs.S9b,d,f in Supporting information),with which the radiation transition rate(kr)and the non-radiative transition rate(knr)of AIP were calculated.Theknrof CsPbBr3-TA is larger than CsPbBr3-0(Table S9 in Supporting information),indicating that the defect density on the surface of CsPbBr3-TA is greater than that of CsPbBr3-0,which is caused by excessive free Pb2+on the surface.These changes result in that the PLQY of CsPbBr3-TA(1.24%-33.35%)is lower than CsPbBr3-0(40.55%).When the amount of TA is 0.06 mmol and 0.12 mmol,thekrof CsPbBr3-TA is smaller than that of CsPbBr3-0,while thekrof CsPbBr3-TA 0.09 mmol is larger than that of CsPbBr3-0(Table S9),for which the PLQY of CsPbBr3-TA 0.09 mmol(33.35%)is the highest among CsPbBr3-TA.Theknrof CsPbBr3-TZ is smaller than CsPbBr3-0(Table S10),indicating that TZ can well reduce the defect density on the surface of AIP.When the amount of TZ increases to 0.12 mmol,knrof the corresponding material began to increase(Table S10 in Supporting information),indicating that the excessive TZ at this time causes the interplanar spacing of the host lattice to change too much,which would increase the defect density on the surface.Similar to CsPbBr3-TA,thekrof CsPbBr3-TZ shows a trend of first decreasing,then increasing and then decreasing with the increase of TZ dosage(Table S10).As for CsPbBr3-TZ 0.09 mmol,thekrreaches the maximum andknris at the minimum,achieving the highest PLQY among CsPbBr3-TZ(85.47%).After modifying the host lattice with CA,theknrof AIP decreases with the amount of CA increasing(Table S11 in Supporting information),which means that CA can significantly reduce the surface defect density of AIP.Different from CsPbBr3-TA and CsPbBr3-TZ,theknrof CsPbBr3-CA 0.12 mmol is less than CsPbBr3-CA 0.09 mmol(Table S11).Combined with the XRD analysis results,CA has little effect on the interplanar spacing of the host lattice,which can be inferred that 0.12 mmol of CA will not cause a large interplanar change and increase surface defects.Thekrof CsPbBr3-CA shows the same trend as CsPbBr3-TA and CsPbBr3-TZ(Table S11).Correspondingly,CsPbBr3-CA 0.09 mmol exhibits the largest PLQY(88.15%).Since the three organic ligands all contain triazine ring,it can be inferred that an appropriate amount of triazine ring can effectively increase thekrof AIP.These three triazine ring-based organic ligands exhibit different influence on PLQY of AIP due to the different substituents(Fig.4a).

    Since thekrof CsPbBr3-TA 0.09 mmol,CsPbBr3-TZ 0.09 mmol,and CsPbBr3-CA 0.09 mmol are all higher than CsPbBr3-0,variable temperature fluorescence measurements were performed on these four materials to further explore the reasons.In Fig.S10(Supporting information),CsPbBr3-0 shows four emission peaks at low temperature,while CsPbBr3-TA 0.09 mmol,CsPbBr3-TZ 0.09 mmol and CsPbBr3-CA 0.09 mmol all maintained single emission peak(Fig.S10),indicating that the nanotopography of CsPbBr3-3N is more uniform,which coincides with the TEM images.In Fig.S10,the emission intensity of CsPbBr3-0 begins to decrease rapidly at 115 K as the temperature rises,while this temperature is increased to 230 K(CsPbBr3-TA 0.09 mmol),150 K(CsPbBr3-TZ 0.09 mmol)and 150 K(CsPbBr3-CA 0.09 mmol)after the surface modification with 3N ligands.This result means that all of the 3N ligands can increase the exciton binding energy of AIP to increase thekrof AIPs[31].Although CsPbBr3-TA 0.09 mmol has shown the largest exciton binding energy,due to the influence of surface defects caused by sulfhydryl group,thekrof CsPbBr3-TA 0.09 mmol is smaller than that of CsPbBr3-CA 0.09 mmol.Therefore,the surface state of the AIP can be tuned through controlling the amount of ligand and the type of substituent,so as to realize the optimization on the luminescence performance of AIP.

    In the discussion about luminescence performance,CsPbBr3-TA 0.09 mmol,CsPbBr3-TZ 0.09 mmol and CsPbBr3-CA 0.09 mmol have shown better luminescence performance(Fig.4a).Therefore,the content of OA and OLA in these three materials and CsPbBr3-0 and the charge-transport property of the material films were tested respectively.The contents of organic ligands in these four materials were obtained through DTG measurements(Table S12 in Supporting information).The mass percentage of OA and OLA in the CsPbBr3-0 totals 27.7%,which is significantly reduced in CsPbBr3-3N,suggesting that the 3N ligands can significantly reduce the density of OA and OLA on the surface of AIP.The charge-transport property of these four kinds of AIP films were measured through a device with a structure of ITO/AIP/Al.The current-voltage curve in the film under the forward voltage is shown in Fig.S11(Supporting information).The currents in CsPbBr3-0,CsPbBr3-TA 0.09 mmol,CsPbBr3-TZ 0.09 mmol and CsPbBr3-CA 0.09 mmol films gradually increase under the same voltage(Fig.4b),which proves that the organic ligands containing the triazine ring exhibit two notable advantages for the great enhancement on the charge-transport property of AIP:strong intermolecularπ-πinteraction and lowering the density of OA and OLA on the surface of AIP[32].Among the CsPbBr3-3N films,CsPbBr3-TA 0.09 mmol shows the worst chargetransport property,because the more surface defects caused by TA will reduce the charge-transport property of AIP[33].The CsPbBr3-CA 0.09 mmol shows the best charge-transport property due to the stronger modification ability and intermolecularπ-πinteraction of CA inferred from the results of theoretical calculation.Therefore,3N ligands can greatly improve the charge-transport property of AIP,and CA shows the best the optimization effect.

    We successfully improve the photoelectric performance of AIPviachanging the substituents to optimize the modification ability of conjugated organic ligand.According to the results of XRD,FT-IR,PL and other measurements,it can be proved that the surface modification strategy withs-triazine can effectively improve the luminescence performance and charge transport performance of AIP through the triazine ring structure.The addition of appropriate groups(such as hydroxyl)to the triazine ring structure can significantly enhance the modification effect of organic ligands.Meanwhile,the inappropriate substituents(such as sulfhydry)will introduce additional surface defects on the surface of AIP and reduce the modification effect of organic ligands.This study leads researchers to notice the great influence of molecular design strategy on the modification effect of organic ligand in surface modification strategy of AIP.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was funded by National Natural Science Foundation of China(No.52073045),the Key Scientific and Technological Project of Jilin Province(No.20190701010GH),and the Development and Reform Commission of Jilin Province(No.2020C035-5).D.Zhu is grateful for the support from the Key Laboratory of Nanobiosensing and Nanobioanalysis at the Universities of Jilin Province.The authors acknowledge the support from the Jilin Provincial Department of Education.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.066.

    免费看日本二区| 国国产精品蜜臀av免费| h日本视频在线播放| 中文字幕久久专区| 久久精品久久久久久久性| 国产av国产精品国产| 国产一区二区在线观看av| av天堂中文字幕网| 久久精品熟女亚洲av麻豆精品| 人妻系列 视频| 高清不卡的av网站| 欧美国产精品一级二级三级 | 亚洲欧洲国产日韩| 永久免费av网站大全| av视频免费观看在线观看| 丝袜在线中文字幕| 嫩草影院入口| 成人国产麻豆网| 全区人妻精品视频| 久热这里只有精品99| 国产成人aa在线观看| 色视频在线一区二区三区| 哪个播放器可以免费观看大片| 另类亚洲欧美激情| 亚洲精品中文字幕在线视频 | 欧美日韩av久久| 国产亚洲一区二区精品| 日韩大片免费观看网站| 久久99蜜桃精品久久| 寂寞人妻少妇视频99o| 国产精品99久久久久久久久| 男人添女人高潮全过程视频| 成年av动漫网址| 久久99热6这里只有精品| 成人无遮挡网站| 精品一区在线观看国产| 视频区图区小说| 三级国产精品欧美在线观看| 精品亚洲成国产av| 少妇熟女欧美另类| 亚洲色图综合在线观看| 九色成人免费人妻av| 欧美日韩精品成人综合77777| 色网站视频免费| 少妇的逼水好多| 精品亚洲成国产av| 亚洲精品456在线播放app| 五月天丁香电影| 免费观看性生交大片5| 我的女老师完整版在线观看| 天天操日日干夜夜撸| 伊人久久精品亚洲午夜| 在线观看一区二区三区激情| 一级av片app| 国产精品久久久久久av不卡| √禁漫天堂资源中文www| 欧美日韩精品成人综合77777| av.在线天堂| 久久av网站| 久久精品国产亚洲av天美| 亚洲精品第二区| 插阴视频在线观看视频| 国产欧美另类精品又又久久亚洲欧美| 国产精品一区二区性色av| 国产淫语在线视频| 久久久久久人妻| 久久人人爽人人爽人人片va| 婷婷色综合大香蕉| 国产亚洲5aaaaa淫片| 男女啪啪激烈高潮av片| 日本免费在线观看一区| 亚洲在久久综合| 欧美老熟妇乱子伦牲交| 日韩在线高清观看一区二区三区| 日韩欧美一区视频在线观看 | 深夜a级毛片| 男女边摸边吃奶| 亚洲av欧美aⅴ国产| 亚洲av日韩在线播放| 亚洲av日韩在线播放| 欧美日韩一区二区视频在线观看视频在线| 色94色欧美一区二区| 日韩熟女老妇一区二区性免费视频| 久久av网站| 欧美高清成人免费视频www| 一级毛片aaaaaa免费看小| 国产精品麻豆人妻色哟哟久久| 97在线人人人人妻| 自线自在国产av| 久久久久久久大尺度免费视频| 久久精品夜色国产| 久久精品夜色国产| 国产在视频线精品| 国产免费视频播放在线视频| 一二三四中文在线观看免费高清| 一级二级三级毛片免费看| 亚洲欧洲精品一区二区精品久久久 | 国产欧美亚洲国产| 十八禁网站网址无遮挡 | 啦啦啦在线观看免费高清www| xxx大片免费视频| 丰满人妻一区二区三区视频av| 国产精品国产三级国产av玫瑰| 99热网站在线观看| 一区二区av电影网| 日本vs欧美在线观看视频 | 性色avwww在线观看| 美女福利国产在线| 亚洲高清免费不卡视频| 欧美 亚洲 国产 日韩一| 国产亚洲精品久久久com| 中文乱码字字幕精品一区二区三区| 国产极品天堂在线| av网站免费在线观看视频| 91久久精品电影网| 日韩人妻高清精品专区| 亚洲av国产av综合av卡| 国产精品成人在线| av福利片在线| 久久精品久久久久久噜噜老黄| 日本wwww免费看| 爱豆传媒免费全集在线观看| av又黄又爽大尺度在线免费看| 啦啦啦在线观看免费高清www| 一级a做视频免费观看| 精品一区在线观看国产| a级毛片免费高清观看在线播放| 亚洲精品国产色婷婷电影| 青青草视频在线视频观看| 午夜福利视频精品| 国产成人免费无遮挡视频| 一级毛片我不卡| 亚洲欧美中文字幕日韩二区| 少妇 在线观看| 99热6这里只有精品| 婷婷色av中文字幕| 亚洲国产欧美日韩在线播放 | 永久免费av网站大全| 伊人亚洲综合成人网| 午夜日本视频在线| av在线观看视频网站免费| 国产精品无大码| 视频区图区小说| 女人精品久久久久毛片| 国产欧美另类精品又又久久亚洲欧美| 国产亚洲91精品色在线| 亚洲国产精品一区三区| 校园人妻丝袜中文字幕| 热re99久久国产66热| 精品久久久精品久久久| 色婷婷久久久亚洲欧美| 亚洲欧美中文字幕日韩二区| 亚洲欧美日韩另类电影网站| 91精品国产九色| 内地一区二区视频在线| 91成人精品电影| 国产在线男女| 欧美激情极品国产一区二区三区 | 在线观看美女被高潮喷水网站| 嫩草影院入口| 男人爽女人下面视频在线观看| 国产 精品1| 国产精品国产三级国产专区5o| 在线亚洲精品国产二区图片欧美 | 久久精品国产a三级三级三级| 亚洲av不卡在线观看| 欧美成人午夜免费资源| 国产成人精品一,二区| 国产在线男女| 国产毛片在线视频| 伦理电影大哥的女人| 九九在线视频观看精品| 肉色欧美久久久久久久蜜桃| 久久久亚洲精品成人影院| 久久久久精品久久久久真实原创| 国产成人免费观看mmmm| 有码 亚洲区| 日韩成人av中文字幕在线观看| 久久97久久精品| 日本欧美国产在线视频| 99热这里只有是精品在线观看| 18禁动态无遮挡网站| 内地一区二区视频在线| 免费黄频网站在线观看国产| 少妇被粗大的猛进出69影院 | 久久99蜜桃精品久久| 亚洲精品,欧美精品| 亚洲av成人精品一二三区| 日韩av免费高清视频| 91在线精品国自产拍蜜月| 我要看黄色一级片免费的| 亚洲精品第二区| 久久精品国产亚洲av天美| 日韩一区二区视频免费看| a级片在线免费高清观看视频| 亚洲国产日韩一区二区| 国产精品久久久久久久电影| 这个男人来自地球电影免费观看 | 最近的中文字幕免费完整| 国产91av在线免费观看| 两个人免费观看高清视频 | 午夜久久久在线观看| 国产成人免费无遮挡视频| 亚洲av综合色区一区| 成人美女网站在线观看视频| 精品人妻熟女毛片av久久网站| 欧美日韩综合久久久久久| 男女边摸边吃奶| 3wmmmm亚洲av在线观看| 午夜久久久在线观看| 在线观看免费高清a一片| 国内少妇人妻偷人精品xxx网站| 国产黄频视频在线观看| 女人精品久久久久毛片| 在线观看国产h片| 18禁在线无遮挡免费观看视频| 免费黄色在线免费观看| 精品人妻一区二区三区麻豆| 熟女av电影| 免费观看在线日韩| 亚洲熟女精品中文字幕| 五月玫瑰六月丁香| 中文字幕av电影在线播放| 乱系列少妇在线播放| 亚洲不卡免费看| 亚洲欧美成人精品一区二区| 色网站视频免费| 自拍偷自拍亚洲精品老妇| 大码成人一级视频| 亚洲色图综合在线观看| 久久精品夜色国产| 涩涩av久久男人的天堂| 精品人妻熟女毛片av久久网站| 国产免费福利视频在线观看| 69精品国产乱码久久久| 国产男人的电影天堂91| 国精品久久久久久国模美| 国产成人aa在线观看| 欧美成人午夜免费资源| 亚洲国产精品999| 天天操日日干夜夜撸| 最近最新中文字幕免费大全7| 综合色丁香网| 国内精品宾馆在线| 亚洲成人一二三区av| 青春草视频在线免费观看| 久久久久国产网址| 伊人亚洲综合成人网| 国产成人免费观看mmmm| 国精品久久久久久国模美| 久久人人爽人人片av| 日本欧美视频一区| .国产精品久久| 自拍偷自拍亚洲精品老妇| 色吧在线观看| 亚洲情色 制服丝袜| 国产淫片久久久久久久久| 久久精品国产亚洲av天美| 中文资源天堂在线| 永久免费av网站大全| 亚洲av成人精品一二三区| 18禁在线播放成人免费| 国产精品嫩草影院av在线观看| 三上悠亚av全集在线观看 | 久久久久精品久久久久真实原创| 成人漫画全彩无遮挡| 热99国产精品久久久久久7| 熟女人妻精品中文字幕| 精品99又大又爽又粗少妇毛片| 久久久精品免费免费高清| 午夜福利在线观看免费完整高清在| 久久国产乱子免费精品| 日韩强制内射视频| 一区二区三区四区激情视频| 麻豆精品久久久久久蜜桃| 丁香六月天网| 色94色欧美一区二区| 国产精品偷伦视频观看了| 七月丁香在线播放| 免费观看性生交大片5| 亚洲欧美一区二区三区国产| 在线观看一区二区三区激情| www.av在线官网国产| 亚洲av中文av极速乱| 一边亲一边摸免费视频| 性色avwww在线观看| 99热这里只有精品一区| 久久亚洲国产成人精品v| 国产永久视频网站| av又黄又爽大尺度在线免费看| videossex国产| 国产91av在线免费观看| 亚洲无线观看免费| 国内少妇人妻偷人精品xxx网站| 日韩三级伦理在线观看| 丰满少妇做爰视频| 国产爽快片一区二区三区| 亚洲精华国产精华液的使用体验| 黑丝袜美女国产一区| 中文欧美无线码| 久久久精品94久久精品| 国产亚洲精品久久久com| 精品亚洲成a人片在线观看| 黄色一级大片看看| 亚洲精品,欧美精品| 国产精品国产三级国产av玫瑰| av在线播放精品| 久久99热6这里只有精品| 午夜视频国产福利| 免费观看在线日韩| 亚洲国产精品专区欧美| 在线观看美女被高潮喷水网站| 亚洲精品日本国产第一区| 新久久久久国产一级毛片| 国产成人精品福利久久| 久久99精品国语久久久| 日本猛色少妇xxxxx猛交久久| 一二三四中文在线观看免费高清| 色视频www国产| 人妻一区二区av| 2022亚洲国产成人精品| 亚洲精品国产色婷婷电影| 久久久久国产精品人妻一区二区| 国产乱人偷精品视频| 尾随美女入室| 2022亚洲国产成人精品| 亚洲av电影在线观看一区二区三区| 99热全是精品| 日韩成人伦理影院| 亚洲精品日韩在线中文字幕| 国产国拍精品亚洲av在线观看| 七月丁香在线播放| 午夜福利视频精品| av线在线观看网站| 最近中文字幕2019免费版| av免费在线看不卡| 最后的刺客免费高清国语| 中文字幕人妻熟人妻熟丝袜美| 精品国产一区二区三区久久久樱花| 美女国产视频在线观看| 国产精品久久久久成人av| 午夜影院在线不卡| 寂寞人妻少妇视频99o| 午夜激情久久久久久久| 国内精品宾馆在线| 亚洲第一av免费看| 亚洲欧美精品自产自拍| 久久久国产一区二区| 精品一区二区三区视频在线| 精品亚洲成a人片在线观看| av福利片在线观看| 亚洲一级一片aⅴ在线观看| 插阴视频在线观看视频| 乱码一卡2卡4卡精品| 久久人妻熟女aⅴ| 亚洲av福利一区| 亚洲精品日本国产第一区| 80岁老熟妇乱子伦牲交| 交换朋友夫妻互换小说| 91久久精品国产一区二区三区| 亚洲欧美一区二区三区国产| 赤兔流量卡办理| av在线观看视频网站免费| 久久人人爽av亚洲精品天堂| 香蕉精品网在线| 亚洲av二区三区四区| av免费在线看不卡| 亚洲四区av| 日韩精品免费视频一区二区三区 | 高清av免费在线| 国产精品久久久久久精品电影小说| h视频一区二区三区| 日韩av在线免费看完整版不卡| 久久午夜综合久久蜜桃| 欧美3d第一页| 国产精品99久久久久久久久| 午夜日本视频在线| 一区在线观看完整版| 国产成人精品久久久久久| 国产在线一区二区三区精| 国产高清国产精品国产三级| 91aial.com中文字幕在线观看| 看非洲黑人一级黄片| 色哟哟·www| 国产在视频线精品| 在线观看一区二区三区激情| 永久免费av网站大全| 国产高清国产精品国产三级| 美女视频免费永久观看网站| 精品酒店卫生间| 一本色道久久久久久精品综合| 老司机亚洲免费影院| 午夜免费观看性视频| 国产黄色免费在线视频| 天美传媒精品一区二区| 国产精品久久久久久久久免| 久久久国产精品麻豆| 桃花免费在线播放| 欧美日韩av久久| 国产av一区二区精品久久| 亚洲精品视频女| 中文字幕av电影在线播放| 在线观看人妻少妇| 国产女主播在线喷水免费视频网站| 激情五月婷婷亚洲| 久久99热6这里只有精品| 亚洲中文av在线| 日韩大片免费观看网站| 国产精品熟女久久久久浪| 国产午夜精品一二区理论片| 亚洲美女黄色视频免费看| 91精品伊人久久大香线蕉| 亚洲国产精品国产精品| 国产免费福利视频在线观看| 丰满乱子伦码专区| 如何舔出高潮| 亚洲电影在线观看av| 国产亚洲91精品色在线| 韩国av在线不卡| 亚洲国产日韩一区二区| 国产成人91sexporn| 欧美日韩av久久| 亚洲国产日韩一区二区| 桃花免费在线播放| 亚洲精品第二区| 国产精品.久久久| 国产精品人妻久久久影院| 乱系列少妇在线播放| 久久精品国产亚洲av涩爱| 精品久久久久久电影网| 亚洲国产色片| 尾随美女入室| 一级毛片 在线播放| 国产中年淑女户外野战色| av有码第一页| 有码 亚洲区| 亚洲av不卡在线观看| 高清黄色对白视频在线免费看 | 亚洲三级黄色毛片| 国产亚洲5aaaaa淫片| 六月丁香七月| 国产欧美日韩精品一区二区| 日产精品乱码卡一卡2卡三| 美女内射精品一级片tv| 国产午夜精品一二区理论片| 少妇被粗大猛烈的视频| 亚洲av免费高清在线观看| 久久精品国产亚洲av涩爱| 亚洲一级一片aⅴ在线观看| 丰满饥渴人妻一区二区三| 最近中文字幕2019免费版| 成人特级av手机在线观看| 国产精品久久久久久精品古装| 国产精品久久久久久久电影| 欧美性感艳星| 在线观看一区二区三区激情| 婷婷色麻豆天堂久久| 韩国高清视频一区二区三区| 男女无遮挡免费网站观看| av免费观看日本| 成年人午夜在线观看视频| 免费大片黄手机在线观看| 啦啦啦在线观看免费高清www| 99热这里只有是精品在线观看| 欧美日韩综合久久久久久| 18禁在线播放成人免费| 久久久a久久爽久久v久久| 日本与韩国留学比较| 精品国产国语对白av| 日日摸夜夜添夜夜添av毛片| 色吧在线观看| 国产69精品久久久久777片| 肉色欧美久久久久久久蜜桃| 黄色怎么调成土黄色| 精品视频人人做人人爽| 亚洲av成人精品一二三区| a级毛色黄片| 人妻夜夜爽99麻豆av| av在线播放精品| 国产午夜精品一二区理论片| 一区二区av电影网| 久久精品国产亚洲网站| 国产成人精品久久久久久| 日本av手机在线免费观看| 中文字幕久久专区| 又大又黄又爽视频免费| 少妇熟女欧美另类| 国产有黄有色有爽视频| 日韩强制内射视频| 97在线人人人人妻| 婷婷色综合大香蕉| 国产黄色视频一区二区在线观看| 黄色配什么色好看| 一级片'在线观看视频| 免费看日本二区| 永久网站在线| 亚洲色图综合在线观看| 观看免费一级毛片| 又大又黄又爽视频免费| 精品人妻熟女av久视频| 黑丝袜美女国产一区| 国产精品一区二区在线不卡| 精品久久久噜噜| 亚洲欧洲国产日韩| 亚洲精品成人av观看孕妇| 久久国产精品大桥未久av | 国产日韩欧美亚洲二区| av免费观看日本| 少妇人妻精品综合一区二区| 亚洲国产精品一区二区三区在线| 校园人妻丝袜中文字幕| 欧美变态另类bdsm刘玥| 最近最新中文字幕免费大全7| 一级黄片播放器| 91久久精品电影网| 春色校园在线视频观看| 国产精品一区二区在线观看99| 国产综合精华液| 日韩一区二区视频免费看| 七月丁香在线播放| 国产精品伦人一区二区| 免费人妻精品一区二区三区视频| 下体分泌物呈黄色| 天堂中文最新版在线下载| 国产精品久久久久久av不卡| 久久久久久久久久成人| a级毛片免费高清观看在线播放| 午夜影院在线不卡| 少妇人妻 视频| 亚洲国产欧美日韩在线播放 | 亚洲av免费高清在线观看| 看免费成人av毛片| av天堂久久9| 人妻 亚洲 视频| 啦啦啦在线观看免费高清www| 蜜桃久久精品国产亚洲av| 亚洲美女黄色视频免费看| 熟女人妻精品中文字幕| 九九在线视频观看精品| 免费观看无遮挡的男女| 十八禁网站网址无遮挡 | 国产欧美日韩精品一区二区| 日韩大片免费观看网站| 中文字幕免费在线视频6| 国产午夜精品久久久久久一区二区三区| 国产精品一区www在线观看| 欧美日韩综合久久久久久| av卡一久久| 不卡视频在线观看欧美| 男女国产视频网站| 欧美变态另类bdsm刘玥| 亚洲一级一片aⅴ在线观看| 久久精品国产鲁丝片午夜精品| 日本午夜av视频| 国产乱来视频区| 2022亚洲国产成人精品| 春色校园在线视频观看| 99精国产麻豆久久婷婷| 国产免费一区二区三区四区乱码| 亚洲中文av在线| 少妇猛男粗大的猛烈进出视频| a级片在线免费高清观看视频| 精品一区在线观看国产| av专区在线播放| 黑人高潮一二区| 日本91视频免费播放| 亚洲综合色惰| 又爽又黄a免费视频| 国产一区二区在线观看av| 狠狠精品人妻久久久久久综合| 日本av免费视频播放| 在线观看www视频免费| 国产一区二区三区av在线| 青春草国产在线视频| 婷婷色麻豆天堂久久| 亚洲欧美一区二区三区国产| 交换朋友夫妻互换小说| 国产 精品1| 久久久亚洲精品成人影院| 51国产日韩欧美| 亚洲av中文av极速乱| 青春草国产在线视频| 欧美亚洲 丝袜 人妻 在线| 麻豆精品久久久久久蜜桃| 欧美亚洲 丝袜 人妻 在线| 国产视频内射| 国产午夜精品久久久久久一区二区三区| 国产亚洲一区二区精品| 亚洲美女黄色视频免费看| 妹子高潮喷水视频| 国产黄频视频在线观看| 另类精品久久| 日韩伦理黄色片| 99热这里只有精品一区| 亚洲国产av新网站| videos熟女内射| 亚洲国产欧美在线一区| 欧美一级a爱片免费观看看| 一级片'在线观看视频| 国产淫语在线视频| 又粗又硬又长又爽又黄的视频| 成人午夜精彩视频在线观看| 成人影院久久| 国产成人一区二区在线| 免费观看性生交大片5| 精品酒店卫生间| 美女内射精品一级片tv| 国产精品久久久久久久电影| 日本欧美国产在线视频| 欧美精品人与动牲交sv欧美| 久久久久国产精品人妻一区二区| 日日啪夜夜撸| 国产精品伦人一区二区| 又大又黄又爽视频免费| 十八禁高潮呻吟视频 |