• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultrathin Ti3C2 nanowires derived from multi-layered bulks for high-performance hydrogen evolution reaction

    2022-03-14 09:30:52WeiweiZhoBeieiJinLongluWngChengoDingMengyueJingTintinChenShuihngBiShujunLiuQingZho
    Chinese Chemical Letters 2022年1期

    Weiwei Zho,Beiei Jin,Longlu Wng,Chengo Ding,Mengyue Jing,Tintin Chen,Shuihng Bi,Shujun Liu,Qing Zho,,?

    aKey Laboratory for Organic Electronics and Information Displays &Jiangsu Key Laboratory for Biosensors,Institute of Advanced Materials(IAM)Nanjing University of Posts &Telecommunications(NUPT),Nanjing 210023,China

    bCollege of Electronic and Optical Engineering &College of Microelectronics,Institute of Flexible Electronics(Future Technology)Nanjing University of Posts&Telecommunications(NUPT),Nanjing 210023 China

    ABSTRACT One-dimensional ultrathin nanowires(NWs)offer a great deal of promising properties for electrochemical energy storage and conversion due to their nanoscale confinement effect and high surface-to-volume ratios.It is highly desirable to precisely design and synthesize ultrathin Ti3C2 NWs in the aspect of size,crystalline structure and composition.Here,we report a simple alkalization strategy to design the ultrathin Ti3C2 NWs for hydrogen evolution reaction(HER)by modulating the surface-active sites.The design principle can well improve the amount of the defect sites and ion accessibility to increase the interactions between Ti3C2 NWs and H?.The optimized Ti3C2 NWs achieve an overpotential of 476 mV at the current density of 10 mA/cm2 and a Tafel slope of 129 mV/dec for HER catalysis,which are superior to that of Ti3C2 nanosheets and m-Ti3C2.It paves an avenue for the rational transformation of MXene bulks to one-dimensional NWs catalysts for HER.

    Keywords:MXene Ti3C2 nanowires Ultrathin films Chemical transformation Hydrogen evolution reaction

    With the increasing wastage of fossil fuels and the related environmental pollution,the clean hydrogen(H2)has attracted much attentions as prospective green and sustainable energy due to its high gravimetric energy density,environmental friendliness and renewability[1,2].The hydrogen evolution reaction(HER)from water electrolysis has been one of the most desirable strategies for scalable H2production,which deeply depends on the highperformance electrocatalysts[3–5].Inspired by the representative structures,one-dimensional nanowires(1D NWs)enable to realize the wide applications in the field of HER due to their unique characteristics as follows[6,7]:(1)The high surface-to-volume ratios contribute a relatively large active interface between the electrolyte and electrode;(2)The electronic pathways in 1D NWs accelerate the rate of electron transport along the long axis;(3)The confinement effect has a positive impact on the strain relaxation along with volume expansion/contraction while the electrochemical reaction is going on[8,9].To date,various 1D transition metal compounds nanomaterials such as metal alloys[10],nitrides[11],sulfides[12],selenides[13,14]and phosphides[15,16]have been widely utilized as cut-price and ideal alternatives to the commercial platinum(Pt)-based catalysts.The current studies indicate that the materials with the high conductivity,easy availability,and tunable catalytic sites possess great prospects for the deep exploration of high-efficiency HER catalysts.For instance,the cubic pyritephase CoS2nanoparticles have exhibited a surprising overpotential of 145 mV at the current density of 10 mA/cm2for HER as a result of intrinsic metallic features and good chemical stability[17].However,the as-obtained efficiencies are still far less than the universal Pt catalysts.It is highly desirable to develop an assortment of new electrode materials for highly efficient HER catalysts.

    MXenes,a family of two-dimensional(2D)transition metal carbides,nitrides and carbonitrides,have been developed as emerging energy materials due to the high hydrophilic surface with abundant functional groups(e.g.,-OH,-F,-O),and high electronic conductivity(up to 15000 S/cm)[18].To date,there are more than twenty kinds of MXenes prepared through the chemical etching operation by the fluoride etchant,they are mainly in the form of 2D ultrathin nanosheets(NSs)and widely applied in the construction of energy storage devices as supercapacitor and battery[19,20].Based on the dimensional engineering on 2D MXene,1D MXene NWs with remarkable active sites display the enhanced electrochemical performance for HER[21,22].For example,Haoet al.reported 1D NWs interconnected three-dimensional(3D)Nb2C porous frameworks,which exhibit a relative low overpotential of 322 mV towards HER[23].Guoet al.prepared highly active Ti3C2nanofibers with an average width of 50 nm through the combination of hydrolyzation of Ti3AlC2bulks and a subsequent hydrofluoric acid(HF)etching process[24].However,the large size of Ti3AlC2bulks prevents the full transformation of inner Ti3AlC2into monodispersed NWs in the alkalization process.Therefore,it is still challenging to fabricate ultrathin and monodispersed 1D NWsviaa facile and inexpensive approach.

    Herein,we report a facile alkalization strategy to design Ti3C2NWs with ample active sites for the enhanced HER performance.The scissor role of OH?can rationally tailor the m-Ti3C2into ultrathin and monodispersed 1D NWs.The design principle can improve the defect sites and ion accessibility to indirectly facilitate the interaction between Ti3C2NWs and H?.Ti3C2NWs deliver an enhanced HER activity with a low overpotential of 476 mV at the current density of 10 mA/cm2and a depressed Tafel slope of 129 mV/dec for HER catalysis,which is lower than that of the Ti3C2NSs and multilayer Ti3C2(m-Ti3C2)bulks.

    Ti3AlC2powder(99.99 wt% purity)was purchased from 11 Technology Co.,Ltd.LiF was purchased from Aladdin.HCl and H2SO4solution(Analytically pure)were purchased from Nanjing Chemical Reagent Co.,Ltd.KOH was purchased from Sinopharm Chemical Reagent Co.,Ltd.Nafion solution was purchased from Sigma-Aldrich Co.,Ltd.SDS was purchased from Shanghai Jingchun Reagent Co.,Ltd.SDBS was purchased from Aladdin Chemistry Co.,Ltd.PVP(wt 40000)was purchased from Sigma-Aldrich Co.,Ltd.CTAB was purchased from Sinopharm Chemical Reagent Co.,Ltd.All reagents in this work were used without further purification.

    SEM image was characterized by scanning electron microscopy(FE-SEM,Hitachi S-4800).TEM mapping image was measured by transmission electron microscopy(Hitachi HT7700).HRTEM image was operated at an acceleration voltage of 200 kV(FEI Talos F200X).XRD pattern was carried out by X-ray diffractometer(Philips X’pert Pro)with a Cu Kαradiation(λ=1.5418 ?A).XPS was performed on Thermo ESCALAB 250XI.The electrochemical performance was measured on a CHI660E electrochemical working station(Chenhua,Shanghai,China).

    Preparation of m-Ti3C2bulks:Firstly,LiF(0.5 g)was dissolved in HCl(10 mL,9 mol/L)under stirring for 20 min.Then,the commercial Ti3AlC2bulks(0.5 g)were slowly added in the mixture and heated at 60 °C for 24 h.Afterward,the products were washed with deionized water for five times until the pH surpasses 6.Finally,the samples were dried under vacuum for 12 h.

    Preparation of Ti3C2NSs:m-Ti3C2bulks(0.1 g)were dispersed in deionized water(10 mL)and sonicated(60 kHz,360 W)for 1 h.The dispersion was centrifuged at 3500 rpm for 1 h and collected for the further application.

    Preparation of Ti3C2NWs:First,m-Ti3C2bulks(0.08 g)were dispersed in KOH aqueous solution(12 mL,9 mol/L),and Ar was adopted to remove air for 30 min.Then,the mixture was continuously stirred for 72 h at 35 °C in a sealed state.Next,the products were washed with deionized water and centrifuged at 6000 rpm/min for 5 min each time.Finally,the precipitation was dispersed in deionized water(20 mL)and sonicated(53 kHz,150 W)for 10 min.After centrifuged at 1000 rpm for 30 min,the supernatant Ti3C2NWs were collected.

    Electrochemical measurements:A polished glassy carbon(GC)electrode was served as working electrode while a carbon rod and a Ag/AgCl electrode filled with saturated KCl solution were used as counter and reference electrode,respectively.The electrode was prepared by mixing 2.5 mg of the active materials(i.e.,d-Ti3C2,ultrathin Ti3C2NSs and ultrathin Ti3C2NWs)in a solution containing 400 μL deionized water,100 μL ethanol and 10 μL of Nafion(5 wt%)solution,following by ultrasonication(53 kHz,150 W)for 20 min.3 μL of the dispersion was deposited on the surface of a glassy carbon(GC)electrode and dried naturally at room temperature.The LSVs for HER were recorded at a sweep rate of 5 mV/s without passing inert gas exhaust.LSV is automatically corrected with 90% iR-compensation.

    Fig.1.(a)Schematic diagram of the preparation of ultrathin Ti3C2 NWs.(b)SEM image,(c)TEM image and(d)HRTEM image of Ti3C2 NWs.Inset of(d)is the corresponding SAED image.(e)XRD patterns of Ti3C2 NWs,m-Ti3C2 and Ti3AlC2.Inset:Tyndall effect of Ti3C2 NWs colloidal solution.

    The synthetic procedure for Ti3C2NWs is schematically depicted in Fig.1a.There is a two-step preparation process including thermo-assisted etching and alkalization.First,m-Ti3C2bulks are typically synthesizedviaone-step HF etching of Al atoms from the ternary layered Ti3AlC2phases(Fig.1a and Fig.S1 in Supporting information).XRD pattern demonstrates the successful removement of Al atom layers from Ti3AlC2bulks(Fig.1e).Then,the alkalized Ti3C2NWs can be prepared through the continuous stirring of m-Ti3C2bulks in 9 mol/L KOH solution for 72 h.In this process,the abundant OH?can rationally tailor the exposed scissor sites of 2D NSs,and thus resulting in the morphology transformation into ultrathin 1D NWs.The morphology and structure of Ti3C2NWs are investigated by scanning electron microscopy(SEM),transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS).SEM image in Fig.1b shows that Ti3C2NWs have a length ranging from submicrometer to several micrometers.TEM image in Fig.1c clearly displays that Ti3C2NWs have a width of 5–10 nm.A high-resolution TEM(HRTEM)image shows a highly crystalline structure and an interlayer spacing of 0.187 and 0.2 nm,demonstrating the successful transformation from m-Ti3C2bulks.The corresponding selected area electron diffraction(SAED)image further demonstrates the high crystallinity(inset of Fig.1d).All peaks in the XRD pattern of ultrathin Ti3C2NWs agree well with the m-Ti3C2bulks,demonstrating the pure phase(Fig.1e).

    Fig.2.(a)Structure diagram of Ti3C2 NWs.(b)XPS survey spectrum.Highresolution spectra of(c)Ti 2p,(d)O 1s and(e)C 1s.

    XPS measurement is carried out to identify the chemical structure of Ti3C2NWs(Fig.2).It shows that Ti3C2NWs contain the main elements of Ti,C,O,F and K(Fig.2b).No Al elements are observed in the etched Ti3C2products(Fig.2b),indicating the full removal of Al layers during the etching process.In the highresolution Ti 2p spectrum(Fig.2c),the representative peaks at 455.5 eV,458.3 eV,464.1 eV and 461.3 eV are assigned to Ti 2p1/2and Ti 2p3/2in Ti?C bond,Ti?O bond and Ti(II),respectively,which is in good agreement with the previous literature[25].Remarkably,the high-resolution O 1s spectrum can be deconvoluted into two peaks at 529.8 eV and 531.5 eV,which are corresponding to the oxygen-containing functional groups(i.e.,-O and -OH)existing at the surface of Ti3C2layers(Fig.2d)[18].The C 1s for Ti3C2sample is fitted with four doublets cantered at 281.5 eV,284.5 eV,285.0 eV and 288.5 eV,which are assigned as C-Ti,C sp2,C-OH and C=O respectively,(Fig.2e)[26].An obvious peak at 295.3 eV and 292.6 eV are assigned to the K 2p1/2and K 2p3/2,ascribing to the anchor of K+in the defect sites[27].The elements detected in XPS spectra well match with the structure diagram,further proving the successful synthesis of Ti3C2NWs.

    To get insight into the chemical transformation mechanism of Ti3C2NWs,TEM image is employed to characterize the intermediates collected at 24 h.The epitaxial ultrathin NWs are observed after the alkalization of KOH(Figs.3a and b)shows the HRTEM images of Ti3C2NSs in the edges of m-Ti3C2bulks.Their lattice fringe spacing of 0.26 nm is corresponding to the(101)interplanar spacing(Fig.3c)[28].This result indicates that the crystalline structure of unconverted Ti3C2is well maintained before transforming into NWs.The SAED is consistent with the previous report(Fig.3d)[29].The removement of Al layer is important for achieving the ultrathin NWs since the m-Ti3C2precursor generates crevices at the surface of Ti-C sites and subsequently cleaves into ultrathin NWs.

    Fig.3.(a)TEM image,(b,c)HRTEM images and(d)SAED image of Ti3C2 intermediate at the reaction time of 24 h.

    The effects of the amount of m-Ti3C2,the kind of surfactants and the concentration of KOH on the alkalization reaction are investigated in control experiments.First,when the amounts of m-Ti3C2bulks increases to 90 mg,they experience an insufficient transformation with residual samples(Fig.S2a in Supporting information).When the amounts of m-Ti3C2bulks decreases to 70 mg,they show a smooth surface and have no obvious transformation into 1D NWs(Fig.S2c in Supporting information).That is because the alkalization process results in the production of the shorter Ti3C2NWs,which are more difficult to separate during centrifugation,resulting in a large proportion of unconverted m-Ti3C2in the final products.Then,the influence of the different surfactants including polyvinyl pyrrolidone(PVP),sodium dodecyl sulfate(SDS),cetyltrimethyl ammonium bromide(CTAB)and sodium dodecyl benzene sulfonate(SDBS)is also investigated(Fig.S3 in Supporting information).As a result,2D Ti3C2NSs are obtained in all systems.The intercalation of surfactants in the m-Ti3C2is beneficial to the easy peel off of Ti3C2NSs from the m-Ti3C2bulks,whereas it also prevents the exposure of the shearing sites and thus preventing the formation of 1D NWs.Next,the different concentrations of KOH are also explored to treat the m-Ti3C2bulks(Fig.S4 in Supporting information).When KOH concentration increases from 9 mol/L to 10 mol/L,m-Ti3C2bulks are partially converted into Ti3C2NWs(Figs.S4a–d).As the KOH concentration raises to 11 mol/L,a large number of m-Ti3C2bulks still exist(Figs.S4e and f).It is mainly attributed that the excessive KOH will experience the passivation of the cleavable sites.In the control experiment,Ti3C2NSs were fabricatedviathe exfoliation of m-Ti3C2,which have a lateral size of 1 μm(Figs.S6a and b in Supporting information).The colloidal solution shows obvious Tyndall effect,and thus proving the good stability(Fig.S6a).The HRTEM image shows that Ti3C2NSs have the lattice spacing of 0.213 nm(Fig.S6c in Supporting information)[30,31],and the corresponding SAED image further demonstrates the high crystallinity(Fig.S6c)[32].When the ultrathin Ti3C2NSs act as precursors,the ultrathin Ti3C2NWs only form on the surface through the epitaxial transformation(Fig.S5 in supporting information).The presence of KOH makes Ti3C2NSs flocculate into 3D networks,which hinders the further transformation of NWs[33].

    The HER activity of the monodispersed Ti3C2NWs is measured using a standard three electrode electrochemical system in 0.5 mol/L H2SO4(Fig.4).Fig.4a displays the linear sweep voltammetry(LSV)curves of Ti3C2NWs,Ti3C2NSs and m-Ti3C2for HER at 90% iR correction.Ti3C2NWs deliver a low overpotential of 476 mV at 10 mA/cm2,which is much lower than that of Ti3C2NSs(543 mV)and m-Ti3C2(659 mV).The enhanced electrochemical performance is resulted from the abundant active sites[24,34].To further understand the kinetics process,Tafel plots are used to explore the possible steps(Fig.4b).Ti3C2NWs have a Tafel slope of 129 mV/dec,which is lower than that of the m-Ti3C2bulks(196 mV/dec)and Ti3C2NSs(174 mV/dec),respectively.The fast kinetics of Ti3C2NWs are mainly attributed to the high ion accessibility in 1D structure and low internal contact resistance[35].Ti3C2NWs manifest a relatively stable and superior performance in acidic electrolyte,which is superior to the previously reported works(Table S1 in Supporting information).

    Fig.4.(a)The LSV curves at initial state(solid line)and at 90% iR correction(dotted line).(b)Tafel plots at 90% iR correction.(c)Nyquist plots of blank GC,Ti3C2 NWs,Ti3C2 NSs and m-Ti3C2.(d)LSV curves of Ti3C2 NWs before and after 1000 cycles.

    To better understand the interface property and intrinsic activity of Ti3C2NWs and reveal the electron-transfer kinetics in HER,the electrochemical impedance spectroscopy(EIS)is carried out and the Nyquist plots are displayed in Fig.4c.The semicircle portion at higher frequency is corresponding to the electron transfer-limited process[36].The semicircle diameter reflects the charge transfer resistance(Rct).It can also be obtained by fitting the impedance spectra to the referencing equivalent circuit.It is found that theRctof Ti3C2NWs(7.08Ω)is much lower than that of Ti3C2NSs(11.84Ω)and m-Ti3C2(31.99Ω),this is due to the fact that the strongly electronegative fluorine functional group is replaced by a hydroxyl group and the hydrophilicity is enhanced[25,37],suggesting that the NWs can shorten the diffusion pathway for electrons,promote the charge transfer at the interface,and enhance HER performance[38–40].The Ti3C2NWs also display good cyclic stability before and after 1000 cycles(Fig.4d).It is mainly ascribed to the synergic effect between unique 1D structure and abundant defect sites.Overall,the mechanism is involved in the following aspects[41,42]:(1)The -OH group terminations can adsorb the H3O+ion and electron to produce an H atom,which experiences the continuous combination for H2molecule;(2)The defect sites facilitate the desorption of H?as well as assist the dissociation of H2O,making it proceed on a lower potential energy surface.

    To further take advantage of 1D NWs,the freestanding Ti3C2NWs film is fabricated through the vacuum-assisted filtration of Ti3C2NWs dispersion on a filter membrane(Fig.5a).Its integrity can be well maintained after bending at a large angle,demonstrating a good flexibility and foldability(Figs.5b and c).The crosssectional SEM image in Fig.5d indicates that a uniform crosslinking state exists in the freestanding films,showing a thickness of~3 μm.The surface morphology of the Ti3C2NWs films displays the well-interconnected networks of 1D NWs(Fig.5e).It is expected to facilitate the rapid ionic/electronic transport and shorten the transport pathways.Cyclic voltammetry(CV)curves of Ti3C2film electrode are measured at a scan rate of 100 mV/s between-0.3 V and 0.4 V(Fig.5f).After 200 cycles,CV curves are well overlapped.The HER polarization curves in Fig.5g deliver an overpotential of 528 mV at 10 mA/cm2,which can be well maintained after 1000 cycles.It is hypothetical that the ions transport can be greatly facilitated by the nanoporous structure in the film due to the shortened ion pathways[43–45].The freestanding Ti3C2NWs film also shows great potential applications in the fields of photocatalysis[46],electromagnetic interference shielding[47,48],battery[49]and sensor[50,51].

    Fig.5.(a–c)Digital photographs of flexible Ti3C2 NWs film.(d)Cross-sectional SEM image and(e)top-view SEM images of Ti3C2 NWs film.(f)CV curves of Ti3C2 NWs film in 0.5 mol/L H2SO4 at a scan rate of 100 mV/s.(g)LSV curves of Ti3C2 NWs film in 0.5 mol/L H2SO4 at a scan rate of 5 mV/s.

    In summary,we have designed ultrathin and monodispersed Ti3C2NWsviachemical transformation of m-Ti3C2bulks in KOH solution.The rational tailor of OH?results in abundant active sites in the ultrathin 1D NWs.In comparison with common Ti3C2NSs,the greatly improved active sites lead to the enhanced HER activity.As a result,the ultrathin Ti3C2NWs deliver a low overpotential of 476 mV at a current density of 10 mA/cm2,a depressed Tafel slope of 129 mV/dec and low electrochemical resistance.Besides,the Ti3C2NWs show a long-term cycling stability.This synthesis method can further apply to prepare other MXene NWs owing to the large MXene family members,and MXene NWs are promising for applications in batteries,supercapacitors,catalytic and other related fields.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(Nos.61804082,21671108 and 51473078),Synergetic Innovation Center for Organic Electronics and Information Displays and Projects of International Cooperation and Exchanges NSFC(Nos.51811530018),National Natural Science Foundation of China(No.61935017),the China Postdoctoral Science Foundation Funded Project(No.2018M642286),National Program for Support of Top-Notch Young Professionals,Scientific and Technological Innovation Teams of Colleges and Universities in Jiangsu Province(No.TJ215006),Priority Academic Program Development of Jiangsu Higher Education Institutions(No.YX03003),Jiangsu Planned Projects for Postdoctoral Research Funds(No.2019K047A).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.07.035.

    国产精品麻豆人妻色哟哟久久| 国精品久久久久久国模美| 久久性视频一级片| 你懂的网址亚洲精品在线观看| 午夜福利一区二区在线看| 亚洲av成人不卡在线观看播放网 | 久久这里只有精品19| 欧美另类一区| 老司机深夜福利视频在线观看 | 高清欧美精品videossex| 亚洲熟女毛片儿| 久久国产精品男人的天堂亚洲| 久久99热这里只频精品6学生| 欧美少妇被猛烈插入视频| av电影中文网址| 亚洲精品中文字幕在线视频| 亚洲男人天堂网一区| 19禁男女啪啪无遮挡网站| 欧美亚洲 丝袜 人妻 在线| 色吧在线观看| 亚洲国产欧美在线一区| 色吧在线观看| 亚洲av成人精品一二三区| 午夜av观看不卡| 欧美在线一区亚洲| 精品国产乱码久久久久久男人| 国产一区有黄有色的免费视频| 在线亚洲精品国产二区图片欧美| 久久久久久人人人人人| 热re99久久精品国产66热6| 国产精品一二三区在线看| 狂野欧美激情性bbbbbb| 色婷婷久久久亚洲欧美| 建设人人有责人人尽责人人享有的| 久热爱精品视频在线9| 婷婷色av中文字幕| 看免费成人av毛片| 国产极品粉嫩免费观看在线| 亚洲色图综合在线观看| 妹子高潮喷水视频| 日韩,欧美,国产一区二区三区| av在线观看视频网站免费| svipshipincom国产片| 亚洲一区中文字幕在线| avwww免费| 欧美日韩一区二区视频在线观看视频在线| xxx大片免费视频| 熟女av电影| 精品久久蜜臀av无| 自拍欧美九色日韩亚洲蝌蚪91| 国产日韩一区二区三区精品不卡| 啦啦啦在线免费观看视频4| 色视频在线一区二区三区| 啦啦啦在线免费观看视频4| 精品少妇久久久久久888优播| 两个人看的免费小视频| 日日爽夜夜爽网站| 搡老乐熟女国产| 久久热在线av| 色视频在线一区二区三区| 国产av国产精品国产| 黄色怎么调成土黄色| 啦啦啦在线免费观看视频4| 咕卡用的链子| 热99国产精品久久久久久7| 亚洲欧美日韩另类电影网站| 天堂俺去俺来也www色官网| 18禁观看日本| 亚洲少妇的诱惑av| 国产亚洲精品第一综合不卡| avwww免费| 中文天堂在线官网| av一本久久久久| 老司机在亚洲福利影院| 九九爱精品视频在线观看| 国产av精品麻豆| 欧美激情极品国产一区二区三区| 日韩熟女老妇一区二区性免费视频| 黑丝袜美女国产一区| 电影成人av| 久久久久精品久久久久真实原创| 欧美中文综合在线视频| 日本爱情动作片www.在线观看| 精品国产超薄肉色丝袜足j| tube8黄色片| 中文字幕精品免费在线观看视频| 高清av免费在线| 国产精品人妻久久久影院| 狂野欧美激情性xxxx| 国产97色在线日韩免费| 成人影院久久| 狂野欧美激情性bbbbbb| 国产在线免费精品| 色综合欧美亚洲国产小说| 五月天丁香电影| 欧美精品高潮呻吟av久久| 亚洲av日韩精品久久久久久密 | 少妇精品久久久久久久| 97在线人人人人妻| 另类亚洲欧美激情| 国产精品久久久人人做人人爽| av在线老鸭窝| 1024香蕉在线观看| 高清视频免费观看一区二区| 国产福利在线免费观看视频| 久久ye,这里只有精品| 一区二区三区激情视频| 亚洲精品美女久久久久99蜜臀 | 91老司机精品| 亚洲少妇的诱惑av| 又大又爽又粗| 毛片一级片免费看久久久久| 国产精品久久久av美女十八| 在线观看免费日韩欧美大片| 精品少妇内射三级| 一区福利在线观看| 日韩av在线免费看完整版不卡| 国产高清国产精品国产三级| 亚洲图色成人| 欧美激情高清一区二区三区 | 亚洲欧美成人精品一区二区| 成人国产麻豆网| 日韩欧美精品免费久久| 美女午夜性视频免费| 电影成人av| 人人澡人人妻人| 熟妇人妻不卡中文字幕| 人成视频在线观看免费观看| 久久99热这里只频精品6学生| 亚洲图色成人| 亚洲一码二码三码区别大吗| 国精品久久久久久国模美| av在线app专区| 大话2 男鬼变身卡| 久久影院123| 亚洲精品国产av蜜桃| 国产熟女欧美一区二区| 国产高清国产精品国产三级| 久久人人97超碰香蕉20202| 国产精品av久久久久免费| 在线观看三级黄色| 韩国高清视频一区二区三区| 亚洲成人av在线免费| 精品午夜福利在线看| 国产精品免费视频内射| 久久精品人人爽人人爽视色| 一边亲一边摸免费视频| 午夜精品国产一区二区电影| 午夜福利网站1000一区二区三区| 9色porny在线观看| 久久国产精品男人的天堂亚洲| 婷婷色麻豆天堂久久| 日日爽夜夜爽网站| 两个人免费观看高清视频| 免费观看a级毛片全部| 热re99久久国产66热| 欧美97在线视频| 亚洲精品,欧美精品| 久久 成人 亚洲| 亚洲第一av免费看| 一区在线观看完整版| 99九九在线精品视频| 青春草视频在线免费观看| 国产极品天堂在线| 王馨瑶露胸无遮挡在线观看| 欧美变态另类bdsm刘玥| 国产成人91sexporn| 亚洲一区中文字幕在线| 午夜福利免费观看在线| 激情五月婷婷亚洲| 高清在线视频一区二区三区| 亚洲av国产av综合av卡| 久久 成人 亚洲| 久久国产精品男人的天堂亚洲| 一区二区三区精品91| 嫩草影院入口| 亚洲国产看品久久| 国产欧美日韩综合在线一区二区| 国产精品熟女久久久久浪| 亚洲成人国产一区在线观看 | 久久 成人 亚洲| 婷婷成人精品国产| 日韩电影二区| 国产精品国产三级专区第一集| 丁香六月欧美| 亚洲视频免费观看视频| 一级毛片 在线播放| 欧美精品亚洲一区二区| 国产男女超爽视频在线观看| 久久综合国产亚洲精品| 久久久国产欧美日韩av| 成人黄色视频免费在线看| 亚洲欧美一区二区三区久久| 亚洲成av片中文字幕在线观看| 日本vs欧美在线观看视频| 午夜激情av网站| 亚洲国产日韩一区二区| 日本猛色少妇xxxxx猛交久久| 老司机靠b影院| 大话2 男鬼变身卡| 久久99热这里只频精品6学生| 亚洲成人免费av在线播放| 在线天堂最新版资源| 18禁裸乳无遮挡动漫免费视频| 国产精品女同一区二区软件| 国产av国产精品国产| 国产 精品1| 国产xxxxx性猛交| 纵有疾风起免费观看全集完整版| e午夜精品久久久久久久| 国产99久久九九免费精品| 少妇 在线观看| 亚洲国产看品久久| 日本一区二区免费在线视频| 亚洲婷婷狠狠爱综合网| e午夜精品久久久久久久| 亚洲国产中文字幕在线视频| av天堂久久9| 久久99精品国语久久久| 哪个播放器可以免费观看大片| 日韩大片免费观看网站| 精品国产国语对白av| 亚洲精品国产av蜜桃| 国产一卡二卡三卡精品 | 免费高清在线观看日韩| 美女主播在线视频| 久久综合国产亚洲精品| 少妇人妻精品综合一区二区| 日韩精品免费视频一区二区三区| 国产成人精品久久久久久| 精品国产一区二区久久| 青春草亚洲视频在线观看| 国产精品熟女久久久久浪| 亚洲国产欧美日韩在线播放| 午夜影院在线不卡| 亚洲在久久综合| 电影成人av| 中国三级夫妇交换| 青青草视频在线视频观看| 美女国产高潮福利片在线看| 老汉色∧v一级毛片| av片东京热男人的天堂| 美女扒开内裤让男人捅视频| 亚洲自偷自拍图片 自拍| 国产成人欧美| 国精品久久久久久国模美| 韩国高清视频一区二区三区| 国产精品久久久av美女十八| av视频免费观看在线观看| 看十八女毛片水多多多| 狠狠婷婷综合久久久久久88av| 在线观看免费午夜福利视频| 咕卡用的链子| 九九爱精品视频在线观看| 亚洲av国产av综合av卡| 热99国产精品久久久久久7| 国产欧美亚洲国产| 亚洲av福利一区| 欧美精品亚洲一区二区| 男女午夜视频在线观看| 老司机影院毛片| 成人国产av品久久久| 亚洲欧美一区二区三区黑人| 久久精品亚洲av国产电影网| 国产精品人妻久久久影院| 美国免费a级毛片| 国产精品久久久久久精品古装| 丁香六月天网| 99精国产麻豆久久婷婷| 国产一区二区三区av在线| 国产一区二区 视频在线| 免费黄色在线免费观看| 国产淫语在线视频| 中文天堂在线官网| 男女高潮啪啪啪动态图| 在现免费观看毛片| 国产野战对白在线观看| 亚洲精华国产精华液的使用体验| 精品少妇黑人巨大在线播放| 永久免费av网站大全| 少妇人妻久久综合中文| 日日摸夜夜添夜夜爱| 国产精品久久久久久久久免| a级片在线免费高清观看视频| 亚洲精品自拍成人| 中文精品一卡2卡3卡4更新| av国产久精品久网站免费入址| 最近2019中文字幕mv第一页| videos熟女内射| 亚洲成色77777| 亚洲美女黄色视频免费看| 一边亲一边摸免费视频| 下体分泌物呈黄色| 国产xxxxx性猛交| 亚洲av日韩在线播放| 激情五月婷婷亚洲| 欧美精品亚洲一区二区| 亚洲人成网站在线观看播放| 国产女主播在线喷水免费视频网站| av又黄又爽大尺度在线免费看| 国产亚洲一区二区精品| 视频在线观看一区二区三区| 久热爱精品视频在线9| 一级毛片黄色毛片免费观看视频| 丰满少妇做爰视频| 国产av精品麻豆| 久久国产亚洲av麻豆专区| 高清在线视频一区二区三区| 九草在线视频观看| 午夜av观看不卡| 久久热在线av| 国产一级毛片在线| 日韩,欧美,国产一区二区三区| 中文字幕人妻熟女乱码| 久久久久精品国产欧美久久久 | 国产一区二区 视频在线| 日韩欧美一区视频在线观看| 国产亚洲欧美精品永久| 美女中出高潮动态图| 亚洲av成人精品一二三区| 不卡av一区二区三区| 久热这里只有精品99| 国产av码专区亚洲av| 久久久久视频综合| 一二三四在线观看免费中文在| 99国产综合亚洲精品| 久久 成人 亚洲| 老汉色av国产亚洲站长工具| 制服人妻中文乱码| 国产爽快片一区二区三区| 女性生殖器流出的白浆| 精品国产一区二区久久| 在线观看免费高清a一片| 精品亚洲成国产av| 国产熟女欧美一区二区| 少妇的丰满在线观看| 老司机影院成人| 欧美变态另类bdsm刘玥| 色婷婷av一区二区三区视频| 国产日韩欧美亚洲二区| 各种免费的搞黄视频| videos熟女内射| 日韩不卡一区二区三区视频在线| 久久久久久久大尺度免费视频| 日本色播在线视频| 老司机靠b影院| 国产精品一国产av| 纯流量卡能插随身wifi吗| 免费人妻精品一区二区三区视频| 久久久久久免费高清国产稀缺| 只有这里有精品99| 国产精品久久久久久精品古装| 街头女战士在线观看网站| 麻豆精品久久久久久蜜桃| 日韩av在线免费看完整版不卡| 欧美精品亚洲一区二区| 汤姆久久久久久久影院中文字幕| 99热全是精品| 国产一区二区三区av在线| 另类精品久久| 波多野结衣一区麻豆| 婷婷色av中文字幕| 精品国产乱码久久久久久小说| 国产精品蜜桃在线观看| 精品国产一区二区久久| 国产野战对白在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产日韩欧美在线精品| www.精华液| 一区二区日韩欧美中文字幕| 国产精品一区二区在线不卡| 在线精品无人区一区二区三| 啦啦啦视频在线资源免费观看| 亚洲国产日韩一区二区| 嫩草影院入口| 欧美日韩一区二区视频在线观看视频在线| 五月天丁香电影| 男女下面插进去视频免费观看| 成年人午夜在线观看视频| 交换朋友夫妻互换小说| 99热全是精品| 日本色播在线视频| 国产深夜福利视频在线观看| 亚洲免费av在线视频| 一个人免费看片子| av网站在线播放免费| 久久婷婷青草| 丰满迷人的少妇在线观看| 亚洲,欧美精品.| 人人澡人人妻人| 十八禁网站网址无遮挡| 精品少妇久久久久久888优播| 欧美日本中文国产一区发布| 好男人视频免费观看在线| 99精国产麻豆久久婷婷| 中文乱码字字幕精品一区二区三区| 中文天堂在线官网| 建设人人有责人人尽责人人享有的| 在线观看免费日韩欧美大片| 纯流量卡能插随身wifi吗| 亚洲美女视频黄频| 国产精品久久久av美女十八| 国产精品 欧美亚洲| 国产又色又爽无遮挡免| 看免费av毛片| 黑丝袜美女国产一区| 天天躁日日躁夜夜躁夜夜| 精品国产一区二区三区久久久樱花| 无限看片的www在线观看| 波野结衣二区三区在线| 无限看片的www在线观看| 久久久久久久久免费视频了| 久久精品国产亚洲av涩爱| 中文字幕av电影在线播放| 国产在线免费精品| 国产在视频线精品| 国产女主播在线喷水免费视频网站| 97人妻天天添夜夜摸| 午夜日本视频在线| 欧美成人精品欧美一级黄| 视频区图区小说| 九九爱精品视频在线观看| 99热网站在线观看| 美女午夜性视频免费| 亚洲精品国产一区二区精华液| 日韩一区二区视频免费看| 青春草亚洲视频在线观看| 国产精品二区激情视频| 精品卡一卡二卡四卡免费| 精品国产一区二区三区久久久樱花| 2021少妇久久久久久久久久久| 男女下面插进去视频免费观看| 亚洲一区中文字幕在线| 男女之事视频高清在线观看 | 国产高清不卡午夜福利| 熟女少妇亚洲综合色aaa.| 国产日韩欧美视频二区| 在线天堂中文资源库| 色综合欧美亚洲国产小说| 亚洲精品国产av蜜桃| 纵有疾风起免费观看全集完整版| 视频在线观看一区二区三区| 亚洲成国产人片在线观看| 超碰97精品在线观看| 交换朋友夫妻互换小说| 超碰成人久久| 日韩人妻精品一区2区三区| 秋霞在线观看毛片| 亚洲欧美一区二区三区黑人| av在线播放精品| 国产成人午夜福利电影在线观看| 少妇人妻久久综合中文| 麻豆精品久久久久久蜜桃| 久久99一区二区三区| 日日摸夜夜添夜夜爱| 国产午夜精品一二区理论片| 亚洲美女视频黄频| 久久久久久免费高清国产稀缺| 免费女性裸体啪啪无遮挡网站| 国产成人av激情在线播放| 久久狼人影院| 日韩一卡2卡3卡4卡2021年| 晚上一个人看的免费电影| 久久99精品国语久久久| 天堂俺去俺来也www色官网| 久久久亚洲精品成人影院| 一本久久精品| 国产成人精品福利久久| 欧美另类一区| 韩国精品一区二区三区| 一级片免费观看大全| 日日爽夜夜爽网站| 日韩精品免费视频一区二区三区| 看非洲黑人一级黄片| 女性被躁到高潮视频| 国产成人精品福利久久| 两个人看的免费小视频| 人妻 亚洲 视频| 亚洲av福利一区| 一级爰片在线观看| 国产国语露脸激情在线看| av线在线观看网站| 熟女少妇亚洲综合色aaa.| 亚洲,欧美,日韩| 精品少妇内射三级| 一级片免费观看大全| 亚洲av综合色区一区| 人人妻人人澡人人看| 欧美97在线视频| 在线观看国产h片| 成人亚洲精品一区在线观看| av不卡在线播放| 18在线观看网站| 悠悠久久av| 各种免费的搞黄视频| 免费看不卡的av| 国精品久久久久久国模美| 亚洲欧美精品自产自拍| 黄网站色视频无遮挡免费观看| 一区二区av电影网| 久久精品熟女亚洲av麻豆精品| 日韩成人av中文字幕在线观看| 国产免费现黄频在线看| 亚洲精品日本国产第一区| 纵有疾风起免费观看全集完整版| 不卡av一区二区三区| 欧美日韩亚洲综合一区二区三区_| 看免费av毛片| 熟女av电影| 亚洲精品乱久久久久久| 亚洲精品国产av蜜桃| 一区二区三区精品91| 狂野欧美激情性bbbbbb| 欧美精品人与动牲交sv欧美| 欧美国产精品va在线观看不卡| 肉色欧美久久久久久久蜜桃| 国产免费一区二区三区四区乱码| 午夜福利免费观看在线| 欧美乱码精品一区二区三区| 汤姆久久久久久久影院中文字幕| 精品人妻一区二区三区麻豆| 丰满乱子伦码专区| 老司机影院毛片| 在线免费观看不下载黄p国产| 最黄视频免费看| 黑人巨大精品欧美一区二区蜜桃| 国产一区二区在线观看av| 老司机靠b影院| 男人操女人黄网站| 97人妻天天添夜夜摸| 满18在线观看网站| 丝袜美足系列| 精品人妻熟女毛片av久久网站| 久久ye,这里只有精品| 国产成人午夜福利电影在线观看| 丰满乱子伦码专区| 久久毛片免费看一区二区三区| 国产视频首页在线观看| 亚洲人成网站在线观看播放| 9色porny在线观看| 精品人妻熟女毛片av久久网站| xxxhd国产人妻xxx| 不卡视频在线观看欧美| 中文字幕av电影在线播放| 大陆偷拍与自拍| 国产精品一区二区精品视频观看| 精品国产一区二区久久| 1024香蕉在线观看| 亚洲综合精品二区| 国产 一区精品| 免费少妇av软件| 国精品久久久久久国模美| 90打野战视频偷拍视频| 一区二区三区乱码不卡18| 美女脱内裤让男人舔精品视频| 天天躁日日躁夜夜躁夜夜| 国产男女超爽视频在线观看| 午夜福利视频精品| 五月开心婷婷网| 亚洲 欧美一区二区三区| 十八禁网站网址无遮挡| 亚洲精品久久午夜乱码| 久久天堂一区二区三区四区| 日本猛色少妇xxxxx猛交久久| 欧美97在线视频| 最新在线观看一区二区三区 | 狂野欧美激情性xxxx| 三上悠亚av全集在线观看| 香蕉国产在线看| 性色av一级| 免费高清在线观看视频在线观看| 国产精品免费视频内射| 交换朋友夫妻互换小说| 亚洲国产精品成人久久小说| 成年美女黄网站色视频大全免费| 免费日韩欧美在线观看| av网站免费在线观看视频| 97精品久久久久久久久久精品| 国产黄色免费在线视频| 热re99久久精品国产66热6| 99精品久久久久人妻精品| 国产爽快片一区二区三区| 日本wwww免费看| 国产精品国产av在线观看| 夜夜骑夜夜射夜夜干| 哪个播放器可以免费观看大片| 在线观看免费视频网站a站| 久久韩国三级中文字幕| 超色免费av| 天天躁狠狠躁夜夜躁狠狠躁| 国精品久久久久久国模美| 91精品国产国语对白视频| 国产成人精品久久二区二区91 | 日韩大码丰满熟妇| 国产野战对白在线观看| 久久青草综合色| 日韩一本色道免费dvd| 97在线人人人人妻| 国产精品 欧美亚洲| 精品少妇黑人巨大在线播放| 色播在线永久视频| av.在线天堂| 丝袜脚勾引网站| 日韩人妻精品一区2区三区| 99热全是精品| 制服诱惑二区| 老熟女久久久| 午夜激情久久久久久久| 国产精品久久久人人做人人爽| 青青草视频在线视频观看| 成人免费观看视频高清| 国产成人a∨麻豆精品| 最近中文字幕2019免费版| 国产精品久久久久成人av| 交换朋友夫妻互换小说|