• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultrathin Ti3C2 nanowires derived from multi-layered bulks for high-performance hydrogen evolution reaction

    2022-03-14 09:30:52WeiweiZhoBeieiJinLongluWngChengoDingMengyueJingTintinChenShuihngBiShujunLiuQingZho
    Chinese Chemical Letters 2022年1期

    Weiwei Zho,Beiei Jin,Longlu Wng,Chengo Ding,Mengyue Jing,Tintin Chen,Shuihng Bi,Shujun Liu,Qing Zho,,?

    aKey Laboratory for Organic Electronics and Information Displays &Jiangsu Key Laboratory for Biosensors,Institute of Advanced Materials(IAM)Nanjing University of Posts &Telecommunications(NUPT),Nanjing 210023,China

    bCollege of Electronic and Optical Engineering &College of Microelectronics,Institute of Flexible Electronics(Future Technology)Nanjing University of Posts&Telecommunications(NUPT),Nanjing 210023 China

    ABSTRACT One-dimensional ultrathin nanowires(NWs)offer a great deal of promising properties for electrochemical energy storage and conversion due to their nanoscale confinement effect and high surface-to-volume ratios.It is highly desirable to precisely design and synthesize ultrathin Ti3C2 NWs in the aspect of size,crystalline structure and composition.Here,we report a simple alkalization strategy to design the ultrathin Ti3C2 NWs for hydrogen evolution reaction(HER)by modulating the surface-active sites.The design principle can well improve the amount of the defect sites and ion accessibility to increase the interactions between Ti3C2 NWs and H?.The optimized Ti3C2 NWs achieve an overpotential of 476 mV at the current density of 10 mA/cm2 and a Tafel slope of 129 mV/dec for HER catalysis,which are superior to that of Ti3C2 nanosheets and m-Ti3C2.It paves an avenue for the rational transformation of MXene bulks to one-dimensional NWs catalysts for HER.

    Keywords:MXene Ti3C2 nanowires Ultrathin films Chemical transformation Hydrogen evolution reaction

    With the increasing wastage of fossil fuels and the related environmental pollution,the clean hydrogen(H2)has attracted much attentions as prospective green and sustainable energy due to its high gravimetric energy density,environmental friendliness and renewability[1,2].The hydrogen evolution reaction(HER)from water electrolysis has been one of the most desirable strategies for scalable H2production,which deeply depends on the highperformance electrocatalysts[3–5].Inspired by the representative structures,one-dimensional nanowires(1D NWs)enable to realize the wide applications in the field of HER due to their unique characteristics as follows[6,7]:(1)The high surface-to-volume ratios contribute a relatively large active interface between the electrolyte and electrode;(2)The electronic pathways in 1D NWs accelerate the rate of electron transport along the long axis;(3)The confinement effect has a positive impact on the strain relaxation along with volume expansion/contraction while the electrochemical reaction is going on[8,9].To date,various 1D transition metal compounds nanomaterials such as metal alloys[10],nitrides[11],sulfides[12],selenides[13,14]and phosphides[15,16]have been widely utilized as cut-price and ideal alternatives to the commercial platinum(Pt)-based catalysts.The current studies indicate that the materials with the high conductivity,easy availability,and tunable catalytic sites possess great prospects for the deep exploration of high-efficiency HER catalysts.For instance,the cubic pyritephase CoS2nanoparticles have exhibited a surprising overpotential of 145 mV at the current density of 10 mA/cm2for HER as a result of intrinsic metallic features and good chemical stability[17].However,the as-obtained efficiencies are still far less than the universal Pt catalysts.It is highly desirable to develop an assortment of new electrode materials for highly efficient HER catalysts.

    MXenes,a family of two-dimensional(2D)transition metal carbides,nitrides and carbonitrides,have been developed as emerging energy materials due to the high hydrophilic surface with abundant functional groups(e.g.,-OH,-F,-O),and high electronic conductivity(up to 15000 S/cm)[18].To date,there are more than twenty kinds of MXenes prepared through the chemical etching operation by the fluoride etchant,they are mainly in the form of 2D ultrathin nanosheets(NSs)and widely applied in the construction of energy storage devices as supercapacitor and battery[19,20].Based on the dimensional engineering on 2D MXene,1D MXene NWs with remarkable active sites display the enhanced electrochemical performance for HER[21,22].For example,Haoet al.reported 1D NWs interconnected three-dimensional(3D)Nb2C porous frameworks,which exhibit a relative low overpotential of 322 mV towards HER[23].Guoet al.prepared highly active Ti3C2nanofibers with an average width of 50 nm through the combination of hydrolyzation of Ti3AlC2bulks and a subsequent hydrofluoric acid(HF)etching process[24].However,the large size of Ti3AlC2bulks prevents the full transformation of inner Ti3AlC2into monodispersed NWs in the alkalization process.Therefore,it is still challenging to fabricate ultrathin and monodispersed 1D NWsviaa facile and inexpensive approach.

    Herein,we report a facile alkalization strategy to design Ti3C2NWs with ample active sites for the enhanced HER performance.The scissor role of OH?can rationally tailor the m-Ti3C2into ultrathin and monodispersed 1D NWs.The design principle can improve the defect sites and ion accessibility to indirectly facilitate the interaction between Ti3C2NWs and H?.Ti3C2NWs deliver an enhanced HER activity with a low overpotential of 476 mV at the current density of 10 mA/cm2and a depressed Tafel slope of 129 mV/dec for HER catalysis,which is lower than that of the Ti3C2NSs and multilayer Ti3C2(m-Ti3C2)bulks.

    Ti3AlC2powder(99.99 wt% purity)was purchased from 11 Technology Co.,Ltd.LiF was purchased from Aladdin.HCl and H2SO4solution(Analytically pure)were purchased from Nanjing Chemical Reagent Co.,Ltd.KOH was purchased from Sinopharm Chemical Reagent Co.,Ltd.Nafion solution was purchased from Sigma-Aldrich Co.,Ltd.SDS was purchased from Shanghai Jingchun Reagent Co.,Ltd.SDBS was purchased from Aladdin Chemistry Co.,Ltd.PVP(wt 40000)was purchased from Sigma-Aldrich Co.,Ltd.CTAB was purchased from Sinopharm Chemical Reagent Co.,Ltd.All reagents in this work were used without further purification.

    SEM image was characterized by scanning electron microscopy(FE-SEM,Hitachi S-4800).TEM mapping image was measured by transmission electron microscopy(Hitachi HT7700).HRTEM image was operated at an acceleration voltage of 200 kV(FEI Talos F200X).XRD pattern was carried out by X-ray diffractometer(Philips X’pert Pro)with a Cu Kαradiation(λ=1.5418 ?A).XPS was performed on Thermo ESCALAB 250XI.The electrochemical performance was measured on a CHI660E electrochemical working station(Chenhua,Shanghai,China).

    Preparation of m-Ti3C2bulks:Firstly,LiF(0.5 g)was dissolved in HCl(10 mL,9 mol/L)under stirring for 20 min.Then,the commercial Ti3AlC2bulks(0.5 g)were slowly added in the mixture and heated at 60 °C for 24 h.Afterward,the products were washed with deionized water for five times until the pH surpasses 6.Finally,the samples were dried under vacuum for 12 h.

    Preparation of Ti3C2NSs:m-Ti3C2bulks(0.1 g)were dispersed in deionized water(10 mL)and sonicated(60 kHz,360 W)for 1 h.The dispersion was centrifuged at 3500 rpm for 1 h and collected for the further application.

    Preparation of Ti3C2NWs:First,m-Ti3C2bulks(0.08 g)were dispersed in KOH aqueous solution(12 mL,9 mol/L),and Ar was adopted to remove air for 30 min.Then,the mixture was continuously stirred for 72 h at 35 °C in a sealed state.Next,the products were washed with deionized water and centrifuged at 6000 rpm/min for 5 min each time.Finally,the precipitation was dispersed in deionized water(20 mL)and sonicated(53 kHz,150 W)for 10 min.After centrifuged at 1000 rpm for 30 min,the supernatant Ti3C2NWs were collected.

    Electrochemical measurements:A polished glassy carbon(GC)electrode was served as working electrode while a carbon rod and a Ag/AgCl electrode filled with saturated KCl solution were used as counter and reference electrode,respectively.The electrode was prepared by mixing 2.5 mg of the active materials(i.e.,d-Ti3C2,ultrathin Ti3C2NSs and ultrathin Ti3C2NWs)in a solution containing 400 μL deionized water,100 μL ethanol and 10 μL of Nafion(5 wt%)solution,following by ultrasonication(53 kHz,150 W)for 20 min.3 μL of the dispersion was deposited on the surface of a glassy carbon(GC)electrode and dried naturally at room temperature.The LSVs for HER were recorded at a sweep rate of 5 mV/s without passing inert gas exhaust.LSV is automatically corrected with 90% iR-compensation.

    Fig.1.(a)Schematic diagram of the preparation of ultrathin Ti3C2 NWs.(b)SEM image,(c)TEM image and(d)HRTEM image of Ti3C2 NWs.Inset of(d)is the corresponding SAED image.(e)XRD patterns of Ti3C2 NWs,m-Ti3C2 and Ti3AlC2.Inset:Tyndall effect of Ti3C2 NWs colloidal solution.

    The synthetic procedure for Ti3C2NWs is schematically depicted in Fig.1a.There is a two-step preparation process including thermo-assisted etching and alkalization.First,m-Ti3C2bulks are typically synthesizedviaone-step HF etching of Al atoms from the ternary layered Ti3AlC2phases(Fig.1a and Fig.S1 in Supporting information).XRD pattern demonstrates the successful removement of Al atom layers from Ti3AlC2bulks(Fig.1e).Then,the alkalized Ti3C2NWs can be prepared through the continuous stirring of m-Ti3C2bulks in 9 mol/L KOH solution for 72 h.In this process,the abundant OH?can rationally tailor the exposed scissor sites of 2D NSs,and thus resulting in the morphology transformation into ultrathin 1D NWs.The morphology and structure of Ti3C2NWs are investigated by scanning electron microscopy(SEM),transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS).SEM image in Fig.1b shows that Ti3C2NWs have a length ranging from submicrometer to several micrometers.TEM image in Fig.1c clearly displays that Ti3C2NWs have a width of 5–10 nm.A high-resolution TEM(HRTEM)image shows a highly crystalline structure and an interlayer spacing of 0.187 and 0.2 nm,demonstrating the successful transformation from m-Ti3C2bulks.The corresponding selected area electron diffraction(SAED)image further demonstrates the high crystallinity(inset of Fig.1d).All peaks in the XRD pattern of ultrathin Ti3C2NWs agree well with the m-Ti3C2bulks,demonstrating the pure phase(Fig.1e).

    Fig.2.(a)Structure diagram of Ti3C2 NWs.(b)XPS survey spectrum.Highresolution spectra of(c)Ti 2p,(d)O 1s and(e)C 1s.

    XPS measurement is carried out to identify the chemical structure of Ti3C2NWs(Fig.2).It shows that Ti3C2NWs contain the main elements of Ti,C,O,F and K(Fig.2b).No Al elements are observed in the etched Ti3C2products(Fig.2b),indicating the full removal of Al layers during the etching process.In the highresolution Ti 2p spectrum(Fig.2c),the representative peaks at 455.5 eV,458.3 eV,464.1 eV and 461.3 eV are assigned to Ti 2p1/2and Ti 2p3/2in Ti?C bond,Ti?O bond and Ti(II),respectively,which is in good agreement with the previous literature[25].Remarkably,the high-resolution O 1s spectrum can be deconvoluted into two peaks at 529.8 eV and 531.5 eV,which are corresponding to the oxygen-containing functional groups(i.e.,-O and -OH)existing at the surface of Ti3C2layers(Fig.2d)[18].The C 1s for Ti3C2sample is fitted with four doublets cantered at 281.5 eV,284.5 eV,285.0 eV and 288.5 eV,which are assigned as C-Ti,C sp2,C-OH and C=O respectively,(Fig.2e)[26].An obvious peak at 295.3 eV and 292.6 eV are assigned to the K 2p1/2and K 2p3/2,ascribing to the anchor of K+in the defect sites[27].The elements detected in XPS spectra well match with the structure diagram,further proving the successful synthesis of Ti3C2NWs.

    To get insight into the chemical transformation mechanism of Ti3C2NWs,TEM image is employed to characterize the intermediates collected at 24 h.The epitaxial ultrathin NWs are observed after the alkalization of KOH(Figs.3a and b)shows the HRTEM images of Ti3C2NSs in the edges of m-Ti3C2bulks.Their lattice fringe spacing of 0.26 nm is corresponding to the(101)interplanar spacing(Fig.3c)[28].This result indicates that the crystalline structure of unconverted Ti3C2is well maintained before transforming into NWs.The SAED is consistent with the previous report(Fig.3d)[29].The removement of Al layer is important for achieving the ultrathin NWs since the m-Ti3C2precursor generates crevices at the surface of Ti-C sites and subsequently cleaves into ultrathin NWs.

    Fig.3.(a)TEM image,(b,c)HRTEM images and(d)SAED image of Ti3C2 intermediate at the reaction time of 24 h.

    The effects of the amount of m-Ti3C2,the kind of surfactants and the concentration of KOH on the alkalization reaction are investigated in control experiments.First,when the amounts of m-Ti3C2bulks increases to 90 mg,they experience an insufficient transformation with residual samples(Fig.S2a in Supporting information).When the amounts of m-Ti3C2bulks decreases to 70 mg,they show a smooth surface and have no obvious transformation into 1D NWs(Fig.S2c in Supporting information).That is because the alkalization process results in the production of the shorter Ti3C2NWs,which are more difficult to separate during centrifugation,resulting in a large proportion of unconverted m-Ti3C2in the final products.Then,the influence of the different surfactants including polyvinyl pyrrolidone(PVP),sodium dodecyl sulfate(SDS),cetyltrimethyl ammonium bromide(CTAB)and sodium dodecyl benzene sulfonate(SDBS)is also investigated(Fig.S3 in Supporting information).As a result,2D Ti3C2NSs are obtained in all systems.The intercalation of surfactants in the m-Ti3C2is beneficial to the easy peel off of Ti3C2NSs from the m-Ti3C2bulks,whereas it also prevents the exposure of the shearing sites and thus preventing the formation of 1D NWs.Next,the different concentrations of KOH are also explored to treat the m-Ti3C2bulks(Fig.S4 in Supporting information).When KOH concentration increases from 9 mol/L to 10 mol/L,m-Ti3C2bulks are partially converted into Ti3C2NWs(Figs.S4a–d).As the KOH concentration raises to 11 mol/L,a large number of m-Ti3C2bulks still exist(Figs.S4e and f).It is mainly attributed that the excessive KOH will experience the passivation of the cleavable sites.In the control experiment,Ti3C2NSs were fabricatedviathe exfoliation of m-Ti3C2,which have a lateral size of 1 μm(Figs.S6a and b in Supporting information).The colloidal solution shows obvious Tyndall effect,and thus proving the good stability(Fig.S6a).The HRTEM image shows that Ti3C2NSs have the lattice spacing of 0.213 nm(Fig.S6c in Supporting information)[30,31],and the corresponding SAED image further demonstrates the high crystallinity(Fig.S6c)[32].When the ultrathin Ti3C2NSs act as precursors,the ultrathin Ti3C2NWs only form on the surface through the epitaxial transformation(Fig.S5 in supporting information).The presence of KOH makes Ti3C2NSs flocculate into 3D networks,which hinders the further transformation of NWs[33].

    The HER activity of the monodispersed Ti3C2NWs is measured using a standard three electrode electrochemical system in 0.5 mol/L H2SO4(Fig.4).Fig.4a displays the linear sweep voltammetry(LSV)curves of Ti3C2NWs,Ti3C2NSs and m-Ti3C2for HER at 90% iR correction.Ti3C2NWs deliver a low overpotential of 476 mV at 10 mA/cm2,which is much lower than that of Ti3C2NSs(543 mV)and m-Ti3C2(659 mV).The enhanced electrochemical performance is resulted from the abundant active sites[24,34].To further understand the kinetics process,Tafel plots are used to explore the possible steps(Fig.4b).Ti3C2NWs have a Tafel slope of 129 mV/dec,which is lower than that of the m-Ti3C2bulks(196 mV/dec)and Ti3C2NSs(174 mV/dec),respectively.The fast kinetics of Ti3C2NWs are mainly attributed to the high ion accessibility in 1D structure and low internal contact resistance[35].Ti3C2NWs manifest a relatively stable and superior performance in acidic electrolyte,which is superior to the previously reported works(Table S1 in Supporting information).

    Fig.4.(a)The LSV curves at initial state(solid line)and at 90% iR correction(dotted line).(b)Tafel plots at 90% iR correction.(c)Nyquist plots of blank GC,Ti3C2 NWs,Ti3C2 NSs and m-Ti3C2.(d)LSV curves of Ti3C2 NWs before and after 1000 cycles.

    To better understand the interface property and intrinsic activity of Ti3C2NWs and reveal the electron-transfer kinetics in HER,the electrochemical impedance spectroscopy(EIS)is carried out and the Nyquist plots are displayed in Fig.4c.The semicircle portion at higher frequency is corresponding to the electron transfer-limited process[36].The semicircle diameter reflects the charge transfer resistance(Rct).It can also be obtained by fitting the impedance spectra to the referencing equivalent circuit.It is found that theRctof Ti3C2NWs(7.08Ω)is much lower than that of Ti3C2NSs(11.84Ω)and m-Ti3C2(31.99Ω),this is due to the fact that the strongly electronegative fluorine functional group is replaced by a hydroxyl group and the hydrophilicity is enhanced[25,37],suggesting that the NWs can shorten the diffusion pathway for electrons,promote the charge transfer at the interface,and enhance HER performance[38–40].The Ti3C2NWs also display good cyclic stability before and after 1000 cycles(Fig.4d).It is mainly ascribed to the synergic effect between unique 1D structure and abundant defect sites.Overall,the mechanism is involved in the following aspects[41,42]:(1)The -OH group terminations can adsorb the H3O+ion and electron to produce an H atom,which experiences the continuous combination for H2molecule;(2)The defect sites facilitate the desorption of H?as well as assist the dissociation of H2O,making it proceed on a lower potential energy surface.

    To further take advantage of 1D NWs,the freestanding Ti3C2NWs film is fabricated through the vacuum-assisted filtration of Ti3C2NWs dispersion on a filter membrane(Fig.5a).Its integrity can be well maintained after bending at a large angle,demonstrating a good flexibility and foldability(Figs.5b and c).The crosssectional SEM image in Fig.5d indicates that a uniform crosslinking state exists in the freestanding films,showing a thickness of~3 μm.The surface morphology of the Ti3C2NWs films displays the well-interconnected networks of 1D NWs(Fig.5e).It is expected to facilitate the rapid ionic/electronic transport and shorten the transport pathways.Cyclic voltammetry(CV)curves of Ti3C2film electrode are measured at a scan rate of 100 mV/s between-0.3 V and 0.4 V(Fig.5f).After 200 cycles,CV curves are well overlapped.The HER polarization curves in Fig.5g deliver an overpotential of 528 mV at 10 mA/cm2,which can be well maintained after 1000 cycles.It is hypothetical that the ions transport can be greatly facilitated by the nanoporous structure in the film due to the shortened ion pathways[43–45].The freestanding Ti3C2NWs film also shows great potential applications in the fields of photocatalysis[46],electromagnetic interference shielding[47,48],battery[49]and sensor[50,51].

    Fig.5.(a–c)Digital photographs of flexible Ti3C2 NWs film.(d)Cross-sectional SEM image and(e)top-view SEM images of Ti3C2 NWs film.(f)CV curves of Ti3C2 NWs film in 0.5 mol/L H2SO4 at a scan rate of 100 mV/s.(g)LSV curves of Ti3C2 NWs film in 0.5 mol/L H2SO4 at a scan rate of 5 mV/s.

    In summary,we have designed ultrathin and monodispersed Ti3C2NWsviachemical transformation of m-Ti3C2bulks in KOH solution.The rational tailor of OH?results in abundant active sites in the ultrathin 1D NWs.In comparison with common Ti3C2NSs,the greatly improved active sites lead to the enhanced HER activity.As a result,the ultrathin Ti3C2NWs deliver a low overpotential of 476 mV at a current density of 10 mA/cm2,a depressed Tafel slope of 129 mV/dec and low electrochemical resistance.Besides,the Ti3C2NWs show a long-term cycling stability.This synthesis method can further apply to prepare other MXene NWs owing to the large MXene family members,and MXene NWs are promising for applications in batteries,supercapacitors,catalytic and other related fields.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(Nos.61804082,21671108 and 51473078),Synergetic Innovation Center for Organic Electronics and Information Displays and Projects of International Cooperation and Exchanges NSFC(Nos.51811530018),National Natural Science Foundation of China(No.61935017),the China Postdoctoral Science Foundation Funded Project(No.2018M642286),National Program for Support of Top-Notch Young Professionals,Scientific and Technological Innovation Teams of Colleges and Universities in Jiangsu Province(No.TJ215006),Priority Academic Program Development of Jiangsu Higher Education Institutions(No.YX03003),Jiangsu Planned Projects for Postdoctoral Research Funds(No.2019K047A).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.07.035.

    99riav亚洲国产免费| 亚洲精品一二三| 久久精品亚洲精品国产色婷小说| 国产老妇伦熟女老妇高清| 人成视频在线观看免费观看| 欧美乱妇无乱码| videos熟女内射| 亚洲伊人久久精品综合| 亚洲精品在线观看二区| 天天影视国产精品| 窝窝影院91人妻| 国产成人影院久久av| 美女高潮喷水抽搐中文字幕| 国产欧美日韩一区二区三| 成年动漫av网址| 国产免费视频播放在线视频| 18禁黄网站禁片午夜丰满| 亚洲专区中文字幕在线| 黑人猛操日本美女一级片| 欧美精品人与动牲交sv欧美| 久久精品aⅴ一区二区三区四区| 一区二区三区乱码不卡18| 69av精品久久久久久 | 91精品三级在线观看| 亚洲av片天天在线观看| 欧美精品av麻豆av| 又紧又爽又黄一区二区| 多毛熟女@视频| 五月开心婷婷网| 飞空精品影院首页| 热re99久久精品国产66热6| 曰老女人黄片| 欧美成人午夜精品| 欧美激情 高清一区二区三区| 电影成人av| 亚洲综合色网址| 无限看片的www在线观看| 国产在线一区二区三区精| 岛国毛片在线播放| 99精品久久久久人妻精品| 我的亚洲天堂| 老司机深夜福利视频在线观看| 黑人巨大精品欧美一区二区mp4| 无限看片的www在线观看| 色尼玛亚洲综合影院| 亚洲国产av新网站| 一进一出抽搐动态| 操出白浆在线播放| 亚洲国产av影院在线观看| 人人澡人人妻人| 国产精品98久久久久久宅男小说| 亚洲国产成人一精品久久久| 亚洲国产成人一精品久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 男女床上黄色一级片免费看| 国产黄色免费在线视频| 国产国语露脸激情在线看| tocl精华| 久久av网站| 精品亚洲乱码少妇综合久久| av线在线观看网站| 美女视频免费永久观看网站| 91字幕亚洲| 国产精品影院久久| 精品一品国产午夜福利视频| 男女边摸边吃奶| 免费久久久久久久精品成人欧美视频| 国产老妇伦熟女老妇高清| 日韩精品免费视频一区二区三区| 狠狠狠狠99中文字幕| 亚洲综合色网址| 手机成人av网站| 一区福利在线观看| 欧美精品一区二区免费开放| 国产一区二区 视频在线| av电影中文网址| 免费在线观看视频国产中文字幕亚洲| 日本一区二区免费在线视频| 又大又爽又粗| 久久精品亚洲av国产电影网| 又大又爽又粗| 日韩有码中文字幕| 丁香六月欧美| 精品亚洲乱码少妇综合久久| 俄罗斯特黄特色一大片| 午夜久久久在线观看| 欧美日韩精品网址| 99国产精品免费福利视频| 国产精品成人在线| 伦理电影免费视频| 9色porny在线观看| 99国产精品一区二区三区| 啦啦啦视频在线资源免费观看| 亚洲国产欧美在线一区| 婷婷丁香在线五月| 黑人猛操日本美女一级片| 久久人人爽av亚洲精品天堂| 色播在线永久视频| 亚洲欧美色中文字幕在线| 亚洲七黄色美女视频| 久久久久视频综合| 国产99久久九九免费精品| 不卡av一区二区三区| 国产精品久久久久成人av| 极品人妻少妇av视频| 99久久国产精品久久久| 男女下面插进去视频免费观看| 国产伦人伦偷精品视频| 久久久水蜜桃国产精品网| 成人黄色视频免费在线看| 国产av国产精品国产| 99国产极品粉嫩在线观看| 亚洲九九香蕉| 两个人看的免费小视频| 老司机亚洲免费影院| 欧美成人午夜精品| 亚洲av日韩精品久久久久久密| 麻豆国产av国片精品| 国产成人系列免费观看| 久久久精品免费免费高清| 国产精品国产av在线观看| 欧美变态另类bdsm刘玥| avwww免费| 国产午夜精品久久久久久| 久久久久久久精品吃奶| 青草久久国产| 自拍欧美九色日韩亚洲蝌蚪91| 大片免费播放器 马上看| 国产精品影院久久| 一边摸一边抽搐一进一小说 | 亚洲欧美日韩高清在线视频 | 欧美激情极品国产一区二区三区| 亚洲av第一区精品v没综合| 19禁男女啪啪无遮挡网站| 老司机影院毛片| 精品久久久久久久毛片微露脸| 男女下面插进去视频免费观看| 亚洲色图 男人天堂 中文字幕| 国产激情久久老熟女| 午夜两性在线视频| 国产av精品麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 女同久久另类99精品国产91| 精品久久久久久久毛片微露脸| 婷婷丁香在线五月| 亚洲国产成人一精品久久久| 亚洲精品中文字幕一二三四区 | 久久av网站| 黄色片一级片一级黄色片| 青青草视频在线视频观看| 欧美日韩国产mv在线观看视频| 久久精品亚洲精品国产色婷小说| 看免费av毛片| √禁漫天堂资源中文www| 天堂8中文在线网| 少妇猛男粗大的猛烈进出视频| 妹子高潮喷水视频| 国产有黄有色有爽视频| 精品少妇久久久久久888优播| 女人高潮潮喷娇喘18禁视频| 视频在线观看一区二区三区| 9191精品国产免费久久| 亚洲国产看品久久| 欧美国产精品一级二级三级| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成+人综合+亚洲专区| av欧美777| 汤姆久久久久久久影院中文字幕| 精品久久蜜臀av无| 久久国产精品人妻蜜桃| 亚洲欧美一区二区三区久久| 欧美激情久久久久久爽电影 | 黄色怎么调成土黄色| 欧美成人免费av一区二区三区 | 亚洲中文av在线| 又大又爽又粗| 欧美另类亚洲清纯唯美| 亚洲午夜精品一区,二区,三区| 18禁国产床啪视频网站| 性少妇av在线| 国产精品亚洲一级av第二区| 色94色欧美一区二区| 91麻豆av在线| 国产精品熟女久久久久浪| 亚洲精品在线观看二区| 考比视频在线观看| 91麻豆精品激情在线观看国产 | av网站在线播放免费| a级片在线免费高清观看视频| 久久精品91无色码中文字幕| 国产亚洲精品一区二区www | 69精品国产乱码久久久| 我要看黄色一级片免费的| 国产欧美日韩一区二区三| 国产成人av教育| 欧美激情久久久久久爽电影 | 免费日韩欧美在线观看| 午夜福利,免费看| 日韩大片免费观看网站| 老熟妇仑乱视频hdxx| 国产福利在线免费观看视频| 在线永久观看黄色视频| 久久久精品国产亚洲av高清涩受| 亚洲中文字幕日韩| 国产有黄有色有爽视频| 午夜免费鲁丝| 男人舔女人的私密视频| 久久中文字幕人妻熟女| 在线观看免费午夜福利视频| 国产精品一区二区在线不卡| 伦理电影免费视频| 久久精品国产综合久久久| 亚洲三区欧美一区| 国产亚洲av高清不卡| 欧美亚洲日本最大视频资源| 日韩欧美三级三区| 久久九九热精品免费| 夜夜骑夜夜射夜夜干| kizo精华| 色综合欧美亚洲国产小说| 欧美日韩亚洲高清精品| 亚洲av国产av综合av卡| 欧美激情久久久久久爽电影 | 亚洲美女黄片视频| a在线观看视频网站| 99九九在线精品视频| 久久久欧美国产精品| 一进一出抽搐动态| 一区二区三区激情视频| 天堂中文最新版在线下载| 怎么达到女性高潮| 宅男免费午夜| 91麻豆av在线| 好男人电影高清在线观看| 亚洲一区二区三区欧美精品| 岛国在线观看网站| 国产男女超爽视频在线观看| 亚洲欧美日韩高清在线视频 | 久久青草综合色| 国产xxxxx性猛交| 免费在线观看黄色视频的| 成年版毛片免费区| av有码第一页| 精品一区二区三区四区五区乱码| 黄色怎么调成土黄色| 老熟妇乱子伦视频在线观看| 精品国产乱子伦一区二区三区| 五月天丁香电影| 久久久久久免费高清国产稀缺| 欧美黑人精品巨大| 亚洲欧美一区二区三区黑人| 色综合欧美亚洲国产小说| 悠悠久久av| 久久国产精品大桥未久av| 国产aⅴ精品一区二区三区波| 欧美精品高潮呻吟av久久| 欧美精品一区二区免费开放| 国产亚洲av高清不卡| 免费观看av网站的网址| 色综合婷婷激情| 亚洲视频免费观看视频| 国产亚洲午夜精品一区二区久久| 嫩草影视91久久| 久久久久国内视频| 亚洲午夜精品一区,二区,三区| 性高湖久久久久久久久免费观看| 欧美久久黑人一区二区| av视频免费观看在线观看| av福利片在线| 欧美日韩国产mv在线观看视频| 老司机靠b影院| 亚洲视频免费观看视频| 交换朋友夫妻互换小说| aaaaa片日本免费| 亚洲色图综合在线观看| 亚洲欧美日韩另类电影网站| 他把我摸到了高潮在线观看 | 国产野战对白在线观看| 国产成人av教育| 热re99久久精品国产66热6| 欧美精品人与动牲交sv欧美| 成年人午夜在线观看视频| 久久久国产精品麻豆| 国产在线精品亚洲第一网站| 18禁国产床啪视频网站| av一本久久久久| 一个人免费看片子| 日本vs欧美在线观看视频| 黄色 视频免费看| 日韩人妻精品一区2区三区| 在线观看舔阴道视频| 黄色视频不卡| 日日爽夜夜爽网站| 日本黄色日本黄色录像| 91老司机精品| 韩国精品一区二区三区| 国产伦人伦偷精品视频| 国产一区二区在线观看av| av电影中文网址| 国产高清激情床上av| e午夜精品久久久久久久| 老汉色∧v一级毛片| 一边摸一边抽搐一进一小说 | 日韩精品免费视频一区二区三区| 首页视频小说图片口味搜索| 日本五十路高清| 一区在线观看完整版| 黄色成人免费大全| 精品免费久久久久久久清纯 | 欧美av亚洲av综合av国产av| 免费不卡黄色视频| 老熟女久久久| aaaaa片日本免费| 国产欧美日韩一区二区三区在线| 国产欧美日韩一区二区精品| 亚洲精品在线美女| 亚洲av国产av综合av卡| 国产在线精品亚洲第一网站| 国产高清视频在线播放一区| 女性生殖器流出的白浆| 午夜精品久久久久久毛片777| 亚洲情色 制服丝袜| 日韩中文字幕欧美一区二区| 欧美黄色片欧美黄色片| 亚洲五月婷婷丁香| 亚洲精品av麻豆狂野| 久久人人97超碰香蕉20202| 高清毛片免费观看视频网站 | av又黄又爽大尺度在线免费看| 涩涩av久久男人的天堂| 日本vs欧美在线观看视频| 好男人电影高清在线观看| 久久香蕉激情| 每晚都被弄得嗷嗷叫到高潮| 最黄视频免费看| 婷婷成人精品国产| 制服诱惑二区| 欧美日韩亚洲高清精品| bbb黄色大片| 美女视频免费永久观看网站| 久久久国产成人免费| 成人特级黄色片久久久久久久 | 不卡av一区二区三区| 国产有黄有色有爽视频| 亚洲自偷自拍图片 自拍| 亚洲av电影在线进入| 啦啦啦在线免费观看视频4| 国产精品二区激情视频| 色视频在线一区二区三区| 国产不卡av网站在线观看| 国产激情久久老熟女| 男女无遮挡免费网站观看| 婷婷丁香在线五月| 久久精品aⅴ一区二区三区四区| 欧美日韩亚洲国产一区二区在线观看 | 精品一区二区三区视频在线观看免费 | 亚洲全国av大片| 欧美日韩福利视频一区二区| 狠狠精品人妻久久久久久综合| av福利片在线| 99久久人妻综合| 菩萨蛮人人尽说江南好唐韦庄| 999久久久国产精品视频| 波多野结衣一区麻豆| 国产一区二区三区视频了| 欧美成狂野欧美在线观看| 另类精品久久| 欧美人与性动交α欧美精品济南到| 精品国产超薄肉色丝袜足j| 汤姆久久久久久久影院中文字幕| 999久久久精品免费观看国产| 桃红色精品国产亚洲av| 超碰97精品在线观看| 丝袜人妻中文字幕| 一本久久精品| 国产精品久久久人人做人人爽| 久久九九热精品免费| 午夜视频精品福利| 一个人免费在线观看的高清视频| 成人18禁在线播放| 久久久精品区二区三区| 亚洲精品粉嫩美女一区| 亚洲第一欧美日韩一区二区三区 | 日韩免费av在线播放| 日韩欧美免费精品| 欧美久久黑人一区二区| 国产又色又爽无遮挡免费看| 免费久久久久久久精品成人欧美视频| 久久毛片免费看一区二区三区| 久久ye,这里只有精品| 黄片小视频在线播放| 天堂8中文在线网| 久久久久精品人妻al黑| 亚洲av片天天在线观看| 亚洲欧美一区二区三区黑人| 国产精品99久久99久久久不卡| 久久亚洲真实| 精品国产亚洲在线| 一进一出抽搐动态| 无遮挡黄片免费观看| 精品午夜福利视频在线观看一区 | 亚洲国产av影院在线观看| 免费看a级黄色片| 国产单亲对白刺激| 人妻 亚洲 视频| 91大片在线观看| www.999成人在线观看| 国产av国产精品国产| 90打野战视频偷拍视频| 欧美性长视频在线观看| 亚洲精品自拍成人| 丝袜在线中文字幕| 无人区码免费观看不卡 | 法律面前人人平等表现在哪些方面| 精品一品国产午夜福利视频| 久久热在线av| 岛国毛片在线播放| 久久精品亚洲精品国产色婷小说| 电影成人av| 午夜两性在线视频| 女警被强在线播放| 亚洲欧美色中文字幕在线| 国产成人啪精品午夜网站| 精品一区二区三卡| 99久久精品国产亚洲精品| 久久久久久免费高清国产稀缺| 老鸭窝网址在线观看| 中文字幕精品免费在线观看视频| 日韩视频一区二区在线观看| 久久 成人 亚洲| 一本一本久久a久久精品综合妖精| 在线播放国产精品三级| 国产精品久久久av美女十八| 性少妇av在线| 99国产极品粉嫩在线观看| 久久久精品国产亚洲av高清涩受| 久久久久久久国产电影| 久久午夜亚洲精品久久| 亚洲精品成人av观看孕妇| 久久精品91无色码中文字幕| 不卡av一区二区三区| 精品久久久久久久毛片微露脸| 91精品国产国语对白视频| 黄片小视频在线播放| 久久影院123| 国产91精品成人一区二区三区 | 久久精品国产亚洲av香蕉五月 | 一区二区三区精品91| 久久狼人影院| 日韩中文字幕欧美一区二区| 欧美日韩国产mv在线观看视频| 一级a爱视频在线免费观看| 欧美在线黄色| 丝袜美腿诱惑在线| 国产伦人伦偷精品视频| 色婷婷av一区二区三区视频| 欧美人与性动交α欧美软件| 伊人久久大香线蕉亚洲五| av有码第一页| 亚洲成a人片在线一区二区| av电影中文网址| 久久精品人人爽人人爽视色| 又黄又粗又硬又大视频| 中亚洲国语对白在线视频| 国产精品国产高清国产av | 丰满人妻熟妇乱又伦精品不卡| 另类亚洲欧美激情| 脱女人内裤的视频| 欧美日韩亚洲综合一区二区三区_| 精品国产国语对白av| 精品免费久久久久久久清纯 | 他把我摸到了高潮在线观看 | 免费观看av网站的网址| 美女国产高潮福利片在线看| 超色免费av| 每晚都被弄得嗷嗷叫到高潮| e午夜精品久久久久久久| 欧美av亚洲av综合av国产av| 色尼玛亚洲综合影院| 久久中文看片网| 一区二区三区国产精品乱码| 久久国产精品大桥未久av| 国产精品久久久久成人av| 母亲3免费完整高清在线观看| 日本黄色视频三级网站网址 | 欧美日韩国产mv在线观看视频| 男女下面插进去视频免费观看| 亚洲欧美日韩另类电影网站| 99香蕉大伊视频| 丁香六月天网| 黄色丝袜av网址大全| 男女床上黄色一级片免费看| 黑人操中国人逼视频| 免费观看人在逋| 激情在线观看视频在线高清 | 亚洲精品久久午夜乱码| 丝袜美腿诱惑在线| 国产日韩欧美视频二区| 性少妇av在线| 久久天堂一区二区三区四区| 午夜日韩欧美国产| 国内毛片毛片毛片毛片毛片| 国产精品99久久99久久久不卡| 午夜福利在线观看吧| 建设人人有责人人尽责人人享有的| 操出白浆在线播放| 国产xxxxx性猛交| 最近最新中文字幕大全电影3 | 国产精品香港三级国产av潘金莲| tocl精华| 亚洲自偷自拍图片 自拍| 久久精品aⅴ一区二区三区四区| 一进一出抽搐动态| 久久性视频一级片| 少妇猛男粗大的猛烈进出视频| 天堂动漫精品| 熟女少妇亚洲综合色aaa.| 美女视频免费永久观看网站| 精品福利永久在线观看| 久久精品亚洲精品国产色婷小说| 在线天堂中文资源库| 黄色a级毛片大全视频| kizo精华| www.精华液| av欧美777| 日韩中文字幕视频在线看片| 国产亚洲精品第一综合不卡| 精品国产一区二区久久| 在线亚洲精品国产二区图片欧美| 在线观看免费日韩欧美大片| 又紧又爽又黄一区二区| 亚洲av欧美aⅴ国产| 超碰成人久久| 男女之事视频高清在线观看| 王馨瑶露胸无遮挡在线观看| 国产一区二区三区在线臀色熟女 | 欧美av亚洲av综合av国产av| e午夜精品久久久久久久| 日韩制服丝袜自拍偷拍| 母亲3免费完整高清在线观看| 又黄又粗又硬又大视频| 大陆偷拍与自拍| 国产成人免费无遮挡视频| 亚洲精品久久成人aⅴ小说| 首页视频小说图片口味搜索| 久久精品国产a三级三级三级| 成人黄色视频免费在线看| 精品一区二区三区视频在线观看免费 | 久久精品亚洲精品国产色婷小说| 日韩视频一区二区在线观看| 色播在线永久视频| 久久久水蜜桃国产精品网| av天堂久久9| 亚洲精品一二三| 9色porny在线观看| 一本一本久久a久久精品综合妖精| 2018国产大陆天天弄谢| 波多野结衣av一区二区av| 国产极品粉嫩免费观看在线| 精品国产超薄肉色丝袜足j| 中国美女看黄片| 欧美日韩精品网址| 51午夜福利影视在线观看| 啦啦啦视频在线资源免费观看| 欧美黄色片欧美黄色片| 久久久国产一区二区| 精品亚洲成国产av| 国产成人免费观看mmmm| tube8黄色片| 日韩大片免费观看网站| av线在线观看网站| 极品人妻少妇av视频| 久久久久久久大尺度免费视频| 一区在线观看完整版| 精品一区二区三区视频在线观看免费 | 国产精品成人在线| 亚洲精品中文字幕在线视频| 久久免费观看电影| 岛国在线观看网站| 黄频高清免费视频| av电影中文网址| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲美女黄片视频| 国产成人一区二区三区免费视频网站| 热re99久久精品国产66热6| 电影成人av| 97人妻天天添夜夜摸| 久久免费观看电影| 久久精品国产综合久久久| 飞空精品影院首页| 一区二区日韩欧美中文字幕| 熟女少妇亚洲综合色aaa.| 搡老岳熟女国产| 国产区一区二久久| 女人高潮潮喷娇喘18禁视频| 69精品国产乱码久久久| 亚洲熟女毛片儿| 啦啦啦 在线观看视频| 欧美乱妇无乱码| 蜜桃国产av成人99| 久久九九热精品免费| 国产日韩一区二区三区精品不卡| 久久久精品区二区三区| 国产欧美日韩一区二区精品| 女人被躁到高潮嗷嗷叫费观| 久久99一区二区三区| 亚洲欧美精品综合一区二区三区| 狠狠狠狠99中文字幕| 国产老妇伦熟女老妇高清| 香蕉丝袜av| 超碰成人久久| cao死你这个sao货| 在线观看66精品国产| 91av网站免费观看| 成人国产av品久久久|