• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultrathin Ti3C2 nanowires derived from multi-layered bulks for high-performance hydrogen evolution reaction

    2022-03-14 09:30:52WeiweiZhoBeieiJinLongluWngChengoDingMengyueJingTintinChenShuihngBiShujunLiuQingZho
    Chinese Chemical Letters 2022年1期

    Weiwei Zho,Beiei Jin,Longlu Wng,Chengo Ding,Mengyue Jing,Tintin Chen,Shuihng Bi,Shujun Liu,Qing Zho,,?

    aKey Laboratory for Organic Electronics and Information Displays &Jiangsu Key Laboratory for Biosensors,Institute of Advanced Materials(IAM)Nanjing University of Posts &Telecommunications(NUPT),Nanjing 210023,China

    bCollege of Electronic and Optical Engineering &College of Microelectronics,Institute of Flexible Electronics(Future Technology)Nanjing University of Posts&Telecommunications(NUPT),Nanjing 210023 China

    ABSTRACT One-dimensional ultrathin nanowires(NWs)offer a great deal of promising properties for electrochemical energy storage and conversion due to their nanoscale confinement effect and high surface-to-volume ratios.It is highly desirable to precisely design and synthesize ultrathin Ti3C2 NWs in the aspect of size,crystalline structure and composition.Here,we report a simple alkalization strategy to design the ultrathin Ti3C2 NWs for hydrogen evolution reaction(HER)by modulating the surface-active sites.The design principle can well improve the amount of the defect sites and ion accessibility to increase the interactions between Ti3C2 NWs and H?.The optimized Ti3C2 NWs achieve an overpotential of 476 mV at the current density of 10 mA/cm2 and a Tafel slope of 129 mV/dec for HER catalysis,which are superior to that of Ti3C2 nanosheets and m-Ti3C2.It paves an avenue for the rational transformation of MXene bulks to one-dimensional NWs catalysts for HER.

    Keywords:MXene Ti3C2 nanowires Ultrathin films Chemical transformation Hydrogen evolution reaction

    With the increasing wastage of fossil fuels and the related environmental pollution,the clean hydrogen(H2)has attracted much attentions as prospective green and sustainable energy due to its high gravimetric energy density,environmental friendliness and renewability[1,2].The hydrogen evolution reaction(HER)from water electrolysis has been one of the most desirable strategies for scalable H2production,which deeply depends on the highperformance electrocatalysts[3–5].Inspired by the representative structures,one-dimensional nanowires(1D NWs)enable to realize the wide applications in the field of HER due to their unique characteristics as follows[6,7]:(1)The high surface-to-volume ratios contribute a relatively large active interface between the electrolyte and electrode;(2)The electronic pathways in 1D NWs accelerate the rate of electron transport along the long axis;(3)The confinement effect has a positive impact on the strain relaxation along with volume expansion/contraction while the electrochemical reaction is going on[8,9].To date,various 1D transition metal compounds nanomaterials such as metal alloys[10],nitrides[11],sulfides[12],selenides[13,14]and phosphides[15,16]have been widely utilized as cut-price and ideal alternatives to the commercial platinum(Pt)-based catalysts.The current studies indicate that the materials with the high conductivity,easy availability,and tunable catalytic sites possess great prospects for the deep exploration of high-efficiency HER catalysts.For instance,the cubic pyritephase CoS2nanoparticles have exhibited a surprising overpotential of 145 mV at the current density of 10 mA/cm2for HER as a result of intrinsic metallic features and good chemical stability[17].However,the as-obtained efficiencies are still far less than the universal Pt catalysts.It is highly desirable to develop an assortment of new electrode materials for highly efficient HER catalysts.

    MXenes,a family of two-dimensional(2D)transition metal carbides,nitrides and carbonitrides,have been developed as emerging energy materials due to the high hydrophilic surface with abundant functional groups(e.g.,-OH,-F,-O),and high electronic conductivity(up to 15000 S/cm)[18].To date,there are more than twenty kinds of MXenes prepared through the chemical etching operation by the fluoride etchant,they are mainly in the form of 2D ultrathin nanosheets(NSs)and widely applied in the construction of energy storage devices as supercapacitor and battery[19,20].Based on the dimensional engineering on 2D MXene,1D MXene NWs with remarkable active sites display the enhanced electrochemical performance for HER[21,22].For example,Haoet al.reported 1D NWs interconnected three-dimensional(3D)Nb2C porous frameworks,which exhibit a relative low overpotential of 322 mV towards HER[23].Guoet al.prepared highly active Ti3C2nanofibers with an average width of 50 nm through the combination of hydrolyzation of Ti3AlC2bulks and a subsequent hydrofluoric acid(HF)etching process[24].However,the large size of Ti3AlC2bulks prevents the full transformation of inner Ti3AlC2into monodispersed NWs in the alkalization process.Therefore,it is still challenging to fabricate ultrathin and monodispersed 1D NWsviaa facile and inexpensive approach.

    Herein,we report a facile alkalization strategy to design Ti3C2NWs with ample active sites for the enhanced HER performance.The scissor role of OH?can rationally tailor the m-Ti3C2into ultrathin and monodispersed 1D NWs.The design principle can improve the defect sites and ion accessibility to indirectly facilitate the interaction between Ti3C2NWs and H?.Ti3C2NWs deliver an enhanced HER activity with a low overpotential of 476 mV at the current density of 10 mA/cm2and a depressed Tafel slope of 129 mV/dec for HER catalysis,which is lower than that of the Ti3C2NSs and multilayer Ti3C2(m-Ti3C2)bulks.

    Ti3AlC2powder(99.99 wt% purity)was purchased from 11 Technology Co.,Ltd.LiF was purchased from Aladdin.HCl and H2SO4solution(Analytically pure)were purchased from Nanjing Chemical Reagent Co.,Ltd.KOH was purchased from Sinopharm Chemical Reagent Co.,Ltd.Nafion solution was purchased from Sigma-Aldrich Co.,Ltd.SDS was purchased from Shanghai Jingchun Reagent Co.,Ltd.SDBS was purchased from Aladdin Chemistry Co.,Ltd.PVP(wt 40000)was purchased from Sigma-Aldrich Co.,Ltd.CTAB was purchased from Sinopharm Chemical Reagent Co.,Ltd.All reagents in this work were used without further purification.

    SEM image was characterized by scanning electron microscopy(FE-SEM,Hitachi S-4800).TEM mapping image was measured by transmission electron microscopy(Hitachi HT7700).HRTEM image was operated at an acceleration voltage of 200 kV(FEI Talos F200X).XRD pattern was carried out by X-ray diffractometer(Philips X’pert Pro)with a Cu Kαradiation(λ=1.5418 ?A).XPS was performed on Thermo ESCALAB 250XI.The electrochemical performance was measured on a CHI660E electrochemical working station(Chenhua,Shanghai,China).

    Preparation of m-Ti3C2bulks:Firstly,LiF(0.5 g)was dissolved in HCl(10 mL,9 mol/L)under stirring for 20 min.Then,the commercial Ti3AlC2bulks(0.5 g)were slowly added in the mixture and heated at 60 °C for 24 h.Afterward,the products were washed with deionized water for five times until the pH surpasses 6.Finally,the samples were dried under vacuum for 12 h.

    Preparation of Ti3C2NSs:m-Ti3C2bulks(0.1 g)were dispersed in deionized water(10 mL)and sonicated(60 kHz,360 W)for 1 h.The dispersion was centrifuged at 3500 rpm for 1 h and collected for the further application.

    Preparation of Ti3C2NWs:First,m-Ti3C2bulks(0.08 g)were dispersed in KOH aqueous solution(12 mL,9 mol/L),and Ar was adopted to remove air for 30 min.Then,the mixture was continuously stirred for 72 h at 35 °C in a sealed state.Next,the products were washed with deionized water and centrifuged at 6000 rpm/min for 5 min each time.Finally,the precipitation was dispersed in deionized water(20 mL)and sonicated(53 kHz,150 W)for 10 min.After centrifuged at 1000 rpm for 30 min,the supernatant Ti3C2NWs were collected.

    Electrochemical measurements:A polished glassy carbon(GC)electrode was served as working electrode while a carbon rod and a Ag/AgCl electrode filled with saturated KCl solution were used as counter and reference electrode,respectively.The electrode was prepared by mixing 2.5 mg of the active materials(i.e.,d-Ti3C2,ultrathin Ti3C2NSs and ultrathin Ti3C2NWs)in a solution containing 400 μL deionized water,100 μL ethanol and 10 μL of Nafion(5 wt%)solution,following by ultrasonication(53 kHz,150 W)for 20 min.3 μL of the dispersion was deposited on the surface of a glassy carbon(GC)electrode and dried naturally at room temperature.The LSVs for HER were recorded at a sweep rate of 5 mV/s without passing inert gas exhaust.LSV is automatically corrected with 90% iR-compensation.

    Fig.1.(a)Schematic diagram of the preparation of ultrathin Ti3C2 NWs.(b)SEM image,(c)TEM image and(d)HRTEM image of Ti3C2 NWs.Inset of(d)is the corresponding SAED image.(e)XRD patterns of Ti3C2 NWs,m-Ti3C2 and Ti3AlC2.Inset:Tyndall effect of Ti3C2 NWs colloidal solution.

    The synthetic procedure for Ti3C2NWs is schematically depicted in Fig.1a.There is a two-step preparation process including thermo-assisted etching and alkalization.First,m-Ti3C2bulks are typically synthesizedviaone-step HF etching of Al atoms from the ternary layered Ti3AlC2phases(Fig.1a and Fig.S1 in Supporting information).XRD pattern demonstrates the successful removement of Al atom layers from Ti3AlC2bulks(Fig.1e).Then,the alkalized Ti3C2NWs can be prepared through the continuous stirring of m-Ti3C2bulks in 9 mol/L KOH solution for 72 h.In this process,the abundant OH?can rationally tailor the exposed scissor sites of 2D NSs,and thus resulting in the morphology transformation into ultrathin 1D NWs.The morphology and structure of Ti3C2NWs are investigated by scanning electron microscopy(SEM),transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS).SEM image in Fig.1b shows that Ti3C2NWs have a length ranging from submicrometer to several micrometers.TEM image in Fig.1c clearly displays that Ti3C2NWs have a width of 5–10 nm.A high-resolution TEM(HRTEM)image shows a highly crystalline structure and an interlayer spacing of 0.187 and 0.2 nm,demonstrating the successful transformation from m-Ti3C2bulks.The corresponding selected area electron diffraction(SAED)image further demonstrates the high crystallinity(inset of Fig.1d).All peaks in the XRD pattern of ultrathin Ti3C2NWs agree well with the m-Ti3C2bulks,demonstrating the pure phase(Fig.1e).

    Fig.2.(a)Structure diagram of Ti3C2 NWs.(b)XPS survey spectrum.Highresolution spectra of(c)Ti 2p,(d)O 1s and(e)C 1s.

    XPS measurement is carried out to identify the chemical structure of Ti3C2NWs(Fig.2).It shows that Ti3C2NWs contain the main elements of Ti,C,O,F and K(Fig.2b).No Al elements are observed in the etched Ti3C2products(Fig.2b),indicating the full removal of Al layers during the etching process.In the highresolution Ti 2p spectrum(Fig.2c),the representative peaks at 455.5 eV,458.3 eV,464.1 eV and 461.3 eV are assigned to Ti 2p1/2and Ti 2p3/2in Ti?C bond,Ti?O bond and Ti(II),respectively,which is in good agreement with the previous literature[25].Remarkably,the high-resolution O 1s spectrum can be deconvoluted into two peaks at 529.8 eV and 531.5 eV,which are corresponding to the oxygen-containing functional groups(i.e.,-O and -OH)existing at the surface of Ti3C2layers(Fig.2d)[18].The C 1s for Ti3C2sample is fitted with four doublets cantered at 281.5 eV,284.5 eV,285.0 eV and 288.5 eV,which are assigned as C-Ti,C sp2,C-OH and C=O respectively,(Fig.2e)[26].An obvious peak at 295.3 eV and 292.6 eV are assigned to the K 2p1/2and K 2p3/2,ascribing to the anchor of K+in the defect sites[27].The elements detected in XPS spectra well match with the structure diagram,further proving the successful synthesis of Ti3C2NWs.

    To get insight into the chemical transformation mechanism of Ti3C2NWs,TEM image is employed to characterize the intermediates collected at 24 h.The epitaxial ultrathin NWs are observed after the alkalization of KOH(Figs.3a and b)shows the HRTEM images of Ti3C2NSs in the edges of m-Ti3C2bulks.Their lattice fringe spacing of 0.26 nm is corresponding to the(101)interplanar spacing(Fig.3c)[28].This result indicates that the crystalline structure of unconverted Ti3C2is well maintained before transforming into NWs.The SAED is consistent with the previous report(Fig.3d)[29].The removement of Al layer is important for achieving the ultrathin NWs since the m-Ti3C2precursor generates crevices at the surface of Ti-C sites and subsequently cleaves into ultrathin NWs.

    Fig.3.(a)TEM image,(b,c)HRTEM images and(d)SAED image of Ti3C2 intermediate at the reaction time of 24 h.

    The effects of the amount of m-Ti3C2,the kind of surfactants and the concentration of KOH on the alkalization reaction are investigated in control experiments.First,when the amounts of m-Ti3C2bulks increases to 90 mg,they experience an insufficient transformation with residual samples(Fig.S2a in Supporting information).When the amounts of m-Ti3C2bulks decreases to 70 mg,they show a smooth surface and have no obvious transformation into 1D NWs(Fig.S2c in Supporting information).That is because the alkalization process results in the production of the shorter Ti3C2NWs,which are more difficult to separate during centrifugation,resulting in a large proportion of unconverted m-Ti3C2in the final products.Then,the influence of the different surfactants including polyvinyl pyrrolidone(PVP),sodium dodecyl sulfate(SDS),cetyltrimethyl ammonium bromide(CTAB)and sodium dodecyl benzene sulfonate(SDBS)is also investigated(Fig.S3 in Supporting information).As a result,2D Ti3C2NSs are obtained in all systems.The intercalation of surfactants in the m-Ti3C2is beneficial to the easy peel off of Ti3C2NSs from the m-Ti3C2bulks,whereas it also prevents the exposure of the shearing sites and thus preventing the formation of 1D NWs.Next,the different concentrations of KOH are also explored to treat the m-Ti3C2bulks(Fig.S4 in Supporting information).When KOH concentration increases from 9 mol/L to 10 mol/L,m-Ti3C2bulks are partially converted into Ti3C2NWs(Figs.S4a–d).As the KOH concentration raises to 11 mol/L,a large number of m-Ti3C2bulks still exist(Figs.S4e and f).It is mainly attributed that the excessive KOH will experience the passivation of the cleavable sites.In the control experiment,Ti3C2NSs were fabricatedviathe exfoliation of m-Ti3C2,which have a lateral size of 1 μm(Figs.S6a and b in Supporting information).The colloidal solution shows obvious Tyndall effect,and thus proving the good stability(Fig.S6a).The HRTEM image shows that Ti3C2NSs have the lattice spacing of 0.213 nm(Fig.S6c in Supporting information)[30,31],and the corresponding SAED image further demonstrates the high crystallinity(Fig.S6c)[32].When the ultrathin Ti3C2NSs act as precursors,the ultrathin Ti3C2NWs only form on the surface through the epitaxial transformation(Fig.S5 in supporting information).The presence of KOH makes Ti3C2NSs flocculate into 3D networks,which hinders the further transformation of NWs[33].

    The HER activity of the monodispersed Ti3C2NWs is measured using a standard three electrode electrochemical system in 0.5 mol/L H2SO4(Fig.4).Fig.4a displays the linear sweep voltammetry(LSV)curves of Ti3C2NWs,Ti3C2NSs and m-Ti3C2for HER at 90% iR correction.Ti3C2NWs deliver a low overpotential of 476 mV at 10 mA/cm2,which is much lower than that of Ti3C2NSs(543 mV)and m-Ti3C2(659 mV).The enhanced electrochemical performance is resulted from the abundant active sites[24,34].To further understand the kinetics process,Tafel plots are used to explore the possible steps(Fig.4b).Ti3C2NWs have a Tafel slope of 129 mV/dec,which is lower than that of the m-Ti3C2bulks(196 mV/dec)and Ti3C2NSs(174 mV/dec),respectively.The fast kinetics of Ti3C2NWs are mainly attributed to the high ion accessibility in 1D structure and low internal contact resistance[35].Ti3C2NWs manifest a relatively stable and superior performance in acidic electrolyte,which is superior to the previously reported works(Table S1 in Supporting information).

    Fig.4.(a)The LSV curves at initial state(solid line)and at 90% iR correction(dotted line).(b)Tafel plots at 90% iR correction.(c)Nyquist plots of blank GC,Ti3C2 NWs,Ti3C2 NSs and m-Ti3C2.(d)LSV curves of Ti3C2 NWs before and after 1000 cycles.

    To better understand the interface property and intrinsic activity of Ti3C2NWs and reveal the electron-transfer kinetics in HER,the electrochemical impedance spectroscopy(EIS)is carried out and the Nyquist plots are displayed in Fig.4c.The semicircle portion at higher frequency is corresponding to the electron transfer-limited process[36].The semicircle diameter reflects the charge transfer resistance(Rct).It can also be obtained by fitting the impedance spectra to the referencing equivalent circuit.It is found that theRctof Ti3C2NWs(7.08Ω)is much lower than that of Ti3C2NSs(11.84Ω)and m-Ti3C2(31.99Ω),this is due to the fact that the strongly electronegative fluorine functional group is replaced by a hydroxyl group and the hydrophilicity is enhanced[25,37],suggesting that the NWs can shorten the diffusion pathway for electrons,promote the charge transfer at the interface,and enhance HER performance[38–40].The Ti3C2NWs also display good cyclic stability before and after 1000 cycles(Fig.4d).It is mainly ascribed to the synergic effect between unique 1D structure and abundant defect sites.Overall,the mechanism is involved in the following aspects[41,42]:(1)The -OH group terminations can adsorb the H3O+ion and electron to produce an H atom,which experiences the continuous combination for H2molecule;(2)The defect sites facilitate the desorption of H?as well as assist the dissociation of H2O,making it proceed on a lower potential energy surface.

    To further take advantage of 1D NWs,the freestanding Ti3C2NWs film is fabricated through the vacuum-assisted filtration of Ti3C2NWs dispersion on a filter membrane(Fig.5a).Its integrity can be well maintained after bending at a large angle,demonstrating a good flexibility and foldability(Figs.5b and c).The crosssectional SEM image in Fig.5d indicates that a uniform crosslinking state exists in the freestanding films,showing a thickness of~3 μm.The surface morphology of the Ti3C2NWs films displays the well-interconnected networks of 1D NWs(Fig.5e).It is expected to facilitate the rapid ionic/electronic transport and shorten the transport pathways.Cyclic voltammetry(CV)curves of Ti3C2film electrode are measured at a scan rate of 100 mV/s between-0.3 V and 0.4 V(Fig.5f).After 200 cycles,CV curves are well overlapped.The HER polarization curves in Fig.5g deliver an overpotential of 528 mV at 10 mA/cm2,which can be well maintained after 1000 cycles.It is hypothetical that the ions transport can be greatly facilitated by the nanoporous structure in the film due to the shortened ion pathways[43–45].The freestanding Ti3C2NWs film also shows great potential applications in the fields of photocatalysis[46],electromagnetic interference shielding[47,48],battery[49]and sensor[50,51].

    Fig.5.(a–c)Digital photographs of flexible Ti3C2 NWs film.(d)Cross-sectional SEM image and(e)top-view SEM images of Ti3C2 NWs film.(f)CV curves of Ti3C2 NWs film in 0.5 mol/L H2SO4 at a scan rate of 100 mV/s.(g)LSV curves of Ti3C2 NWs film in 0.5 mol/L H2SO4 at a scan rate of 5 mV/s.

    In summary,we have designed ultrathin and monodispersed Ti3C2NWsviachemical transformation of m-Ti3C2bulks in KOH solution.The rational tailor of OH?results in abundant active sites in the ultrathin 1D NWs.In comparison with common Ti3C2NSs,the greatly improved active sites lead to the enhanced HER activity.As a result,the ultrathin Ti3C2NWs deliver a low overpotential of 476 mV at a current density of 10 mA/cm2,a depressed Tafel slope of 129 mV/dec and low electrochemical resistance.Besides,the Ti3C2NWs show a long-term cycling stability.This synthesis method can further apply to prepare other MXene NWs owing to the large MXene family members,and MXene NWs are promising for applications in batteries,supercapacitors,catalytic and other related fields.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(Nos.61804082,21671108 and 51473078),Synergetic Innovation Center for Organic Electronics and Information Displays and Projects of International Cooperation and Exchanges NSFC(Nos.51811530018),National Natural Science Foundation of China(No.61935017),the China Postdoctoral Science Foundation Funded Project(No.2018M642286),National Program for Support of Top-Notch Young Professionals,Scientific and Technological Innovation Teams of Colleges and Universities in Jiangsu Province(No.TJ215006),Priority Academic Program Development of Jiangsu Higher Education Institutions(No.YX03003),Jiangsu Planned Projects for Postdoctoral Research Funds(No.2019K047A).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.07.035.

    校园春色视频在线观看| 97人妻精品一区二区三区麻豆| av福利片在线观看| 在线观看66精品国产| 欧美日本视频| 久久99热6这里只有精品| 国产91av在线免费观看| 天堂影院成人在线观看| 午夜久久久久精精品| 中文字幕久久专区| 尾随美女入室| 老熟妇乱子伦视频在线观看| 欧美日韩综合久久久久久| 亚洲色图av天堂| 国产视频一区二区在线看| 麻豆久久精品国产亚洲av| 成人毛片a级毛片在线播放| 日韩一本色道免费dvd| 热99在线观看视频| 一个人观看的视频www高清免费观看| a级毛色黄片| 国产激情偷乱视频一区二区| 在线观看av片永久免费下载| 国产精品日韩av在线免费观看| 春色校园在线视频观看| 亚洲欧美日韩高清在线视频| 亚洲欧美精品自产自拍| 麻豆国产97在线/欧美| 插阴视频在线观看视频| 国产aⅴ精品一区二区三区波| 久久久久国产网址| 成人国产麻豆网| 日本a在线网址| 日本黄色片子视频| 国内精品一区二区在线观看| 精品久久久久久久久亚洲| 国产黄色小视频在线观看| 亚洲成a人片在线一区二区| 美女被艹到高潮喷水动态| 99久久久亚洲精品蜜臀av| 久久精品国产清高在天天线| 午夜老司机福利剧场| 国内久久婷婷六月综合欲色啪| 国产免费男女视频| 精品人妻视频免费看| 成人特级av手机在线观看| 乱系列少妇在线播放| 国产探花在线观看一区二区| 国产av麻豆久久久久久久| 久久人人精品亚洲av| 联通29元200g的流量卡| 老司机福利观看| 国产精品一二三区在线看| a级毛色黄片| 亚洲国产精品久久男人天堂| 亚洲人成网站在线观看播放| 亚洲无线观看免费| 国产视频一区二区在线看| av天堂在线播放| 久久久久久久久大av| 床上黄色一级片| 亚洲aⅴ乱码一区二区在线播放| 毛片一级片免费看久久久久| 三级毛片av免费| 欧美成人精品欧美一级黄| 成人一区二区视频在线观看| 国产白丝娇喘喷水9色精品| 此物有八面人人有两片| 91麻豆精品激情在线观看国产| 亚洲国产欧洲综合997久久,| 成人漫画全彩无遮挡| av在线蜜桃| 男人和女人高潮做爰伦理| 国产亚洲欧美98| 日本撒尿小便嘘嘘汇集6| 成人鲁丝片一二三区免费| 成熟少妇高潮喷水视频| 色av中文字幕| 日本在线视频免费播放| 少妇的逼水好多| 国产精品一区二区三区四区免费观看 | 91在线观看av| 日韩欧美 国产精品| 99久久久亚洲精品蜜臀av| 亚洲成人av在线免费| 国产熟女欧美一区二区| 亚州av有码| 国产精品嫩草影院av在线观看| 国产综合懂色| 99久久久亚洲精品蜜臀av| 国产欧美日韩精品亚洲av| 成人性生交大片免费视频hd| 欧美绝顶高潮抽搐喷水| 91av网一区二区| 成人午夜高清在线视频| 中文字幕人妻熟人妻熟丝袜美| 久久久a久久爽久久v久久| 久久精品国产99精品国产亚洲性色| 久久久国产成人免费| 日本一二三区视频观看| 99热全是精品| 国产精品久久久久久久久免| 欧美成人免费av一区二区三区| 日本在线视频免费播放| 日韩在线高清观看一区二区三区| 亚洲av二区三区四区| 欧美又色又爽又黄视频| 夜夜爽天天搞| 观看免费一级毛片| av天堂在线播放| 最近中文字幕高清免费大全6| 久久草成人影院| 成人高潮视频无遮挡免费网站| 久久国产乱子免费精品| 一级毛片我不卡| 精品久久久噜噜| 日韩一本色道免费dvd| 免费看美女性在线毛片视频| 国产精品永久免费网站| 成人av一区二区三区在线看| av在线天堂中文字幕| 老司机午夜福利在线观看视频| 精品少妇黑人巨大在线播放 | av福利片在线观看| 亚洲熟妇中文字幕五十中出| 久久精品国产99精品国产亚洲性色| 人妻制服诱惑在线中文字幕| 99久久精品热视频| 非洲黑人性xxxx精品又粗又长| 人人妻人人看人人澡| av中文乱码字幕在线| 偷拍熟女少妇极品色| 成熟少妇高潮喷水视频| 不卡一级毛片| 激情 狠狠 欧美| 久久草成人影院| 白带黄色成豆腐渣| 久久久久久国产a免费观看| 美女高潮的动态| 99久久九九国产精品国产免费| 亚洲美女视频黄频| 国产精品美女特级片免费视频播放器| 日韩国内少妇激情av| 黄片wwwwww| 最近手机中文字幕大全| 亚洲av中文字字幕乱码综合| 一区福利在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲丝袜综合中文字幕| 国产在线精品亚洲第一网站| 男人舔奶头视频| 精品久久久久久久久亚洲| 亚洲av成人av| 成年女人永久免费观看视频| 日韩高清综合在线| a级毛色黄片| 亚洲欧美日韩高清在线视频| 伊人久久精品亚洲午夜| 国产午夜福利久久久久久| 亚洲电影在线观看av| 色在线成人网| eeuss影院久久| 精品乱码久久久久久99久播| 岛国在线免费视频观看| 精品午夜福利视频在线观看一区| 国产亚洲欧美98| 大又大粗又爽又黄少妇毛片口| 免费av不卡在线播放| 亚洲成人精品中文字幕电影| 久久99热这里只有精品18| 国内揄拍国产精品人妻在线| 黑人高潮一二区| 我要看日韩黄色一级片| 国产精品嫩草影院av在线观看| 女的被弄到高潮叫床怎么办| 久久亚洲国产成人精品v| 1000部很黄的大片| 深爱激情五月婷婷| 精品人妻一区二区三区麻豆 | 波多野结衣高清作品| 在线免费观看不下载黄p国产| 在线播放无遮挡| 亚洲美女视频黄频| 久久久久性生活片| 熟女电影av网| 少妇裸体淫交视频免费看高清| 欧美另类亚洲清纯唯美| 国产成人一区二区在线| 51国产日韩欧美| 欧美区成人在线视频| 国产午夜精品久久久久久一区二区三区 | 亚洲第一电影网av| 在线a可以看的网站| 亚洲美女黄片视频| 国产精品,欧美在线| 亚洲av熟女| 久久天躁狠狠躁夜夜2o2o| 日本黄色片子视频| 在线播放无遮挡| 精华霜和精华液先用哪个| 美女黄网站色视频| 精品一区二区三区视频在线| 精品99又大又爽又粗少妇毛片| 亚洲欧美日韩高清在线视频| 欧美日韩国产亚洲二区| 国产精品无大码| 午夜福利视频1000在线观看| 少妇熟女aⅴ在线视频| 久久久久久久久久黄片| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品日韩在线中文字幕 | 亚洲欧美中文字幕日韩二区| 国产毛片a区久久久久| 少妇的逼好多水| 99久国产av精品| 亚洲第一区二区三区不卡| 亚洲av一区综合| 观看免费一级毛片| 国产 一区精品| 日韩亚洲欧美综合| 国产精品亚洲一级av第二区| 18禁在线播放成人免费| 免费人成在线观看视频色| 成人三级黄色视频| 精品一区二区三区视频在线| 九九在线视频观看精品| 超碰av人人做人人爽久久| 国产又黄又爽又无遮挡在线| 黄片wwwwww| 日韩 亚洲 欧美在线| 波野结衣二区三区在线| 国产一区二区三区在线臀色熟女| 亚洲图色成人| 搡老岳熟女国产| 老司机影院成人| 国产精品乱码一区二三区的特点| 有码 亚洲区| 色尼玛亚洲综合影院| ponron亚洲| 99国产精品一区二区蜜桃av| 成人精品一区二区免费| 一进一出好大好爽视频| 一级av片app| 成人av一区二区三区在线看| 午夜福利在线观看吧| 精品久久久久久久人妻蜜臀av| 亚洲成人中文字幕在线播放| 久久久久性生活片| 日韩人妻高清精品专区| 免费观看的影片在线观看| 久久久久久久久久成人| 激情 狠狠 欧美| 亚洲在线自拍视频| 九九久久精品国产亚洲av麻豆| 国产美女午夜福利| 在线观看66精品国产| 国产精品爽爽va在线观看网站| 在线播放国产精品三级| 成人三级黄色视频| 三级毛片av免费| h日本视频在线播放| 激情 狠狠 欧美| 亚洲欧美日韩高清在线视频| 久久久成人免费电影| 久久99热6这里只有精品| 国产精品一区二区性色av| 天天躁日日操中文字幕| 日韩,欧美,国产一区二区三区 | www日本黄色视频网| 国产片特级美女逼逼视频| 久久久久国产精品人妻aⅴ院| 国内揄拍国产精品人妻在线| 我要搜黄色片| 高清毛片免费观看视频网站| 尤物成人国产欧美一区二区三区| 国产精品1区2区在线观看.| 亚洲av成人av| 国产在视频线在精品| 欧美日韩在线观看h| 国产真实乱freesex| 九九在线视频观看精品| 97热精品久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品国产成人久久av| 国产综合懂色| 高清日韩中文字幕在线| 精品久久久久久久久久久久久| 人人妻人人澡欧美一区二区| 久久精品夜色国产| 成人av一区二区三区在线看| 国产精华一区二区三区| 白带黄色成豆腐渣| 一区二区三区四区激情视频 | 国产爱豆传媒在线观看| 欧美色视频一区免费| 欧美激情久久久久久爽电影| 欧美日韩乱码在线| 日韩欧美在线乱码| 亚洲国产欧美人成| 亚洲丝袜综合中文字幕| 国产黄a三级三级三级人| 99热6这里只有精品| 99热这里只有精品一区| 亚洲无线在线观看| 午夜老司机福利剧场| 国产又黄又爽又无遮挡在线| 亚洲精品日韩av片在线观看| 国产视频内射| 日日啪夜夜撸| 在线看三级毛片| 国产高潮美女av| 国内精品宾馆在线| 色哟哟哟哟哟哟| 一区二区三区四区激情视频 | 精品福利观看| 男女视频在线观看网站免费| 久久精品国产亚洲av涩爱 | 久久久国产成人免费| 看十八女毛片水多多多| 女人十人毛片免费观看3o分钟| 真人做人爱边吃奶动态| 亚洲精品国产成人久久av| 成人欧美大片| 色哟哟·www| 99热这里只有是精品50| 99热只有精品国产| 天堂影院成人在线观看| 婷婷六月久久综合丁香| 国产91av在线免费观看| 热99在线观看视频| 亚洲国产精品国产精品| 亚洲av.av天堂| 直男gayav资源| 久久精品夜夜夜夜夜久久蜜豆| 欧美色欧美亚洲另类二区| 欧美一区二区精品小视频在线| 日韩高清综合在线| 一个人看的www免费观看视频| a级毛色黄片| 大型黄色视频在线免费观看| 欧美色视频一区免费| 99视频精品全部免费 在线| 99久久无色码亚洲精品果冻| .国产精品久久| 欧美在线一区亚洲| 亚洲色图av天堂| 校园人妻丝袜中文字幕| 在线国产一区二区在线| 精华霜和精华液先用哪个| 成人高潮视频无遮挡免费网站| 插逼视频在线观看| 久久综合国产亚洲精品| 中文字幕免费在线视频6| 黄色配什么色好看| 久久久久久久久久黄片| 最近2019中文字幕mv第一页| 久久久久国产网址| 亚洲自偷自拍三级| 国产亚洲av嫩草精品影院| av专区在线播放| 少妇丰满av| 久99久视频精品免费| 内射极品少妇av片p| 国产一区亚洲一区在线观看| 蜜桃亚洲精品一区二区三区| 精品一区二区三区视频在线观看免费| 亚洲无线在线观看| 级片在线观看| 久久精品人妻少妇| 久久久久国内视频| 成人精品一区二区免费| 亚洲美女视频黄频| 麻豆乱淫一区二区| 插逼视频在线观看| 我要搜黄色片| 亚洲三级黄色毛片| 九九久久精品国产亚洲av麻豆| 久99久视频精品免费| 色综合色国产| 国产一区二区亚洲精品在线观看| 国产又黄又爽又无遮挡在线| 哪里可以看免费的av片| 波多野结衣巨乳人妻| 国产黄a三级三级三级人| 欧美另类亚洲清纯唯美| 亚洲欧美日韩东京热| 熟女人妻精品中文字幕| 亚洲在线自拍视频| 两个人的视频大全免费| 九九热线精品视视频播放| av在线老鸭窝| 久久精品夜夜夜夜夜久久蜜豆| 韩国av在线不卡| 老熟妇仑乱视频hdxx| 18禁在线无遮挡免费观看视频 | 悠悠久久av| 国产亚洲av嫩草精品影院| 黄色日韩在线| 深爱激情五月婷婷| 午夜免费男女啪啪视频观看 | 啦啦啦观看免费观看视频高清| 国内揄拍国产精品人妻在线| 一级黄片播放器| av在线蜜桃| 国内精品宾馆在线| 小说图片视频综合网站| 99国产精品一区二区蜜桃av| 免费av观看视频| 变态另类丝袜制服| 老女人水多毛片| 久久亚洲精品不卡| 国产精品伦人一区二区| 国产午夜福利久久久久久| 97热精品久久久久久| 不卡视频在线观看欧美| 欧美性猛交黑人性爽| 国产美女午夜福利| 伦精品一区二区三区| 香蕉av资源在线| 国产黄色视频一区二区在线观看 | 可以在线观看的亚洲视频| 男人舔奶头视频| 欧美3d第一页| 婷婷六月久久综合丁香| 天堂影院成人在线观看| 国产精品人妻久久久影院| 国产av麻豆久久久久久久| 国产一区二区三区在线臀色熟女| 久久久久久久久久成人| 亚洲av一区综合| 真人做人爱边吃奶动态| 五月伊人婷婷丁香| 国产伦一二天堂av在线观看| 精品人妻视频免费看| 精品人妻熟女av久视频| 国产白丝娇喘喷水9色精品| 精品免费久久久久久久清纯| 精品国内亚洲2022精品成人| 成人特级黄色片久久久久久久| 蜜臀久久99精品久久宅男| 在现免费观看毛片| 欧美区成人在线视频| АⅤ资源中文在线天堂| 亚洲天堂国产精品一区在线| 搡女人真爽免费视频火全软件 | 高清毛片免费观看视频网站| 人妻丰满熟妇av一区二区三区| 少妇被粗大猛烈的视频| 97超级碰碰碰精品色视频在线观看| 亚洲av二区三区四区| 日本免费a在线| 99热精品在线国产| 高清日韩中文字幕在线| 色尼玛亚洲综合影院| 老熟妇仑乱视频hdxx| 亚洲五月天丁香| 久久久久久久久中文| 亚洲av美国av| 精品99又大又爽又粗少妇毛片| 欧美一区二区精品小视频在线| 免费人成视频x8x8入口观看| 十八禁国产超污无遮挡网站| 成人三级黄色视频| 韩国av在线不卡| 久久精品国产自在天天线| 国产 一区 欧美 日韩| 美女内射精品一级片tv| 欧美三级亚洲精品| aaaaa片日本免费| 亚洲自拍偷在线| 中文字幕免费在线视频6| 国产成年人精品一区二区| 日韩欧美在线乱码| 嫩草影院入口| 午夜福利高清视频| 久久草成人影院| 久久亚洲精品不卡| 美女被艹到高潮喷水动态| 午夜亚洲福利在线播放| 波野结衣二区三区在线| 国产美女午夜福利| 男人舔女人下体高潮全视频| 国产高清三级在线| 中文字幕熟女人妻在线| 免费无遮挡裸体视频| 国产欧美日韩一区二区精品| 久久欧美精品欧美久久欧美| 蜜桃亚洲精品一区二区三区| 深夜精品福利| 成人永久免费在线观看视频| 18禁在线无遮挡免费观看视频 | 韩国av在线不卡| 久久亚洲精品不卡| 国产av麻豆久久久久久久| а√天堂www在线а√下载| 成年版毛片免费区| 国产成人91sexporn| 欧美最黄视频在线播放免费| av在线播放精品| 亚洲中文字幕一区二区三区有码在线看| 国产美女午夜福利| 日韩精品有码人妻一区| 日日摸夜夜添夜夜添小说| 我要看日韩黄色一级片| 欧美最新免费一区二区三区| 三级毛片av免费| av国产免费在线观看| 亚洲在线自拍视频| 国产精品精品国产色婷婷| 一级黄色大片毛片| 免费在线观看成人毛片| 久久久久久久久大av| 日韩欧美在线乱码| 在线观看午夜福利视频| 欧美一区二区精品小视频在线| 国产69精品久久久久777片| 久久久久久伊人网av| 午夜日韩欧美国产| 丝袜美腿在线中文| 久久精品91蜜桃| 国产麻豆成人av免费视频| 久久精品夜夜夜夜夜久久蜜豆| 精品久久久久久久久久免费视频| 久久久精品94久久精品| 波野结衣二区三区在线| 少妇熟女欧美另类| av免费在线看不卡| 尾随美女入室| 禁无遮挡网站| 久久国产乱子免费精品| 人妻丰满熟妇av一区二区三区| 国产精品精品国产色婷婷| 国产精品亚洲一级av第二区| 午夜激情欧美在线| 一进一出好大好爽视频| 亚洲人成网站在线观看播放| а√天堂www在线а√下载| 你懂的网址亚洲精品在线观看 | 亚洲精品粉嫩美女一区| 国产单亲对白刺激| 国产69精品久久久久777片| 一区二区三区高清视频在线| 三级毛片av免费| 国产乱人视频| 国产aⅴ精品一区二区三区波| 亚洲美女视频黄频| 欧美成人精品欧美一级黄| 99国产极品粉嫩在线观看| 久久午夜亚洲精品久久| 三级经典国产精品| 日韩欧美免费精品| 午夜免费男女啪啪视频观看 | 国产美女午夜福利| 天天躁夜夜躁狠狠久久av| 韩国av在线不卡| 国产 一区精品| 九九爱精品视频在线观看| 91麻豆精品激情在线观看国产| 国产精品永久免费网站| www.色视频.com| 久久精品国产亚洲av天美| 天堂√8在线中文| 日本熟妇午夜| 熟女人妻精品中文字幕| 日韩欧美一区二区三区在线观看| 小蜜桃在线观看免费完整版高清| av卡一久久| 欧美+亚洲+日韩+国产| 国产在视频线在精品| 日韩欧美免费精品| 欧美三级亚洲精品| 欧美3d第一页| 国产黄a三级三级三级人| 欧美激情久久久久久爽电影| 国产麻豆成人av免费视频| 99热网站在线观看| 搞女人的毛片| 精品人妻熟女av久视频| 亚洲综合色惰| 91狼人影院| 国产片特级美女逼逼视频| 久久这里只有精品中国| 久久久久免费精品人妻一区二区| 一级毛片我不卡| 亚洲精品日韩av片在线观看| 国产欧美日韩精品一区二区| 成人无遮挡网站| 久久国产乱子免费精品| 国产激情偷乱视频一区二区| 亚洲va在线va天堂va国产| 亚洲国产精品sss在线观看| 欧美日本视频| 亚洲四区av| 一级黄色大片毛片| 最近2019中文字幕mv第一页| 人人妻,人人澡人人爽秒播| 男插女下体视频免费在线播放| 网址你懂的国产日韩在线| 欧美色视频一区免费| 成人av一区二区三区在线看| 国产成人aa在线观看| 精品久久久久久久久亚洲| 国产在线精品亚洲第一网站| 久久精品影院6| 尾随美女入室| 亚洲高清免费不卡视频| 99久久久亚洲精品蜜臀av| 美女 人体艺术 gogo| 亚洲乱码一区二区免费版| 极品教师在线视频| 久久久久久久久久黄片| 免费av观看视频| 久久韩国三级中文字幕| 在线天堂最新版资源| 中文字幕精品亚洲无线码一区|