• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rational construction and triethylamine sensing performance of foam shaped α-MoO3@SnS2 nanosheets

    2022-03-14 09:30:56XinhuiDongQingHnYruKngHiongLiXinyuHungZhengtoFngHuiminYunAhmeElzthryZongtoChiGungleiWuWnfengXie
    Chinese Chemical Letters 2022年1期

    Xinhui Dong,Qing Hn,Yru Kng,Hiong Li,Xinyu Hung,Zhengto Fng,Huimin Yun,Ahme A.Elzthry,Zongto Chi,?,Gunglei Wu,?,Wnfeng Xie,??

    aSchool of Material Science &Engineering,Institute of Materials for Energy and Environment,State Key Laboratory of Bio-Fibers and Eco-Textiles,Qingdao University,Qingdao 266071,China

    bSchool of Electronics and Information,Qingdao University,Qingdao 266071,China

    cCollege of Physics and Electronic Engineering,Qilu Normal University,Ji’nan 250200,China

    dMaterials Science and Technology Program,College of Arts and Sciences,Qatar University,PO Box 2713,Doha,Qatar

    ABSTRACT Owing to their high surface area,stable structure and easy fabrication,composite nanomaterials with encapsulation structures have attracted considerable research interest as sensing materials to detect volatile organic compounds.Herein,a hydrothermal route is designed to prepare foam shaped α-MoO3@SnS2 nanosheets that exhibit excellent sensing performance for triethylamine(TEA).The developed sensor,based on α-MoO3@SnS2 nanosheets,displays a high response of 114.9 for 100 ppm TEA at a low working temperature of 175°C with sensitivity higher than many other reported sensors.In addition,the device shows a wide concentration detection range(from 500 ppb to 500 ppm),good stability after exposure to air for 80 days,and excellent selectivity.The superior sensing characteristics of the developed sensor are attributed to the high crystallinity of α-MoO3/SnS2,excessive and accessible active sites provided by the good permeability of porous SnS2 shells,and the excellent conductivity of the encapsulation heterojunction structure.Thus,the foam shaped α-MoO3@SnS2 nanosheets presented herein have promising practical applications in TEA gas sensing devices.

    Keywords:MoO3 SnS2 Encapsulation heterojunction Triethylamine Sensing performance

    In addition to the maturity and commercial promotion of 5 G technology,the internet of things(IoT),artificial intelligence and wearable electronics are bound to cause significant development in the industry-university research cooperation.Among them,smart sensors are widely used in IoT,wearable devices and artificial intelligence fields owing to their excellent performance in the realtime acquisition,feedback and analysis of large amounts of data[1,2].Thus,sensor technology has broad market demand and application prospects.In particular,research on gas sensors has attracted research interest because of the gradual increase in human environmental awareness and the demand for a better environment[3].Gas sensors can directly detect dangerous situations caused by toxic and harmful components in the air[4].Therefore,the design and fabrication of gas sensors with good sensitivity,fast response,a low detection limit,excellent selectivity and effective cost are also highly desirable[5].

    Among the several types of available gas sensors,such as oxide semiconductor[6],catalytic combustion[7],thermal conductivity cell[8],electrochemical[9]and solid electrolyte[10],metal oxide semiconductor(MOS)gas sensors have been extensively studied owing to their controllability,high sensitivity and good stability[11,12].According to literature,MOS-based sensors play an important role in monitoring toxic and harmful gases,such as triethylamine(TEA)[13],toluene[14],acetone[15,16],CO[17,18],H2[19],H2S[20],NH3[21],NOx[22],ethanol[23–26]and formaldehyde[27].Of the various available metal oxide semiconductors,such as MoO3[28–30],ZnO[31],SnO2[32],WO3[33],Fe2O3[34],Co3O4[35,36]and In2O3[37–39],MoO3has unique advantages as a traditional sensing material in gas monitoring owing to its special electrical characteristics,excellent high stability,high reactivity and surface effect[40].For example,chemical sensing performance can be significantly enhanced from 7 to 33viathe introduction of 2DMoO3nanosheets compared with sensors using bulk MoO3[41].In 2019,Zhuet al.fabricated hollow MoO3microcages that exhibited larger ethanol gas response than that of solid polyhedrons[42].In their study,porous ultrathinα-MoO3nanosheets with oxygen vacancies were obtainedviathe solvothermal approach and their sensor demonstrated the fastest response to trimethylamine(TMA)at 133°C(the response of the sensor was 198 ppm to 50 ppm TMA)[43].Very recently,α-MoO3/BiVO4composites with a heterojunction were synthesizedviathe hydrothermal method and the results showed that the response of theα-MoO3/BiVO4composite to 20 ppm TEA was 1.86 times and 15 times higher than those ofα-MoO3and BiVO4,respectively,at 125°C[44].

    TEA,a volatile organic compound(VOC),is extensively used in catalysts,preservatives,curing agents,synthetic dyes and industrial raw materials[45,46].However,the toxic,volatile,flammable and explosive nature of TEA is disadvantageous in its practical applications[47].Once an industrial leakage occurs,it is extremely easy to cause serious injuries or destruction to the public environment and human body[48].Therefore,developing a TEA gas sensor with fast response,wide detection limitation,good selectivity,low working temperature and long-term stability is important and urgent for industrial and agricultural production activities.Thus far,TEA sensors based on MOSs,such as ZnO[49],SnO2[50],Fe2O3[51,52],V2O5[53],In2O3[54]and ZnCo2O4[55],have been widely investigated.Although it has been found that molybdenum oxide(MoO3)also has TEA sensing properties,the potential benefits of MoO3to TEA gas warrant further exploration[56].SnS2is a multifunctional narrow bandgap(2.2 eV)n-type semiconductor that has been widely used in various fields,such as photoelectric,photoelectrochemical and lithium-ion batteries(LIBs)[57–59].Very recently,SnS2nanomaterials have attracted substantial research attention because they are good candidates for the synthesis of gas sensing nanocomposites with other MOSs[60].For example,Guet al.reported that a SnO2/SnS2heterojunction based chemiresistive gas sensor exhibited excellent sensitivity and selectivity to different concentrations of NO2,from 1 ppm to 8 ppm,at 80°C[61].Yanet al.reported that SnS2/rGO nanohybrids show ultrasensitive room temperature ppb-level NO2gas sensing performance[62],and Yanet al.demonstrated that Schottky-contacted n-type SnS2gas sensors reveal excellent device sensitivities,as high as 13,000%for 9 ppm and 97% for 1 ppb NO2[63].To the best of our knowledge,the development of a novel TEA sensing MoO3@SnS2material with excellent sensing performance at low operating temperature is still a major challenge,despite the considerable progress in composite of SnS2and other metal oxides.

    Herein,MoO3@SnS2composites with encapsulation structures were obtainedviaa two-step hydrothermal method wherein the thickness of the SnS2shells was manipulated by controlling the second hydrothermal reaction time.Accordingly,the sensing performances of different MoO3@SnS2composites were carefully studied.Furthermore,gas sensing measurements revealed that MoO3@SnS2composites with encapsulation structures display excellent gas sensing performance as compared to individual MoO3and SnS2.

    Theα-MoO3nanosheets were successfully synthesized by the following processes,which have reported in detail in our previous works[64].First,1 g(NH4)2MoO4,300 mg NH4F,100 mg NaOH,and 3 g C6H12O6were dissolved in 50 mL distilled water,followed by vigorous stirring for 30 min.Subsequently,the obtained solution was transferred into a 60 mL Teflon-lined autoclave and heated at 120°C for 12 h.Next,the obtained suspension was washed several times with absolute ethanol and deionized water,to remove redundant ions,and centrifuged at 6900 rpm for 30 min.Then,the product was calcined at 400°C for 2 h to obtain the final gray precursor.Then we synthesized foam shaped MoO3@SnS2nanosheets through a second hydrothermal reaction.In this process,360 mg of the obtained gray precursor,175.3 mg SnCl4·5H2O,6 mL CH3COOH and excess CH3CSNH2were first dissolved into 40 mL ethanol,followed by vigorous stirring for 30 min.The resulting solution was then transferred into a 60 mL Teflon-lined autoclave and heated at 160 °C for 2,6 and 10 h.Then,the obtained suspension was washed several times with absolute ethanol and deionized water,respectively.After drying at 60°C overnight in a vacuum chamber,the MoO3@SnS2composites were obtained.For convenience,we named the three composites MS2,MS6 and MS10 according to their second step hydrothermal reaction times of 2,6 and 10 h,respectively.

    Fig.1.(a)Schematic illustration of the synthesis processes for MoO3@SnS2 nanocomposites and an as-fabricated gas sensor.(b–d)Field-emission scanning electron microscopy(FE-SEM)images of α-MoO3 nanosheets and(e–g)FE-SEM images of the MS6 composite at increasing magnification.

    The as-prepared sensing material was mixed with ethanol and continuously grounded to form a slurry.Then,the slurry was pasted onto a ceramic tube with a brush to form a thin and uniform sensing material coating.Four Pt wires and a pair of Au electrodes were pre-installed on the ceramic tube to facilitate the collection of electrical signals.A Ni–Cr coil pierced through the ceramic tube was used as a heater.Next,the Pt wires and the Ni–Cr heater were soldered on the pedestal of the gas sensor.The response(Rs)of the sensor was calculated byRs=Ra/Rg,whereRaandRgare the resistances in fresh air and target gas environment,respectively.The response and recovery times were defined as the time taken by the sensor to reach 90% of the total resistance variation[65].

    Fig.1a provides a schematic of the overall process of material synthesis and device preparation.Herein,we first prepared theα-MoO3precursorviathe hydrothermal method and then annealed at 400°C.Thereafter,dark MoO3@SnS2composites with encapsulation structures were obtained by the second hydrothermal reaction route.Finally,pureα-MoO3and MoO3@SnS2sensors were fabricated using brush-coating technology.FE-SEM was used to examine the microstructure and morphology of as-prepared samples.As Figs.1b and c show,several MoO3nanosheets were successfully synthesized with irregular sheet-like profiles.To scrutinize the morphology of the MoO3nanosheets,high-magnification FE-SEM was employed.The average thickness of anα-MoO3nanosheet was~200 nm and its surface are rather smooth(Fig.1d).Interestingly,MS6 exhibits markedly different morphology,though the overall profile indicates nanosheet structure(Figs.1e and f).Additionally,the thickness of the nanosheets increases from 200 nm to 400 nm,which is attributed to the encapsulation of SnS2to the positive and negative facets ofα-MoO3nanosheets.In addition,the thickness of SnS2layer was determined by the second hydrothermal reaction time.According to a rough estimation,the average thickness of a SnS2single face is about 100 nm.Tremendous changes also occurred in the morphology of the MoO3@SnS2composite,from its original smooth surface to a foam-shape(Fig.1g),which considerably increases the specific surface ratio.This can increase gas absorption capacity and create more active centers,which are beneficial to sensing performance.

    Fig.2.(a)XRD pattern of pure α-MoO3 precursor and MS6 nanocomposites.XPS spectra of MS6 indicated(b)Mo 3d,(c)O 1s,(d)Sn 3d and(e)S 2p.(f)TEM and(g)HR-TEM images of MS6 composite.

    XRD patterns of MoO3precursor and MS6 composite were measured because of the distinguished difference sensing performance(Fig.2a).In this work,MoO3is the reference material,MS6 exhibits the best sensing performance among MoO3,MS2,MS6 and MS10.For pure MoO3nanosheets,diffraction peaks were located at 2θ=12.8°,23.3°,27.3°,33.7° and 38.9° that can be ascribed to the(200),(101),(210),(111)and(600)planes.These results agree well with standard diffraction patterns of orthorhombicα-MoO3(JCPDS No.89-7112).Furthermore,peaks corresponding toα-MoO3and SnS2were detected in the XRD patterns of the MS6 composite as theα-MoO3nanosheets are coated by ultrathin SnS2sheets.Five small peaks are observed at 2θ=15.0°,29.2°,36.4°,48.0°and 50.0°,corresponding to the(002),(101),(103),(105)and(110)planes,respectively,in the hexagonal phase of SnS2(JCPDS card no.89-2357).No diffraction peaks from impurities were detected.Furthermore,it was found that the intensity of the diffraction peaks ofα-MoO3is stronger than those of SnS2due to the higher crystallinity ofα-MoO3.These results confirm that MoO3@SnS2nanocomposites with high crystallinity were successfully synthesized.

    High-resolution XPS measurements were performed to further analyze the chemical components and valence states of the MoO3@SnS2composites.The peaks of Mo 3d,O 1s,Sn 3d,and S 2p can be clearly identified in the XPS spectrum of MoO3@SnS2(Figs.2b–e).This indicates that the final product only contains Mo,O,Sn and S.In Fig.2b,peaks at 235.8 and 232.7 eV belong to the doublet Mo 3d3/2and Mo 3d5/2,respectively,which is attributed to the Mo6+ofα-MoO3phase[66].Fig.2c displays the O 1s XPS spectrum.Two peaks at 530.6 and 531.5 eV indicate two independent types of O species in MoO3@SnS2.According to literature,the peak at 530.6 eV could be ascribed to surface lattice oxygen in MoO3@SnS2nanocomposites and the peak at 531.5 eV could be surface absorbed oxygen species,such as O?,O2?and O2?,that are in oxygen deficient regions within the matrix of MoO3@SnS2.As shown in Fig.2d,there are two sharp peaks in the XPS spectrum of Sn 3d,at 495.69 and 487.27 eV,which are the peaks of Sn 3d3/2and Sn 3d5/2,respectively[67].In Fig.2e,the S 2p spectra was assigned to the binding energy of S 2p1/2(163.65 eV)and S 2p3/2(162.25 eV),which contributed to the S2?in the SnS2.

    Figs.2f and g display TEM and HR-TEM images of the MS6 nanocomposite.It can be clearly seen that the SnS2phase is connected to the surface of theα-MoO3phase.The 0.329 nm fringe spacing corresponds to the(111)plane of SnS2and the 0.382 nm fringe spacing fits well with the(110)plane ofα-MoO3.We further verified the constituent elements and corresponding ratio of MoO3@SnS2nanocompositesviaenergy dispersive X-ray(EDS)analysis(Fig.S1 in Supporting information).The EDS results reveal that the MS6 composites are composed of Mo,O,S and Sn,and the weight ratio meets the chemical formula of MoO3@SnS2.On the other hand,the elements are uniformly distributed on the surface of MoO3@SnS2,which was identified by EDS mapping in Fig.S1.This means thatα-MoO3nanosheets have been successfully coated with the SnS2ultrathin sheets.

    The schematic internal circuit of the homemade sensor was displayed(Fig.S2 in Supporting information).In order to investigate the thermal stability of MoO3@SnS2composites,the TG curve of MS6 was measured,as shown in Fig.3a.Clearly,the weight of the sample begins to decrease after 250°C,which can be attributed to the loss of absorbed water and the decomposition of residual reagents,such as NH4F.Thereafter,a significant decrease can be observed in weight between 350°C and 430°C,which should be related to the oxidation behavior of SnS2to SnO2in the MoO3@SnS2composite.In the next stage(430–740°C),no obvious changes are observed in the TG curve,indicating formation of thermally stable composite.In contrast,there is another sudden weight loss after 740°C,which is ascribed to the melt and sublimation behavior of MoO3.Thus,it is demonstrated that the MS6 composite can effectively work below 350°C.

    Fig.3.(a)TG curve of the MS6 composite and(b)sensing performance of pure α-MoO3 precursor,MS2,MS6 and MS10 samples for 100 ppm TEA gas at different operating temperatures.(c)Dynamic response curves of MoO3,MS2,MS6 and MS10 sensors for TEA,from 0.5 ppm to 500 ppm,at 175°C.(d)response versus gas concentrations for MoO3,MS2,MS6 and MS10 sensors.(e)Repeatability test(five periods)of MoO3,MS2,MS6 and MS10 sensors for 100 ppm of TEA at 175°C.(f)Fitting curve between concentration and response used to obtain LoD.

    The operating temperature is an important factor for a gas sensor.Fig.3b shows the relationship between the sensitivity and the temperature of the device.The sensing properties of pureα-MoO3precursor and MoO3@SnS2composites were tested for 100 ppm TEA gas over a wide range of temperatures,from room temperature to 275°C.All samples exhibit an inverted V-type curve with the increase of temperature;however,the MS6 composite displays the highest sensor response of 114.9 at 175°C.On the one hand,the inverted V-type curve(i.e.,the response of the sensor to TEA increases first and then decreases with the increase of temperature)can be attributed to the sensor material being insufficiently active at low temperature and the TEA molecules not having suffi-cient energy to overcome the activation energy barrier and surface adsorption of the oxygen reaction.With the increasing temperature,the material activity is enhanced,the TEA gains energy,and the sensing performance is improved.In contrast,as the temperature continues to increase,the sensing material has difficulty absorbing the test gas,which results in desorption phenomenon on the surface of the material and degradation of sensing performance at high temperature.Therefore,175°C is defined as the optimum working temperature for the MoO3@SnS2sensor.

    Fig.4.(a,b)Response and recovery characteristics of the pure α-MoO3,MS2,MS6 and MS10 sensors for 100 ppm TEA at 175°C.(c)Bar chart of the long-term stability of the MS6 sensor and(d)selectivity of the MoO3 and MS6 sensors to different gases at 175°C.The formation mechanism of the electron depletion layer at the n-n heterojunction energy band structure(e)before contact of n-type MoO3 and n-type SnS2 and(f)after contact of n-type MoO3 and n-type SnS2.(g)Schematics of the gas sensing reaction mechanism of MoO3@SnS2 nanocomposite.

    Fig.3c depicts the dynamic response curves of the pureα-MoO3,MS2,MS6 and MS10 sensors at 175°C for different concentrations of TEA vapor,ranging from 500 ppb to 500 ppm.The results reveal that the response values of all MoO3@SnS2composite sensors climb significantly with increasing TEA concentration while the pureα-MoO3sensor shows sluggish rising performance.Among the samples,the MS6 composite sensor shows the highest response(Fig.3d).The sensing response of the MS6 composite is as high as 234.7 at 500 ppm TEA,which is 16.88 times that of the pureα-MoO3sensor.Even when the concentration of TEA decreases to 0.5 ppm,the response of the MS6 sensor reaches 1.38.This indicates that MS6 has good sensitivity and response to TEA at a low temperature of 175°C.For comparison,the specific response values ofα-MoO3and MS6 sensors to different concentrations are listed in Table S1(Supporting information).From the Table S1,it can be concluded that MS6 sensors have a much higher response to TEA than pureα-MoO3sensors;therefore,MS6 sensors have great application prospects.Additionally,the sensing performance comparison between our sensor and recent literature results are summarized in Table S2(Supporting information).It is worth noting that the MS6 sensor exhibits the highest response in comparison with those reported.In Fig.3e,the repeatability of pureα-MoO3,MS2,MS6 and MS10 composites is evaluated.These results were collected when the pureα-MoO3,MS2,MS6,and MS10 sensors were exposed to fresh air and TEA target gas(100 ppm)at the optimal working temperature of 175°C.The results show that bothα-MoO3and MoO3@SnS2composites have excellent response and recovery stability after five cycles.The limit of detection(LoD)of TEA gas is studied by linear extrapolation of the response sensitivity as a function of TEA concentration LoD(Fig.3f).The calculating formula of the LoD is:LoD=3 ×(standard deviation/slope of responseversusconcentration plot).An ultra-low TEA detection concentration of 177.06 ppb was predicted for MS6.

    Fig.4a shows the dynamic response curves of all sensors for 100 ppm TEA at 175°C.Compared to theα-MoO3sensor,the response time(τres)and recovery time(τrec)of MS2,MS6 and MS10 sensors are shortened(see the bar chart in Fig.4b).Overall,MoO3@SnS2composite sensors exhibit fast recovery performance;that is,MS2 is 23 s,MS6 is 21 s,and MS10 is 32 s.Additionally,the MS6 sensor exhibits the shortestτresof 51 s and theτresof the pureα-MoO3sensor is 57 s,which is slower than that of MS6.This is because the heterostructure interface formed between MoO3and SnS2can activate conducting electrons and accelerate electron transfer behavior.Additionally,an optimal Mo/Sn weight ratio is another beneficial reason for shorter response time.

    From the perspective of industrial applications,a good sensor should have long-term stability.Thus,the stability of MS6 to 100 ppm TEA was evaluated at 175°C over 80 days,as shown in Fig.4c.It is evident that the maximum deviation of the response for the MS6 gas sensor to TEA is less than 10%,which exhibits good stability after 80 days.Selectivity another important function of a gas sensor.In order to study the selectivity of pureα-MoO3and MS6 composite sensors,the responses toward 100 ppm benzene,acetone,acetic acid,methanol,ethanol,ammonia and TEA gases at 175°C were investigated,as shown in Fig.4d.Obviously,both pureα-MoO3and MS6 are sensitive to TEA compared to other gases,which is very attractive for the detection of trace amounts of TEA.Meanwhile,the measured response of the MS6 sensor to TEA is remarkably larger than that of pureα-MoO3,demonstrating the gas sensing performance ofα-MoO3has been effectively enhanced by loading of SnS2ultrathin nanosheets.

    MoO3and SnS2are n-type semiconductors with bandgaps of about 3.3 eV and 2.2 eV(Fig.4e),respectively,that have been intensively investigated as gas sensors[68].As shown in Fig.4f,when MoO3and SnS2contact each other,the intrinsically excited electrons(e?)flow from MoO3to SnS2due to the higher Fermi level(Ef)of MoO3.As the number of e?in the MoO3conduction band increases,the system reaches an equilibrium Fermi level(Ef).Thus,energy-band bending and an additional electron depletion layer(EDL)at the interface between MoO3and SnS2are formed.When the MS6 sensor is exposed to fresh air,the change in resistance of the sensor is replaced by the absorption and desorption process of oxygen molecules(O2)on the surface of the sensing material;the absorbed O2is ionized by capturing conducting electrons from MoO3@SnS2heterojunctions[69].Then,reactive oxygen ions(O2?,O2?or O?)are produced(Fig.4g).In this process,O2acts as the electron acceptor,leading to the creation of an EDL and the increase of sensor resistance.Once exposed to the TEA gas atmosphere at a suitable temperature,the TEA gas molecules will react with the reactive oxygen ions on the surface,then,the released electrons will go back into the conduction band(Eg).Consequently,the EDL becomes narrower,and the sensor resistance decreases.The reactive processes can be expressed by the following formulas:

    In summary,herein,MoO3@SnS2composites were successfully prepared by a facile hydrothermal method.The sensing performance,based onα-MoO3nanosheets and MoO3@SnS2sensors,was carefully investigated with respect to TEA gas.The resultant MS6 composite exhibits superior sensing performance compared to pureα-MoO3nanosheets.The sensor based on MS6 nanosheets displays a high response of 114.9 for 100 ppm TEA at a working temperature of 175°C;the sensitivity is much higher than those reported for other sensors.In addition,the MS6 device shows a wide concentration detection range,from 500 ppb to 500 ppm,very good stability after 80 days exposed in air,and excellent selectivity.The extraordinary performance is ascribed to a synergistic coupling effect between high crystallineα-MoO3/SnS2heterojunctions,encapsulation design,and accessible large pores on the surface of SnS2.This study demonstrates a new avenue to effectively construct gas sensing materials with encapsulation nanostructuresviaa metal oxide and sulfide.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China(No.51227804).This work was also funded by the Postdoctoral Scientific Research Foundation of Qingdao,National College Students Innovation and Entrepreneurship Training Program of China(No.G201911065028),College Students Innovation and Entrepreneurship Training Program of Qingdao University(Nos.X201911065058,X202011065056).Natural Science Foundation of Shandong Province(No.ZR2019YQ24),Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057),the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).The authors would like to thank Kehui Han from Shiyanjia Lab(www.shiyanjia.com)for the SEM and XRD analysis.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.022.

    极品人妻少妇av视频| 热99国产精品久久久久久7| 亚洲三区欧美一区| 丰满饥渴人妻一区二区三| 一边摸一边做爽爽视频免费| 久久精品熟女亚洲av麻豆精品| 精品少妇黑人巨大在线播放| 日韩大码丰满熟妇| 美女扒开内裤让男人捅视频| 一区二区三区乱码不卡18| 婷婷成人精品国产| 男女床上黄色一级片免费看| 汤姆久久久久久久影院中文字幕| www.熟女人妻精品国产| 亚洲欧美精品综合一区二区三区| 秋霞伦理黄片| 大话2 男鬼变身卡| 大码成人一级视频| 2021少妇久久久久久久久久久| 丝瓜视频免费看黄片| 亚洲视频免费观看视频| 在线观看免费日韩欧美大片| 精品第一国产精品| 亚洲欧美激情在线| 午夜福利,免费看| 久久久久久久久久久久大奶| av福利片在线| 香蕉国产在线看| 免费av中文字幕在线| 亚洲综合精品二区| 国产成人系列免费观看| 人体艺术视频欧美日本| 自拍欧美九色日韩亚洲蝌蚪91| 国产免费一区二区三区四区乱码| 乱人伦中国视频| 久久久欧美国产精品| 国产女主播在线喷水免费视频网站| 色婷婷av一区二区三区视频| 一边亲一边摸免费视频| 欧美少妇被猛烈插入视频| netflix在线观看网站| 狠狠精品人妻久久久久久综合| 亚洲欧美成人精品一区二区| 久久久久精品人妻al黑| 国产av码专区亚洲av| 亚洲精品一二三| 看免费成人av毛片| 捣出白浆h1v1| 免费观看人在逋| 高清黄色对白视频在线免费看| 国产男女超爽视频在线观看| 亚洲av电影在线进入| 视频区图区小说| 久久99热这里只频精品6学生| 黄网站色视频无遮挡免费观看| 国产av一区二区精品久久| 天天操日日干夜夜撸| 国产一区亚洲一区在线观看| 欧美日韩国产mv在线观看视频| 成年av动漫网址| 啦啦啦 在线观看视频| 日本av免费视频播放| 黄片播放在线免费| 在线亚洲精品国产二区图片欧美| 欧美日韩综合久久久久久| 亚洲欧美成人综合另类久久久| 久久精品久久精品一区二区三区| 国产深夜福利视频在线观看| 国产熟女欧美一区二区| 亚洲综合色网址| 免费日韩欧美在线观看| 另类亚洲欧美激情| 如日韩欧美国产精品一区二区三区| 成人漫画全彩无遮挡| 精品少妇一区二区三区视频日本电影 | tube8黄色片| 免费女性裸体啪啪无遮挡网站| 最近最新中文字幕免费大全7| 国产免费一区二区三区四区乱码| 精品亚洲成a人片在线观看| 成人亚洲欧美一区二区av| 国产精品秋霞免费鲁丝片| 91精品国产国语对白视频| 中文字幕亚洲精品专区| 国产毛片在线视频| 精品国产乱码久久久久久男人| 国产成人精品久久久久久| 狠狠婷婷综合久久久久久88av| 最近最新中文字幕免费大全7| 亚洲成人手机| 一级爰片在线观看| 伊人亚洲综合成人网| 亚洲国产中文字幕在线视频| 丰满饥渴人妻一区二区三| 午夜福利,免费看| 国产黄色免费在线视频| 9色porny在线观看| 悠悠久久av| 亚洲男人天堂网一区| 成人黄色视频免费在线看| 日本av手机在线免费观看| 国产无遮挡羞羞视频在线观看| 人妻一区二区av| av免费观看日本| 日韩av免费高清视频| 欧美日韩av久久| 天天躁狠狠躁夜夜躁狠狠躁| 黄色一级大片看看| 成人毛片60女人毛片免费| 欧美在线一区亚洲| 国产精品 国内视频| 亚洲精品日韩在线中文字幕| 亚洲一区二区三区欧美精品| 桃花免费在线播放| 狂野欧美激情性bbbbbb| 精品酒店卫生间| 少妇被粗大猛烈的视频| 丰满少妇做爰视频| tube8黄色片| 电影成人av| 久久ye,这里只有精品| 国产乱来视频区| 亚洲成av片中文字幕在线观看| 国产黄频视频在线观看| 99久久综合免费| 亚洲伊人色综图| 大陆偷拍与自拍| 亚洲精品乱久久久久久| 日韩 亚洲 欧美在线| 国产精品久久久人人做人人爽| 久久久亚洲精品成人影院| 日本猛色少妇xxxxx猛交久久| 97精品久久久久久久久久精品| 国产毛片在线视频| 久久久久视频综合| 天堂俺去俺来也www色官网| 亚洲精品美女久久av网站| 少妇人妻 视频| 国产精品久久久久成人av| 日韩 欧美 亚洲 中文字幕| 视频在线观看一区二区三区| 亚洲成人手机| 国产精品国产av在线观看| 免费观看a级毛片全部| 男男h啪啪无遮挡| 国产日韩欧美在线精品| 99香蕉大伊视频| 丁香六月欧美| 妹子高潮喷水视频| 日韩一区二区视频免费看| 久久99一区二区三区| 午夜激情久久久久久久| 国产精品蜜桃在线观看| 一本一本久久a久久精品综合妖精| 午夜福利在线免费观看网站| 中文天堂在线官网| e午夜精品久久久久久久| 中文字幕av电影在线播放| 亚洲av在线观看美女高潮| 精品免费久久久久久久清纯 | 丰满少妇做爰视频| 欧美激情 高清一区二区三区| 哪个播放器可以免费观看大片| 亚洲婷婷狠狠爱综合网| 午夜福利乱码中文字幕| 久久精品久久久久久噜噜老黄| 一级毛片我不卡| 美女中出高潮动态图| 91国产中文字幕| 午夜福利视频精品| 秋霞伦理黄片| 亚洲国产av影院在线观看| 国产精品嫩草影院av在线观看| 亚洲人成网站在线观看播放| 亚洲欧洲国产日韩| 最近的中文字幕免费完整| 99国产精品免费福利视频| 国产精品秋霞免费鲁丝片| 91精品国产国语对白视频| 中文字幕亚洲精品专区| 老汉色av国产亚洲站长工具| av网站在线播放免费| 妹子高潮喷水视频| 亚洲精品aⅴ在线观看| 国产一区二区 视频在线| www.自偷自拍.com| 国产极品天堂在线| 毛片一级片免费看久久久久| 蜜桃在线观看..| 日韩精品有码人妻一区| www日本在线高清视频| a级片在线免费高清观看视频| 成人国产麻豆网| av女优亚洲男人天堂| 国产精品二区激情视频| 中国三级夫妇交换| 中文字幕制服av| 久久99一区二区三区| 色视频在线一区二区三区| 国产亚洲av片在线观看秒播厂| a级毛片在线看网站| 啦啦啦视频在线资源免费观看| 国产色婷婷99| 国产一区二区在线观看av| 黄色视频在线播放观看不卡| 丝袜美腿诱惑在线| 国产精品欧美亚洲77777| 欧美日韩av久久| 欧美97在线视频| 亚洲国产欧美一区二区综合| 99久久综合免费| 午夜福利一区二区在线看| 日韩精品有码人妻一区| 国产乱来视频区| 看免费成人av毛片| 在线观看免费午夜福利视频| 青春草亚洲视频在线观看| 最近2019中文字幕mv第一页| 人妻 亚洲 视频| 亚洲欧洲国产日韩| 精品国产超薄肉色丝袜足j| 香蕉丝袜av| 9色porny在线观看| 波多野结衣av一区二区av| 亚洲精品自拍成人| 制服人妻中文乱码| 狂野欧美激情性bbbbbb| 一个人免费看片子| 亚洲欧美成人精品一区二区| 亚洲七黄色美女视频| 精品福利永久在线观看| 狂野欧美激情性xxxx| av卡一久久| 无遮挡黄片免费观看| 91aial.com中文字幕在线观看| 99久国产av精品国产电影| 不卡视频在线观看欧美| 国产片内射在线| 亚洲av在线观看美女高潮| 汤姆久久久久久久影院中文字幕| 亚洲精品日本国产第一区| 国产一区二区三区综合在线观看| 国产片内射在线| 涩涩av久久男人的天堂| 又大又黄又爽视频免费| 国产一区二区在线观看av| 一边摸一边做爽爽视频免费| 亚洲av欧美aⅴ国产| 美女福利国产在线| 久久久久精品人妻al黑| 成人18禁高潮啪啪吃奶动态图| 一个人免费看片子| 亚洲国产av影院在线观看| 欧美成人午夜精品| 免费观看av网站的网址| 大片免费播放器 马上看| 欧美变态另类bdsm刘玥| 午夜激情久久久久久久| 91成人精品电影| 国产精品国产三级专区第一集| 人人澡人人妻人| 麻豆精品久久久久久蜜桃| 啦啦啦 在线观看视频| 免费久久久久久久精品成人欧美视频| 中文字幕制服av| 久久国产精品大桥未久av| 一区二区三区精品91| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av中文av极速乱| 在线观看国产h片| 丝瓜视频免费看黄片| 男的添女的下面高潮视频| 日韩中文字幕视频在线看片| 国语对白做爰xxxⅹ性视频网站| 亚洲第一av免费看| 一级,二级,三级黄色视频| 国产成人啪精品午夜网站| 欧美日韩亚洲高清精品| 国产成人精品无人区| 天堂8中文在线网| 纯流量卡能插随身wifi吗| 国产成人精品久久久久久| 中国国产av一级| 亚洲精品一区蜜桃| 国产福利在线免费观看视频| 欧美久久黑人一区二区| av线在线观看网站| 日韩av不卡免费在线播放| 久久精品国产综合久久久| 久久久国产欧美日韩av| 亚洲一码二码三码区别大吗| xxxhd国产人妻xxx| 九九爱精品视频在线观看| 男女免费视频国产| 国产精品 欧美亚洲| 亚洲精品在线美女| 天天添夜夜摸| 久久热在线av| 成年av动漫网址| 在线看a的网站| 亚洲国产欧美在线一区| 97人妻天天添夜夜摸| 高清视频免费观看一区二区| 日本一区二区免费在线视频| 在线观看免费高清a一片| 精品亚洲成国产av| 视频区图区小说| 亚洲成人一二三区av| 男的添女的下面高潮视频| 最近手机中文字幕大全| 亚洲成人av在线免费| 久久青草综合色| 亚洲国产精品999| svipshipincom国产片| 无遮挡黄片免费观看| 亚洲国产av新网站| 黑人巨大精品欧美一区二区蜜桃| 日韩精品有码人妻一区| 久久久久久人妻| 免费高清在线观看视频在线观看| 一边摸一边抽搐一进一出视频| 国产av码专区亚洲av| 精品少妇内射三级| 美女高潮到喷水免费观看| 黑人欧美特级aaaaaa片| 国产又色又爽无遮挡免| 搡老乐熟女国产| 国产精品香港三级国产av潘金莲 | 成年女人毛片免费观看观看9 | 午夜免费观看性视频| 精品午夜福利在线看| 国产亚洲精品第一综合不卡| 如日韩欧美国产精品一区二区三区| 久久人人爽人人片av| 中文天堂在线官网| 日韩 亚洲 欧美在线| 国产女主播在线喷水免费视频网站| 超碰成人久久| 黄频高清免费视频| 亚洲欧美一区二区三区久久| 香蕉丝袜av| 亚洲欧美一区二区三区久久| 夫妻性生交免费视频一级片| 亚洲国产最新在线播放| 黑丝袜美女国产一区| 99久久综合免费| 日韩熟女老妇一区二区性免费视频| 免费观看性生交大片5| 久久毛片免费看一区二区三区| 极品人妻少妇av视频| av不卡在线播放| 男人添女人高潮全过程视频| 中文精品一卡2卡3卡4更新| 成年av动漫网址| 91aial.com中文字幕在线观看| 久久久久国产精品人妻一区二区| 国产免费现黄频在线看| 欧美另类一区| 国产精品久久久av美女十八| 观看av在线不卡| 亚洲精品av麻豆狂野| 久久精品aⅴ一区二区三区四区| 国产一区亚洲一区在线观看| 美女中出高潮动态图| 又粗又硬又长又爽又黄的视频| 亚洲第一av免费看| 国产激情久久老熟女| 日韩电影二区| 欧美中文综合在线视频| 赤兔流量卡办理| √禁漫天堂资源中文www| 男女无遮挡免费网站观看| 人人妻人人澡人人看| 亚洲精品第二区| 久久精品熟女亚洲av麻豆精品| 国产淫语在线视频| 免费在线观看黄色视频的| 在线 av 中文字幕| 亚洲久久久国产精品| 中文字幕色久视频| 秋霞在线观看毛片| 久久女婷五月综合色啪小说| 国产亚洲最大av| 伊人久久大香线蕉亚洲五| 国产女主播在线喷水免费视频网站| 9色porny在线观看| 欧美精品高潮呻吟av久久| 制服诱惑二区| 免费日韩欧美在线观看| 久久鲁丝午夜福利片| 2018国产大陆天天弄谢| 天天躁夜夜躁狠狠躁躁| 国产黄色免费在线视频| 亚洲一区中文字幕在线| 天天添夜夜摸| 亚洲国产中文字幕在线视频| 天天躁夜夜躁狠狠躁躁| 亚洲七黄色美女视频| 青春草亚洲视频在线观看| 波多野结衣av一区二区av| 国产精品成人在线| av卡一久久| 大香蕉久久网| av国产精品久久久久影院| 日韩精品免费视频一区二区三区| 午夜老司机福利片| 亚洲欧美色中文字幕在线| 日本色播在线视频| 免费黄色在线免费观看| 国产精品久久久久久人妻精品电影 | av一本久久久久| 欧美97在线视频| 日韩精品有码人妻一区| 亚洲av综合色区一区| 亚洲国产欧美一区二区综合| 在线 av 中文字幕| 国产伦人伦偷精品视频| 久久国产亚洲av麻豆专区| 人妻一区二区av| 大片电影免费在线观看免费| 国产成人系列免费观看| 亚洲av成人精品一二三区| 欧美 日韩 精品 国产| 一区在线观看完整版| 免费看av在线观看网站| 亚洲精品视频女| 国产精品一区二区精品视频观看| 51午夜福利影视在线观看| 亚洲欧洲精品一区二区精品久久久 | 久久久久久人妻| 欧美亚洲 丝袜 人妻 在线| 男人爽女人下面视频在线观看| 欧美激情高清一区二区三区 | 国产精品一区二区在线观看99| 久久午夜综合久久蜜桃| 18禁动态无遮挡网站| 国产精品偷伦视频观看了| 亚洲五月色婷婷综合| 国产福利在线免费观看视频| 老司机深夜福利视频在线观看 | 亚洲成人一二三区av| a级毛片在线看网站| 国产精品嫩草影院av在线观看| 波野结衣二区三区在线| 欧美日韩一级在线毛片| 日韩一区二区三区影片| 亚洲精品视频女| 老司机亚洲免费影院| 国产欧美亚洲国产| 两个人看的免费小视频| 日韩视频在线欧美| 日本av免费视频播放| 国产精品99久久99久久久不卡 | 一本久久精品| 伦理电影大哥的女人| 人人澡人人妻人| 久久久欧美国产精品| 国产精品免费大片| 久久国产精品男人的天堂亚洲| 最近最新中文字幕免费大全7| 热99国产精品久久久久久7| 伊人亚洲综合成人网| 最黄视频免费看| 色吧在线观看| 国产精品99久久99久久久不卡 | av又黄又爽大尺度在线免费看| 老汉色∧v一级毛片| 91国产中文字幕| www.av在线官网国产| 在线观看国产h片| kizo精华| 一本色道久久久久久精品综合| 激情视频va一区二区三区| av在线观看视频网站免费| 2021少妇久久久久久久久久久| 亚洲精华国产精华液的使用体验| 欧美精品av麻豆av| 岛国毛片在线播放| 老司机影院成人| a级毛片在线看网站| 亚洲国产毛片av蜜桃av| 国产男女内射视频| 日韩中文字幕欧美一区二区 | 两个人看的免费小视频| 午夜福利,免费看| 色播在线永久视频| 69精品国产乱码久久久| 午夜福利视频在线观看免费| 伦理电影免费视频| 亚洲精品一二三| 色精品久久人妻99蜜桃| 黄色 视频免费看| 操出白浆在线播放| 亚洲美女搞黄在线观看| 国产亚洲欧美精品永久| 不卡视频在线观看欧美| 99久国产av精品国产电影| 免费高清在线观看视频在线观看| 90打野战视频偷拍视频| 久久韩国三级中文字幕| 免费在线观看完整版高清| 国产av一区二区精品久久| 哪个播放器可以免费观看大片| 啦啦啦啦在线视频资源| 日韩一本色道免费dvd| 欧美 日韩 精品 国产| 各种免费的搞黄视频| 久久毛片免费看一区二区三区| 国产1区2区3区精品| 国产伦人伦偷精品视频| 超碰97精品在线观看| 免费不卡黄色视频| 亚洲欧美成人精品一区二区| 日韩欧美精品免费久久| 亚洲一区二区三区欧美精品| 九九爱精品视频在线观看| 午夜久久久在线观看| 日韩,欧美,国产一区二区三区| 亚洲四区av| 国产一区二区三区av在线| 国产亚洲av片在线观看秒播厂| 在线观看国产h片| 色网站视频免费| 男人舔女人的私密视频| 亚洲精品国产一区二区精华液| 中文字幕人妻丝袜一区二区 | 亚洲欧美成人精品一区二区| 91国产中文字幕| 女的被弄到高潮叫床怎么办| 大码成人一级视频| 亚洲国产日韩一区二区| 亚洲欧美中文字幕日韩二区| 日本一区二区免费在线视频| 久久天堂一区二区三区四区| 99久久精品国产亚洲精品| 中国国产av一级| 精品一区二区三卡| 成人三级做爰电影| 国产av一区二区精品久久| 伦理电影免费视频| 熟女av电影| 亚洲,一卡二卡三卡| 精品酒店卫生间| 亚洲精品久久午夜乱码| 久久国产精品大桥未久av| 亚洲国产最新在线播放| 国产精品av久久久久免费| 人妻人人澡人人爽人人| 人体艺术视频欧美日本| 免费在线观看视频国产中文字幕亚洲 | 色婷婷av一区二区三区视频| 亚洲在久久综合| 色婷婷久久久亚洲欧美| 看非洲黑人一级黄片| 午夜福利视频在线观看免费| 色视频在线一区二区三区| 高清黄色对白视频在线免费看| 中文字幕制服av| svipshipincom国产片| 欧美最新免费一区二区三区| 国产乱来视频区| 亚洲精品乱久久久久久| 欧美日本中文国产一区发布| 亚洲精品日本国产第一区| 免费在线观看黄色视频的| 80岁老熟妇乱子伦牲交| 午夜91福利影院| 一区二区三区精品91| 午夜影院在线不卡| 丁香六月欧美| 午夜日本视频在线| 一个人免费看片子| 亚洲色图综合在线观看| 日韩av不卡免费在线播放| 极品少妇高潮喷水抽搐| 人人妻人人添人人爽欧美一区卜| 永久免费av网站大全| 纯流量卡能插随身wifi吗| 欧美另类一区| 一级毛片黄色毛片免费观看视频| 如何舔出高潮| 丰满乱子伦码专区| 国产精品人妻久久久影院| 九草在线视频观看| 久热爱精品视频在线9| 中国三级夫妇交换| 看免费成人av毛片| 少妇人妻精品综合一区二区| 99热网站在线观看| 国产探花极品一区二区| 九色亚洲精品在线播放| 一级毛片 在线播放| 国产一区二区三区综合在线观看| 国产精品99久久99久久久不卡 | 国产午夜精品一二区理论片| 好男人视频免费观看在线| 中文欧美无线码| 美女午夜性视频免费| 中文字幕av电影在线播放| 日韩一本色道免费dvd| 免费黄频网站在线观看国产| xxxhd国产人妻xxx| 1024视频免费在线观看| 国产成人系列免费观看| 久久国产亚洲av麻豆专区| 欧美亚洲 丝袜 人妻 在线| 久久久久久人妻| 国产97色在线日韩免费| 精品视频人人做人人爽| 黄片播放在线免费| 久久女婷五月综合色啪小说| 国产精品熟女久久久久浪| 久久青草综合色| 看十八女毛片水多多多| 国语对白做爰xxxⅹ性视频网站|