• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Indium-organic framework CPP-3(In)derived Ag/In2O3 porous hexagonal tubes for H2S detection at low temperature

    2022-03-14 09:30:48SihnLiLiliXieGuifngLuoYutongHnMingZhouRwtJisuttiZhigngZhu
    Chinese Chemical Letters 2022年1期

    Sihn Li,Lili Xie,Guifng Luo,Yutong Hn,Ming Zhou,Rwt Jisutti,Zhigng Zhu,,?

    aSchool of Medical Instrument and Food Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China

    bShanghai Normal University Tianhua College,Shanghai 201815,China

    cSchool of Environmental and Materials Engineering,College of Engineering,Shanghai Polytechnic University,Shanghai 201209,China

    dDepartment of Physics,Faculty of Science and Technology,Thammasat University,Pathumthani 12120,Thailand

    eThammasat Research Unit in Innovative Sensor and Nanoelectronic Devices,Thammasat University,Pathumthani 12120,Thailand

    # These authors contributed equally to this work.

    ABSTRACT There is a great demand for high-performance hydrogen sulfide(H2S)sensors with low operating temperatures.Ag/In2O3 hexagonal tubes with different proportions were prepared by the calcination of Ag+-impregnated indium-organic frameworks(CPP-3(In)),and the developed sensors exhibit enhanced gassensing performance toward H2S.Gas sensing measurements indicate that the response of Ag/In2O3(2.5 wt%)sensor to 5 ppm H2S has the highest response(119),operated at 70 °C.The Ag/In2O3(2.5 wt%)based sensor exhibits short response time(20 s),low detection limit(300 ppb),and good selectivity toward H2S gas,which imply that the CPP-3(In)-derived Ag/In2O3 hexagonal tube is a promising candidate to be constructed a low power-consumption H2S sensor.

    Keywords:Ag/In2O3 Indium-organic framework(CPP-3(In))H2S Gas sensor Low power consumption

    Hydrogen sulfide(H2S)is a colorless,corrosive,inflammable,malodorous gas.It is always produced in sewage plants,oil,coal mines,etc.H2S is also widely used in laboratories,chemical industries,and serving as an essential reactant in the production of heavy water.It might be caused sore throat,cough,and eye irritation once people exposed to H2S,even at a small dose of such toxic gas[1].Therefore,there is still a great requirement to find a way to easily and cost-effectively monitor trace amounts of H2S.So far,H2S has been monitored mainly by metal oxides or its composite based gas sensors,and the operating temperatures are normally higher than 200 °C[2].Such a high temperature hinders their practical applications.Hence,it requires exploring new types of H2S sensors with enhanced response and low power consumption.

    Metal-organic frameworks(MOFs),constructed from transitionmetal cations and multidentate organic linkers with coordination bonds,possess tunable nano-scale porosity and structure[3-5],which attracts huge attention as a hot topic in catalysis[6],drug delivery[7],energy device[8],sensors and gas storage[9-11].Benefiting from the unique structure,one critical feature of MOFs is that nanoscale metal particles are easily filled in their cavities,which improves the stability of nanoparticles and endows MOFs with new functions[12].For example,Kitagawa and co-workers prepared Pd/HKUST-1 composites,which had a significantly improved hydrogen storage capacity compared to pure HKUST-1[13].

    Recently,calcining MOF precursor is a feasible way to prepare porous metal oxides with controlled morphology and compositions,and the merits of MOF can be retained after calcination[14-21].For example,In2O3hollow nano-rods were synthesized from In-MOF after calcinating,and it exhibited enhanced ethanol sensing performance[22].Kooet al.used MOFs as templates to prepare PdO/Co3O4by high-temperature calcination,which can detect human exhaled gas[23].There are several advantages for MOFderived hybrid structures to fabricate gas sensors,including the variation in composition,large porosity ratio,uniform distribution of components and diverse morphology[24–26].Nevertheless,noble metal doping plays important role in the improvement of sensing response.Therefore,it will be helpful to design and synthesize the MOF-derived hybrid structures based sensors with excellent sensing performance.

    Herein,the sensing materials of Ag/In2O3porous hexagonal tubes were designed and synthesized by calcining Ag+-impregnated CPP-3(In)precursors.Then,the influences of operating temperature and composition of Ag/In2O3for H2S-sensing response were investigated.Finally,the behavior and mechanism of Ag/In2O3gas sensors were made a thorough investigation.

    Fig.1.(a)X-ray diffraction patterns of the as-synthesized In2O3 and Ag/In2O3 oxides.(b)Enlarged region of XRD patterns(36°?45°).

    Fig.2.SEM images of different samples:(a)CPP-3(In),(b)Ag+/CPP-3(In),(c)In2O3,(d)Ag/In2O3(1.5 wt%),(e)Ag/In2O3(2.5 wt%)and(f)Ag/In2O3(3.5 wt%).EDS elemental mapping of Ag/In2O3(2.5 wt%):(g)SEM image and(h-j)element distribution(In,O and Ag).

    All chemicals were purchased from Sinopharm Chemical Reagent Co.,Ltd.in reagent grade.The hexagonal rod-like CPP-3(In)was synthesized using the previous reported method[22].Briefly,0.267 g In(NO3)3·4.5H2O and 0.107 g of 1,4-benzenedicarboxylic acid(H2BDC)were added in 30 mLN,N-dimethylformamide(DMF),and then 50 μL NaOAc(0.04 mol/L)was put in after continuous stirring.The obtained precursors were heated at 140 °C for 10 min and then cooled down to 25 °C.The dispersion was centrifuged at 8000 rpm for 30 min,followed by washing with DMF and methanol for 3 times,and then drying at 80 °C for overnight.

    The preparation of Ag+/CPP-3(In)was utilizing an ion impregnation route.AgNO3and CPP-3(In)with different weight percent ratios(0,1.5 wt%,2.5 wt% and 3.5 wt%)were put together with 20 mL deionized water with continuous stirring at 25 °C for 3 days.The mixture was subjected to bath sonication by ethanol,and then the samples(Ag+/CPP-3(In))were prepared after overnight dried at 60 °C.To obtain metal oxide-based sensing materials(In2O3and Ag/In2O3),the MOF specimens were thermally heated at 450 °C for 1–2 h under an ambient environment.The heating rate plays an important role to keep the shape of MOF,and it was thus strictly controlled at 1–2 °C per minute.

    Fig.3.TEM images of(a)In2O3 and(b)Ag/In2O3(2.5 wt%).HRTEM images of(c)In2O3 and(d)Ag/In2O3(2.5 wt%);SAED images of(e)In2O3 and(f)Ag/In2O3(2.5 wt%).

    The structure information was characterized by X-ray diffraction using a monochromatized Cu target(XRD,D8-Advance,Bruker,Germany,λ=1.5418 ?A),and X-ray photoelectron spectroscopy(XPS,Escalab 250Xi,Thermo,UK).The surface morphology of MOF and oxides were observed by scanning electron microscopy(SEM,S-4800,Hitachi,Japan).The qualitative elemental analysis was investigated by an energy dispersive X-ray spectrometer(EDX),affiliated to the SEM.A transmission electron microscope(TEM,JEM-2100F,JEOL,Japan)was selected to examine the sample microstructure at an accelerating voltage of 200 kV.

    The Ag/In2O3porous hexagonal tubes were blended with DI water(4:1)to produce a homogeneous paste.Such paste was coated on a ceramic tube,and then dried under an infrared dryer to obtain sensitive film.Finally,the welded gas sensors were aged in an aging benchtop at 340 °C for 7 days.

    Fig.4.XPS spectra of the Ag/In2O3(2.5 wt%):(a)In 3d,(b)O 1s,(c)Ag 3d;and(d)Ag 3d spectrum of Ag/In2O3(3.5 wt%).

    The sensor performance was tested through a gas sensing analysis instrument(WS-30A,Weisheng,China).The sensing response(S)is defined as the resistance ratio of gas sensors in the target gas(Rg)to that in the air(Ra),and it can be described asS=Ra/Rg.To optimize the operating temperature,the sensor was evaluated at 30–200 °C.

    XRD patterns of the CPP-3(In),pristine In2O3,Ag+/CPP-3(In),and Ag/In2O3are displayed in Fig.1 and Fig.S1(Supporting information).It can be found in Fig.S1 that the positions of characteristic peaks of Ag+/CPP-3(In)are well-matched with the diffraction peaks of CPP-3(In),indicating that the introduction of Ag+did not change the crystal structure of CPP-3.Besides,the sharp characteristic peaks of Ag+/CPP-3(In)show a higher crystallinity[22].After the calcination of MOFs at 450 °C,XRD patterns of the In2O3and Ag/In2O3with different ratios are illustrated in Fig.1.The main diffraction peaks(2θ=21.498°,30.580°,35.466°,37.685°,41.845°,45.691°,51.037° and 60.676°),corresponding to the(211),(222),(400),(411),(332),(431),(440)and(622)planes of the In2O3with the cubic crystal structure(JCPDS No.06–0416).

    For the Ag/In2O3(1.5 wt%),no obvious Ag diffraction peak is observed,mainly due to the low Ag content.For the Ag/In2O3(2.5 wt%)and Ag/In2O3(3.5 wt%),there are obvious diffraction peaks at 38.116° and 44.277°,corresponding to(111)and(200)of elementary substance Ag(JCPDS No.04–0783),respectively.Such results indicate that the Ag nanoparticles were successfully introduced into the composites.The formation processes of Ag nanoparticles are speculated as follows:Ag+firstly enters the pores of CPP-3,and then Ag+may be reduced to Ag nanoparticles by certain reducing gasses generated by the decomposition of organic ligands in CPP-3 during the calcination process[22].The morphologies of CPP-3(In),Ag+/CPP-3(In)templates,In2O3,and Ag/In2O3(1.5–3.5 wt%)were characterized by SEM.As shown in Fig.2a,all CPP-3(In)s are nano-rod with a hexagonal shape,the size is uniform at about 2.0 μm in diameter and a length of 10.0 μm.The morphology of Ag+/CPP-3(In)in Fig.2b is similar to that of CPP-3(In),only displaying a small number of broken short rods,may be caused by the process of introducing Ag+.After calcining in air,MOF is completely converted into metal oxides(as described in the XRD results).As shown in Figs.2c–f,pristine In2O3illustrates a hexagonal tube shape,and there are some broken tubes and fragments.Compared with Ag+/CPP-3(In),the tube of Ag/In2O3has a smaller diameter size,reduced from 10 μm to 5 μm,with a rough and porous surface.Compared with In2O3,the number of the short tube increases and the thickness is uneven.As the amount of Ag increased,the surface of Ag/In2O3tubes becomes rougher.EDS mapping results are shown in Figs.2g–j.In,O and Ag elements are evenly distributed in the Ag/In2O3(2.5 wt%).This also shows that Ag nanoparticles are uniformly dispersed in In2O3tubes.

    TEM was selected to further observe the microstructures of different samples.Figs.3a and b are TEM images of In2O3and Ag/In2O3(2.5 wt%),respectively.The tube walls of In2O3and Ag/In2O3(2.5 wt%)are assembled by nanoparticles,this is mainly formed during the calcination process.HRTEM images are shown in Figs.3c and d.For the Ag/In2O3(2.5 wt%),the interplanar distance of 0.288 nm is in line with the(222)planes of cubic In2O3[27],and the lattice distance of 0.236 nm belongs to the(111)planes of Ag[28].Fig.3d proves that Ag is not doped into the lattice of In2O3,but co-existing with In2O3nanoparticles to form a tube-like structure.As shown in Figs.3e and f,a series of diffraction rings can be found in SAED patterns,indicating the polycrystalline nature of the In2O3and Ag/In2O3(2.5 wt%).

    XPS was selected to evaluate the surface chemical state of specimens,the full XPS spectra of pristine In2O3,Ag/In2O3(2.5 wt%),and Ag/In2O3(3.5 wt%)are listed in Fig.S1.The In 3d spectrum of Ag/In2O3(2.5 wt%)is shown in Fig.4a.The two main peaks at 451.7 and 444.4 eV are related to In 3d(both In 3d3/2and 3d5/2),respectively[27].Fig.4b is the O 1s spectrum of Ag/In2O3(2.5 wt%).The peak at 530.4 eV belongs to the oxygen coordination(O2–)in In–O,and the other peak at 531.9 eV owns to the adsorbed oxygen species(O?and O2?)[29,30].The sensing performance is highly related to the amount of surface adsorbed oxygen.As shown in Figs.4c and d,the binding energy of 368.5 eV and 374.5 eV are related to Ag 3d(Ag03d5/2and 3d3/2),and that is more obvious in Ag/In2O3(3.5 wt%)[31].This indicates that the Ag in the Ag/In2O3sample exists as an elementary substance Ag,which is consistent with the XRD results.

    The working temperature and the concentration of noble metal are important parameters for sensing performance.To find the optimized working temperature and loading contents of additives,the performance of In2O3and Ag/In2O3toward 5 ppm H2S at different operating temperatures was investigated.As illustrated in Fig.5a,all sensors show an “increasing-maximum-decreasing”trend,and the maximum responses to 5 ppm H2S were all operated at 70 °C,and the response decreased to 1.1–1.5 when the operating temperatures rose to 200 °C.It also indicates that the Ag/In2O3(2.5 wt%)based sensor has the highest response value of 119 to 5 ppm H2S,around 4 times higher than pristine In2O3.Further increasing the amount of Ag to 3.5 wt%,the sensor responses decreased.Therefore,Ag/In2O3(2.5 wt%)is the optimized sensing material for H2S detection,operated at 70 °C.

    Besides,the response of the gas sensor is easily affected by the relative humidity(RH)at low temperatures,so the response of the sensor at different RH was tested.The different saturated salts were selected to produce RH atmosphere[32],including 95%RH KNO3,85% RH KCl2,75% RH NaCl2,54% RH Mg(NO3)2,33% RH MgCl2,and 11% RH LiCl.The test results show that the Ag/In2O3(2.5 wt%)sensor possesses the highest response of 1.38 at 95%RH,as shown in Fig.5b.Therefore,at the optimized working temperature of 70 °C,the influence of humidity on the sensor is negligible.

    Fig.6a illustrates the resistance variationversustime of the Ag/In2O3(2.5 wt%)gas sensor to 0.3–5 ppm H2S at 70 °C.The response curve shows a stepwise distribution exposed to different concentrations of H2S.In Fig.6b,as the H2S concentration decreased from 5 ppm to 0.3 ppm,the response of the Ag/In2O3(2.5 wt%)sensor gradually decreases.When the H2S concentration is reduced to 0.3 ppm,the response of Ag/In2O3based gas sensor(2.5 wt%)is still as high as 2.25,which indicates this sensor is able to effectively detect H2S with low concentration.

    Fig.5.(a)Gas response towards 5 ppm H2S at various working temperatures;(b)The effect of RH to the Ag/In2O3(2.5 wt%)based sensor.

    Fig.6.(a)Resistance variation versus time,and(b)response variation versus H2S concentration for Ag/In2O3(2.5 wt%)gas sensor to the different amount of H2S gas at 70°C.

    Fig.7.The response-recovery curve of Ag/In2O3(2.5 wt%)gas sensor to 5 ppm H2S at 70 °C.

    Fast response/recovery is also crucial in the practical application of sensors.The dynamic response-recovery trend of Ag/In2O3(2.5 wt%)sensor towards 5 ppm H2S at 70 °C is displayed in Fig.7.After exposure to the target gas,the sensor can reach 90% resistance change within 20 s.However,a very long recovery time is required,and this sensor can only recover to 8% of the maximum value for 3600 s.Herein,the Joule heating effect was selected to speed up the desorption of H2S molecules[33,34].After optimization,we found 5.5 V pulse voltage(400 °C)can effectively desorb the H2S on the surface,and the sensor can restore to the initial state in a short time.

    Fig.8.Four sets of sensors selectivity to 5 ppm H2S and other gasses with different concentrations(10 ppm or 50 ppm)at 70 °C.

    Selectivity is one of the most important factors[35].To test this characteristic,the response of Ag/In2O3(2.5 wt%)gas sensor to various gasses such as acetone(CH3COCH3),benzene(C6H6),ethanol(C2H5OH),hydrogen sulfide(H2S),methane(CH4),and ammonia(NH3)were tested.Fig.8 shows that the response of Ag/In2O3(2.5 wt%)sensor to 5 ppm H2S is 119,which is much higher than the response to 50 ppm ethanol and other gasses.Therefore,the gas sensor based on Ag/In2O3(2.5 wt%)exhibits exceptional selectivity to the detection of H2S at low operating temperature.

    Reproducibility is another important parameter in the field of sensing.Fig.9a illustrates the repeatability of Ag/In2O3(2.5 wt%)gas sensor during the continuous response/recovery process.The results indicate good reversibility for six cycles of testing,the resistance does not show significant attenuation.The interesting point is that the sensor can keep the same initial state of resistance and recovery speed.Obviously,the Ag/In2O3(2.5 wt%)sensor has very stable repeatability.The long-term stability is also important for the gas sensors in practical applications,the response towards 5 ppm H2S was continuously measured within a month.The results in Fig.9 indicate the Ag/In2O3(2.5 wt%)sensor exhibits good long-term stability.

    Fig.9.(a)Repeatability of Ag/In2O3(2.5 wt%)gas sensor after continuous exposure(6 cycles)to 5 ppm H2S.(b)Long-term stability of Ag/In2O3(2.5 wt%)gas sensor.

    Fig.10.Schematic illustration of the energy band structures of In2O3 in(a)air and(b)H2S,and the energy band structures of Ag/In2O3 in(c)air and(d)H2S atmosphere,respectively.

    The enhanced sensing performance of Ag/In2O3(2.5 wt%)gas sensors was summarized as the following points:

    The pristine In2O3[36,37]is a surface-controlled type semiconductor,and the resistance change is mainly related to chemisorbed oxygen[38].Once the In2O3is put in the air,as shown in Fig.10a,the oxygen is chemisorbed on the surface of In2O3by taking free electrons to form O2?or O?.The electron concentration of the In2O3sensor is thus reduced and the resistance is increased.

    Once exposed to reducing gas(H2S),it can react with the chemisorbed oxygen to release the electrons into In2O3,leading to the decrease of the resistance of In2O3(Fig.10b).The reaction can be described as below:

    2H2S(g)+ 3O2?(ads)→2H2O(g)+ 2SO2(g)+ 3e?

    For the Ag/In2O3nanocomposite,the decorated Ag on the surface of In2O3may form nano-junctions at the interface and induce the electronic sensitization effect[39].The electrons of In2O3from the conduction bands transfer to Ag nanostructure and create the depletion zone at the interfaces of Ag/In2O3nanocomposite,which may modulate the resistance and surface reactivity,as shown in Fig.10c.When the Ag/In2O3sensor is exposed to H2S in Fig.10d,the reducing gas releases electrons into the Ag/In2O3,the width of the depletion layer was reduced and the resistance was significantly decreased.Since the change of the depletion layer in the Ag/In2O3is much more than in the In2O3,the Ag/In2O3sensor exhibits a higher sensing response.

    Thus,the heterojunction structure acts as a lever to modulate the charge concentration and charge mobility of the sensor surface,thereby enhancing the sensing properties.The substantial improvement of the response may be attributed to the larger change in resistance caused by the increased participation of electrons and creation of depletion zones due to the heterojunction structure of the Ag/In2O3nanocomposite.

    Besides,since Ag nanoparticles have high catalytic activity,they not only provide abundant active sites,but also accelerate surface reactions with lower activation energy[40].Although the addition of precious metals can improve the performance of the sensing material,an appropriate concentration is necessary to obtain the maximum response.In this work,the maximum response was observed for Ag/In2O3(2.5 wt%).When the amount of Ag added is too low(less than 2.5 wt%),the catalytic effect is not enough to bring H2S close to all surfaces of the sensor.For this reason,the enhancement of gas response is limited.When the amount of Ag added exceeds 2.5 wt% and reaches 3.5 wt%,the response of the sensor suddenly decreases,because more Ag nanoparticles can catalyze more H2S gas per unit time,but the desorption process of H2S is also enhanced,resulting in a decrease in the actual amount of H2S adsorption and poor gas response[41].

    Finally,the porous and hollow structure of Ag/In2O3,as shown in Fig.2,provides more sensing reaction sites,which facilitates gas diffusion and adsorption of the sensing layer,and also facilitates uniform loading of Ag nanoparticles throughout the sensing layer.

    Therefore,the great enhancement of gas response of Ag/In2O3(2.5 wt%)based sensor could be attributed the electronic effects of Ag nanoparticles,the catalytic activity of Ag nanoparticles,and the porous and hollow structure of Ag/In2O3(2.5 wt%).

    In this work,Ag/In2O3was successfully prepared from Ag+-impregnated CPP-3(In)through a facile two-step method.The Ag/In2O3exhibits porous hexagonal tube shape,and the response of the Ag/In2O3(2.5 wt%)based sensor towards 5 ppm H2S at 70 °C reaches 119,which is four times higher than the pristine In2O3sensor.The great enhancement of gas response of Ag/In2O3(2.5 wt%)could be attributed as follows:1)The electronic sensitization of Ag nanoparticles;2)The catalytic activity of Ag nanoparticles;3)The porous and hollow structure of Ag/In2O3(2.5 wt%).In short,the Ag/In2O3(2.5 wt%)is a promising candidate to be constructed as a high performance,low power-consumption H2S sensor.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(No.61471233)and Shanghai Sailing Program(No.21YF1431400).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.016.

    亚洲色图av天堂| 熟女少妇亚洲综合色aaa.| 婷婷六月久久综合丁香| 欧美日韩国产亚洲二区| 非洲黑人性xxxx精品又粗又长| 18禁美女被吸乳视频| 最新中文字幕久久久久| 国产99白浆流出| 看免费av毛片| 午夜激情福利司机影院| 国产亚洲欧美在线一区二区| 伊人久久精品亚洲午夜| 色视频www国产| 男女视频在线观看网站免费| 亚洲精品色激情综合| avwww免费| 免费在线观看影片大全网站| 国产午夜精品论理片| 精品久久久久久成人av| 日韩欧美免费精品| 亚洲精品成人久久久久久| 国产探花在线观看一区二区| 51国产日韩欧美| 免费看美女性在线毛片视频| 国内揄拍国产精品人妻在线| 午夜福利在线观看免费完整高清在 | 两个人的视频大全免费| 色综合婷婷激情| 操出白浆在线播放| 日韩欧美三级三区| 午夜福利在线在线| 757午夜福利合集在线观看| 99热精品在线国产| xxxwww97欧美| 青草久久国产| 国产一区二区亚洲精品在线观看| av国产免费在线观看| 99久久九九国产精品国产免费| 国产 一区 欧美 日韩| 国产美女午夜福利| 舔av片在线| 热99在线观看视频| 12—13女人毛片做爰片一| 亚洲无线观看免费| 欧美中文日本在线观看视频| 美女cb高潮喷水在线观看| 搡老妇女老女人老熟妇| 日日摸夜夜添夜夜添小说| 欧美xxxx黑人xx丫x性爽| 久久久久久久午夜电影| 久久久成人免费电影| 亚洲欧美日韩无卡精品| 伊人久久大香线蕉亚洲五| 老熟妇乱子伦视频在线观看| 欧美高清成人免费视频www| 国产高清三级在线| 特大巨黑吊av在线直播| 可以在线观看的亚洲视频| 最近最新中文字幕大全免费视频| 欧美午夜高清在线| 亚洲精品一区av在线观看| 国产精品亚洲一级av第二区| 亚洲午夜理论影院| 中文字幕久久专区| 尤物成人国产欧美一区二区三区| 亚洲人成伊人成综合网2020| 免费观看的影片在线观看| 亚洲欧美一区二区三区黑人| 亚洲av日韩精品久久久久久密| 九色成人免费人妻av| av视频在线观看入口| 1024手机看黄色片| 色精品久久人妻99蜜桃| 亚洲av电影在线进入| 久久中文看片网| 亚洲片人在线观看| 亚洲自拍偷在线| 成人特级黄色片久久久久久久| 在线十欧美十亚洲十日本专区| 亚洲中文日韩欧美视频| 最新美女视频免费是黄的| 欧美中文综合在线视频| 老鸭窝网址在线观看| 国产亚洲欧美在线一区二区| 国产高清视频在线观看网站| 一区福利在线观看| 色在线成人网| 在线观看av片永久免费下载| 日本黄色视频三级网站网址| 网址你懂的国产日韩在线| 丁香六月欧美| av黄色大香蕉| 国产精品久久电影中文字幕| 在线看三级毛片| 精品熟女少妇八av免费久了| 国产亚洲av嫩草精品影院| 国产亚洲av嫩草精品影院| 精品久久久久久久末码| 99国产综合亚洲精品| 久久久久久久久久黄片| 婷婷六月久久综合丁香| 精品国产三级普通话版| av欧美777| 美女免费视频网站| 91av网一区二区| 午夜福利欧美成人| av国产免费在线观看| eeuss影院久久| eeuss影院久久| 午夜福利欧美成人| 国产一区二区在线观看日韩 | 色综合站精品国产| 天堂√8在线中文| 国产欧美日韩精品亚洲av| 88av欧美| 国产国拍精品亚洲av在线观看 | 丝袜美腿在线中文| 狠狠狠狠99中文字幕| 午夜亚洲福利在线播放| 欧美日韩乱码在线| 日韩av在线大香蕉| 午夜福利在线观看吧| 久久6这里有精品| 久久精品国产清高在天天线| 啪啪无遮挡十八禁网站| 婷婷精品国产亚洲av在线| 9191精品国产免费久久| 狂野欧美激情性xxxx| 熟女人妻精品中文字幕| 日本一二三区视频观看| 午夜免费激情av| 18禁裸乳无遮挡免费网站照片| 中国美女看黄片| 日本 欧美在线| 一个人观看的视频www高清免费观看| 99国产精品一区二区蜜桃av| 久久亚洲真实| 色精品久久人妻99蜜桃| 欧美黑人巨大hd| 欧美zozozo另类| 制服丝袜大香蕉在线| 国内毛片毛片毛片毛片毛片| av在线天堂中文字幕| 欧美性猛交黑人性爽| 丰满乱子伦码专区| 哪里可以看免费的av片| 久久精品国产亚洲av香蕉五月| 热99在线观看视频| 黄色女人牲交| 色综合亚洲欧美另类图片| 国产免费av片在线观看野外av| eeuss影院久久| 国产精品一区二区三区四区久久| 琪琪午夜伦伦电影理论片6080| 制服丝袜大香蕉在线| 日韩av在线大香蕉| 免费看十八禁软件| 久9热在线精品视频| 久99久视频精品免费| aaaaa片日本免费| 亚洲欧美精品综合久久99| a级一级毛片免费在线观看| 日韩国内少妇激情av| 又黄又爽又免费观看的视频| 99久久九九国产精品国产免费| 国产午夜精品论理片| 欧美乱码精品一区二区三区| 亚洲无线观看免费| 搡老熟女国产l中国老女人| 亚洲一区二区三区不卡视频| 特级一级黄色大片| 99久久九九国产精品国产免费| 国产精品国产高清国产av| 中文字幕av在线有码专区| 欧美日韩国产亚洲二区| 在线a可以看的网站| 日本免费一区二区三区高清不卡| 一级a爱片免费观看的视频| 久久这里只有精品中国| 久久久久久久久久黄片| 18禁在线播放成人免费| 亚洲av第一区精品v没综合| 夜夜爽天天搞| 午夜福利在线观看吧| 男人和女人高潮做爰伦理| 国内精品久久久久久久电影| 可以在线观看的亚洲视频| 久久久国产成人精品二区| 99久久成人亚洲精品观看| 男女那种视频在线观看| 精品国内亚洲2022精品成人| 18+在线观看网站| 在线十欧美十亚洲十日本专区| 黄色日韩在线| 两个人的视频大全免费| 无遮挡黄片免费观看| av欧美777| 少妇的逼好多水| 制服丝袜大香蕉在线| 久久天躁狠狠躁夜夜2o2o| 久久午夜亚洲精品久久| 欧美丝袜亚洲另类 | 午夜两性在线视频| 国产高潮美女av| 一级a爱片免费观看的视频| 国产极品精品免费视频能看的| 欧美日韩黄片免| 国产男靠女视频免费网站| 久久久久亚洲av毛片大全| 成人av一区二区三区在线看| 我的老师免费观看完整版| 久久精品人妻少妇| 波多野结衣高清无吗| av国产免费在线观看| 88av欧美| 免费观看人在逋| 99riav亚洲国产免费| 黄色片一级片一级黄色片| 免费看日本二区| 精品久久久久久成人av| 久久久精品大字幕| 一本综合久久免费| 精品不卡国产一区二区三区| 嫩草影视91久久| 91av网一区二区| 美女黄网站色视频| 一个人免费在线观看的高清视频| 国产精品久久视频播放| 亚洲人成电影免费在线| 国产视频内射| 一本精品99久久精品77| 中文字幕高清在线视频| 亚洲色图av天堂| 日韩欧美 国产精品| 欧美bdsm另类| 国产av不卡久久| 51午夜福利影视在线观看| 18禁黄网站禁片午夜丰满| svipshipincom国产片| 国产高清三级在线| 免费av观看视频| 成人国产综合亚洲| 国产精品综合久久久久久久免费| 神马国产精品三级电影在线观看| 亚洲美女视频黄频| 嫩草影院精品99| 免费搜索国产男女视频| 久久久久国内视频| 99riav亚洲国产免费| 在线观看午夜福利视频| 给我免费播放毛片高清在线观看| 亚洲精品影视一区二区三区av| 桃红色精品国产亚洲av| 美女高潮的动态| 欧美一级毛片孕妇| 两个人看的免费小视频| 久久精品国产亚洲av涩爱 | 亚洲av日韩精品久久久久久密| 叶爱在线成人免费视频播放| 久久久久九九精品影院| 国产成人av教育| 尤物成人国产欧美一区二区三区| 久久久久免费精品人妻一区二区| 9191精品国产免费久久| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲真实伦在线观看| 51午夜福利影视在线观看| 国产成人影院久久av| 亚洲人与动物交配视频| 99热这里只有精品一区| 亚洲av成人精品一区久久| 亚洲国产日韩欧美精品在线观看 | 99精品欧美一区二区三区四区| 日韩欧美免费精品| 国产亚洲av嫩草精品影院| 久久久久性生活片| 亚洲av电影不卡..在线观看| 99精品在免费线老司机午夜| 内射极品少妇av片p| 麻豆久久精品国产亚洲av| 3wmmmm亚洲av在线观看| 岛国视频午夜一区免费看| 免费大片18禁| av女优亚洲男人天堂| 欧美黄色淫秽网站| 国产探花在线观看一区二区| 亚洲av二区三区四区| 嫩草影视91久久| 美女黄网站色视频| 精品免费久久久久久久清纯| 国产亚洲精品久久久com| 99热6这里只有精品| 在线播放国产精品三级| 国产毛片a区久久久久| 国产乱人视频| 国产精品av视频在线免费观看| 少妇的逼好多水| 老鸭窝网址在线观看| 99热6这里只有精品| 校园春色视频在线观看| 免费观看精品视频网站| 国产成+人综合+亚洲专区| 一个人看视频在线观看www免费 | 最近最新中文字幕大全免费视频| 久久久久性生活片| av专区在线播放| 日韩中文字幕欧美一区二区| 精华霜和精华液先用哪个| 99在线人妻在线中文字幕| 夜夜爽天天搞| 校园春色视频在线观看| 伊人久久精品亚洲午夜| 午夜影院日韩av| 中出人妻视频一区二区| 国产综合懂色| 国产黄片美女视频| www日本黄色视频网| 香蕉丝袜av| 无人区码免费观看不卡| 精品国内亚洲2022精品成人| 在线观看免费视频日本深夜| 在线观看一区二区三区| 乱人视频在线观看| 99久久精品国产亚洲精品| 国产欧美日韩精品一区二区| 亚洲国产高清在线一区二区三| 国产不卡一卡二| 国内毛片毛片毛片毛片毛片| 精品熟女少妇八av免费久了| 久久久久久久亚洲中文字幕 | 午夜精品一区二区三区免费看| 两性午夜刺激爽爽歪歪视频在线观看| 日韩人妻高清精品专区| 日韩欧美三级三区| 男人的好看免费观看在线视频| 免费看日本二区| 成人精品一区二区免费| ponron亚洲| 亚洲熟妇熟女久久| 给我免费播放毛片高清在线观看| 色尼玛亚洲综合影院| 国产精品99久久久久久久久| 久久欧美精品欧美久久欧美| 国产精品日韩av在线免费观看| 亚洲成av人片免费观看| 精品久久久久久久久久久久久| 国产精品98久久久久久宅男小说| 国产三级在线视频| 欧美日韩中文字幕国产精品一区二区三区| 禁无遮挡网站| 国内久久婷婷六月综合欲色啪| 成人高潮视频无遮挡免费网站| av中文乱码字幕在线| 欧美日韩中文字幕国产精品一区二区三区| 免费观看的影片在线观看| 99久久综合精品五月天人人| 国产高清videossex| 欧美色视频一区免费| 琪琪午夜伦伦电影理论片6080| 久久人人精品亚洲av| 欧美一区二区精品小视频在线| netflix在线观看网站| 亚洲国产精品久久男人天堂| 波多野结衣巨乳人妻| 在线观看av片永久免费下载| 床上黄色一级片| 成人性生交大片免费视频hd| 99精品在免费线老司机午夜| 国产精品久久久久久久电影 | 狂野欧美激情性xxxx| 国产免费男女视频| 一级a爱片免费观看的视频| 精品免费久久久久久久清纯| 久久久国产成人精品二区| 成人永久免费在线观看视频| 五月伊人婷婷丁香| 久久久久久大精品| 国产中年淑女户外野战色| 成人精品一区二区免费| 精品人妻1区二区| 亚洲欧美日韩卡通动漫| 成人欧美大片| 91字幕亚洲| 亚洲av日韩精品久久久久久密| 国产精品嫩草影院av在线观看 | 好看av亚洲va欧美ⅴa在| 免费看a级黄色片| 超碰av人人做人人爽久久 | 久久人妻av系列| 精品一区二区三区人妻视频| 十八禁网站免费在线| 一级作爱视频免费观看| 欧美乱码精品一区二区三区| 97人妻精品一区二区三区麻豆| 免费大片18禁| 内地一区二区视频在线| 欧美激情久久久久久爽电影| 国产一区二区在线观看日韩 | 免费观看的影片在线观看| 久久久精品大字幕| 国产一区二区三区视频了| 久久香蕉国产精品| av片东京热男人的天堂| 又黄又爽又免费观看的视频| 丁香欧美五月| 免费人成视频x8x8入口观看| 国产精品永久免费网站| 亚洲 欧美 日韩 在线 免费| 国产高清视频在线观看网站| 国产成人av教育| 在线播放无遮挡| eeuss影院久久| 俺也久久电影网| 亚洲av成人精品一区久久| 亚洲国产高清在线一区二区三| 99热只有精品国产| 好男人在线观看高清免费视频| 精品久久久久久久人妻蜜臀av| 99国产极品粉嫩在线观看| 乱人视频在线观看| 中出人妻视频一区二区| 国产毛片a区久久久久| 久久精品夜夜夜夜夜久久蜜豆| 久久天躁狠狠躁夜夜2o2o| 精品久久久久久久久久久久久| 欧美+亚洲+日韩+国产| 叶爱在线成人免费视频播放| 精品午夜福利视频在线观看一区| 成人高潮视频无遮挡免费网站| 草草在线视频免费看| 黄片大片在线免费观看| 国产激情偷乱视频一区二区| 精品人妻1区二区| 日韩av在线大香蕉| 国内久久婷婷六月综合欲色啪| 精品久久久久久久毛片微露脸| 毛片女人毛片| 免费观看精品视频网站| 国产精品久久久久久亚洲av鲁大| 男女之事视频高清在线观看| av片东京热男人的天堂| 99久久九九国产精品国产免费| 草草在线视频免费看| 日韩高清综合在线| 日韩大尺度精品在线看网址| 免费在线观看影片大全网站| 九九热线精品视视频播放| 欧美3d第一页| 亚洲 欧美 日韩 在线 免费| 国产精品三级大全| 亚洲一区高清亚洲精品| 精品福利观看| 国产免费av片在线观看野外av| 别揉我奶头~嗯~啊~动态视频| 看黄色毛片网站| 男女下面进入的视频免费午夜| 亚洲av免费高清在线观看| 少妇的逼水好多| 国产野战对白在线观看| 黄片大片在线免费观看| 国产亚洲欧美98| 一区二区三区国产精品乱码| 男人舔奶头视频| 午夜福利在线观看吧| 天堂网av新在线| 村上凉子中文字幕在线| 嫁个100分男人电影在线观看| 色综合婷婷激情| 日本 av在线| 三级毛片av免费| 网址你懂的国产日韩在线| 床上黄色一级片| 亚洲男人的天堂狠狠| 亚洲人成网站在线播放欧美日韩| 琪琪午夜伦伦电影理论片6080| 一卡2卡三卡四卡精品乱码亚洲| 精品一区二区三区视频在线观看免费| 久久久精品欧美日韩精品| 国产高清videossex| 欧美+亚洲+日韩+国产| 观看美女的网站| 啦啦啦韩国在线观看视频| 亚洲乱码一区二区免费版| 桃红色精品国产亚洲av| 中文资源天堂在线| 免费电影在线观看免费观看| 无人区码免费观看不卡| 一个人看的www免费观看视频| 成年女人永久免费观看视频| 欧美国产日韩亚洲一区| 日韩精品青青久久久久久| 真人一进一出gif抽搐免费| 99国产精品一区二区三区| 国产国拍精品亚洲av在线观看 | 日韩国内少妇激情av| 国产国拍精品亚洲av在线观看 | 亚洲va日本ⅴa欧美va伊人久久| 十八禁网站免费在线| 日本在线视频免费播放| 男女午夜视频在线观看| av女优亚洲男人天堂| 小说图片视频综合网站| 午夜亚洲福利在线播放| 看黄色毛片网站| 欧美黑人欧美精品刺激| 丰满人妻熟妇乱又伦精品不卡| 久久久久亚洲av毛片大全| 免费观看的影片在线观看| 三级男女做爰猛烈吃奶摸视频| 国产一区二区激情短视频| 国产 一区 欧美 日韩| www日本黄色视频网| x7x7x7水蜜桃| 亚洲精品在线美女| 欧美成人性av电影在线观看| 日韩欧美在线乱码| 18禁国产床啪视频网站| 精品久久久久久成人av| 亚洲乱码一区二区免费版| 国产真实乱freesex| 国产精品久久久久久久电影 | 中文资源天堂在线| 床上黄色一级片| 制服人妻中文乱码| 草草在线视频免费看| 欧美丝袜亚洲另类 | 69av精品久久久久久| 国产亚洲精品一区二区www| 国产黄a三级三级三级人| 精品久久久久久久久久久久久| 五月伊人婷婷丁香| 亚洲成a人片在线一区二区| 中文字幕av成人在线电影| 桃红色精品国产亚洲av| av天堂中文字幕网| 欧美在线一区亚洲| 久久精品亚洲精品国产色婷小说| 久久久久久大精品| 免费人成在线观看视频色| 久久精品影院6| 亚洲精品乱码久久久v下载方式 | 午夜福利视频1000在线观看| 精品福利观看| 极品教师在线免费播放| 免费观看精品视频网站| 欧美黄色片欧美黄色片| 精品99又大又爽又粗少妇毛片 | 国产淫片久久久久久久久 | 精品午夜福利视频在线观看一区| 婷婷精品国产亚洲av在线| 国产成人aa在线观看| 中文亚洲av片在线观看爽| 一个人观看的视频www高清免费观看| 日日摸夜夜添夜夜添小说| 亚洲av成人av| 黄色丝袜av网址大全| 亚洲美女视频黄频| 老司机福利观看| 成人三级黄色视频| 国产亚洲欧美98| 久久久久久九九精品二区国产| 俺也久久电影网| 久久国产精品影院| 啪啪无遮挡十八禁网站| 欧美激情久久久久久爽电影| 亚洲av第一区精品v没综合| 色综合婷婷激情| 亚洲精品国产精品久久久不卡| 国产成人a区在线观看| 国产免费av片在线观看野外av| 色尼玛亚洲综合影院| 亚洲精品成人久久久久久| 国产97色在线日韩免费| 男人舔奶头视频| 在线免费观看不下载黄p国产 | 最近最新免费中文字幕在线| 搡老熟女国产l中国老女人| 听说在线观看完整版免费高清| 日日摸夜夜添夜夜添小说| 亚洲精品粉嫩美女一区| 欧美一级a爱片免费观看看| 亚洲精品色激情综合| 国产aⅴ精品一区二区三区波| 国产91精品成人一区二区三区| 国产精品 欧美亚洲| 久久精品国产亚洲av香蕉五月| 欧美中文综合在线视频| 他把我摸到了高潮在线观看| 法律面前人人平等表现在哪些方面| 国产不卡一卡二| 精品久久久久久成人av| 男女下面进入的视频免费午夜| 法律面前人人平等表现在哪些方面| 亚洲精品成人久久久久久| 人妻久久中文字幕网| 国产一区二区在线观看日韩 | 午夜日韩欧美国产| or卡值多少钱| 成人永久免费在线观看视频| 我要搜黄色片| 欧美精品啪啪一区二区三区| 91在线精品国自产拍蜜月 | 国产精品自产拍在线观看55亚洲| 亚洲无线观看免费| 欧美一区二区亚洲| 国内精品一区二区在线观看| 亚洲国产精品成人综合色| 亚洲国产精品合色在线| 欧美黑人巨大hd| 欧美日韩综合久久久久久 | 特大巨黑吊av在线直播| 在线观看一区二区三区| 成人18禁在线播放| 一进一出好大好爽视频| 精品久久久久久久久久免费视频|