• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Indium-organic framework CPP-3(In)derived Ag/In2O3 porous hexagonal tubes for H2S detection at low temperature

    2022-03-14 09:30:48SihnLiLiliXieGuifngLuoYutongHnMingZhouRwtJisuttiZhigngZhu
    Chinese Chemical Letters 2022年1期

    Sihn Li,Lili Xie,Guifng Luo,Yutong Hn,Ming Zhou,Rwt Jisutti,Zhigng Zhu,,?

    aSchool of Medical Instrument and Food Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China

    bShanghai Normal University Tianhua College,Shanghai 201815,China

    cSchool of Environmental and Materials Engineering,College of Engineering,Shanghai Polytechnic University,Shanghai 201209,China

    dDepartment of Physics,Faculty of Science and Technology,Thammasat University,Pathumthani 12120,Thailand

    eThammasat Research Unit in Innovative Sensor and Nanoelectronic Devices,Thammasat University,Pathumthani 12120,Thailand

    # These authors contributed equally to this work.

    ABSTRACT There is a great demand for high-performance hydrogen sulfide(H2S)sensors with low operating temperatures.Ag/In2O3 hexagonal tubes with different proportions were prepared by the calcination of Ag+-impregnated indium-organic frameworks(CPP-3(In)),and the developed sensors exhibit enhanced gassensing performance toward H2S.Gas sensing measurements indicate that the response of Ag/In2O3(2.5 wt%)sensor to 5 ppm H2S has the highest response(119),operated at 70 °C.The Ag/In2O3(2.5 wt%)based sensor exhibits short response time(20 s),low detection limit(300 ppb),and good selectivity toward H2S gas,which imply that the CPP-3(In)-derived Ag/In2O3 hexagonal tube is a promising candidate to be constructed a low power-consumption H2S sensor.

    Keywords:Ag/In2O3 Indium-organic framework(CPP-3(In))H2S Gas sensor Low power consumption

    Hydrogen sulfide(H2S)is a colorless,corrosive,inflammable,malodorous gas.It is always produced in sewage plants,oil,coal mines,etc.H2S is also widely used in laboratories,chemical industries,and serving as an essential reactant in the production of heavy water.It might be caused sore throat,cough,and eye irritation once people exposed to H2S,even at a small dose of such toxic gas[1].Therefore,there is still a great requirement to find a way to easily and cost-effectively monitor trace amounts of H2S.So far,H2S has been monitored mainly by metal oxides or its composite based gas sensors,and the operating temperatures are normally higher than 200 °C[2].Such a high temperature hinders their practical applications.Hence,it requires exploring new types of H2S sensors with enhanced response and low power consumption.

    Metal-organic frameworks(MOFs),constructed from transitionmetal cations and multidentate organic linkers with coordination bonds,possess tunable nano-scale porosity and structure[3-5],which attracts huge attention as a hot topic in catalysis[6],drug delivery[7],energy device[8],sensors and gas storage[9-11].Benefiting from the unique structure,one critical feature of MOFs is that nanoscale metal particles are easily filled in their cavities,which improves the stability of nanoparticles and endows MOFs with new functions[12].For example,Kitagawa and co-workers prepared Pd/HKUST-1 composites,which had a significantly improved hydrogen storage capacity compared to pure HKUST-1[13].

    Recently,calcining MOF precursor is a feasible way to prepare porous metal oxides with controlled morphology and compositions,and the merits of MOF can be retained after calcination[14-21].For example,In2O3hollow nano-rods were synthesized from In-MOF after calcinating,and it exhibited enhanced ethanol sensing performance[22].Kooet al.used MOFs as templates to prepare PdO/Co3O4by high-temperature calcination,which can detect human exhaled gas[23].There are several advantages for MOFderived hybrid structures to fabricate gas sensors,including the variation in composition,large porosity ratio,uniform distribution of components and diverse morphology[24–26].Nevertheless,noble metal doping plays important role in the improvement of sensing response.Therefore,it will be helpful to design and synthesize the MOF-derived hybrid structures based sensors with excellent sensing performance.

    Herein,the sensing materials of Ag/In2O3porous hexagonal tubes were designed and synthesized by calcining Ag+-impregnated CPP-3(In)precursors.Then,the influences of operating temperature and composition of Ag/In2O3for H2S-sensing response were investigated.Finally,the behavior and mechanism of Ag/In2O3gas sensors were made a thorough investigation.

    Fig.1.(a)X-ray diffraction patterns of the as-synthesized In2O3 and Ag/In2O3 oxides.(b)Enlarged region of XRD patterns(36°?45°).

    Fig.2.SEM images of different samples:(a)CPP-3(In),(b)Ag+/CPP-3(In),(c)In2O3,(d)Ag/In2O3(1.5 wt%),(e)Ag/In2O3(2.5 wt%)and(f)Ag/In2O3(3.5 wt%).EDS elemental mapping of Ag/In2O3(2.5 wt%):(g)SEM image and(h-j)element distribution(In,O and Ag).

    All chemicals were purchased from Sinopharm Chemical Reagent Co.,Ltd.in reagent grade.The hexagonal rod-like CPP-3(In)was synthesized using the previous reported method[22].Briefly,0.267 g In(NO3)3·4.5H2O and 0.107 g of 1,4-benzenedicarboxylic acid(H2BDC)were added in 30 mLN,N-dimethylformamide(DMF),and then 50 μL NaOAc(0.04 mol/L)was put in after continuous stirring.The obtained precursors were heated at 140 °C for 10 min and then cooled down to 25 °C.The dispersion was centrifuged at 8000 rpm for 30 min,followed by washing with DMF and methanol for 3 times,and then drying at 80 °C for overnight.

    The preparation of Ag+/CPP-3(In)was utilizing an ion impregnation route.AgNO3and CPP-3(In)with different weight percent ratios(0,1.5 wt%,2.5 wt% and 3.5 wt%)were put together with 20 mL deionized water with continuous stirring at 25 °C for 3 days.The mixture was subjected to bath sonication by ethanol,and then the samples(Ag+/CPP-3(In))were prepared after overnight dried at 60 °C.To obtain metal oxide-based sensing materials(In2O3and Ag/In2O3),the MOF specimens were thermally heated at 450 °C for 1–2 h under an ambient environment.The heating rate plays an important role to keep the shape of MOF,and it was thus strictly controlled at 1–2 °C per minute.

    Fig.3.TEM images of(a)In2O3 and(b)Ag/In2O3(2.5 wt%).HRTEM images of(c)In2O3 and(d)Ag/In2O3(2.5 wt%);SAED images of(e)In2O3 and(f)Ag/In2O3(2.5 wt%).

    The structure information was characterized by X-ray diffraction using a monochromatized Cu target(XRD,D8-Advance,Bruker,Germany,λ=1.5418 ?A),and X-ray photoelectron spectroscopy(XPS,Escalab 250Xi,Thermo,UK).The surface morphology of MOF and oxides were observed by scanning electron microscopy(SEM,S-4800,Hitachi,Japan).The qualitative elemental analysis was investigated by an energy dispersive X-ray spectrometer(EDX),affiliated to the SEM.A transmission electron microscope(TEM,JEM-2100F,JEOL,Japan)was selected to examine the sample microstructure at an accelerating voltage of 200 kV.

    The Ag/In2O3porous hexagonal tubes were blended with DI water(4:1)to produce a homogeneous paste.Such paste was coated on a ceramic tube,and then dried under an infrared dryer to obtain sensitive film.Finally,the welded gas sensors were aged in an aging benchtop at 340 °C for 7 days.

    Fig.4.XPS spectra of the Ag/In2O3(2.5 wt%):(a)In 3d,(b)O 1s,(c)Ag 3d;and(d)Ag 3d spectrum of Ag/In2O3(3.5 wt%).

    The sensor performance was tested through a gas sensing analysis instrument(WS-30A,Weisheng,China).The sensing response(S)is defined as the resistance ratio of gas sensors in the target gas(Rg)to that in the air(Ra),and it can be described asS=Ra/Rg.To optimize the operating temperature,the sensor was evaluated at 30–200 °C.

    XRD patterns of the CPP-3(In),pristine In2O3,Ag+/CPP-3(In),and Ag/In2O3are displayed in Fig.1 and Fig.S1(Supporting information).It can be found in Fig.S1 that the positions of characteristic peaks of Ag+/CPP-3(In)are well-matched with the diffraction peaks of CPP-3(In),indicating that the introduction of Ag+did not change the crystal structure of CPP-3.Besides,the sharp characteristic peaks of Ag+/CPP-3(In)show a higher crystallinity[22].After the calcination of MOFs at 450 °C,XRD patterns of the In2O3and Ag/In2O3with different ratios are illustrated in Fig.1.The main diffraction peaks(2θ=21.498°,30.580°,35.466°,37.685°,41.845°,45.691°,51.037° and 60.676°),corresponding to the(211),(222),(400),(411),(332),(431),(440)and(622)planes of the In2O3with the cubic crystal structure(JCPDS No.06–0416).

    For the Ag/In2O3(1.5 wt%),no obvious Ag diffraction peak is observed,mainly due to the low Ag content.For the Ag/In2O3(2.5 wt%)and Ag/In2O3(3.5 wt%),there are obvious diffraction peaks at 38.116° and 44.277°,corresponding to(111)and(200)of elementary substance Ag(JCPDS No.04–0783),respectively.Such results indicate that the Ag nanoparticles were successfully introduced into the composites.The formation processes of Ag nanoparticles are speculated as follows:Ag+firstly enters the pores of CPP-3,and then Ag+may be reduced to Ag nanoparticles by certain reducing gasses generated by the decomposition of organic ligands in CPP-3 during the calcination process[22].The morphologies of CPP-3(In),Ag+/CPP-3(In)templates,In2O3,and Ag/In2O3(1.5–3.5 wt%)were characterized by SEM.As shown in Fig.2a,all CPP-3(In)s are nano-rod with a hexagonal shape,the size is uniform at about 2.0 μm in diameter and a length of 10.0 μm.The morphology of Ag+/CPP-3(In)in Fig.2b is similar to that of CPP-3(In),only displaying a small number of broken short rods,may be caused by the process of introducing Ag+.After calcining in air,MOF is completely converted into metal oxides(as described in the XRD results).As shown in Figs.2c–f,pristine In2O3illustrates a hexagonal tube shape,and there are some broken tubes and fragments.Compared with Ag+/CPP-3(In),the tube of Ag/In2O3has a smaller diameter size,reduced from 10 μm to 5 μm,with a rough and porous surface.Compared with In2O3,the number of the short tube increases and the thickness is uneven.As the amount of Ag increased,the surface of Ag/In2O3tubes becomes rougher.EDS mapping results are shown in Figs.2g–j.In,O and Ag elements are evenly distributed in the Ag/In2O3(2.5 wt%).This also shows that Ag nanoparticles are uniformly dispersed in In2O3tubes.

    TEM was selected to further observe the microstructures of different samples.Figs.3a and b are TEM images of In2O3and Ag/In2O3(2.5 wt%),respectively.The tube walls of In2O3and Ag/In2O3(2.5 wt%)are assembled by nanoparticles,this is mainly formed during the calcination process.HRTEM images are shown in Figs.3c and d.For the Ag/In2O3(2.5 wt%),the interplanar distance of 0.288 nm is in line with the(222)planes of cubic In2O3[27],and the lattice distance of 0.236 nm belongs to the(111)planes of Ag[28].Fig.3d proves that Ag is not doped into the lattice of In2O3,but co-existing with In2O3nanoparticles to form a tube-like structure.As shown in Figs.3e and f,a series of diffraction rings can be found in SAED patterns,indicating the polycrystalline nature of the In2O3and Ag/In2O3(2.5 wt%).

    XPS was selected to evaluate the surface chemical state of specimens,the full XPS spectra of pristine In2O3,Ag/In2O3(2.5 wt%),and Ag/In2O3(3.5 wt%)are listed in Fig.S1.The In 3d spectrum of Ag/In2O3(2.5 wt%)is shown in Fig.4a.The two main peaks at 451.7 and 444.4 eV are related to In 3d(both In 3d3/2and 3d5/2),respectively[27].Fig.4b is the O 1s spectrum of Ag/In2O3(2.5 wt%).The peak at 530.4 eV belongs to the oxygen coordination(O2–)in In–O,and the other peak at 531.9 eV owns to the adsorbed oxygen species(O?and O2?)[29,30].The sensing performance is highly related to the amount of surface adsorbed oxygen.As shown in Figs.4c and d,the binding energy of 368.5 eV and 374.5 eV are related to Ag 3d(Ag03d5/2and 3d3/2),and that is more obvious in Ag/In2O3(3.5 wt%)[31].This indicates that the Ag in the Ag/In2O3sample exists as an elementary substance Ag,which is consistent with the XRD results.

    The working temperature and the concentration of noble metal are important parameters for sensing performance.To find the optimized working temperature and loading contents of additives,the performance of In2O3and Ag/In2O3toward 5 ppm H2S at different operating temperatures was investigated.As illustrated in Fig.5a,all sensors show an “increasing-maximum-decreasing”trend,and the maximum responses to 5 ppm H2S were all operated at 70 °C,and the response decreased to 1.1–1.5 when the operating temperatures rose to 200 °C.It also indicates that the Ag/In2O3(2.5 wt%)based sensor has the highest response value of 119 to 5 ppm H2S,around 4 times higher than pristine In2O3.Further increasing the amount of Ag to 3.5 wt%,the sensor responses decreased.Therefore,Ag/In2O3(2.5 wt%)is the optimized sensing material for H2S detection,operated at 70 °C.

    Besides,the response of the gas sensor is easily affected by the relative humidity(RH)at low temperatures,so the response of the sensor at different RH was tested.The different saturated salts were selected to produce RH atmosphere[32],including 95%RH KNO3,85% RH KCl2,75% RH NaCl2,54% RH Mg(NO3)2,33% RH MgCl2,and 11% RH LiCl.The test results show that the Ag/In2O3(2.5 wt%)sensor possesses the highest response of 1.38 at 95%RH,as shown in Fig.5b.Therefore,at the optimized working temperature of 70 °C,the influence of humidity on the sensor is negligible.

    Fig.6a illustrates the resistance variationversustime of the Ag/In2O3(2.5 wt%)gas sensor to 0.3–5 ppm H2S at 70 °C.The response curve shows a stepwise distribution exposed to different concentrations of H2S.In Fig.6b,as the H2S concentration decreased from 5 ppm to 0.3 ppm,the response of the Ag/In2O3(2.5 wt%)sensor gradually decreases.When the H2S concentration is reduced to 0.3 ppm,the response of Ag/In2O3based gas sensor(2.5 wt%)is still as high as 2.25,which indicates this sensor is able to effectively detect H2S with low concentration.

    Fig.5.(a)Gas response towards 5 ppm H2S at various working temperatures;(b)The effect of RH to the Ag/In2O3(2.5 wt%)based sensor.

    Fig.6.(a)Resistance variation versus time,and(b)response variation versus H2S concentration for Ag/In2O3(2.5 wt%)gas sensor to the different amount of H2S gas at 70°C.

    Fig.7.The response-recovery curve of Ag/In2O3(2.5 wt%)gas sensor to 5 ppm H2S at 70 °C.

    Fast response/recovery is also crucial in the practical application of sensors.The dynamic response-recovery trend of Ag/In2O3(2.5 wt%)sensor towards 5 ppm H2S at 70 °C is displayed in Fig.7.After exposure to the target gas,the sensor can reach 90% resistance change within 20 s.However,a very long recovery time is required,and this sensor can only recover to 8% of the maximum value for 3600 s.Herein,the Joule heating effect was selected to speed up the desorption of H2S molecules[33,34].After optimization,we found 5.5 V pulse voltage(400 °C)can effectively desorb the H2S on the surface,and the sensor can restore to the initial state in a short time.

    Fig.8.Four sets of sensors selectivity to 5 ppm H2S and other gasses with different concentrations(10 ppm or 50 ppm)at 70 °C.

    Selectivity is one of the most important factors[35].To test this characteristic,the response of Ag/In2O3(2.5 wt%)gas sensor to various gasses such as acetone(CH3COCH3),benzene(C6H6),ethanol(C2H5OH),hydrogen sulfide(H2S),methane(CH4),and ammonia(NH3)were tested.Fig.8 shows that the response of Ag/In2O3(2.5 wt%)sensor to 5 ppm H2S is 119,which is much higher than the response to 50 ppm ethanol and other gasses.Therefore,the gas sensor based on Ag/In2O3(2.5 wt%)exhibits exceptional selectivity to the detection of H2S at low operating temperature.

    Reproducibility is another important parameter in the field of sensing.Fig.9a illustrates the repeatability of Ag/In2O3(2.5 wt%)gas sensor during the continuous response/recovery process.The results indicate good reversibility for six cycles of testing,the resistance does not show significant attenuation.The interesting point is that the sensor can keep the same initial state of resistance and recovery speed.Obviously,the Ag/In2O3(2.5 wt%)sensor has very stable repeatability.The long-term stability is also important for the gas sensors in practical applications,the response towards 5 ppm H2S was continuously measured within a month.The results in Fig.9 indicate the Ag/In2O3(2.5 wt%)sensor exhibits good long-term stability.

    Fig.9.(a)Repeatability of Ag/In2O3(2.5 wt%)gas sensor after continuous exposure(6 cycles)to 5 ppm H2S.(b)Long-term stability of Ag/In2O3(2.5 wt%)gas sensor.

    Fig.10.Schematic illustration of the energy band structures of In2O3 in(a)air and(b)H2S,and the energy band structures of Ag/In2O3 in(c)air and(d)H2S atmosphere,respectively.

    The enhanced sensing performance of Ag/In2O3(2.5 wt%)gas sensors was summarized as the following points:

    The pristine In2O3[36,37]is a surface-controlled type semiconductor,and the resistance change is mainly related to chemisorbed oxygen[38].Once the In2O3is put in the air,as shown in Fig.10a,the oxygen is chemisorbed on the surface of In2O3by taking free electrons to form O2?or O?.The electron concentration of the In2O3sensor is thus reduced and the resistance is increased.

    Once exposed to reducing gas(H2S),it can react with the chemisorbed oxygen to release the electrons into In2O3,leading to the decrease of the resistance of In2O3(Fig.10b).The reaction can be described as below:

    2H2S(g)+ 3O2?(ads)→2H2O(g)+ 2SO2(g)+ 3e?

    For the Ag/In2O3nanocomposite,the decorated Ag on the surface of In2O3may form nano-junctions at the interface and induce the electronic sensitization effect[39].The electrons of In2O3from the conduction bands transfer to Ag nanostructure and create the depletion zone at the interfaces of Ag/In2O3nanocomposite,which may modulate the resistance and surface reactivity,as shown in Fig.10c.When the Ag/In2O3sensor is exposed to H2S in Fig.10d,the reducing gas releases electrons into the Ag/In2O3,the width of the depletion layer was reduced and the resistance was significantly decreased.Since the change of the depletion layer in the Ag/In2O3is much more than in the In2O3,the Ag/In2O3sensor exhibits a higher sensing response.

    Thus,the heterojunction structure acts as a lever to modulate the charge concentration and charge mobility of the sensor surface,thereby enhancing the sensing properties.The substantial improvement of the response may be attributed to the larger change in resistance caused by the increased participation of electrons and creation of depletion zones due to the heterojunction structure of the Ag/In2O3nanocomposite.

    Besides,since Ag nanoparticles have high catalytic activity,they not only provide abundant active sites,but also accelerate surface reactions with lower activation energy[40].Although the addition of precious metals can improve the performance of the sensing material,an appropriate concentration is necessary to obtain the maximum response.In this work,the maximum response was observed for Ag/In2O3(2.5 wt%).When the amount of Ag added is too low(less than 2.5 wt%),the catalytic effect is not enough to bring H2S close to all surfaces of the sensor.For this reason,the enhancement of gas response is limited.When the amount of Ag added exceeds 2.5 wt% and reaches 3.5 wt%,the response of the sensor suddenly decreases,because more Ag nanoparticles can catalyze more H2S gas per unit time,but the desorption process of H2S is also enhanced,resulting in a decrease in the actual amount of H2S adsorption and poor gas response[41].

    Finally,the porous and hollow structure of Ag/In2O3,as shown in Fig.2,provides more sensing reaction sites,which facilitates gas diffusion and adsorption of the sensing layer,and also facilitates uniform loading of Ag nanoparticles throughout the sensing layer.

    Therefore,the great enhancement of gas response of Ag/In2O3(2.5 wt%)based sensor could be attributed the electronic effects of Ag nanoparticles,the catalytic activity of Ag nanoparticles,and the porous and hollow structure of Ag/In2O3(2.5 wt%).

    In this work,Ag/In2O3was successfully prepared from Ag+-impregnated CPP-3(In)through a facile two-step method.The Ag/In2O3exhibits porous hexagonal tube shape,and the response of the Ag/In2O3(2.5 wt%)based sensor towards 5 ppm H2S at 70 °C reaches 119,which is four times higher than the pristine In2O3sensor.The great enhancement of gas response of Ag/In2O3(2.5 wt%)could be attributed as follows:1)The electronic sensitization of Ag nanoparticles;2)The catalytic activity of Ag nanoparticles;3)The porous and hollow structure of Ag/In2O3(2.5 wt%).In short,the Ag/In2O3(2.5 wt%)is a promising candidate to be constructed as a high performance,low power-consumption H2S sensor.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(No.61471233)and Shanghai Sailing Program(No.21YF1431400).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.016.

    99久久精品热视频| 久久久欧美国产精品| 免费看日本二区| 在现免费观看毛片| 久久97久久精品| 搡老乐熟女国产| xxx大片免费视频| 成人国产麻豆网| 久久久久久九九精品二区国产| 亚洲成人av在线免费| 色5月婷婷丁香| 亚洲三级黄色毛片| 亚洲精品456在线播放app| a级毛色黄片| 亚洲精品第二区| 一区二区三区免费毛片| 日韩成人av中文字幕在线观看| 成人国产av品久久久| 2021少妇久久久久久久久久久| 最近的中文字幕免费完整| 久久韩国三级中文字幕| 成人18禁高潮啪啪吃奶动态图 | 男男h啪啪无遮挡| 狂野欧美激情性xxxx在线观看| 最新中文字幕久久久久| 黄片无遮挡物在线观看| 日日啪夜夜撸| 亚洲第一区二区三区不卡| 久久国产精品大桥未久av | 久久久欧美国产精品| 日韩电影二区| 最近最新中文字幕大全电影3| 国产欧美日韩一区二区三区在线 | 成人毛片a级毛片在线播放| 亚洲成人av在线免费| 看十八女毛片水多多多| 欧美激情极品国产一区二区三区 | 中文资源天堂在线| 男女无遮挡免费网站观看| 一级爰片在线观看| tube8黄色片| 一级av片app| 中文乱码字字幕精品一区二区三区| 插阴视频在线观看视频| 久久6这里有精品| 黄色怎么调成土黄色| 成人18禁高潮啪啪吃奶动态图 | 嫩草影院入口| 观看美女的网站| 91久久精品国产一区二区三区| 色哟哟·www| 国产男人的电影天堂91| 美女国产视频在线观看| 又大又黄又爽视频免费| 观看av在线不卡| 亚洲欧美日韩无卡精品| av在线观看视频网站免费| 亚洲av欧美aⅴ国产| av在线蜜桃| 三级国产精品欧美在线观看| 免费观看在线日韩| 午夜福利在线观看免费完整高清在| 黄色配什么色好看| 91狼人影院| 国产av一区二区精品久久 | 国产毛片在线视频| 日韩一区二区视频免费看| 精品亚洲成a人片在线观看 | 在线观看av片永久免费下载| 天堂中文最新版在线下载| 大香蕉久久网| 国产毛片在线视频| av视频免费观看在线观看| 男女无遮挡免费网站观看| 18禁动态无遮挡网站| 色视频www国产| 免费在线观看成人毛片| 婷婷色综合www| 夜夜骑夜夜射夜夜干| 美女内射精品一级片tv| 啦啦啦中文免费视频观看日本| 精品一区在线观看国产| 大码成人一级视频| xxx大片免费视频| 国产成人精品婷婷| 久久人人爽人人爽人人片va| 成人国产av品久久久| 久久影院123| 国产精品三级大全| 777米奇影视久久| 久久久久久久久大av| www.色视频.com| 久久久久精品久久久久真实原创| 中文欧美无线码| 一区二区三区精品91| 2022亚洲国产成人精品| 汤姆久久久久久久影院中文字幕| 国产极品天堂在线| 2022亚洲国产成人精品| 国产亚洲5aaaaa淫片| 亚洲av国产av综合av卡| 日韩av不卡免费在线播放| 成人毛片a级毛片在线播放| 91久久精品电影网| 高清午夜精品一区二区三区| 亚洲电影在线观看av| 国产男女超爽视频在线观看| 三级经典国产精品| 欧美最新免费一区二区三区| 大香蕉久久网| 久久久久久久久久久免费av| 黑丝袜美女国产一区| 久久女婷五月综合色啪小说| 国产高清不卡午夜福利| 黄色日韩在线| 亚洲av二区三区四区| 亚洲成人av在线免费| 午夜福利网站1000一区二区三区| 永久网站在线| 永久免费av网站大全| 1000部很黄的大片| 边亲边吃奶的免费视频| 男女边摸边吃奶| 国产精品福利在线免费观看| 免费人妻精品一区二区三区视频| 自拍偷自拍亚洲精品老妇| 日本av免费视频播放| 中文欧美无线码| 久久久成人免费电影| 我的女老师完整版在线观看| 大码成人一级视频| 日韩强制内射视频| 欧美日韩在线观看h| 日产精品乱码卡一卡2卡三| av在线观看视频网站免费| av播播在线观看一区| 亚洲真实伦在线观看| 欧美精品一区二区免费开放| 国产 一区精品| 日本午夜av视频| 最新中文字幕久久久久| 亚洲av.av天堂| 日韩大片免费观看网站| 啦啦啦在线观看免费高清www| 爱豆传媒免费全集在线观看| 麻豆国产97在线/欧美| 久久影院123| 国产高清有码在线观看视频| 欧美zozozo另类| 性色avwww在线观看| 中文乱码字字幕精品一区二区三区| 久久精品夜色国产| 亚洲成人一二三区av| 特大巨黑吊av在线直播| 国产深夜福利视频在线观看| 久久久a久久爽久久v久久| 国产高清三级在线| 久久国产精品男人的天堂亚洲 | 国产精品伦人一区二区| 欧美成人午夜免费资源| 亚洲国产毛片av蜜桃av| 美女中出高潮动态图| kizo精华| 精品酒店卫生间| 国产精品久久久久久久电影| 1000部很黄的大片| 汤姆久久久久久久影院中文字幕| 免费观看a级毛片全部| 亚洲欧洲国产日韩| 777米奇影视久久| 国产高清国产精品国产三级 | 久久久a久久爽久久v久久| 中文字幕久久专区| 蜜桃在线观看..| 内射极品少妇av片p| 国产白丝娇喘喷水9色精品| 熟女电影av网| 两个人的视频大全免费| 91aial.com中文字幕在线观看| 只有这里有精品99| 国产精品秋霞免费鲁丝片| 黑人高潮一二区| 久久久精品94久久精品| 欧美zozozo另类| 亚洲国产最新在线播放| 国产片特级美女逼逼视频| 免费在线观看成人毛片| 内地一区二区视频在线| 国产 一区 欧美 日韩| 久久婷婷青草| 伦精品一区二区三区| 黄色一级大片看看| 久久久久久久久久人人人人人人| av.在线天堂| 午夜日本视频在线| 欧美bdsm另类| 爱豆传媒免费全集在线观看| 亚洲精品国产成人久久av| 日本av手机在线免费观看| 亚洲成人手机| 在线 av 中文字幕| 亚洲成人一二三区av| 欧美高清性xxxxhd video| 国产欧美日韩精品一区二区| 亚洲国产精品999| 成人免费观看视频高清| av.在线天堂| 国产极品天堂在线| 日本wwww免费看| 又粗又硬又长又爽又黄的视频| 久久综合国产亚洲精品| 91精品伊人久久大香线蕉| 在现免费观看毛片| 建设人人有责人人尽责人人享有的 | 亚洲精品国产成人久久av| 日日摸夜夜添夜夜爱| 我要看黄色一级片免费的| 三级国产精品片| 伊人久久国产一区二区| 日韩一区二区视频免费看| 国产成人精品福利久久| 日本黄大片高清| 日本午夜av视频| 国产亚洲91精品色在线| 超碰av人人做人人爽久久| 久久国产亚洲av麻豆专区| 国产精品一区www在线观看| 中文字幕免费在线视频6| 久久毛片免费看一区二区三区| 三级经典国产精品| 国产真实伦视频高清在线观看| 大码成人一级视频| 午夜老司机福利剧场| 精品久久国产蜜桃| 亚洲欧美清纯卡通| 五月天丁香电影| 国产片特级美女逼逼视频| 国产精品久久久久成人av| 亚洲欧美清纯卡通| 在线 av 中文字幕| 韩国高清视频一区二区三区| 97在线人人人人妻| 久热这里只有精品99| 内射极品少妇av片p| 国产成人精品久久久久久| av在线观看视频网站免费| 亚洲综合色惰| 精品久久久久久久久av| 美女xxoo啪啪120秒动态图| 婷婷色综合www| 欧美3d第一页| 黄色欧美视频在线观看| 国产午夜精品一二区理论片| 国产黄片美女视频| 欧美精品一区二区大全| 少妇被粗大猛烈的视频| 国产亚洲午夜精品一区二区久久| 女人十人毛片免费观看3o分钟| 国产精品熟女久久久久浪| a级毛色黄片| 少妇精品久久久久久久| 久久精品国产亚洲av涩爱| 欧美xxⅹ黑人| 久久国产乱子免费精品| 777米奇影视久久| 欧美成人a在线观看| 亚洲高清免费不卡视频| 水蜜桃什么品种好| 美女视频免费永久观看网站| 又黄又爽又刺激的免费视频.| 国产在线男女| 夜夜看夜夜爽夜夜摸| 国产精品国产三级专区第一集| 精品国产三级普通话版| 久久ye,这里只有精品| 亚洲精品国产av成人精品| 国产精品久久久久久精品古装| 日韩一区二区视频免费看| 波野结衣二区三区在线| 99视频精品全部免费 在线| 一区二区三区精品91| xxx大片免费视频| 毛片一级片免费看久久久久| 最近的中文字幕免费完整| 极品少妇高潮喷水抽搐| 99re6热这里在线精品视频| 国产成人精品久久久久久| 国产伦精品一区二区三区视频9| a级毛片免费高清观看在线播放| 最近手机中文字幕大全| 久久精品久久久久久久性| 极品少妇高潮喷水抽搐| 欧美激情国产日韩精品一区| 岛国毛片在线播放| 亚洲激情五月婷婷啪啪| 亚洲精品日韩av片在线观看| 亚洲国产欧美人成| 亚洲aⅴ乱码一区二区在线播放| 国产乱来视频区| av在线app专区| 色综合色国产| 汤姆久久久久久久影院中文字幕| 日本wwww免费看| 视频中文字幕在线观看| 国产中年淑女户外野战色| 新久久久久国产一级毛片| av天堂中文字幕网| av免费观看日本| 狂野欧美激情性xxxx在线观看| 五月天丁香电影| 中文字幕人妻熟人妻熟丝袜美| 亚洲在久久综合| av在线观看视频网站免费| 国产精品欧美亚洲77777| 美女cb高潮喷水在线观看| 在线观看人妻少妇| 亚洲成人av在线免费| av国产免费在线观看| 激情 狠狠 欧美| 简卡轻食公司| 观看免费一级毛片| 欧美最新免费一区二区三区| 亚洲熟女精品中文字幕| 丰满迷人的少妇在线观看| 日韩 亚洲 欧美在线| 99久久精品一区二区三区| 国产av精品麻豆| 一本—道久久a久久精品蜜桃钙片| 插阴视频在线观看视频| 成人综合一区亚洲| av网站免费在线观看视频| 欧美另类一区| 日本黄色片子视频| 久久久久国产网址| 亚洲怡红院男人天堂| 精品久久久久久久末码| 中文在线观看免费www的网站| 你懂的网址亚洲精品在线观看| 日韩大片免费观看网站| 在现免费观看毛片| 国产精品国产av在线观看| 久久99蜜桃精品久久| 久久97久久精品| 中文在线观看免费www的网站| 永久网站在线| 有码 亚洲区| 久久精品国产亚洲网站| 亚洲,欧美,日韩| 黄片wwwwww| 天天躁日日操中文字幕| 乱码一卡2卡4卡精品| 永久免费av网站大全| 国产视频首页在线观看| 成人二区视频| 久久久久久久久久久免费av| 七月丁香在线播放| 青青草视频在线视频观看| 午夜激情福利司机影院| 亚洲精华国产精华液的使用体验| 亚洲精品久久久久久婷婷小说| av一本久久久久| 最近2019中文字幕mv第一页| 久久精品国产鲁丝片午夜精品| 欧美激情国产日韩精品一区| 日本欧美国产在线视频| 国产在线一区二区三区精| 亚洲人成网站在线观看播放| 老司机影院毛片| 日韩一本色道免费dvd| 国产永久视频网站| 精品国产乱码久久久久久小说| 国产男女内射视频| 欧美成人a在线观看| 国产乱来视频区| 新久久久久国产一级毛片| 91精品一卡2卡3卡4卡| 最近中文字幕2019免费版| 99热国产这里只有精品6| 多毛熟女@视频| 夜夜骑夜夜射夜夜干| 水蜜桃什么品种好| 人人妻人人爽人人添夜夜欢视频 | 欧美国产精品一级二级三级 | 国产深夜福利视频在线观看| 成人美女网站在线观看视频| 亚洲欧美日韩东京热| 纵有疾风起免费观看全集完整版| 搡女人真爽免费视频火全软件| 精品一区在线观看国产| 高清欧美精品videossex| 亚洲成人一二三区av| 黄色欧美视频在线观看| 国产精品.久久久| freevideosex欧美| 欧美精品国产亚洲| 午夜福利视频精品| 妹子高潮喷水视频| 国产成人午夜福利电影在线观看| 亚洲精品aⅴ在线观看| 亚洲精品日韩av片在线观看| 黑人高潮一二区| 成人漫画全彩无遮挡| 插阴视频在线观看视频| 亚洲国产成人一精品久久久| 日韩成人伦理影院| 亚洲av日韩在线播放| 哪个播放器可以免费观看大片| 99久久中文字幕三级久久日本| 欧美一区二区亚洲| 啦啦啦啦在线视频资源| 美女中出高潮动态图| 91狼人影院| 国产爱豆传媒在线观看| 日日撸夜夜添| av国产久精品久网站免费入址| 国产精品国产三级国产专区5o| 久久精品熟女亚洲av麻豆精品| 国产欧美亚洲国产| 国产 一区精品| 精品一区在线观看国产| 高清欧美精品videossex| 国产一级毛片在线| 少妇的逼水好多| 欧美xxⅹ黑人| 高清日韩中文字幕在线| 免费观看无遮挡的男女| 少妇人妻精品综合一区二区| 青春草视频在线免费观看| 女性生殖器流出的白浆| 国产一区二区在线观看日韩| 麻豆国产97在线/欧美| 亚洲国产精品成人久久小说| 九九爱精品视频在线观看| 大香蕉久久网| 免费人妻精品一区二区三区视频| 欧美国产精品一级二级三级 | 天堂8中文在线网| 大香蕉97超碰在线| 亚洲av在线观看美女高潮| 岛国毛片在线播放| 看非洲黑人一级黄片| 日韩强制内射视频| 最近2019中文字幕mv第一页| 99热这里只有是精品50| 看十八女毛片水多多多| 日本色播在线视频| 久久久久人妻精品一区果冻| 成年人午夜在线观看视频| 欧美变态另类bdsm刘玥| 精品酒店卫生间| 深夜a级毛片| 午夜免费鲁丝| 久久久久性生活片| 亚洲国产精品国产精品| 亚洲经典国产精华液单| 欧美bdsm另类| 最近中文字幕高清免费大全6| 97精品久久久久久久久久精品| 精品视频人人做人人爽| 欧美精品人与动牲交sv欧美| 在线观看三级黄色| 最后的刺客免费高清国语| 欧美极品一区二区三区四区| 伦精品一区二区三区| 这个男人来自地球电影免费观看 | 日本wwww免费看| 观看美女的网站| 美女高潮的动态| 亚洲久久久国产精品| 成人国产av品久久久| 午夜老司机福利剧场| 一级av片app| 日韩视频在线欧美| 国产男女超爽视频在线观看| 日韩不卡一区二区三区视频在线| 91精品国产国语对白视频| 18禁动态无遮挡网站| 日韩国内少妇激情av| 男的添女的下面高潮视频| 精品久久久久久久久av| 国产美女午夜福利| 夜夜爽夜夜爽视频| 寂寞人妻少妇视频99o| 最黄视频免费看| 九色成人免费人妻av| av不卡在线播放| 日韩电影二区| 亚洲精品乱码久久久久久按摩| 十分钟在线观看高清视频www | 干丝袜人妻中文字幕| 亚洲精品一二三| 日日啪夜夜撸| 成人漫画全彩无遮挡| 男人和女人高潮做爰伦理| 尤物成人国产欧美一区二区三区| 天天躁夜夜躁狠狠久久av| 99九九线精品视频在线观看视频| 亚洲欧美中文字幕日韩二区| 伦理电影大哥的女人| 亚洲伊人久久精品综合| 亚洲欧美清纯卡通| 国产成人freesex在线| 亚洲欧洲国产日韩| 一区二区三区免费毛片| 中文字幕人妻熟人妻熟丝袜美| 在线天堂最新版资源| 欧美国产精品一级二级三级 | 欧美xxⅹ黑人| 日韩av免费高清视频| 男人狂女人下面高潮的视频| 寂寞人妻少妇视频99o| 激情五月婷婷亚洲| 亚洲精品国产av蜜桃| 亚洲中文av在线| 99久久中文字幕三级久久日本| 亚洲国产色片| 91精品一卡2卡3卡4卡| 国产 一区精品| 国产免费一区二区三区四区乱码| 另类亚洲欧美激情| 久久精品国产自在天天线| 99久久综合免费| 尤物成人国产欧美一区二区三区| 精品人妻视频免费看| 六月丁香七月| 精品一区二区三卡| 亚洲av男天堂| 国产 精品1| 人妻一区二区av| 免费不卡的大黄色大毛片视频在线观看| av女优亚洲男人天堂| 99久久精品一区二区三区| 汤姆久久久久久久影院中文字幕| 成年人午夜在线观看视频| 国产成人午夜福利电影在线观看| 欧美日韩在线观看h| 97精品久久久久久久久久精品| 99国产精品免费福利视频| 最近最新中文字幕免费大全7| 18禁动态无遮挡网站| 国产熟女欧美一区二区| 我要看日韩黄色一级片| 日韩电影二区| 91aial.com中文字幕在线观看| 亚洲综合精品二区| 久久久久久久久久久免费av| av又黄又爽大尺度在线免费看| 国产精品久久久久久精品电影小说 | 一二三四中文在线观看免费高清| av卡一久久| 天堂8中文在线网| 九九爱精品视频在线观看| 全区人妻精品视频| av一本久久久久| 熟妇人妻不卡中文字幕| 肉色欧美久久久久久久蜜桃| a级毛片免费高清观看在线播放| 高清毛片免费看| 天天躁夜夜躁狠狠久久av| 欧美xxxx黑人xx丫x性爽| 国产成人一区二区在线| 少妇的逼好多水| av在线app专区| 欧美日韩精品成人综合77777| 三级国产精品片| 人妻夜夜爽99麻豆av| 亚洲国产最新在线播放| 国产在线视频一区二区| 国产精品免费大片| videos熟女内射| 九九久久精品国产亚洲av麻豆| 国产精品蜜桃在线观看| 18+在线观看网站| 亚洲av福利一区| 18禁动态无遮挡网站| 99视频精品全部免费 在线| 成人漫画全彩无遮挡| 亚洲国产毛片av蜜桃av| 日韩av不卡免费在线播放| 亚洲成人手机| 女人久久www免费人成看片| 综合色丁香网| 日韩成人伦理影院| a级毛片免费高清观看在线播放| 联通29元200g的流量卡| 亚洲精品乱久久久久久| 最黄视频免费看| 日韩中字成人| 国产亚洲av片在线观看秒播厂| 国内揄拍国产精品人妻在线| 欧美成人精品欧美一级黄| 黄片无遮挡物在线观看| 建设人人有责人人尽责人人享有的 | 成人免费观看视频高清| 免费久久久久久久精品成人欧美视频 | 永久网站在线| 美女cb高潮喷水在线观看| 精品国产一区二区三区久久久樱花 | 亚洲自偷自拍三级| 国产深夜福利视频在线观看| 日韩不卡一区二区三区视频在线| 女的被弄到高潮叫床怎么办| 观看av在线不卡| 久热久热在线精品观看| 日本色播在线视频| 成人二区视频| 深夜a级毛片| 男人狂女人下面高潮的视频| 欧美精品一区二区免费开放| 久久精品久久久久久久性| 国产精品偷伦视频观看了| 建设人人有责人人尽责人人享有的 | 成人亚洲精品一区在线观看 | 麻豆精品久久久久久蜜桃| 午夜福利在线在线|