• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In-situ monitoring of nitrile-bearing pesticide residues by background-free surface-enhanced Raman spectroscopy

    2022-03-14 09:30:32GuoruiWuWenshuiLiWeijunDuAiqinYueJinzhongZhoDinginLiu
    Chinese Chemical Letters 2022年1期

    Guorui Wu,Wenshui Li,Weijun Du,Aiqin Yue,?,Jinzhong Zho,Dingin Liu,?

    aCollege of Agronomy,Shanxi Agricultural University,Taigu 030801,China

    bCollege of Arts and Sciences,Shanxi Agricultural University,Taigu 030801,China

    cState Key Laboratory of Medicinal Chemical Biology,Research Center for Analytical Sciences,and Tianjin Key Laboratory of Biosensing and Molecular Recognition,College of Chemistry,Nankai University,Tianjin 300071,China

    ABSTRACT In-situ monitoring of pesticide residues during crop growth or/and in related products is of great significance in avoiding the abuse of pesticides but remains challenging thus far.In this report,we proposed a background-free surface-enhanced Raman spectroscopy(bf-SERS)platform to non-destructively track the nitrile-bearing pesticide residues in soybean leaves with high sensitivity and selectivity.The outstanding feature of the assay stems from the dramatic Raman enhancement effect of the 50 nm-sized gold nanoparticles(AuNPs)towards the pesticides and simultaneously the background-free Raman signal of the nitrile group in the so-called Raman-silent region(1800–2800 cm–1).This bf-SERS assay was applied to evaluate the penetration effects of nitrile-bearing pesticides and monitor their residues in soybean leaves after rinsing with various solutions,providing a reliable tool for guiding the safe use of nitrilebearing pesticides in agriculture.

    Keywords:Nitrile-bearing pesticide residues Background-free SERS In-situ detection Chemical sensing Food safety

    With the rapid development of modern agriculture,pesticides serve as the most potent weapon in fighting against pests and weeds.However,pesticides are generally harmful to human health and the environment.Nitrile(C≡N)is a bioisostere of carbonyl,halogen,and other functional groups.The introduction of nitrile into pesticides could enhance the interactions between pesticides and target proteins,thus improving the insecticidal efficacy[1].Therefore,nitrile-bearing pesticides are widely used in agriculture.When spraying pesticides on crops,some pesticides are weakly adsorbed on the crop surfaces,most of which can be washed away by rainwater.However,some adsorbed pesticides tend to penetrate into the interior of crops,causing the formation of pesticide residues in agricultural products to harm our health[2].Thus,it is imperative to monitor the pesticide residues in crop growth and related products in a non-destructive manner.

    Several methods have been developed to detect pesticide residues,such as gas chromatography(GC)[3],high-performance liquid chromatography(HPLC)[4],liquid chromatography-mass spectrometry(LC-MS)[5],and photocatalytic sensing platform[6].Although sensitive and accurate,these methods require complex sample preparation,time-consuming procedures,and expensive instruments.Besides,these methods rely on the extraction of pesticides from the crop samples before analysis.Therefore,they cannot provide thein-situspatial-temporal information of pesticide residues in crops.

    In recent years,surface-enhanced Raman spectroscopy(SERS)has become a powerful chemical analysis and imaging technique[7],which is usually used to detect trace substances.SERS has already shined high analytical performance in various fields because of its extremely high sensitivity(single-molecule level),insusceptibility to photobleaching,and non-destructivity to samples[8–11].Over the past decades,SERS has been developed to detect pesticide residues such as thiabendazole[12],thiram[13]and methamidophos[14]in various kinds of crops.However,the SERS effect could enhance all the signals of the pesticide residues,unknown contaminates,and the endogenous components of crops simultaneously within the fingerprint region(<1800 cm–1),most likely causing spectral overlapping[15].The spectral overlapping makes it difficult to accurately quantify and track the pesticide residues in crops and related products.

    Fig.1.Raman spectra of acetamiprid and chlorothalonil and their SERS effects.Raman spectra of the(a)acetamiprid and(b)chlorothalonil powders.SERS spectra of the 50 nm AuNPs towards different concentrations of(c)acetamiprid and(d)chlorothalonil sprayed on the soybean leaves.(e,f)The concentration-dependent Raman intensities of the bands at 2175 cm?1 as shown in(c)and(d)respectively.

    Recently,it has been reported that certain exogenous moieties such as alkyne,nitrile,azide,and deuterium show distinct and sharp peaks in the cellular Raman-silent spectral window(1800–2800 cm–1)[16–18],where no signals can be detected for endogenous biomolecules.Based on the principle,exogenous moieties(typically alkyne and nitrile)were conjugated with target molecules to profile their physiological events in living cells without the background interference.In this study,we,for the first time,propose a background-free SERS(bf-SERS)strategy to nondestructively monitor the dynamic accumulation of nitrile-bearing pesticides in soybean leaves.We further investigated the effects of various rinsing conditions on the pesticide residues,providing a simple and effective means to control the use of pesticides during crop growth.

    Acetamiprid and chlorothalonil were taken as examples to evaluate the efficacy of this bf-SERS method owing to their wide applications in agriculture.Acetamiprid is a neonicotinoid systemic insecticide,which mainly acts on the nicotinic acetylcholine receptors in the synapses of the insect nervous system[19].It can be absorbed by the body to damage the human endocrine system[20].Chlorothalonil,a broad-spectrum non-systemic pesticide,is highly toxic to amphibians and was listed as a 2B carcinogen by the World Health Organization(WHO)in 2017[21,22].Recent studies have shown that chlorothalonil and its metabolites can inhibit the development of the mouse reproductive system[23].

    We have started this study by determining the Raman spectra of acetamiprid and chlorothalonil powders(Figs.1a and b).The assignments of the Raman peaks are provided in(Table S1 in Supporting information).Clearly,a single strong and sharp peak that is assigned to the C≡N of the pesticides can be detected in the Raman-silent window(1800–2800 cm–1).To detect the pesticides in plants,10 μL of acetamiprid and chlorothalonil solutions at a concentration of 200 mg/L were sprayed onto the soybean leaves.After drying,their Raman spectra were recorded under the same conditions.The results showed that the Raman signals of both acetamiprid and chlorothalonil were rather weak,which were masked by the background signals of the leaf themselves(Fig.S1 in Supporting information).Therefore,it is essential to employ SERS to track the pesticide residues.

    Gold nanoparticles(AuNPs,50 nm)were prepared as typical SERS substrates to amplify the Raman signals of the pesticide residues.The particles’plasmonic properties,morphology,and SERS effects towards the two pesticides were provided in Fig.S2(Supporting information).Different concentrations of acetamiprid and chlorothalonil were sprayed onto the soybean leaves and then incubated with the freshly-prepared AuNPs(2 nmol/L).As a blank,a soybean leaf without the treatment of pesticides was only loaded with the same concentration of AuNPs.The results showed that the molecular vibrations of both the pesticides and the leaf could be dramatically amplified by the AuNP substrates(Fig.S2c).It should be noted that,in the fingerprint region(<1800 cm–1),the Raman signals derived from the endogenous molecules and the pesticides were overlapped each other,making them difficult to be separated.However,a single peak at 2160–2190 cm–1that is assigned to the exogenous C≡N in the two pesticides was observed in the Raman-silent window,where no background signals from the leaves can be detectable.It is also worth noting that a peak at 2130 cm–1was observed in the spectra,which could be attributed to the CO stretching bond[24,25]that is present in CO2.The peak intensity can be enhanced particularly when the CO2molecules are present in the nanogaps of the AuNP aggregates.With the increase of pesticide concentrations,the peak intensities of C≡N were enhanced accordingly.The lowest detectable concentrations of acetamiprid and chlorothalonil in the leaves were estimated to be 0.1(Figs.1c and e)and 1 mg/L(Figs.1d and f),respectively,which are below the maximal values in agricultural products guided by the U.S.Environmental Protection Agency[26,27].Then,we tested the reproducibility of this bf-SERS assay by spraying acetamiprid and chlorothalonil on six different leaves respectively,and their spectra were collected with the same procedures.As shown in Fig.S3(Supporting information),both acetamiprid and chlorothalonil displayed high reproducibility between the six leaves,particularly for the nitrile band in the Raman-silent window.

    We then investigated the necessity of using the C≡N signal to track the pesticide residues in the leaves.Both acetamiprid and chlorothalonil exhibit two Raman scattering bands at 1520–1540 and 2160–2190 cm–1(Fig.2a),which correspond to the C=C and C≡N,respectively.The two bands were utilized as mapping channels to explore the distribution of the pesticides in the leaves on a confocal Raman microscope.In the absence of pesticides,only the signals in the 1520–1540 cm–1channel(green)were detected across the leaves(Fig.2b,i).In the presence of pesticides,the signals in the two channels were successfully detected(Fig.2b,ii and iii).However,the signal spots in the 2160–2190 cm–1channel(blue)are less distributed than those in the 1520–1540 cm–1channel.We reasoned that the green signals could be attributed to both the pesticides and the endogenous molecules surrounding the AuNPs,which are hard to be resolved.In terms of the mapping images in the blue channel,the signals were exclusively recorded from the exogenous C≡N of the pesticides,eliminating spectral interference derived from the endogenous plant species.

    The pesticide residues in crops will be transferred to agricultural products,thus negatively affecting our health.In-situmonitoring of the pesticide residues in crops is crucial for selecting appropriate rinsing conditions to remove pesticide residues.In this study,we used three different rinsing solutions,including distilled water,NaHCO3(5%),and detergents,to remove the residues of acetamiprid and chlorothalonil in the leaves.This result can be reasoned that NaHCO3can decompose pesticides to remove the residues effectively[28].The main components of detergent are surfactants,which can increase the solubility of pesticides,thus reducing adhesion on the leaf surfaces.

    Fig.2.SERS detection and imaging of nitrile-bearing pesticides in soybean leaves.(a)SERS spectra of soybean leaves and those previously sprayed with acetamiprid and chlorothalonil(10 μL,200 mg/L).(b)Bright-field(BF),Raman mapping at 1520–1540 cm–1 channel(green)and 2160–2190 cm–1 channel(blue),and merged images for the AuNP-dropped soybean leaves(i)and those previously sprayed with acetamiprid(ii)and chlorothalonil(iii).

    We first studied the residues of acetamiprid in the soybean leaves and those rinsed with different solutions.After dropping with AuNPs,the Raman signals of the sample-treated regions were imaged(mapping area=200 × 200 μm2)by a confocal Raman microscope.Fig.3a indicates that the mapping signals of acetamiprid in the 2160–2190 cm–1channel became weak after washing with different methods(Fig.3a,2–4).We collected the nitrile signals in ten mapping regions that were selected randomly on the same leaves.The average Raman intensities for each case are provided in Fig.3b.obviously,detergents possess the highest efficacy to remove the acetamiprid residues from the leaves.

    We further measured the penetration depth of the residues over different times(2–24 h).For the no-rinsing samples(top),we observed that the acetamiprid molecules adsorbed on the leaf surfaces and gradually penetrated into the interior of the leaves.The penetration depth is proportional to the staining time(Fig.3c).After 24 h,the penetration depth can reach 200 μm.When the acetamiprid-treated leaves were rinsed with detergents(bottom),the residues can be removed effectively especially in the early stages.The penetration depth can be reduced by~50% in the late stages.It remains challenging to completely remove the acetamiprid residues in the leaves,due to the fact that acetamiprid is a systemic pesticide that could interact with the plant tissues tightly[29].

    In parallel,we studied the residues of chlorothalonil,a typical non-systemic pesticide that is widely used in agriculture.The chlorothalonil-treated soybean leaves were also rinsed with different solutions and then incubated with AuNPs.Similar results were achieved that detergents showed the highest efficacy to remove the chlorothalonil residues from the leaves(Figs.3d and e).Concerning the residue penetration over time,we observed that chlorothalonil shows a much lower ability than acetamiprid to penetrate the leaves(Fig.3f).The chlorothalonil residues can be almost entirely removed from the leaves by detergents.The results suggest that the bf-SERS assay is highly suitable for monitoring nitrile-bearing pesticide residues in complex samples.

    Fig.3.Monitoring of nitrile-bearing pesticide residues on soybean leaves under different rinsing conditions.(a)SERS imaging of the acetamiprid residues at the 2160–2190 cm–1 channel after rinsing with different solutions:(1)No-rinsing(control),(2)distilled water,(3)5% NaHCO3 and(4)commercially available detergents.(b)Average Raman intensities of acetamiprid in ten mapping regions that were selected randomly on the same leaves with the solutions in(a).(c)SERS depth mapping of acetamiprid penetration in the leaves with(bottom)or without(top)detergent rinsing within different exposure periods.(d)SERS imaging of the chlorothalonil residues with different rinsing solutions(1–4).(e)Average Raman intensities of chlorothalonil in ten mapping regions that were selected randomly on the same leaves with the solutions in(d).(f)SERS depth mapping of chlorothalonil penetration in the leaves with(bottom)or without(top)detergent rinsing within different exposure periods.Error bars represent standard deviations of ten mapping regions selected randomly on the same leaves.

    Crop growth is a long-term process,during which monitoring of pesticides could be interfered with by many molecular factors in the real world.We employed three other commonly-used pesticides,including chlorpyrifos,dichlorvos,and dimethoate,to simulate the possible interfering factors in crop growth.Melamine,tartrazine,malachite,and oil-soluble yellow were utilized as possible pollutes processed in the production stage.Fig.S4(Supporting information)shows the SERS spectra of various additives on the surfaces of soybean leaves.Multiple peaks can be detected in the fingerprint region(<1800 cm–1),where the peaks cannot be separated.In the Raman-silent region,only the C≡N-bearing pesticides show a distinct peak at 2160–2190 cm–1,which can be clearly resolved from the spectra derived from other components as well as CO stretching bonds in CO2.Meanwhile,We tested whether the heavy metallic ions may interfere with the spectra of nitrile-bearing pesticides on the leaves.Acetamiprid and chlorothalonil were independently incubated with different common heavy metallic ions(Cu2+,Zn2+,Pb2+,Fe2+and Cd2+).Then,the mixtures were sprayed on soybean leaves for Raman recording.The results show that the metallic ions had negligible influence on both the mapping and spectra of the nitrile-bearing pesticides(Fig.S5 in Supporting information).These investigations show that the bf-SERS strategy can report the nitrile-bearing pesticides with high accuracy in complex conditions,avoiding the interference from both common exogenous factors and endogenous species.

    In summary,we have developed a bf-SERS method forin-situtracking of nitrile-bearing pesticide residues in soybean leaves.This method provides at least two distinct features.First,the distribution of pesticides in crop surfaces can be recorded in a nondestructive manner,without the need for tedious sample pretreatment.Second,a single Raman band assigned to the C≡N from the pesticide appears in the Raman-silent region,which was used to monitor the pesticide residues with extremely high fidelity.This bf-SERS method was further employed to evaluate the removal effi-cacy of different rinsing conditions.We found that(i)the commercial detergents showed the highest cleaning efficacy to remove the residues from the leaves and(ii)the adsorbed acetamiprid(a systemic pesticide)showed much stronger binding and anti-scouring ability than chlorothalonil(a non-systemic pesticide)in the leaves.When exogenous additives exist,the single bands of the nitrilebearing pesticide in the Raman-silent region make this method particularly useful for tracking target residues in diverse environments,thus providing valuable guidance for precision agriculture.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    We acknowledge the support from the Shanxi Province Key R&D Plans(Nos.201903D211006-1 and 201803D221020-2),the Natural Science Foundation of Shanxi Province(No.201901D111225),the National Natural Science Foundation of China(Nos.21775075 and 21977053),and the Fundamental Research Funds for the Central Universities,Nankai University(No.2122018165).

    Appendix A.Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.051.

    亚洲精品日韩在线中文字幕| 天堂中文最新版在线下载 | 国产69精品久久久久777片| 高清在线视频一区二区三区 | 国产成人免费观看mmmm| 成人午夜高清在线视频| 色视频www国产| 国产伦精品一区二区三区四那| av福利片在线观看| 成人国产麻豆网| 日韩成人av中文字幕在线观看| 午夜激情欧美在线| 亚洲无线观看免费| 全区人妻精品视频| 免费电影在线观看免费观看| 97热精品久久久久久| 欧美成人免费av一区二区三区| av在线老鸭窝| 亚洲国产精品合色在线| 亚洲欧美成人综合另类久久久 | 你懂的网址亚洲精品在线观看 | a级一级毛片免费在线观看| 欧美日韩一区二区视频在线观看视频在线 | 国产黄色小视频在线观看| 国产真实乱freesex| 国产高清三级在线| 国产老妇女一区| 久久久久精品久久久久真实原创| 天天躁日日操中文字幕| 精品久久久久久久久久久久久| 成年版毛片免费区| 精华霜和精华液先用哪个| 国产精品女同一区二区软件| 久久草成人影院| 欧美日韩国产亚洲二区| 看非洲黑人一级黄片| 青青草视频在线视频观看| 久久久国产成人免费| 又黄又爽又刺激的免费视频.| 国产高清不卡午夜福利| av又黄又爽大尺度在线免费看 | 91狼人影院| 人体艺术视频欧美日本| 91午夜精品亚洲一区二区三区| 久久精品影院6| 美女cb高潮喷水在线观看| 老女人水多毛片| 夫妻性生交免费视频一级片| 男女国产视频网站| 日韩一区二区三区影片| 天天一区二区日本电影三级| 久久久久精品久久久久真实原创| 亚洲精品国产av成人精品| 级片在线观看| 亚洲精品aⅴ在线观看| 国产精品一及| 成人性生交大片免费视频hd| 免费av观看视频| 亚洲精品乱码久久久久久按摩| 久久久久久久午夜电影| 热99re8久久精品国产| 精品久久久久久久人妻蜜臀av| 天天躁夜夜躁狠狠久久av| 色哟哟·www| 男插女下体视频免费在线播放| 成人午夜高清在线视频| 国产精品国产三级专区第一集| 亚洲精品aⅴ在线观看| 日产精品乱码卡一卡2卡三| 少妇人妻精品综合一区二区| 国产黄色视频一区二区在线观看 | 国产精品电影一区二区三区| 尾随美女入室| 少妇熟女aⅴ在线视频| 中文亚洲av片在线观看爽| 国产爱豆传媒在线观看| 亚洲精品乱码久久久久久按摩| 黄片wwwwww| 国产成人91sexporn| 国产亚洲91精品色在线| 麻豆国产97在线/欧美| 最近最新中文字幕免费大全7| 免费观看a级毛片全部| 国产精品综合久久久久久久免费| 大话2 男鬼变身卡| 91av网一区二区| 99热网站在线观看| 狂野欧美激情性xxxx在线观看| 日韩高清综合在线| 日韩一区二区视频免费看| 亚洲精品乱码久久久久久按摩| 乱人视频在线观看| 成人鲁丝片一二三区免费| 两性午夜刺激爽爽歪歪视频在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 两性午夜刺激爽爽歪歪视频在线观看| www.色视频.com| 一边摸一边抽搐一进一小说| 精品久久久噜噜| 男的添女的下面高潮视频| 欧美一区二区国产精品久久精品| 亚洲欧美精品综合久久99| 国内精品一区二区在线观看| 亚州av有码| 亚洲国产精品成人久久小说| 久久亚洲国产成人精品v| 欧美日韩在线观看h| 丝袜美腿在线中文| 中文字幕久久专区| av在线观看视频网站免费| 搡老妇女老女人老熟妇| av在线老鸭窝| 亚洲av中文av极速乱| 国产精品精品国产色婷婷| 国产精品久久久久久久久免| 国产午夜福利久久久久久| 精品久久久久久久久av| 特大巨黑吊av在线直播| 插逼视频在线观看| 日本猛色少妇xxxxx猛交久久| 在线免费观看不下载黄p国产| 国产亚洲精品av在线| 婷婷色综合大香蕉| 精品欧美国产一区二区三| 中文字幕av在线有码专区| 精品人妻视频免费看| 亚洲高清免费不卡视频| 国产午夜精品一二区理论片| eeuss影院久久| 成人无遮挡网站| 精品久久久久久久久久久久久| 日韩国内少妇激情av| 网址你懂的国产日韩在线| 免费在线观看成人毛片| 国产在线一区二区三区精 | 人人妻人人澡人人爽人人夜夜 | 国产熟女欧美一区二区| www日本黄色视频网| 色吧在线观看| 国产在视频线精品| 一级爰片在线观看| 亚洲电影在线观看av| 欧美日韩在线观看h| 久久6这里有精品| av女优亚洲男人天堂| 十八禁国产超污无遮挡网站| 免费av不卡在线播放| 日韩欧美精品v在线| 亚洲av男天堂| 深爱激情五月婷婷| 国产精华一区二区三区| 又爽又黄无遮挡网站| 亚洲人成网站高清观看| 国产精品99久久久久久久久| 我的老师免费观看完整版| 日本色播在线视频| 亚洲欧洲国产日韩| 激情 狠狠 欧美| 亚洲va在线va天堂va国产| 18禁动态无遮挡网站| 大又大粗又爽又黄少妇毛片口| 免费无遮挡裸体视频| 欧美日本亚洲视频在线播放| 大香蕉97超碰在线| 国产精品一区二区三区四区免费观看| 中文欧美无线码| 长腿黑丝高跟| 一本一本综合久久| 亚洲国产精品国产精品| 26uuu在线亚洲综合色| av播播在线观看一区| 国产高清视频在线观看网站| 激情 狠狠 欧美| 中文乱码字字幕精品一区二区三区 | 综合色av麻豆| 午夜爱爱视频在线播放| 国产在视频线在精品| 成人午夜精彩视频在线观看| 波野结衣二区三区在线| 亚洲精品成人久久久久久| 五月玫瑰六月丁香| 美女xxoo啪啪120秒动态图| 99久国产av精品国产电影| 国产精品一二三区在线看| 久久久a久久爽久久v久久| 人人妻人人澡人人爽人人夜夜 | 色网站视频免费| 久久99蜜桃精品久久| 国产亚洲91精品色在线| 国产成人a∨麻豆精品| 99久国产av精品| av在线亚洲专区| 久久99热这里只有精品18| 麻豆成人午夜福利视频| 国产高清不卡午夜福利| 校园人妻丝袜中文字幕| 联通29元200g的流量卡| 91av网一区二区| 99久国产av精品国产电影| 欧美+日韩+精品| 亚洲一级一片aⅴ在线观看| 久久人人爽人人片av| 伊人久久精品亚洲午夜| 日本猛色少妇xxxxx猛交久久| 久久久久九九精品影院| 中文字幕久久专区| 最新中文字幕久久久久| 日韩高清综合在线| 91精品一卡2卡3卡4卡| 日本wwww免费看| 热99re8久久精品国产| 人人妻人人澡人人爽人人夜夜 | 女人十人毛片免费观看3o分钟| 久久久精品大字幕| 日本wwww免费看| 少妇人妻精品综合一区二区| 国产一级毛片七仙女欲春2| 深爱激情五月婷婷| 免费一级毛片在线播放高清视频| 亚洲av成人精品一二三区| 亚洲欧美一区二区三区国产| 在线天堂最新版资源| 噜噜噜噜噜久久久久久91| 久久精品国产鲁丝片午夜精品| 精品人妻偷拍中文字幕| 一本久久精品| 色综合色国产| 一级二级三级毛片免费看| 日本一本二区三区精品| 久久精品夜夜夜夜夜久久蜜豆| 国产人妻一区二区三区在| 三级经典国产精品| 国产精品女同一区二区软件| 国产激情偷乱视频一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 婷婷色综合大香蕉| 久久久久网色| 夫妻性生交免费视频一级片| 两个人视频免费观看高清| 日韩一区二区视频免费看| 婷婷六月久久综合丁香| 国产单亲对白刺激| 22中文网久久字幕| 春色校园在线视频观看| 一个人看的www免费观看视频| a级毛片免费高清观看在线播放| 国产av一区在线观看免费| 久久99蜜桃精品久久| 国产精品熟女久久久久浪| 不卡视频在线观看欧美| 听说在线观看完整版免费高清| 国产一区有黄有色的免费视频 | 国产成人免费观看mmmm| 精品99又大又爽又粗少妇毛片| 亚洲精品亚洲一区二区| 在现免费观看毛片| av福利片在线观看| 卡戴珊不雅视频在线播放| 18+在线观看网站| 亚洲一级一片aⅴ在线观看| 久久草成人影院| 久久热精品热| 精品一区二区三区视频在线| 夜夜看夜夜爽夜夜摸| 69人妻影院| 中文字幕av在线有码专区| 国产精品国产三级国产av玫瑰| 免费看av在线观看网站| 欧美又色又爽又黄视频| 午夜爱爱视频在线播放| 人妻夜夜爽99麻豆av| 精品久久久久久久末码| 少妇高潮的动态图| 日韩成人av中文字幕在线观看| 国产欧美日韩精品一区二区| 国产精品人妻久久久影院| 精品99又大又爽又粗少妇毛片| 波多野结衣高清无吗| 免费观看的影片在线观看| 不卡视频在线观看欧美| 亚洲av一区综合| 国产精品野战在线观看| 国产成人精品婷婷| 国产 一区 欧美 日韩| 国产不卡一卡二| 99热这里只有是精品在线观看| 纵有疾风起免费观看全集完整版 | av女优亚洲男人天堂| 色网站视频免费| av在线播放精品| 国产午夜精品一二区理论片| 久久久久久国产a免费观看| videos熟女内射| 男人舔女人下体高潮全视频| 国产精品久久久久久久久免| 美女大奶头视频| 久久精品夜色国产| 久久热精品热| 国产成人aa在线观看| 天堂中文最新版在线下载 | 精品一区二区免费观看| 欧美另类亚洲清纯唯美| 在线观看一区二区三区| 亚洲国产成人一精品久久久| 五月伊人婷婷丁香| 晚上一个人看的免费电影| 日本五十路高清| 精品一区二区三区视频在线| 我的老师免费观看完整版| 亚洲va在线va天堂va国产| 久久久久久久久久久免费av| 女人十人毛片免费观看3o分钟| av在线亚洲专区| 久久久精品94久久精品| 国产亚洲av片在线观看秒播厂 | 国产精品久久久久久久久免| 国产免费一级a男人的天堂| 午夜老司机福利剧场| 亚洲在久久综合| 淫秽高清视频在线观看| kizo精华| 色综合站精品国产| 波多野结衣巨乳人妻| 久久精品影院6| 国产在视频线在精品| 午夜a级毛片| 麻豆av噜噜一区二区三区| 天天躁夜夜躁狠狠久久av| 99在线视频只有这里精品首页| 熟女电影av网| 国产亚洲精品久久久com| 波野结衣二区三区在线| 国产成人a∨麻豆精品| 亚洲最大成人中文| 69人妻影院| 国产精品99久久久久久久久| 精品免费久久久久久久清纯| 日韩,欧美,国产一区二区三区 | 成人亚洲欧美一区二区av| 卡戴珊不雅视频在线播放| 久久鲁丝午夜福利片| 亚洲精品国产成人久久av| 亚洲丝袜综合中文字幕| 国产一区二区亚洲精品在线观看| 国产欧美日韩精品一区二区| 欧美性猛交黑人性爽| 青春草视频在线免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲婷婷狠狠爱综合网| 在线a可以看的网站| 久久韩国三级中文字幕| av福利片在线观看| 国产在视频线精品| 国产免费福利视频在线观看| 2021少妇久久久久久久久久久| 国产精品久久久久久久电影| 亚洲四区av| 亚洲国产高清在线一区二区三| 成人无遮挡网站| 在线观看66精品国产| 嫩草影院入口| 人体艺术视频欧美日本| 亚洲最大成人手机在线| 三级国产精品欧美在线观看| 国产人妻一区二区三区在| 一区二区三区高清视频在线| 乱系列少妇在线播放| 22中文网久久字幕| 久久精品国产亚洲网站| 亚洲成人精品中文字幕电影| 国产一级毛片在线| 最新中文字幕久久久久| 又爽又黄a免费视频| 久久久成人免费电影| 在线播放国产精品三级| 日韩大片免费观看网站 | 日韩中字成人| 高清毛片免费看| 久久婷婷人人爽人人干人人爱| 别揉我奶头 嗯啊视频| 亚洲av成人精品一二三区| 国产久久久一区二区三区| 日韩精品有码人妻一区| 尤物成人国产欧美一区二区三区| 亚洲av男天堂| 成人综合一区亚洲| 国国产精品蜜臀av免费| 18+在线观看网站| or卡值多少钱| 国产成人freesex在线| 午夜亚洲福利在线播放| 国产免费男女视频| 国产免费视频播放在线视频 | 久久99热这里只有精品18| 国产av一区在线观看免费| 七月丁香在线播放| 成人综合一区亚洲| 国产成年人精品一区二区| 精品久久久久久久久久久久久| 七月丁香在线播放| 青春草视频在线免费观看| 成年女人永久免费观看视频| 日韩在线高清观看一区二区三区| 一个人免费在线观看电影| 亚洲最大成人中文| 欧美xxxx黑人xx丫x性爽| 三级男女做爰猛烈吃奶摸视频| 97热精品久久久久久| 国产精品久久久久久久电影| 成人性生交大片免费视频hd| 国产精品国产三级专区第一集| 久久精品久久久久久久性| 亚洲自拍偷在线| 特大巨黑吊av在线直播| 亚洲av男天堂| 国产精品电影一区二区三区| 青春草亚洲视频在线观看| 一个人看视频在线观看www免费| 日本爱情动作片www.在线观看| www.av在线官网国产| 毛片一级片免费看久久久久| 亚洲第一区二区三区不卡| 在现免费观看毛片| 国产极品天堂在线| 欧美成人免费av一区二区三区| 久久这里只有精品中国| 天堂网av新在线| 亚洲欧洲日产国产| 亚洲,欧美,日韩| 欧美激情在线99| 波野结衣二区三区在线| 欧美色视频一区免费| 日韩精品青青久久久久久| 干丝袜人妻中文字幕| 精品久久久久久久久亚洲| 亚洲丝袜综合中文字幕| 九色成人免费人妻av| 日韩欧美在线乱码| 69av精品久久久久久| 在线a可以看的网站| 午夜精品在线福利| 日产精品乱码卡一卡2卡三| 99久国产av精品| 精品久久久久久电影网 | 国产精品女同一区二区软件| 三级经典国产精品| 国产精品嫩草影院av在线观看| 国产爱豆传媒在线观看| 成人二区视频| 国产伦精品一区二区三区视频9| 精品人妻一区二区三区麻豆| 国产一区二区在线av高清观看| 91精品一卡2卡3卡4卡| 岛国在线免费视频观看| 在线a可以看的网站| 精品一区二区三区视频在线| av播播在线观看一区| 免费黄网站久久成人精品| 丰满人妻一区二区三区视频av| 国产在视频线在精品| 国产av不卡久久| 午夜免费男女啪啪视频观看| 69av精品久久久久久| 亚洲国产高清在线一区二区三| 国产精品一区www在线观看| 亚洲精品久久久久久婷婷小说 | 欧美一区二区精品小视频在线| 久久精品国产亚洲网站| 热99在线观看视频| 国产精品电影一区二区三区| 天美传媒精品一区二区| 亚洲成人av在线免费| 老司机影院成人| 婷婷色麻豆天堂久久 | 亚洲自偷自拍三级| 日韩成人伦理影院| 亚洲精品影视一区二区三区av| 亚洲中文字幕一区二区三区有码在线看| 亚洲成人久久爱视频| 亚洲精品日韩av片在线观看| 丝袜喷水一区| 国产亚洲最大av| 国内精品一区二区在线观看| 亚洲av免费高清在线观看| 汤姆久久久久久久影院中文字幕 | 国产高清三级在线| 国产精品精品国产色婷婷| h日本视频在线播放| 99在线视频只有这里精品首页| 日本与韩国留学比较| 国产久久久一区二区三区| 一边亲一边摸免费视频| 亚洲最大成人中文| 一本一本综合久久| 深夜a级毛片| videos熟女内射| 91精品伊人久久大香线蕉| 国产免费福利视频在线观看| 欧美3d第一页| 国产精品,欧美在线| 国产伦精品一区二区三区四那| 久久精品久久精品一区二区三区| 插逼视频在线观看| 国产精品国产三级国产专区5o | 日韩一区二区视频免费看| 一夜夜www| 全区人妻精品视频| 国产精品一二三区在线看| 色综合亚洲欧美另类图片| 美女被艹到高潮喷水动态| 日本爱情动作片www.在线观看| 你懂的网址亚洲精品在线观看 | 日韩制服骚丝袜av| 成人欧美大片| 一二三四中文在线观看免费高清| 纵有疾风起免费观看全集完整版 | 亚洲av电影不卡..在线观看| 草草在线视频免费看| 国产又黄又爽又无遮挡在线| 亚洲精品色激情综合| 国产亚洲最大av| 国产探花在线观看一区二区| 久久久成人免费电影| 久久精品国产亚洲av天美| 99久久精品热视频| 蜜桃久久精品国产亚洲av| 久久99蜜桃精品久久| 一级av片app| 日本五十路高清| 国产精品国产三级国产专区5o | av在线播放精品| 欧美不卡视频在线免费观看| 一区二区三区四区激情视频| 亚洲国产精品合色在线| 亚洲国产精品成人综合色| 国产精品一区二区三区四区免费观看| 色播亚洲综合网| 国产毛片a区久久久久| 六月丁香七月| 国产熟女欧美一区二区| 国产精华一区二区三区| 麻豆久久精品国产亚洲av| 国产人妻一区二区三区在| 日韩av不卡免费在线播放| a级毛色黄片| 成人三级黄色视频| 亚洲久久久久久中文字幕| 婷婷六月久久综合丁香| 国产又黄又爽又无遮挡在线| 又粗又硬又长又爽又黄的视频| 国产激情偷乱视频一区二区| 99九九线精品视频在线观看视频| 日韩成人伦理影院| 91在线精品国自产拍蜜月| 精品酒店卫生间| 亚洲五月天丁香| 成人毛片60女人毛片免费| 国产视频内射| 婷婷色综合大香蕉| 久久人人爽人人片av| 少妇人妻一区二区三区视频| videos熟女内射| 在线观看美女被高潮喷水网站| 三级男女做爰猛烈吃奶摸视频| 大香蕉97超碰在线| 午夜日本视频在线| 亚洲精品一区蜜桃| 青春草亚洲视频在线观看| 免费观看在线日韩| 欧美成人免费av一区二区三区| 国产一区二区在线av高清观看| 黄色日韩在线| 韩国高清视频一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 人妻制服诱惑在线中文字幕| 国产黄色视频一区二区在线观看 | 99久久精品一区二区三区| 毛片一级片免费看久久久久| 国产精品国产三级专区第一集| 国产高清三级在线| 欧美激情在线99| 午夜日本视频在线| 又黄又爽又刺激的免费视频.| 舔av片在线| 网址你懂的国产日韩在线| 久久国内精品自在自线图片| 久久热精品热| 国产成人精品婷婷| 免费观看精品视频网站| 亚洲中文字幕一区二区三区有码在线看| 麻豆乱淫一区二区| 搡女人真爽免费视频火全软件| 国产色爽女视频免费观看| 色哟哟·www| 亚洲无线观看免费| 美女内射精品一级片tv| 中文字幕av成人在线电影| 欧美成人免费av一区二区三区| 亚洲精品色激情综合| 91精品一卡2卡3卡4卡| 亚洲国产最新在线播放| 国内少妇人妻偷人精品xxx网站| 麻豆av噜噜一区二区三区| 日韩精品有码人妻一区| 国产又黄又爽又无遮挡在线| 久久久精品欧美日韩精品| 亚洲成色77777| 国内精品宾馆在线| 亚洲精品亚洲一区二区| 国产精品久久久久久久久免| av免费在线看不卡| 国产欧美日韩精品一区二区| 久久99热这里只频精品6学生 | 久久久亚洲精品成人影院| 国产精品蜜桃在线观看|