• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ru single atoms induce surface-mediated discharge in Na-O2 batteries

    2022-03-14 09:30:16XinJinYngyngLiShuoZhngJingweiZhngZihnShenChenlinZhongZiqingCiChoqunHuHuigngZhng
    Chinese Chemical Letters 2022年1期

    Xin Jin,Yngyng Li,Shuo Zhng,Jingwei Zhng,Zihn Shen,Chenlin Zhong,Ziqing Ci,Choqun Hu,Huigng Zhng,c,?

    aNational Laboratory of Solid State Microstructures,Collaborative Innovation Center of Advanced Microstructures,College of Engineering and Applied Sciences,Nanjing University,Nanjing 210093,China

    bDalian National Laboratory for Clean Energy &State Key Laboratory of Catalysis,Dalian Institute of Chemical Physics,Chinese Academy of Sciences(CAS),Dalian 116023,China

    cState Key Laboratory of Multiphase Complex Systems,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China

    dNanjing IPE Institute of Green Manufacturing Industry,Nanjing 211100,China

    ABSTRACT Sodium(Na)O2 batteries have high energy density and low cost.However,high polarization,complex discharge products,and low Coulombic efficiency(CE)lead to poor cyclability.Here,we proposed an atomically dispersed Ru catalyst on nitrogen-doped graphene for Na-O2 batteries.The catalysts enable the discharge to proceed via a surface-mediated route,which leads to uniform deposition of Na2-xO2 and low polarization during recharge.The first-principle calculation revealed that Ru-N4 complex in the catalyst has strong chemical adsorption to intermediate superoxides,facilitating uniform deposition and enhancing rapid kinetics.In contrast,Ru nanoparticles,despite the catalytic activity,induce bulk deposition via a solution-mediated route because the exposed graphene surface shows weak interaction to superoxides,thereby lowering CEs and cyclability.In brief,the atomically-dispersed Ru catalyst endows Na-O2 batteries with excellent electrochemical properties via a surface-mediated discharge.

    Keywords:Na-O2 batteries Ru single atoms Surface-mediated mechanism Adsorption energy Co-deposition

    Electrochemical energy storage systems are receiving increasing attention to realize the clean energy blueprint.A variety of batteries(Li/Na-ions,flow,metal-sulfur,metal-oxygen,etc.)have been developed to meet the ever-increasing demands of energy storage[1–7].Among them,metal-air systems demonstrate the highest energy density and arouse the intensive interests of researchers.Especially,sodium-oxygen(Na-O2)batteries have been recently recognized because of their low cost and high energy density[8–16].Despite modest progress,the theoretical energy density was hardly reached mainly because Na-O2batteries usually have high charge overpotentials[17–21]and/or low Coulombic efficiencies(CEs)[22–25].Upon cycling,Na-O2batteries exhibit a variety of complex discharge components,which may change with electrochemical conditions and pose difficulty to capture the formation mechanism of discharge intermediate and products[25–29].

    Sodium superoxide(NaO2)has been regarded as the stable discharge product in Na-O2batteries[22,27,28,30,31].For example,Hartmann[30],Xia[32]and Sunet al.[27]reported NaO2as the dominant reaction product of Na-O2batteries,showing lower overpotentials and low CEs.Liu[33],Hu[34]and Maet al.[35].revealed that sodium peroxide(Na2-xO2),which is more thermodynamically stable at room temperature,could also be observed as the discharge products in air electrodes at a similar electrochemical condition.As compared to NaO2,Na2-xO2has higher energy density and CEs,which may be more suitable for large-scale energy storage[21,29,36–38].It has been found that the decomposition of Na2-xO2is challenging in Na-O2batteries.Wuet al.argued that micrometer-sized RuO2could reduce overpotentials significantly owing to the catalytic effects on boron-doped reduced graphite oxide(rGO)[38].The discharge products grew into nanospheres on the surface of the air electrode because of the strong adsorption of oxygen on RuO2.The close contact of discharge products on RuO2could lead to the complete decomposition of Na2-xO2at lower voltages.Maet al.developed a new composite of Pd nanoparticles and ZnO-passivated porous carbon,which could generate Na2O2·2H2O with porous structure after discharge[21].The Pd catalyst promoted the formation and decomposition of Na2O2·2H2O,thereby leading to the reduction of charge overpotential by~0.5 V.The co-growth of discharge products on catalyst could greatly improve the reversible decomposition of discharge products.On the contrary,bulk discharge products(usually showing cubic morphology)could also be producedviaa solution-mediated route,which readily decreases the CEs and damages the stable surface of anodes because products were separated from the conductive contact of catalyst.The co-growth of discharge products may cover and inactivate the catalyst,decreasing the energy density of Na-O2batteries[31,39,40].

    Fig.1.Schematic illustration of(a)the preparation procedure of Ru-SAs@N-rGO and Ru-N4 coordination structure;(b)Ru SAs induced a surface-mediated discharge through the strong adsorption of the intermediate NaO2;(c)The solution-mediated discharge leads to cubic morphology of bulk Na2-xO2 on Ru-NPs@N-rGO.

    In this work,we prepared atomically dispersed ruthenium(Ru)catalysts for Na-O2batteries,in which Ru single atoms(Ru-SAs)were anchored on nitrogen(N)doped rGO(Ru-SAs@N-rGO),forming Ru-N4coordination sites(Fig.1a).The resulting Ru-N sites show strong adsorption toward the intermediates(NaO2).Such a strong absorption will suppress the dissolution and transportation of NaO2in the electrolyte,thus inhibiting the growth of cubic discharge products caused by the solution-mediated process(Fig.1b).In other words,the strong adsorption of NaO2on Ru-N sites facilitates thein-situconversion of NaO2to Na2-xO2owing to the good contact with electrons and Na ions.It is simply deduced that the energy density of Na-O2batteries is related to the number of catalytic sites.Highly dispersed Ru SAs provide more catalytic active sites with less Ru content.In contrast,Ru nanoparticles anchored on N-rGO(Ru-NPs@N-rGO)not only show the weak adsorption of NaO2,but also have relatively few catalytic sites,which can readily be passivated by discharge products(Fig.1c).Owing to the exposure of catalytic sites,Ru-SAs@N-rGO exhibits a high energy density.The co-growth of discharge products can be completely decomposed under 3.7 V because of the good contact with the conductive scaffold.The resultant Na-O2battery can be cycled 100 times with a capacity of 500 mAh/g.

    Graphene oxide(GO)was prepared according to Hummer’s method[49].Approximately 50 mg GO powder was dispersed in 50 mL HNO3by ultrasonication and stirring.After 3 h,3 mg RuCl3was added into the as-obtained GO suspension.The mixed suspension was stirred for 24 h and transferred to an autoclave,which was heated at 180 °C for 3 h.The obtained powder was dehydrated in a freeze dryer and further reduced by NH3at 600 °C in a tube furnace to form the Ru-SAs@N-rGO.The Ru-NPs@N-rGO was reduced at 900 °C while the other processes were as same as Ru-SAs@N-rGO.Without adding RuCl3,the GO power was converted to N-rGO using the same synthetic procedure.

    Morphological and elemental mapping images were obtained with a filed-emission scanning electron microscopy(SEM)(ZEISS Ultra 55,3 kV)and scanning transmission electron microscope(STEM)(Tecnai G2 20,200 kV).X-ray photoelectron spectroscopy(XPS)spectra were analyzed on a K-Alpha(Thermo Scientific)photoelectron spectrometer using monochromatic Al Kαradiation(1486.6 eV).X-ray diffraction(XRD)patterns were collected on a Rigaku D/Max III X-ray diffractometer with Cu-Kαradiation(λ=1.5418 ?A).Ru K-edge(22 117 eV)data were collected at the Hard X-ray MicroAnalysis(HXMA)beamline of Shanghai Synchrotron Radiation Facility(SSRF).The samples were loaded into a polyimide film cell and collected using flsorescence mode.The catalysts,Super P and poly(1,1-difluoroethylene)were mixed with 8:1:1 mass ratio and sprayed on carbon paper to prepare the air diffusion cathode.The loading mass of catalysts was about 1.5 mg/cm2.All samples were assembled into 2032 coin cells with mesh window in an Ar-filled glovebox.Celgard 2400 membrane was used as the separator.The electrolyte was 0.5 mol/L NaSO3CF3in diethylene glycol dimethyl ether.The assembled cells were rested for 12 h before electrochemical tests.The cyclic voltammetry(CV)is run at 0.2 mV/s and the current density of cells for cycling is 150 mA/g.Galvanostatic cycling was conducted with a battery tester system(LAND Corp.China).CV and electrochemical impedance spectroscopy(EIS)measurements were conducted with a potentiostat(Bio-logic,France).

    DFT calculation:The binding energy of NaO2to various substrates was calculated using the commercial cambridge sequential total energy package program in Material Studios.Generalized gradient approximation with the Perdew–Burke–Ermzerh of functional was adopted for the total energy calculations.The ultrasoft pseudopotential was used to treat core electrons.The energy cutoff was set to 550 eV.The vacuum region between slabs is 15 ?A.The Brillouin zone of the surface unit cell was sampled by Monkhorst–Pack grids.The MP grids were set as 4 × 4 × 1 for all the surfaces and slabs,respectively.

    Fig.2.Structural characterization of Ru-SAs@N-rGO:(a)HAADF-STEM image and(b)EDX mapping images of Ru-SAs@N-rGO.(c)XRD patterns of Ru-SAs@N-rGO and Ru-NPs@N-rGO.(d)Normalized K-edge XANES and(e)K-edge FT-EXAFS in R space for Ru-foil,RuO2 and Ru-SAs@N-rGO,respectively.(f)EXAFS fitting curves at R space for Ru-foil,RuO2 and Ru-SAs@N-rGO.

    Fig.2a presents the STEM image of Ru-SAs@N-rGO.The bright dots in the high angle annular dark field(HAADF)image have an average size of~0.2 nm,indicating the uniformly distributed Ru SAs.The energy-dispersive X-ray spectroscopy(EDX)mapping images in Fig.2b shows the uniform distribution of Ru,N and C elements in Ru-SAs@N-rGO,which can be further verified by SEM and EDX images in Figs.S1a-c(Supporting information).The XRD pattern of Ru-SAs@N-rGO in Fig.2c shows only a broad peak around 26°,which results from rGO.In contrast,Ru-NPs@N-rGO shows an additional peak at 44°,which is ascribed to the(101)reflection of hexagonal Ru(JCPDF card No.06-0663).As show in Fig.S1d(Supporting information),there are a large number of Ru nanoparticles loading on N-rGO,which can explain the source of diffraction peak in Ru-NPs@N-rGO.The uniform distribution of Ru in the HAADFSTEM image(Fig.2a)and no observable Ru peaks in the XRD pattern(Fig.2c)provide consistent evidence that confirms the formation of Ru SAs on N-rGO.To further study their coordination structure at the atomic scale,the X-ray absorption spectroscopy(XAS)measurements were conducted on Ru K-edge(Fig.2d).The X-ray absorption near edge structure(XANES)spectra(Fig.2e)show that the absorption edge of Ru-SAs@N-rGO resides between RuO2and Ru Foil,indicating that the oxidation state of Ru is between Ru0and Ru4+.Wavelet transform(WT)could be also used to investigate the Ru K-edge EXAFS oscillations of Ru-SAs@N-rGO and the references.As shown in Fig.S2(Supporting information),there is one major intensity maximum of WT analysis in Ru-SAs@N-rGO shows at about 6.0 ?A–1,which is very close to that in RuO2(~6.2 ?A–1),but distinct from the feature of Ru foil(10.0 ?A–1).As shown in Fig.2f,the Fourier transform(FT)of the extended XAS fine structure(EXAFS)curve of Ru-SAs@N-rGO shows one peak at 1.6 ?A,which corresponds to the closest shell coordination of Ru-N bonds.For Ru foil and RuO2,there are distinct peaks at~2.3 and 3.2 ?A,which are attributed to the Ru-Ru coordination,respectively.No peaks at those positions rule out the presence of Ru nanoclusters and Ru oxides in Ru-SAs@N-rGO.The fitting results in Fig.2f show that the main coordination peak is originated from Ru-N complexes in the form of Ru1-N4configuration.The average Ru-N bond length is 2.07 ?A,indicating that Ru SAs are coordinated with four adjacent N atoms in N-rGO.In conjunction with the above structure analyses,we may conclude that Ru SAs were successfully introduced into the N-rGO.

    Figs.3a-c show the XPS analysis of discharged cathodes.A broad peak of the O 1s signal between 528.00 eV and 534.00 eV in Fig.3a could be fitted into two peaks at 530.60 and 532.35 eV,which are attributed to the S-O bonds in NaSO3CF3[41]and the O-O bonds of Na2-xO2,respectively.A low amount of NaSO3CF3mainly results from the electrolyte residual.Na2-xO2was formed owing to the discharge reaction.The peak at 536.35 eV is originated from the Auger signal of Na[42].The Na 1s spectrum(Fig.3b)shows two peaks at 1071.75 and 1071.12 eV,which correspond to Na2-xO2and NaSO3CF3,respectively[42].The C 1s signals in Fig.3c exhibits two peaks at 284.80 eV and 288.98 eV,which result from C-C bonds(carbon paper and N-rGO)[43]and C-F bonds in NaSO3CF3[41],respectively.The Fourier transform infrared(FTIR)spectra in Fig.3d confirm the presence of Na2-xO2and NaSO3CF3according to previous reports[17,44].Therefore,the spectroscopic analyses lead to the conclusion that a large amount of Na2-xO2is formed in the cathode after discharge.Na2-xO2as the main discharge product has a slightly higher potentialviaa twoelectron reaction than NaO2viaa single-electron reaction,showing higher energy density.

    To understand how catalysts affect the discharge process,we first discharged two Na-O2batteries at low and high capacities(500 and 5000 mAh/g),respectively,and disassembled them to observe the morphology of discharged products.Fig.3e presents the SEM image of Ru-SAs@N-rGO after discharge at 500 mAh/g.At such a low discharge capacity,the surface of Ru-SAs@N-rGO was evenly covered by fine nanoparticles without protrusions or aggregation,implying a surface-mediated mechanism.The discharge products generated at the early stage of discharge can be dissolved by the electrolyte owing to the relatively high solubility,which helps to transfer discharge products homogeneously inside the cathode through the electrolyte.Fig.3f shows that at a high discharge capacity(5000 mAh/g),the Ru-SAs@N-rGO cathode was fully and evenly covered by discharge products,indicating a uniform co-deposition of superoxides,which is further confirmed by the uniform distribution of C,O,Na and Ru in Fig.3g.

    To study the reversibility of the discharge products,we recharged batteries to a cut-off voltage of 3.7 V and observed the cathode surface to see if the discharge products were decomposed.Fig.S3(Supporting information)shows that the surface of Ru-SAs@N-rGO became smooth again after charge,indicating a reversible decomposition of the discharge products.Therefore,it can be concluded that Ru-SAs@N-rGO enables the Na-O2reaction with excellent homogeneity and reversibility upon cycling.

    Fig.3.XPS spectra of(a)O 1s,(b)Na 1s and(c)C 1s of cathodes after discharge.(d)FTIR spectra before and after discharge.SEM images of Ru-SAs@N-rGO after discharged at(e)500 and(f)5000 mAh/g.(g)EDX elemental mapping images of C,O,Na and Ru in(f).SEM images of Ru-NPs@N-rGO at(h)500 and(i)5000 mAh/g.(j)The binding energy of NaO2 with rGO,N-rGO,Ru-SAs@N-rGO and Ru-NPs@N-rGO.

    Furthermore,we compared the discharge products of Ru-SAs@N-rGO with Ru-NPS@N-rGO.Figs.3h and i show that Ru NPs induced island-like morphology of discharge products on N-rGO.A small amount of ultra-fine nanodots surround these islands.The deposition sites of discharge products at the initial stage are mainly determined by the accessibility of electrons,ions,catalytic sites.Given the poor electron conductivity of Na2-xO2,the further growth into bulk “islands” may proceed with a dissolutionand-deposition route(namely,the solution-mediated mechanism).Therefore,how the intermediate products interact with the surface plays a key role in the growth mode,which may further determine the overall electrochemical properties of Na-O2batteries.

    To further understand the interaction between intermediates and various surfaces,we calculated the adsorption property of the intermediate product on cathodes using the density functional theory(DFT).Previous reports argued that NaO2is the intermediate product in Na-O2batteries[45–47].As the formation and transport of NaO2determine the composition and morphology of the final discharge products in Na-O2batteries,we calculated the adsorption energy of NaO2on N-rGO and Ru-SAs@N-rGO.Following the modeling strategies in previous reports[48],we adopted the adsorption models of NaO2(Fig.S4 in Supporting information)on various sites of N-rGO and Ru-SAs@N-rGO.Fig.3j presents that the binding energy of NaO2follows the trend,rGO

    The modeling results could assist in interpreting morphologic change in Figs.3e-i.During discharge,the initial products would deposit around the catalytic sites if the surface of cathodes has a strong interaction with intermediate products,resulting in a surface-mediated route.Ru-SAs@N-rGO follows this model and shows the uniform deposition of Na2-xO2as illustrated in Fig.1b and shown in Fig.3f.Such a uniform deposition may also reduce the local polarization so that the discharge products can be decomposed completely during recharge.For Ru-NPs@N-rGO,Ru-NPs have the strongest adsorption to intermediate products whereas N-rGO has relatively low binding energy.Under a similar Ru loading,the sample of Ru-NPs@N-rGO shows a non-uniform Ru distribution because of the large particle size of Ru NPs as compared to Ru SAs.The exposed N-rGO may not bind the intermediate products strongly and allow them dissolved in the electrolyte.As a result,the discharge products will accumulate towards Ru NPs and not deposit on N-rGO,leading to the island-like morphology(namely,solution-mediated mechanism).The dissolved intermediate may also migrate towards anodes and lower the discharge capacity and CEs.As the bulk island-like Na2-xO2on Ru-NPs@NrGO was formedviathe dissolution-and-deposition instead of direct electrodeposition,a similar recharge process may encounter high resistance for electron and ion transfer.Fig.S5(Supporting information)shows that after recharge,some residuals are not completely decomposed.Thus,a solution-mediated process should be avoided.Ru-SAs@N-rGO could realize the surface-mediated mechanism and demonstrate uniform discharge behavior with the expectation of long-term cyclability.

    Fig.4.Electrochemical properties of Ru SAs and NPs.(a)The CV curves of Ru-SAs@N-rGO and Ru-NPs@N-rGO at 0.2 mV/s.(b)The charge/discharge profiles of Ru-SAs@N-rGO and Ru-NPs@N-rGO at 150 mA/g.(c)The rate performances of Ru-SAs@N-rGO and Ru-NPs@N-rGO.(d)Cycling properties of Ru-SAs@N-rGO and Ru-NPs@N-rGO at 150 mA/g.

    Fig.4 shows the electrochemical properties of Na-O2batteries using Ru-SAs@N-rGO,Ru-NPs@N-rGO and N-rGO as the cathodes,respectively.Ru-SAs@N-rGO exhibits a higher current response than Ru-NPs@N-rGO because almost all Ru atoms in Ru-SAs@N-rGO could act as the active center owing to the uniformly dispersed Ru SAs.In contrast,only the Ru atoms on the surface of Ru NPs have catalytic activity for the Ru-NPs@N-rGO cathode.Fig.4b presents the discharge/charge profiles at 150 mA/g with a discharge capacity limit of 500 mAh/g.The discharge curves of Ru-SAs@N-rGO and Ru-NPs@N-rGO are overlapped at the same capacity.However,the that of Ru-NPs@N-rGO.Ru-SAs@N-rGO exhibits two voltage platforms at 2.9 V and 3.6 V,which correspond to the two peaks of CV curves in Fig.4a,respectively.Such a double-stage decomposition process has been reported in some Na-O2batteries which show Na2-xO2as the discharge product[17].Fig.S6(Supporting information)shows that N-rGO has a much higher charge curve than Ru-SAs@N-rGO and Ru-NPs@N-rGO,indicating that the N-rGO does not lead to effective growth of products(Na2-xO2).The relatively high charge voltage for Ru-NPs@N-rGO may result from the inhomogeneity of discharge products.Fig.4c presents the rate properties.With the increase of discharge current,the discharge voltage of Ru-SAs@N-rGO decreases slightly,indicating that Ru-SAs@N-rGO has good reaction kinetics.A high current density is highly related to the abundant active sites.In contrast,the discharge voltage of Ru-NPs@N-rGO decreases dramatically at high current density.Fig.4d presents the cycling properties of Ru-SAs@N-rGO,Ru-NPs@N-rGO,and N-rGO with a capacity limit of 500 mAh/g.The average discharge voltages of N-rGO drop rapidly after about 10 cycles owing to a dramatically increased impedance.Ru NPs could improve the voltage retention for Ru-NPs@N-rGO.After 50 cycles,the voltage drops to 1.7 V.Ru SAs could stabilize the discharge voltage above 2.1 V more than 100 cycles for Ru-SAs@NrGO.

    Despite the catalytic activity of Ru,it should be noted that Ru NPs exhibit less exposure of active sites,leading to a weak overall activity as compared to Ru-SAs@N-rGO.As a result,the discharge products precipitate around Ru NPs and form an island-like deposition instead of a uniform coating like Ru-SAs@N-rGO.Such a mechanism in turn accelerates the deactivation of the Ru-NPs sites,leading to low cyclability and rate capability.Therefore,Ru SAs significantly improve the rate and cycling properties of Na-O2batteries as compared to Ru NPs and/or N-rGO.

    In summary,we developed an atomically dispersed Ru catalyst for Na-O2batteries.The resultant Ru-SAs@N-rGO shows strong adsorption with the discharge intermediate,NaO2.The high binding energy inhibits the dissolution of NaO2in the electrolyte,thereby suppressing the bulk growth of discharge products(Na2-xO2)through a solution-mediated mechanism that Ru nanoparticles usually follow.In stark contrast,Ru SAs enable a surface-mediated mechanism,which yields a uniform deposition of Na2-xO2and reduces the local polarization.More importantly,the strong adsorption of NaO2prevents its migration toward anodes.As a result,the charge voltage of Ru-SAs@N-rGO is maintained at 3.7 V.The average discharge voltage is higher than 2.1 V after 100 cycles.The atomically-dispersed Ru catalyst endows Na-O2batteries with excellent electrochemical properties.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors acknowledge the financial support of the National Natural Science Foundation of China(Nos.22075131,21776121)and National Key R&D Program of China(No.2020YFA0406104).The numerical calculations were carried out at the computing facilities in the High-Performance Computing Center(HPCC)of Nanjing University.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.090.

    欧美日韩中文字幕国产精品一区二区三区 | 欧美一级毛片孕妇| 一级毛片高清免费大全| 成人特级黄色片久久久久久久| 久久国产精品男人的天堂亚洲| 国产黄a三级三级三级人| 最近最新免费中文字幕在线| 多毛熟女@视频| 久久精品亚洲精品国产色婷小说| 国产精品影院久久| 国产成人精品在线电影| 成人黄色视频免费在线看| 黑人猛操日本美女一级片| 好看av亚洲va欧美ⅴa在| 一进一出抽搐gif免费好疼 | 色播在线永久视频| 欧美日本亚洲视频在线播放| 国产午夜精品久久久久久| 大香蕉久久成人网| 91大片在线观看| 日韩精品中文字幕看吧| 亚洲欧美日韩无卡精品| 91av网站免费观看| 亚洲成a人片在线一区二区| 啦啦啦在线免费观看视频4| 中文亚洲av片在线观看爽| 久久亚洲精品不卡| 久久精品91无色码中文字幕| 人妻久久中文字幕网| 国产熟女xx| 男人舔女人的私密视频| 国产一区二区激情短视频| 两性夫妻黄色片| 亚洲精品国产色婷婷电影| 曰老女人黄片| 久久国产精品男人的天堂亚洲| 91av网站免费观看| 成熟少妇高潮喷水视频| 一本大道久久a久久精品| 国产亚洲精品第一综合不卡| 久久中文字幕人妻熟女| 操美女的视频在线观看| 一级毛片高清免费大全| 色在线成人网| 亚洲av熟女| 国产单亲对白刺激| 日韩精品中文字幕看吧| 亚洲视频免费观看视频| 1024视频免费在线观看| 欧美久久黑人一区二区| 国产成人欧美| 欧美黑人欧美精品刺激| 热99re8久久精品国产| 黄色a级毛片大全视频| 精品国产超薄肉色丝袜足j| 在线永久观看黄色视频| 国产精品久久久久久人妻精品电影| 中文字幕色久视频| 亚洲一区中文字幕在线| 国产真人三级小视频在线观看| 男女之事视频高清在线观看| 国产精品久久电影中文字幕| 一边摸一边做爽爽视频免费| 亚洲精品美女久久久久99蜜臀| 黄片大片在线免费观看| 丰满迷人的少妇在线观看| 亚洲欧美激情在线| 他把我摸到了高潮在线观看| 视频在线观看一区二区三区| 久久久久久久久免费视频了| 每晚都被弄得嗷嗷叫到高潮| 黄色视频不卡| 久99久视频精品免费| 久久国产精品人妻蜜桃| 搡老熟女国产l中国老女人| a级毛片黄视频| 手机成人av网站| 国产区一区二久久| 欧美中文综合在线视频| 亚洲国产精品合色在线| 宅男免费午夜| www.www免费av| 久久人妻av系列| 亚洲 欧美 日韩 在线 免费| 女生性感内裤真人,穿戴方法视频| 欧美人与性动交α欧美精品济南到| 欧美最黄视频在线播放免费 | 精品福利永久在线观看| 天堂影院成人在线观看| 久久婷婷成人综合色麻豆| 亚洲熟妇熟女久久| 人人妻人人澡人人看| xxxhd国产人妻xxx| cao死你这个sao货| 免费在线观看亚洲国产| www日本在线高清视频| 天天影视国产精品| 一边摸一边抽搐一进一小说| 看免费av毛片| 亚洲欧美日韩无卡精品| 中国美女看黄片| 黄色丝袜av网址大全| 在线观看免费视频日本深夜| 国产亚洲欧美在线一区二区| 中出人妻视频一区二区| 一区二区三区激情视频| 亚洲狠狠婷婷综合久久图片| 校园春色视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 久久精品国产清高在天天线| 操出白浆在线播放| 看黄色毛片网站| 12—13女人毛片做爰片一| 国产午夜精品久久久久久| 美女 人体艺术 gogo| 精品国产国语对白av| 亚洲国产毛片av蜜桃av| 精品福利永久在线观看| 亚洲精品av麻豆狂野| 日本五十路高清| 日韩欧美免费精品| 欧美成人免费av一区二区三区| av免费在线观看网站| 一进一出好大好爽视频| 久久精品亚洲av国产电影网| 窝窝影院91人妻| av天堂在线播放| 中文字幕人妻丝袜制服| 黑人猛操日本美女一级片| 动漫黄色视频在线观看| 亚洲性夜色夜夜综合| 久久精品国产99精品国产亚洲性色 | 一级毛片女人18水好多| 亚洲美女黄片视频| 免费人成视频x8x8入口观看| 黑人欧美特级aaaaaa片| 精品久久久久久,| 大型av网站在线播放| 夫妻午夜视频| ponron亚洲| 亚洲久久久国产精品| 黄频高清免费视频| bbb黄色大片| 亚洲欧洲精品一区二区精品久久久| 在线观看舔阴道视频| 一级a爱视频在线免费观看| 日韩免费av在线播放| av中文乱码字幕在线| 欧美黄色片欧美黄色片| 午夜福利在线观看吧| 精品无人区乱码1区二区| 天堂影院成人在线观看| 一级a爱视频在线免费观看| 亚洲av成人不卡在线观看播放网| 免费av毛片视频| 亚洲人成77777在线视频| www.www免费av| 首页视频小说图片口味搜索| 午夜91福利影院| 老汉色∧v一级毛片| 久久狼人影院| 18禁美女被吸乳视频| 国产国语露脸激情在线看| 国产亚洲精品综合一区在线观看 | 我的亚洲天堂| 亚洲国产毛片av蜜桃av| 久9热在线精品视频| av电影中文网址| 国产高清激情床上av| 麻豆国产av国片精品| 国产亚洲精品综合一区在线观看 | 免费在线观看日本一区| 99re在线观看精品视频| 69精品国产乱码久久久| 精品福利观看| 午夜福利在线免费观看网站| 黄色丝袜av网址大全| 精品电影一区二区在线| 啪啪无遮挡十八禁网站| 免费一级毛片在线播放高清视频 | а√天堂www在线а√下载| 成人18禁高潮啪啪吃奶动态图| 嫩草影视91久久| 在线看a的网站| 久久国产精品人妻蜜桃| 国产在线观看jvid| 在线观看免费午夜福利视频| 国产精品1区2区在线观看.| 亚洲久久久国产精品| 国产区一区二久久| 亚洲三区欧美一区| 免费高清在线观看日韩| 国产av一区在线观看免费| 国产高清视频在线播放一区| 电影成人av| 看片在线看免费视频| 巨乳人妻的诱惑在线观看| a在线观看视频网站| 国产成人精品久久二区二区免费| 免费在线观看完整版高清| 国产精品秋霞免费鲁丝片| 欧美日韩精品网址| 叶爱在线成人免费视频播放| 国产99久久九九免费精品| 波多野结衣av一区二区av| 丝袜人妻中文字幕| 757午夜福利合集在线观看| 在线观看一区二区三区激情| 俄罗斯特黄特色一大片| 中亚洲国语对白在线视频| 狂野欧美激情性xxxx| 精品第一国产精品| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲午夜理论影院| 高潮久久久久久久久久久不卡| 欧美大码av| 久久热在线av| 黑人欧美特级aaaaaa片| 黄片播放在线免费| 在线观看免费高清a一片| 日韩国内少妇激情av| 亚洲少妇的诱惑av| 亚洲欧美一区二区三区黑人| 美女大奶头视频| 国产免费现黄频在线看| 精品熟女少妇八av免费久了| 中文字幕高清在线视频| 国产深夜福利视频在线观看| 久久中文字幕一级| 在线观看免费午夜福利视频| 国产成人精品久久二区二区免费| 在线观看www视频免费| 亚洲精品成人av观看孕妇| 久久人妻熟女aⅴ| 国产精品九九99| 日本欧美视频一区| 啦啦啦免费观看视频1| 男女午夜视频在线观看| 少妇裸体淫交视频免费看高清 | 黄色毛片三级朝国网站| 午夜免费观看网址| 自拍欧美九色日韩亚洲蝌蚪91| 妹子高潮喷水视频| 一边摸一边抽搐一进一小说| 欧美日韩瑟瑟在线播放| 成人免费观看视频高清| 国产精品一区二区在线不卡| 日韩 欧美 亚洲 中文字幕| 久99久视频精品免费| 黄色成人免费大全| 18禁美女被吸乳视频| 亚洲 欧美一区二区三区| 午夜福利欧美成人| 性欧美人与动物交配| 999久久久精品免费观看国产| 久久精品国产亚洲av高清一级| 一级毛片女人18水好多| a级片在线免费高清观看视频| 两人在一起打扑克的视频| 妹子高潮喷水视频| 国产黄色免费在线视频| 欧美性长视频在线观看| 国产三级黄色录像| 亚洲在线自拍视频| 宅男免费午夜| 精品久久久久久成人av| 久久人人精品亚洲av| 久久精品亚洲av国产电影网| 一级黄色大片毛片| 母亲3免费完整高清在线观看| 久久精品国产综合久久久| 欧美激情 高清一区二区三区| 精品久久蜜臀av无| 亚洲自拍偷在线| 免费在线观看黄色视频的| 亚洲精品一卡2卡三卡4卡5卡| 国产精品av久久久久免费| 怎么达到女性高潮| 亚洲成人国产一区在线观看| 夫妻午夜视频| 欧美在线黄色| 性欧美人与动物交配| ponron亚洲| 超色免费av| 亚洲国产精品合色在线| 51午夜福利影视在线观看| 99国产精品99久久久久| 19禁男女啪啪无遮挡网站| 久久影院123| 国产精品香港三级国产av潘金莲| 97超级碰碰碰精品色视频在线观看| 欧美日韩黄片免| 免费人成视频x8x8入口观看| 在线十欧美十亚洲十日本专区| 欧美日韩中文字幕国产精品一区二区三区 | 美女 人体艺术 gogo| 日本黄色视频三级网站网址| 久久精品91无色码中文字幕| 九色亚洲精品在线播放| 欧美成人性av电影在线观看| 欧美乱色亚洲激情| 欧美日韩亚洲综合一区二区三区_| 夜夜躁狠狠躁天天躁| av视频免费观看在线观看| 精品久久蜜臀av无| 国产在线观看jvid| 欧美黄色淫秽网站| 日本五十路高清| 日韩有码中文字幕| 悠悠久久av| 1024视频免费在线观看| 一级a爱视频在线免费观看| 51午夜福利影视在线观看| 色播在线永久视频| 精品久久久久久久毛片微露脸| 一级毛片女人18水好多| 长腿黑丝高跟| 久久青草综合色| 他把我摸到了高潮在线观看| 久久久久精品国产欧美久久久| 美女午夜性视频免费| aaaaa片日本免费| 亚洲国产欧美日韩在线播放| 欧美人与性动交α欧美精品济南到| 亚洲熟女毛片儿| 国产精品 国内视频| 免费日韩欧美在线观看| 午夜福利一区二区在线看| 制服诱惑二区| 亚洲精品国产区一区二| 国产精品成人在线| 夜夜看夜夜爽夜夜摸 | 国产亚洲精品综合一区在线观看 | 亚洲va日本ⅴa欧美va伊人久久| 国产精品自产拍在线观看55亚洲| 亚洲欧洲精品一区二区精品久久久| 欧美日韩亚洲高清精品| 久久人妻熟女aⅴ| 欧美大码av| 91字幕亚洲| 满18在线观看网站| 脱女人内裤的视频| 国产高清激情床上av| 国产av又大| 美国免费a级毛片| 久久精品aⅴ一区二区三区四区| 后天国语完整版免费观看| 好看av亚洲va欧美ⅴa在| 精品人妻在线不人妻| 欧美精品一区二区免费开放| 757午夜福利合集在线观看| 亚洲男人天堂网一区| 国产成人一区二区三区免费视频网站| 欧美日韩精品网址| 日韩视频一区二区在线观看| 天堂影院成人在线观看| 亚洲欧美日韩无卡精品| 精品熟女少妇八av免费久了| 久久国产精品影院| 黄频高清免费视频| 日日摸夜夜添夜夜添小说| 亚洲国产看品久久| 最新在线观看一区二区三区| 天天影视国产精品| 夫妻午夜视频| 黄片小视频在线播放| 成人18禁高潮啪啪吃奶动态图| 国产91精品成人一区二区三区| 免费av中文字幕在线| 国产真人三级小视频在线观看| 可以免费在线观看a视频的电影网站| 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产一区二区| 精品一区二区三卡| 高清在线国产一区| 88av欧美| 久久午夜综合久久蜜桃| 欧美av亚洲av综合av国产av| 亚洲五月天丁香| 国产成人免费无遮挡视频| 午夜福利一区二区在线看| 每晚都被弄得嗷嗷叫到高潮| 十八禁人妻一区二区| 夜夜看夜夜爽夜夜摸 | 欧美激情久久久久久爽电影 | 亚洲精品国产一区二区精华液| 国产精品香港三级国产av潘金莲| www.熟女人妻精品国产| 18禁国产床啪视频网站| 亚洲在线自拍视频| 色综合站精品国产| 91九色精品人成在线观看| 日韩欧美免费精品| 老司机在亚洲福利影院| 亚洲人成电影观看| 国产无遮挡羞羞视频在线观看| 成人黄色视频免费在线看| 纯流量卡能插随身wifi吗| 久99久视频精品免费| 韩国精品一区二区三区| www国产在线视频色| 巨乳人妻的诱惑在线观看| 熟女少妇亚洲综合色aaa.| 男女下面进入的视频免费午夜 | 大香蕉久久成人网| 一进一出抽搐gif免费好疼 | 丰满的人妻完整版| 日韩大尺度精品在线看网址 | 人人妻人人澡人人看| av天堂在线播放| 久久久国产成人精品二区 | 国产精品久久电影中文字幕| 亚洲成人国产一区在线观看| 国产激情欧美一区二区| 精品久久久久久久毛片微露脸| 香蕉久久夜色| 免费搜索国产男女视频| 动漫黄色视频在线观看| 99精品久久久久人妻精品| 老熟妇仑乱视频hdxx| 精品无人区乱码1区二区| 亚洲成人精品中文字幕电影 | 男女午夜视频在线观看| 免费久久久久久久精品成人欧美视频| 在线免费观看的www视频| 脱女人内裤的视频| 99国产综合亚洲精品| 欧美精品啪啪一区二区三区| 国产成人影院久久av| 动漫黄色视频在线观看| 人人妻人人澡人人看| 久久久国产欧美日韩av| 色尼玛亚洲综合影院| 国产成年人精品一区二区 | 久久人妻福利社区极品人妻图片| 亚洲色图av天堂| 黄片大片在线免费观看| 成人国产一区最新在线观看| 精品午夜福利视频在线观看一区| 免费看a级黄色片| 久久精品国产99精品国产亚洲性色 | 亚洲 国产 在线| 国产区一区二久久| 久热这里只有精品99| av天堂久久9| 久久久水蜜桃国产精品网| 91在线观看av| 久久亚洲真实| 亚洲国产欧美日韩在线播放| 久久久久久亚洲精品国产蜜桃av| 欧美黄色片欧美黄色片| 两个人免费观看高清视频| 中文字幕最新亚洲高清| 欧美老熟妇乱子伦牲交| 丁香六月欧美| 日本免费a在线| 黄色成人免费大全| av福利片在线| 亚洲精品在线观看二区| 狂野欧美激情性xxxx| 在线永久观看黄色视频| 免费一级毛片在线播放高清视频 | 久久午夜亚洲精品久久| 99久久人妻综合| 色综合欧美亚洲国产小说| 亚洲视频免费观看视频| 看片在线看免费视频| 久久人妻熟女aⅴ| 亚洲欧美日韩另类电影网站| 精品熟女少妇八av免费久了| 天天影视国产精品| 日本三级黄在线观看| 美女高潮喷水抽搐中文字幕| 丝袜美足系列| 一级片免费观看大全| 久久婷婷成人综合色麻豆| 夜夜夜夜夜久久久久| 国产av一区二区精品久久| 我的亚洲天堂| 日本免费a在线| 又紧又爽又黄一区二区| 国产成人av教育| 国产不卡一卡二| 黄色a级毛片大全视频| 黄色视频,在线免费观看| 国产精品国产高清国产av| 成人手机av| 国产男靠女视频免费网站| √禁漫天堂资源中文www| www.999成人在线观看| 美国免费a级毛片| 免费看十八禁软件| 神马国产精品三级电影在线观看 | 欧美激情极品国产一区二区三区| 在线十欧美十亚洲十日本专区| 大香蕉久久成人网| 国产三级在线视频| www.熟女人妻精品国产| 国产成人精品在线电影| 九色亚洲精品在线播放| 99久久国产精品久久久| 国产主播在线观看一区二区| 免费一级毛片在线播放高清视频 | svipshipincom国产片| 十八禁网站免费在线| 高清欧美精品videossex| 18禁裸乳无遮挡免费网站照片 | 久久 成人 亚洲| 黄频高清免费视频| 亚洲中文字幕日韩| 国产97色在线日韩免费| 在线免费观看的www视频| 日日摸夜夜添夜夜添小说| 国内毛片毛片毛片毛片毛片| 中文亚洲av片在线观看爽| 国产成人av教育| 久热这里只有精品99| 久久国产亚洲av麻豆专区| 日韩av在线大香蕉| 色哟哟哟哟哟哟| 可以免费在线观看a视频的电影网站| 免费在线观看完整版高清| 看片在线看免费视频| 亚洲一码二码三码区别大吗| 又黄又爽又免费观看的视频| 亚洲国产精品一区二区三区在线| 日日夜夜操网爽| www日本在线高清视频| 欧美激情高清一区二区三区| 9191精品国产免费久久| 亚洲精品美女久久av网站| 精品第一国产精品| 18禁国产床啪视频网站| av天堂久久9| 国产蜜桃级精品一区二区三区| 久久久久久久久免费视频了| 天堂中文最新版在线下载| 亚洲一区二区三区色噜噜 | 91在线观看av| 午夜免费激情av| 黄色 视频免费看| 亚洲成a人片在线一区二区| 久久国产精品男人的天堂亚洲| 天堂影院成人在线观看| 久久久久久久午夜电影 | 久久精品成人免费网站| 不卡一级毛片| 美女 人体艺术 gogo| 男人舔女人下体高潮全视频| 日日夜夜操网爽| 电影成人av| av天堂在线播放| 国产精品永久免费网站| 大陆偷拍与自拍| 激情视频va一区二区三区| 国产精品亚洲av一区麻豆| 99热只有精品国产| 老司机亚洲免费影院| 欧美日韩福利视频一区二区| 中文欧美无线码| 精品久久久久久,| 日韩大尺度精品在线看网址 | 国产成人欧美在线观看| 亚洲成av片中文字幕在线观看| 国产精品久久久久成人av| 欧美人与性动交α欧美精品济南到| 黑人巨大精品欧美一区二区蜜桃| 国产高清videossex| 天天添夜夜摸| 国产一区二区三区视频了| 久久久久国产一级毛片高清牌| 黄色视频不卡| 欧美日韩av久久| 极品人妻少妇av视频| 国产精品国产av在线观看| 亚洲欧美一区二区三区久久| 欧美乱妇无乱码| 久久欧美精品欧美久久欧美| 色尼玛亚洲综合影院| 99国产综合亚洲精品| 亚洲一区二区三区色噜噜 | 国产亚洲精品第一综合不卡| 黄色a级毛片大全视频| 交换朋友夫妻互换小说| 99国产极品粉嫩在线观看| 黑人欧美特级aaaaaa片| 男女下面插进去视频免费观看| 亚洲中文字幕日韩| 午夜精品久久久久久毛片777| 三上悠亚av全集在线观看| 国产麻豆69| 欧美av亚洲av综合av国产av| 人妻丰满熟妇av一区二区三区| 久久亚洲真实| 午夜影院日韩av| 精品国内亚洲2022精品成人| 麻豆av在线久日| 欧美av亚洲av综合av国产av| 国产精品野战在线观看 | 日韩欧美国产一区二区入口| 精品第一国产精品| 久久久久久久精品吃奶| 日本五十路高清| 精品国内亚洲2022精品成人| 久久久水蜜桃国产精品网| 一本大道久久a久久精品| 99热国产这里只有精品6| 国产一卡二卡三卡精品| 又黄又爽又免费观看的视频| 亚洲欧美激情综合另类| 亚洲精品美女久久久久99蜜臀| 黄色成人免费大全| 可以免费在线观看a视频的电影网站| av有码第一页| 一区二区三区激情视频|