• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mixed transition-metal oxides@carbon core-shell nanostructures derived from heterometallic clusters for enhanced lithium storage

    2022-03-14 09:30:14YantingChuShenglinXiong
    Chinese Chemical Letters 2022年1期

    Yanting Chu,Shenglin Xiong

    School of Chemistry and Chemical Engineering,State Key Laboratory of Crystal Materials,Shandong University,Ji’nan 250100,China

    ABSTRACT Multicomponent binary metal oxide-involved hybrid structures with unique physicochemical properties have received extensive attention due to their fascinating electrochemical performance.Herein,a flexible strategy,which involves the preparation of dual-functional heterometallic Fe2M clusters and their subsequent sintering treatment,is developed to engineer novel 3D hierarchical porous structures assembled with MFe2O4(M=Co,Mn,Ni and Zn)nanoparticles confined within carbon outer shell(denoted as MFe2O4@C HPSs).In this intriguing construction,it can be observed that MFe2O4@C HPSs comprised of carbon coated secondary MFe2O4 nanoparticles with an interconnected carbon network.The as-prepared MFe2O4@C HPSs possess combined advantages of high capacity of MFe2O4 and high conductivity of carbon.As expected,the MFe2O4@C HPSs offer a high reversible capacity,high cycling stability and superior rate performance.The interconnected conductive carbon shells facilitates fast ion and electron transport and accommodates the mechanical strain.In addition,nanosized MFe2O4 particles,which shorten the iontransport path and provide extra electroactive sites,also improve the reaction kinetics.Moreover,these MFe2O4@C HPSs exhibit good structural integrity during repeated charging and discharging.The research perspective and strategy reported here are highly versatile and shed new light on the synthesis of other advanced electrode for various applications.

    Keywords:MFe2O4 Core-shell nanoparticles Heterometallic clusters Anode Lithium?ion batteries

    Transition metal oxides(TMOs),as a significant class of inorganic solid materials,have been widely investigated as electrode materials for energy storage devices including fuel cells,electrochemical capacitors(ECs),and lithium-ion batteries(LIBs)[1-7].In particular,binary metal oxides with two different metal cations exhibit high electrochemical activities because of their complex chemical composition and the synergic effects of multiple metal species[8,9].For example,spinel CoFe2O4with a high theoretical capacity of 916 mAh/g,possesses much better electrical conductivity and hence has been considered as a promising anode material for LIBs[10-14].However,it is difficult to synthesize multicomponent hybrid structures of binary metal oxides because different materials with unique physicochemical properties could not easily be contained simultaneously during the preparation process.

    In recent years,metal–organic frameworks(MOFs)with diverse chemical compositions,designable topological architectures and well-defined structures are of enormous potential as an emerging class of well-ordered crystalline inorganic-organic hybrid porous materials for various applications[15-17].Importantly,MOFs can be readily transformed to porous carbon-based composite materials with metal oxides,metal sulfides,and metal phosphides,which always exhibit incomparable properties with their single components[18-24].Different from MOFs,metal-organic clusters(MOCs)are another kind of inorganic-organic hybrid materials featured with atom-precise structures,polynuclear metal atoms aggregations,uniform sizes,zero-dimensional and free-standing nature[25].Notably,compared to polynuclear monometallic clusters,the heterometallic clusters(HMCs)are atom-precise molecular materials that have two or more than two kinds of metal atoms in one unity[26-28].Different metal centers in one cluster can bring in novel molecular structure due to different coordination preferences,various metal ratios,as well as enhanced properties due to the synergistic interactions between them.More importantly,more kinds of metal centers could induce the formation of hybrid metal compositions,such as mixed metal oxides,metal doped metal oxides,even some interesting heterojunctions.In spite of considerable efforts on the preparation of various derivative hybrid materials from the corresponding MOFs[18-23],to the best of our knowledge,the dual-functional properties of MOCs especially HMCs are completely unexplored to date.

    Fig.1.Schematic illustration of the synthesis process of CoFe2O4@C HPSs.

    Herein,for the first time,we report novel 3D hierarchical porous structures assembled with MFe2O4(M=CoFe2O4,MnFe2O4,NiFe2O4and ZnFe2O4)nanoparticles confined within carbon outer shell(denoted as MFe2O4@C HPSs)by using dualfunctional heterometallic FeIII2CoIIO(CH3COO)6(H2O)3·2H2O(Fe2M)clusters as both sacrificial template and carbon source.Compared with other methods meanwhile requiring metal and carbon sources,Fe2M clusters include both of two components in one precursor.Fe and M atoms were homogenously distributed in three apexes of an equilateral triangle.Upon pyrolysis,the cleavage of C–O bond was transformed to carbon,while Fe2M cores werein situtransformed to uniform binary MFe2O4nanoparticles,producing the final MFe2O4@C HPSs.In the as-obtained structure,uniform MFe2O4nanoparticles are confined in the interconnected network of carbon shells and assemble into 3D porous hybrid structures.These porous hybrid structures possess good electrolyte diffusion in the pores and good electronic conductivity through the networklike carbon shell-layer.As expected,the as-synthesized MFe2O4@C HPSs manifest superior electrochemical properties as anode materials for LIBs.Importantly,this hybrid structure indicates a small irreversible capacity loss during the first discharge/charge cycle with a higher initial Coulombic efficiency of 77.3 wt%.

    The MFe2O4@C HPSs composite was synthesized by simply carbonizing dual-functional heterometallic Fe2M clusters.As a precursor,taking the Fe2Co clusters as an example,the heterometallic Fe2Co clusters were first prepared as a microcrystalline product,and the structure of the clusters was identified by single-crystal X-ray diffraction(XRD)with a formula of FeIII2CoIIO(CH3COO)6(H2O)3·2H2O according to previous report[29].Briefly,the Fe2Co cluster is heterometallic mixed-valent complex with three metal centers arranging in the apex of an equilateral triangle(the middle image in Fig.1),which is reinforced by one central O atom and six CH3COO?ligands on three edges of triangle.Due to the imposed D3hmolecular symmetry,Fe and Co atoms are indistinguishable in triangle but the atom ratio can be determined by inductively coupled plasma atomic emission spectroscopy(ICP-AES,Table S1 in Supporting information).In this structure,the total bond energies of metal and six oxygen coordination bonds should be higher than that of a single carbon-oxygen bond which will break easily.Finally,CoFe2O4@C HPSs formed in the calcination.

    The phase composition and crystalline structure of the synthesized materials are depicted by X-ray diffraction(XRD)investigations.The XRD patterns of the Fe2M clusters were shown in Fig.S1(Supporting information),which can be indexed to FeIII2MIIO(CH3COO)6(H2O)3·2H2O without any impurity.After annealing treatment at 400 °C,the Fe2M clusters can be easily converted to MFe2O4@C HPSs(denoted as MFe2O4@C HPSs-400).Fig.2a shows XRD patterns of CoFe2O4@C HPSs-400 and CoFe2O4@C HPSs-300.It is obviously that all the diffraction peaks assigned to cubic CoFe2O4(JCPDS No.03–0864),and no other peaks exist.In the CoFe2O4crystal structure(Fig.2b),all the tetrahedral sites were occupied by the Fe atom(marked by orange),and the octahedral sites were occupied by the Fe atom(marked by yellow)and Co atom(marked by blue),indicating the typical inverse spinel structure.By comparing the peak intensities,it found that the crystallinity of CoFe2O4@C HPSs-400 is better than that of CoFe2O4@C HPSs-300.The XRD patterns of CoFe2O4@C HPSs-500(the Fe2Co heterometallic cluster calcined at 500 °C)was shown in Fig.S2(Supporting information).It is clearly found that the cobalt metal obtained at 500 °C,indicating that a reduction reaction occurred.No diffraction peaks of carbon in CoFe2O4@C HPSs-400 were detected due to its amorphous feature.The Raman spectroscopy were further conducted to verify the porous carbon shell.As shown in Fig.2c,the characteristic D and G peaks were located at 1347 and 1587 cm?1,respectively.Generally,theID/IGratio is used to evaluate the defects of carbon[30,31].Here theID/IGis 0.804,indicating the porous carbon shell has more electroactive sites than graphite carbon,which is conducive to the diffusion of lithium-ion as well as beneficial to improving lithium storage performance[32].

    Fig.2.(a)XRD patterns of the CoFe2O4@C HPSs.(b)Crystal structure of inverse spinel CoFe2O4.(c)Raman spectrum,(d,e)FESEM images,(f)TEM image and(g-i)HRTEM images of the CoFe2O4@C HPSs-400.(j)STEM-EDX element mappings of Co(blue),Fe(yellow),C(red)and O(green).

    Fig.3.Electrochemical performance of the CoFe2O4@C HPSs-400.(a)The first five CVs at a scan rate of 0.1 mV/s.(b)Galvanostatic charge/discharge profiles of the 1st,2nd,5th,20th,50th and 100th cycles at a current density of 0.2 A/g.(c)Rate capability at different current densities.Cycling performance at a current density of(d)0.5 A/g,(e)1 A/g and 2 A/g.

    The detailed morphology of the synthesized materials was investigated by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).Fe2M clusters exhibited an irregular block with the relatively smooth surfaces(Fig.S3 in Supporting information).The CoFe2O4@C HPSs-400 had a morphology analogous to Fe2Co clusters(Fig.2),although the surface becomes rough and the size is slightly reduced.As shown in Figs.2d-f,the CoFe2O4@C HPSs-400 is composed of nanoparticles with the narrow size distribution at about 10 nm,and myriad mesopores from the assembly of nanoparticles are observable.The structure of the CoFe2O4@C HPSs-400 is further explored through typical TEM and high-resolution TEM(HRTEM)images.As shown in Figs.2g and h,the nanoparticles are core-shell structures in which the core is coated by a porous carbon shell with a thickness of about 2–5 nm.The presence of the carbon layer plays an important role in the formation of CoFe2O4@C HPSs,because it can prevent the aggregation of CoFe2O4particles and the formation of larger particles during high-temperature calcination.The carbon-containing composite obtained by calcining heterometallic clusters had a permeable structure,favorable for the rapid diffusion of electrolyte.Thermogravimetric analysis shows that the carbon content of CoFe2O4@C HPSs-400 is 5.3 wt%(Fig.S4 in Supporting information).Fig.2h shows distinct lattice fringes with a distance of 0.486 nm corresponding to the(111)planes of CoFe2O4.Furthermore,scanning TEM(STEM)and energy-dispersive X-ray(EDX)elemental mappings are shown in Figs.2i and j,indicating the Co,Fe,C and O are well distributed through the whole composites.The energy dispersive X-ray spectrum(EDX)revealed that the atomic ratio of Co to Fe is 1:2.07(Fig.S5 in Supporting information).The ICP-AES further determined the molar ratio of Co to Fe to be 1:1.8(Table S1 in Supporting information).The above results proved the successful preparation of CoFe2O4@C HPSs-400.The structure and composition characterization of CoFe2O4@C HPSs-400 were further examined by X-ray photo-electron spectroscopy(XPS)spectra and Brunauer-Emmett-Teller(BET)surface area(Fig.S6 in Supporting information).Interestingly,the same methodology can be applied to prepare other MFe2O4@C HPSs composite materials,such as MnFe2O4@C HPSs,NiFe2O4@C HPSs,ZnFe2O4@C HPSs,demonstrating the universality of the synthesis method.Correspondingly,MnFe2O4@C HPSs,NiFe2O4@C HPSs,ZnFe2O4@C HPSs have a similar structure to CoFe2O4@C HPSs,although they are slightly different in size and length.These differences in diameter and length are due to the different coordination reactions between metal ions and coordinating atoms which has a great influence on the nucleation and subsequent growth of the heterometallic cluster Fe2M.The XRD patterns and SEM images of MnFe2O4@C HPSs,NiFe2O4@C HPSs and ZnFe2O4@C HPSs are shown in Fig.S7(Supporting information).

    The electrochemical properties of the as-prepared CoFe2O4@C HPSs are evaluated as anode materials for LIBs.The cyclic voltammogram(CV)curves of the CoFe2O4@C HPSs-400 for the first five cycles in the voltage range of 0.01–3.0 V at a scan rate of 0.1 mV/s are shown in Fig.3a.During the first discharge scan,the peak centered at 0.64 V is attributed to the reduction reaction of Fe3+and Co2+to metallic Fe and Co,along with the formation of Li2O and solid electrolyte interface(SEI)films[33].This cathodic peak shifts to 0.83 V in the subsequent cycles.The broad anodic peak at 1.23 V is associated with the oxidation of Fe and Co to Fe2O3and CoO[34,35].The electrochemical reaction can be expressed by the following equations:

    The difference between the peaks in the initial cycle and the successive cycles is assigned to the polarization processes of the electrode,which causes irreversible capacity loss in the first cycle[36,37].Nevertheless,the CV curves are well overlapping except for the initial discharge,indicating the good reaction reversibility and structural stability of the CoFe2O4@C-400 HPSs.The representative galvanostatic charge-discharge voltage profiles of the CoFe2O4@C-400 HPSs at 0.2 A/g for different cycles are presented in Fig.3b.The observed redox plateaus in the charge-discharge profiles match well with the CV curves.The voltage plateau of the first discharge curve at around 0.65 V can be attributable to the formation of SEI layers and the lithiation/delithiation reaction.The CoFe2O4@C HPSs-400 displays the initial discharge and charge capacities of 1164.2 and 899.7 mAh/g,respectively,corresponding to an initial Coulombic efficiency(CE)of 77.3%.The initial capacity loss can be ascribed to the irreversible formation of SEI films and irreversible insertion of the lithium ion into the CoFe2O4@C HPSs-400[38].In the subsequent cycles,the CE almost exceeds 90%,suggesting an improved cycling stability and reversibility.

    Notably,the calcination temperature has a great influence on the electrochemical performance of the electrodes[39].The rate capability and cycle stability of the CoFe2O4@C HPSs obtained at different calcination temperature are evaluated,as shown in Figs.3c-e.The CoFe2O4@C HPSs-400 can deliver average capacities of 1045,970,878,778 and 711 mAh/g at gradually increasing current densities of 0.2,0.5,1.0,1.5 and 2.0 A/g,respectively,much better than CoFe2O4@C HPSs-300(Fig.3c).The high performance of the CoFe2O4@C HPSs-400 can be ascribed to the highly crystalline than that of CoFe2O4@C HPSs-300.More importantly,the larger specific surface area of the CoFe2O4@C HPSs-400 can make the electrode and electrolyte contact better and improve the lithium storage efficiency during lithium intercalation/deintercalation process.Even when the current density returns to 0.5 A/g and 0.2 A/g,the specific capacity of CoFe2O4@C HPSs-400 can still reach 868 and 1135 mAh/g,revealing the excellent structural stability of the CoFe2O4@C HPSs-400.The cycling stability of CoFe2O4@C HPSs-400 and CoFe2O4@C HPSs-300 were compared at the current density of 0.5 A/g(Fig.3d).CoFe2O4@C HPSs-400 displays prominent cycling stability with the specific capacity of 1040 mAh/g after 390 cycles,while the specific capacity of the CoFe2O4@C HPSs-300 is only 608 mAh/g.The long-term cycling stability of CoFe2O4@C HPSs-400 at a current density of 1 A/g and 2 A/g are further evaluated.As shown in Fig.3e,the CoFe2O4@C HPSs-400 anode exhibited a specific capacity of 520 mAh/g after 530 cycles at 1 A/g and still maintains at 390 mAh/g at 2 A/g after 650 cycles,indicating the excellent structure robustness.Postmortem study shows that the shape and structural integrity of the CoFe2O4@C HPSs-400 can be well retained after 50 cycles(Fig.S8 in Supporting information).The outstanding performance of the CoFe2O4@C HPSs-400 might be attributed to the unique structural and compositional features.To be specific,the construction of CoFe2O4nanoparticle and carbon subunits not only enables a short diffusion distance for fast diffusion of Li ions but also provides sufficient contact between active material and electrolyte for the rapid charge-transfer reaction.Moreover,the carbon coated secondary CoFe2O4nanoparticles can effectively withstand large volume variation upon cycling,therefore maintaining structural integrity.In addition,the carbon shell can enhance the electronic conductivity thus improving the rate capability,as well as the electrochemical reactivity further improving the electrochemical property.In the meanwhile,the electrochemical performance of MnFe2O4@C HPSs,NiFe2O4@C HPSs,and ZnFe2O4@C HPSs are also studied.As shown in Figs.S9-S11(Supporting information),these MFe2O4@C HPSs show high specific capacities,enhanced cycling durability and good rate tolerance as anodes for LIBs.The performances of MFe2O4@C HPSs are evaluated by comparison with other related reports as anode materials of LIBs in Table S2(Supporting information),suggesting the superior electrochemistry behaviors of the MFe2O4@C HPSs in this works.

    Fig.4.Kinetics analysis of the CoFe2O4@C HPSs-400 electrode.(a)CV curves of the fresh cells at various scan rates.(b) b-value analysis using the relationship between the peak currents and scan rates.(c)Contribution ratio of the capacitive and diffusion-controlled charges at different scan rates.(d)Separation of the capacitive(purple region)and diffusion currents at a scan rate of 1.0 mV/s.(e)GITT voltage profiles.(f)Reaction resistance in discharge and charge process,respectively.

    To comprehensively explore the electrochemical reaction kinetics of CoFe2O4@C HPSs-400 electrode,the CV curves at different scan rates from 0.2 mV/s to 1.0 mV/s were performed,as shown in Fig.4a.In general,the peak current(i)and scan rate(v)obey the following relationship[40-42]:logi=loga+blogv,whereaandbare fitting parameters.Thebvalue can be obtained from the slope of the plot of logi versuslogv.The Li storage mechanism is determined by thebvalue.b=0.5 represents that the electrochemical process is diffusion-controlled while 1.0 means capacitive-controlled process.As shown in Fig.4b,the calculatedbvalues are 0.79 and 0.88 for the reduction and the oxidation peaks,respectively,indicating the mixed process dominated by both diffusion-controlled and capacitive-controlled process.The ratio of the contributions from the capacitive contribution(k1v)and diffusion-controlled contribution(k2v1/2)at a fixed potential(V)can be quantified by the following formula[40]:i=k1v+k2v1/2,wherek1andk2are constant parameters.As shown in Fig.4c,the capacitive contribution grows progressively as a function of the scan rate,so that it achieves a maximum value of 82% at 1 mV/s in Fig.4d.Thus,it is demonstrated that the majority mechanism of Li storage in CoFe2O4@C HPSs-400 electrode is in line with the capacitive-controlled processes,which greatly contributes to the high-rate capability.The capacitance dominant process can be mainly derived from the structural superiority of CoFe2O4@C HPSs-400 composite,in which nanosized CoFe2O4can offer reduced diffusion pathways for both lithium ions and electrons while the carbon coating affords superior electrolyte accessibility to the electrochemically active CoFe2O4nanoparticles,accounting for excellent electrochemical performances[43].

    To further interpret the diffusivity of active lithium species in CoFe2O4@C HPSs-400 during the charge/discharge process,galvanostatic intermittent titration technique(GITT)and electrochemical impedance spectroscopy(EIS)were conducted.GITT curves of CoFe2O4@C HPSs-400 are shown in Fig.4e,in which the dotted lines showed the quasi equilibrium open-circuit-voltages(OCVs).The internal resistance is derived from dividing the voltages difference between the OCVs and the closed circuit voltages(CCVs)by the pulse current[44].The internal resistance changes of CoFe2O4@C HPSs-400 in the charge/discharge process were shown in Fig.4f.It can be seen that the internal resistance in the discharge process decreased gradually,which can be ascribed to that the formation of metals or intermetallics enhanced the electronic conductivity and the immersion of the electrolyte accelerated the migration ions.Upon charge,there is a gradually increase of the internal resistance along with the release of lithium ions,which is contrary to the discussion above.The enhanced diffusion kinetics of CoFe2O4@C HPSs-400 can also be verified by EIS(Fig.S12 in Supporting information).The Nyquist plots of the CoFe2O4@C HPSs-400 electrode are constituted of the semicircle at the high frequencies(charge-transfer resistance,Rct)and the slope of the line at the low-frequencies(Warburg impedanceRw).TheRctof the CoFe2O4@C HPSs-400 electrode after the 50 cycles was evidently smaller than that after the first cycle,which confirms the remarkably accelerated reaction kinetics upon cycles.The boosted diffusion coefficient of Li ion resulted from the hierarchical structure with mesoporous and the presence of the carbon shell.

    Through a one-step method,a controlled synthesis of the carbon shell-encapsulated MFe2O4composites was achieved.That’s to say,the bifunctional heterometallic Fe2M cluster was calcined to obtain the final product MFe2O4@C HPSs,including CoFe2O4@C HPSs,MnFe2O4@C HPSs,NiFe2O4@C HPSs and ZnFe2O4@C HPSs.This method is very versatile and has the potential to be further extended to other materials.The prepared MFe2O4@C HPSs showed excellent lithium storage performance as an anode material.The CoFe2O4@C HPSs-400 remains 1040 mAh/g after 390 cycles at a current density of 0.5 A/g and 520 mAh/g after 530 cycles at a current density of 1 A/g.This work not only makes a significant contribution to the synthesis methodology of novel composite structure,but also to the application of transition metal oxides as negative electrodes of lithium ion batteries.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China(No.21871164),the Taishan Scholar Project Foundation of Shandong Province(No.ts20190908),the Natural Science Foundation of Shandong Province(No.ZR2019MB024),the China Postdoctoral Science Foundation(No.2018M632666),and the Special Fund for Postdoctoral Innovation Program of Shandong Province(No.201901003).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.074.

    嫩草影视91久久| 国产精品.久久久| 久久精品成人免费网站| 国产精品免费大片| 亚洲欧美清纯卡通| 亚洲精品国产区一区二| 赤兔流量卡办理| 香蕉丝袜av| 亚洲av成人精品一二三区| 久久国产精品人妻蜜桃| 97人妻天天添夜夜摸| 搡老岳熟女国产| 人体艺术视频欧美日本| 狂野欧美激情性xxxx| 国精品久久久久久国模美| 一区二区三区激情视频| 99re6热这里在线精品视频| 一级,二级,三级黄色视频| 啦啦啦在线观看免费高清www| 日日爽夜夜爽网站| 纯流量卡能插随身wifi吗| 国产精品二区激情视频| 免费观看a级毛片全部| 两个人看的免费小视频| 亚洲专区国产一区二区| 1024香蕉在线观看| 永久免费av网站大全| 桃花免费在线播放| 99久久综合免费| 女人被躁到高潮嗷嗷叫费观| 女性生殖器流出的白浆| 亚洲免费av在线视频| 亚洲国产欧美网| 18禁观看日本| 午夜福利免费观看在线| 国产精品亚洲av一区麻豆| 咕卡用的链子| 亚洲第一av免费看| 免费女性裸体啪啪无遮挡网站| 色婷婷av一区二区三区视频| 中文字幕精品免费在线观看视频| 美女中出高潮动态图| 久久精品国产亚洲av高清一级| 少妇的丰满在线观看| 人妻人人澡人人爽人人| 在线观看一区二区三区激情| 美女大奶头黄色视频| 一级片'在线观看视频| 欧美国产精品va在线观看不卡| 国产亚洲av片在线观看秒播厂| 夫妻性生交免费视频一级片| 日本vs欧美在线观看视频| 午夜福利视频精品| av在线老鸭窝| a级毛片在线看网站| 亚洲成国产人片在线观看| 国语对白做爰xxxⅹ性视频网站| 精品亚洲乱码少妇综合久久| 久久精品国产亚洲av高清一级| 大码成人一级视频| 日韩 亚洲 欧美在线| 考比视频在线观看| 久9热在线精品视频| 两个人看的免费小视频| 亚洲图色成人| 色网站视频免费| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av片天天在线观看| 男人添女人高潮全过程视频| 又大又爽又粗| 丁香六月欧美| 中文字幕制服av| 亚洲男人天堂网一区| 欧美精品一区二区免费开放| 亚洲成人手机| 国产免费又黄又爽又色| 久久精品成人免费网站| 国产av国产精品国产| 欧美 日韩 精品 国产| 国产一区二区三区综合在线观看| 操美女的视频在线观看| 男人爽女人下面视频在线观看| 精品一品国产午夜福利视频| 国产精品 国内视频| 中文字幕最新亚洲高清| 欧美日韩亚洲高清精品| 亚洲九九香蕉| 一级毛片电影观看| 少妇粗大呻吟视频| 欧美日韩亚洲综合一区二区三区_| 国产97色在线日韩免费| 久久久久国产精品人妻一区二区| 黄片小视频在线播放| 国产色视频综合| 人人妻人人添人人爽欧美一区卜| 十八禁高潮呻吟视频| 国产亚洲精品久久久久5区| 久久久久国产一级毛片高清牌| 又黄又粗又硬又大视频| 日韩 欧美 亚洲 中文字幕| 国产精品 国内视频| av天堂久久9| 999精品在线视频| 性高湖久久久久久久久免费观看| 91麻豆av在线| 婷婷色av中文字幕| 国产精品av久久久久免费| 国产一区亚洲一区在线观看| 老司机在亚洲福利影院| 国产一区二区三区综合在线观看| 久久久久视频综合| 国产精品国产三级国产专区5o| 一本一本久久a久久精品综合妖精| 后天国语完整版免费观看| 亚洲色图综合在线观看| 少妇精品久久久久久久| 久久久久久久久久久久大奶| 亚洲 欧美一区二区三区| 91字幕亚洲| 99精国产麻豆久久婷婷| 国产人伦9x9x在线观看| www.自偷自拍.com| 一级片免费观看大全| 中文字幕最新亚洲高清| av在线app专区| 精品久久久久久久毛片微露脸 | 国产精品国产三级专区第一集| 青青草视频在线视频观看| 女人被躁到高潮嗷嗷叫费观| 国产成人精品无人区| 欧美另类一区| 自线自在国产av| 国产亚洲精品久久久久5区| 国产精品三级大全| 中文字幕亚洲精品专区| 永久免费av网站大全| 久久午夜综合久久蜜桃| 国产在线一区二区三区精| 欧美xxⅹ黑人| 青青草视频在线视频观看| 韩国精品一区二区三区| 国产福利在线免费观看视频| 国精品久久久久久国模美| 丁香六月天网| 国产精品偷伦视频观看了| 99国产精品99久久久久| 一区二区日韩欧美中文字幕| 18禁黄网站禁片午夜丰满| 国产在视频线精品| av视频免费观看在线观看| 一区二区三区精品91| 日日摸夜夜添夜夜爱| 丝袜喷水一区| 亚洲熟女精品中文字幕| av电影中文网址| 国产av一区二区精品久久| 亚洲天堂av无毛| 99九九在线精品视频| 国产淫语在线视频| 国产成人av教育| 在现免费观看毛片| 大香蕉久久网| www.熟女人妻精品国产| 极品少妇高潮喷水抽搐| 国产精品偷伦视频观看了| 午夜日韩欧美国产| 免费看不卡的av| 欧美人与性动交α欧美精品济南到| 国语对白做爰xxxⅹ性视频网站| 欧美日韩综合久久久久久| 又粗又硬又长又爽又黄的视频| 欧美成人午夜精品| 欧美激情高清一区二区三区| 欧美国产精品一级二级三级| 精品亚洲成a人片在线观看| a级毛片在线看网站| 日日夜夜操网爽| 欧美精品高潮呻吟av久久| 只有这里有精品99| 老司机亚洲免费影院| 亚洲精品一二三| 极品人妻少妇av视频| 水蜜桃什么品种好| 国产av精品麻豆| 精品一区在线观看国产| 国产野战对白在线观看| 这个男人来自地球电影免费观看| 一本大道久久a久久精品| 国产91精品成人一区二区三区 | 久久九九热精品免费| 国产1区2区3区精品| 日本欧美视频一区| 制服诱惑二区| 9热在线视频观看99| 19禁男女啪啪无遮挡网站| 菩萨蛮人人尽说江南好唐韦庄| 九色亚洲精品在线播放| 香蕉丝袜av| 国产一区二区 视频在线| 精品亚洲成a人片在线观看| 国产黄色免费在线视频| 无限看片的www在线观看| 91麻豆精品激情在线观看国产 | 一本久久精品| 九草在线视频观看| 亚洲精品国产色婷婷电影| 韩国精品一区二区三区| 日本av免费视频播放| 无限看片的www在线观看| 一本一本久久a久久精品综合妖精| 亚洲av男天堂| 亚洲成人免费电影在线观看 | 秋霞在线观看毛片| 51午夜福利影视在线观看| 天堂8中文在线网| 国产日韩欧美在线精品| 日韩制服骚丝袜av| 侵犯人妻中文字幕一二三四区| 看十八女毛片水多多多| 精品一区二区三区av网在线观看 | 国产老妇伦熟女老妇高清| 尾随美女入室| 国产激情久久老熟女| 久久人人97超碰香蕉20202| 母亲3免费完整高清在线观看| 中文字幕av电影在线播放| 日韩 欧美 亚洲 中文字幕| 日韩伦理黄色片| 亚洲精品一卡2卡三卡4卡5卡 | 永久免费av网站大全| 日日爽夜夜爽网站| 人人妻人人爽人人添夜夜欢视频| 一本色道久久久久久精品综合| 久久久久久免费高清国产稀缺| 黄频高清免费视频| 99久久综合免费| 欧美激情 高清一区二区三区| 各种免费的搞黄视频| 亚洲精品中文字幕在线视频| 久久天躁狠狠躁夜夜2o2o | 亚洲国产欧美一区二区综合| 婷婷色综合www| 人人妻人人爽人人添夜夜欢视频| 丰满人妻熟妇乱又伦精品不卡| 午夜免费成人在线视频| 国产一区二区三区av在线| 美女国产高潮福利片在线看| 久久人妻熟女aⅴ| 看免费av毛片| 国产伦理片在线播放av一区| 91麻豆av在线| 波多野结衣av一区二区av| 国产熟女午夜一区二区三区| 日韩一区二区三区影片| 中文字幕人妻丝袜制服| 亚洲av片天天在线观看| 亚洲中文av在线| 亚洲欧洲精品一区二区精品久久久| 国产日韩欧美亚洲二区| 亚洲欧洲国产日韩| 欧美亚洲日本最大视频资源| 欧美日韩成人在线一区二区| 欧美日韩精品网址| 亚洲一码二码三码区别大吗| 一本综合久久免费| 免费高清在线观看日韩| 美女福利国产在线| 日韩,欧美,国产一区二区三区| 欧美中文综合在线视频| 美女午夜性视频免费| 视频区图区小说| 99热全是精品| 亚洲精品自拍成人| 亚洲午夜精品一区,二区,三区| 国产成人精品在线电影| 久久人人爽av亚洲精品天堂| 宅男免费午夜| 国产片内射在线| 国产精品久久久av美女十八| 国产成人91sexporn| 国产无遮挡羞羞视频在线观看| 交换朋友夫妻互换小说| 国产老妇伦熟女老妇高清| 久久女婷五月综合色啪小说| 啦啦啦在线免费观看视频4| 久久天堂一区二区三区四区| 男女高潮啪啪啪动态图| 亚洲精品久久成人aⅴ小说| 少妇人妻久久综合中文| 欧美亚洲日本最大视频资源| 成人手机av| 一二三四在线观看免费中文在| 性色av乱码一区二区三区2| 国产1区2区3区精品| 亚洲男人天堂网一区| svipshipincom国产片| 欧美精品高潮呻吟av久久| 国产成人一区二区三区免费视频网站 | 欧美日韩精品网址| 99国产精品一区二区蜜桃av | 婷婷色麻豆天堂久久| 在线 av 中文字幕| 欧美日韩亚洲综合一区二区三区_| 高清不卡的av网站| 19禁男女啪啪无遮挡网站| 两个人看的免费小视频| 亚洲视频免费观看视频| 成人影院久久| 亚洲人成网站在线观看播放| 男女边吃奶边做爰视频| 欧美黑人精品巨大| 国产精品 欧美亚洲| 午夜影院在线不卡| xxx大片免费视频| 男女午夜视频在线观看| 七月丁香在线播放| 精品亚洲成a人片在线观看| 亚洲欧洲国产日韩| www.自偷自拍.com| 国产麻豆69| 每晚都被弄得嗷嗷叫到高潮| 亚洲色图 男人天堂 中文字幕| 少妇 在线观看| 精品福利永久在线观看| a级毛片黄视频| 性色av乱码一区二区三区2| av国产久精品久网站免费入址| 亚洲国产日韩一区二区| 脱女人内裤的视频| 国产欧美亚洲国产| 亚洲,一卡二卡三卡| 亚洲 国产 在线| 亚洲天堂av无毛| 激情视频va一区二区三区| 这个男人来自地球电影免费观看| 麻豆乱淫一区二区| 国产精品偷伦视频观看了| 亚洲五月色婷婷综合| 永久免费av网站大全| 热99国产精品久久久久久7| 久久中文字幕一级| 超碰成人久久| 男女下面插进去视频免费观看| 99国产精品一区二区三区| 欧美日韩亚洲综合一区二区三区_| 人人妻人人添人人爽欧美一区卜| 国产欧美日韩精品亚洲av| 久久综合国产亚洲精品| 国产欧美日韩精品亚洲av| 我的亚洲天堂| 久久鲁丝午夜福利片| 国产精品一区二区在线不卡| 亚洲成人国产一区在线观看 | 国产精品.久久久| 日日爽夜夜爽网站| 国产精品一区二区在线观看99| 国产av国产精品国产| 日本黄色日本黄色录像| 在线观看免费高清a一片| 大香蕉久久网| 精品国产国语对白av| 国产男女超爽视频在线观看| 亚洲欧美清纯卡通| 高清黄色对白视频在线免费看| 99国产精品一区二区三区| 肉色欧美久久久久久久蜜桃| 久久久久网色| 日韩av不卡免费在线播放| 亚洲欧美精品综合一区二区三区| 日韩av在线免费看完整版不卡| 亚洲欧美一区二区三区国产| 18在线观看网站| 亚洲熟女毛片儿| 一级片免费观看大全| 欧美精品亚洲一区二区| 18在线观看网站| 亚洲熟女毛片儿| 大香蕉久久成人网| 晚上一个人看的免费电影| 一区在线观看完整版| 欧美成人精品欧美一级黄| 别揉我奶头~嗯~啊~动态视频 | 人体艺术视频欧美日本| 丝袜美足系列| 欧美日韩亚洲综合一区二区三区_| 一本综合久久免费| 国产成人精品久久二区二区91| 不卡av一区二区三区| 亚洲国产精品一区二区三区在线| 国产精品一区二区精品视频观看| 久久久亚洲精品成人影院| 又紧又爽又黄一区二区| 在线观看免费日韩欧美大片| 亚洲国产欧美日韩在线播放| 国产精品秋霞免费鲁丝片| 日韩制服丝袜自拍偷拍| 一本—道久久a久久精品蜜桃钙片| 欧美av亚洲av综合av国产av| 爱豆传媒免费全集在线观看| 青春草视频在线免费观看| 午夜久久久在线观看| 国产午夜精品一二区理论片| 欧美久久黑人一区二区| 国产精品九九99| 午夜日韩欧美国产| 欧美xxⅹ黑人| 国产精品久久久久久人妻精品电影 | 精品久久久久久电影网| av在线老鸭窝| 男女边吃奶边做爰视频| 久久av网站| av在线播放精品| 女人久久www免费人成看片| 大片免费播放器 马上看| 久久国产精品大桥未久av| 一本大道久久a久久精品| 高清黄色对白视频在线免费看| 九色亚洲精品在线播放| 日本av免费视频播放| 中文字幕亚洲精品专区| 亚洲免费av在线视频| 男人舔女人的私密视频| 桃花免费在线播放| 亚洲精品久久成人aⅴ小说| 国产视频首页在线观看| 男女床上黄色一级片免费看| 丝袜美足系列| 久久99一区二区三区| 97人妻天天添夜夜摸| 只有这里有精品99| 999久久久国产精品视频| 亚洲av男天堂| 一区二区日韩欧美中文字幕| 人人妻人人添人人爽欧美一区卜| 久久女婷五月综合色啪小说| 中文乱码字字幕精品一区二区三区| 一级,二级,三级黄色视频| 韩国高清视频一区二区三区| 精品国产乱码久久久久久小说| 十八禁高潮呻吟视频| 精品欧美一区二区三区在线| a级片在线免费高清观看视频| 一级毛片女人18水好多 | 老司机在亚洲福利影院| 欧美精品一区二区免费开放| 亚洲伊人色综图| 国产男人的电影天堂91| 亚洲,欧美精品.| 国产1区2区3区精品| 久久中文字幕一级| 亚洲精品一卡2卡三卡4卡5卡 | 国产亚洲一区二区精品| 如日韩欧美国产精品一区二区三区| 亚洲精品在线美女| 国产一区二区在线观看av| 巨乳人妻的诱惑在线观看| 国产片内射在线| 日本黄色日本黄色录像| 又黄又粗又硬又大视频| 18在线观看网站| 中文字幕制服av| 一本—道久久a久久精品蜜桃钙片| 在线观看免费视频网站a站| 9色porny在线观看| 免费高清在线观看日韩| 97人妻天天添夜夜摸| 亚洲美女黄色视频免费看| 99久久人妻综合| 大片电影免费在线观看免费| 深夜精品福利| 9191精品国产免费久久| 美女大奶头黄色视频| 热re99久久精品国产66热6| 精品国产一区二区久久| 精品一区二区三卡| 人人妻人人添人人爽欧美一区卜| 叶爱在线成人免费视频播放| 亚洲欧美日韩另类电影网站| 亚洲欧美成人综合另类久久久| 少妇精品久久久久久久| 久久影院123| 欧美激情极品国产一区二区三区| 热99国产精品久久久久久7| 亚洲精品久久久久久婷婷小说| 亚洲专区中文字幕在线| 在线av久久热| 亚洲成人国产一区在线观看 | av网站免费在线观看视频| 另类精品久久| 成人国语在线视频| 熟女av电影| 91精品伊人久久大香线蕉| 久久精品国产亚洲av高清一级| 亚洲中文字幕日韩| 日本wwww免费看| 日韩视频在线欧美| 我的亚洲天堂| 天堂中文最新版在线下载| 99热全是精品| 国产成人91sexporn| 久久久精品免费免费高清| 亚洲,一卡二卡三卡| 51午夜福利影视在线观看| 韩国高清视频一区二区三区| 女人精品久久久久毛片| kizo精华| 国产免费一区二区三区四区乱码| 久久天躁狠狠躁夜夜2o2o | 午夜激情久久久久久久| 精品人妻熟女毛片av久久网站| 亚洲欧美清纯卡通| 国产精品成人在线| 日本五十路高清| svipshipincom国产片| 亚洲中文av在线| 曰老女人黄片| 久久精品久久久久久噜噜老黄| 美女午夜性视频免费| 日本av手机在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲熟女毛片儿| 亚洲国产成人一精品久久久| 婷婷丁香在线五月| 在线亚洲精品国产二区图片欧美| 久久久久国产一级毛片高清牌| 亚洲av美国av| 我要看黄色一级片免费的| 亚洲精品久久久久久婷婷小说| 精品亚洲乱码少妇综合久久| 欧美大码av| 最近中文字幕2019免费版| 一边摸一边做爽爽视频免费| e午夜精品久久久久久久| 亚洲视频免费观看视频| 91九色精品人成在线观看| 汤姆久久久久久久影院中文字幕| 午夜免费成人在线视频| 亚洲av电影在线观看一区二区三区| 最近中文字幕2019免费版| 日韩一区二区三区影片| 亚洲欧洲国产日韩| 亚洲精品久久成人aⅴ小说| 少妇猛男粗大的猛烈进出视频| 亚洲黑人精品在线| 晚上一个人看的免费电影| 午夜激情久久久久久久| 国产精品九九99| 水蜜桃什么品种好| 精品一区二区三区四区五区乱码 | 欧美黄色淫秽网站| 国产成人一区二区在线| 久久精品亚洲熟妇少妇任你| 99香蕉大伊视频| 国产精品香港三级国产av潘金莲 | 永久免费av网站大全| 在线亚洲精品国产二区图片欧美| 欧美黄色淫秽网站| www.999成人在线观看| 五月天丁香电影| 69精品国产乱码久久久| 国产精品香港三级国产av潘金莲 | 人成视频在线观看免费观看| 亚洲 国产 在线| 久久久久精品国产欧美久久久 | 婷婷色麻豆天堂久久| 男女午夜视频在线观看| 欧美日韩视频高清一区二区三区二| 亚洲欧美精品自产自拍| 午夜精品国产一区二区电影| √禁漫天堂资源中文www| 人人妻人人澡人人爽人人夜夜| 欧美成人午夜精品| 爱豆传媒免费全集在线观看| 看免费成人av毛片| 国产精品久久久久久精品电影小说| 18禁黄网站禁片午夜丰满| 热99久久久久精品小说推荐| 最近手机中文字幕大全| 国产熟女午夜一区二区三区| 久久久精品免费免费高清| 亚洲国产最新在线播放| 中文欧美无线码| 国产又爽黄色视频| 亚洲精品av麻豆狂野| 亚洲国产欧美一区二区综合| 精品人妻一区二区三区麻豆| 亚洲欧美日韩高清在线视频 | 免费观看av网站的网址| 久久久久久人人人人人| av一本久久久久| 狠狠婷婷综合久久久久久88av| 国产成人欧美| 欧美少妇被猛烈插入视频| 99国产综合亚洲精品| 国产一级毛片在线| 亚洲欧洲日产国产| 人体艺术视频欧美日本| 悠悠久久av| 精品一区在线观看国产| 成年美女黄网站色视频大全免费| 久久久久久人人人人人| 国产人伦9x9x在线观看| 亚洲七黄色美女视频| 嫩草影视91久久| 国产精品一区二区免费欧美 | 免费av中文字幕在线| 久久人妻福利社区极品人妻图片 | 久久久久视频综合| 五月开心婷婷网| 亚洲三区欧美一区| av又黄又爽大尺度在线免费看| 看十八女毛片水多多多| 久久精品久久久久久久性| 欧美中文综合在线视频| 精品国产乱码久久久久久男人|