• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mixed transition-metal oxides@carbon core-shell nanostructures derived from heterometallic clusters for enhanced lithium storage

    2022-03-14 09:30:14YantingChuShenglinXiong
    Chinese Chemical Letters 2022年1期

    Yanting Chu,Shenglin Xiong

    School of Chemistry and Chemical Engineering,State Key Laboratory of Crystal Materials,Shandong University,Ji’nan 250100,China

    ABSTRACT Multicomponent binary metal oxide-involved hybrid structures with unique physicochemical properties have received extensive attention due to their fascinating electrochemical performance.Herein,a flexible strategy,which involves the preparation of dual-functional heterometallic Fe2M clusters and their subsequent sintering treatment,is developed to engineer novel 3D hierarchical porous structures assembled with MFe2O4(M=Co,Mn,Ni and Zn)nanoparticles confined within carbon outer shell(denoted as MFe2O4@C HPSs).In this intriguing construction,it can be observed that MFe2O4@C HPSs comprised of carbon coated secondary MFe2O4 nanoparticles with an interconnected carbon network.The as-prepared MFe2O4@C HPSs possess combined advantages of high capacity of MFe2O4 and high conductivity of carbon.As expected,the MFe2O4@C HPSs offer a high reversible capacity,high cycling stability and superior rate performance.The interconnected conductive carbon shells facilitates fast ion and electron transport and accommodates the mechanical strain.In addition,nanosized MFe2O4 particles,which shorten the iontransport path and provide extra electroactive sites,also improve the reaction kinetics.Moreover,these MFe2O4@C HPSs exhibit good structural integrity during repeated charging and discharging.The research perspective and strategy reported here are highly versatile and shed new light on the synthesis of other advanced electrode for various applications.

    Keywords:MFe2O4 Core-shell nanoparticles Heterometallic clusters Anode Lithium?ion batteries

    Transition metal oxides(TMOs),as a significant class of inorganic solid materials,have been widely investigated as electrode materials for energy storage devices including fuel cells,electrochemical capacitors(ECs),and lithium-ion batteries(LIBs)[1-7].In particular,binary metal oxides with two different metal cations exhibit high electrochemical activities because of their complex chemical composition and the synergic effects of multiple metal species[8,9].For example,spinel CoFe2O4with a high theoretical capacity of 916 mAh/g,possesses much better electrical conductivity and hence has been considered as a promising anode material for LIBs[10-14].However,it is difficult to synthesize multicomponent hybrid structures of binary metal oxides because different materials with unique physicochemical properties could not easily be contained simultaneously during the preparation process.

    In recent years,metal–organic frameworks(MOFs)with diverse chemical compositions,designable topological architectures and well-defined structures are of enormous potential as an emerging class of well-ordered crystalline inorganic-organic hybrid porous materials for various applications[15-17].Importantly,MOFs can be readily transformed to porous carbon-based composite materials with metal oxides,metal sulfides,and metal phosphides,which always exhibit incomparable properties with their single components[18-24].Different from MOFs,metal-organic clusters(MOCs)are another kind of inorganic-organic hybrid materials featured with atom-precise structures,polynuclear metal atoms aggregations,uniform sizes,zero-dimensional and free-standing nature[25].Notably,compared to polynuclear monometallic clusters,the heterometallic clusters(HMCs)are atom-precise molecular materials that have two or more than two kinds of metal atoms in one unity[26-28].Different metal centers in one cluster can bring in novel molecular structure due to different coordination preferences,various metal ratios,as well as enhanced properties due to the synergistic interactions between them.More importantly,more kinds of metal centers could induce the formation of hybrid metal compositions,such as mixed metal oxides,metal doped metal oxides,even some interesting heterojunctions.In spite of considerable efforts on the preparation of various derivative hybrid materials from the corresponding MOFs[18-23],to the best of our knowledge,the dual-functional properties of MOCs especially HMCs are completely unexplored to date.

    Fig.1.Schematic illustration of the synthesis process of CoFe2O4@C HPSs.

    Herein,for the first time,we report novel 3D hierarchical porous structures assembled with MFe2O4(M=CoFe2O4,MnFe2O4,NiFe2O4and ZnFe2O4)nanoparticles confined within carbon outer shell(denoted as MFe2O4@C HPSs)by using dualfunctional heterometallic FeIII2CoIIO(CH3COO)6(H2O)3·2H2O(Fe2M)clusters as both sacrificial template and carbon source.Compared with other methods meanwhile requiring metal and carbon sources,Fe2M clusters include both of two components in one precursor.Fe and M atoms were homogenously distributed in three apexes of an equilateral triangle.Upon pyrolysis,the cleavage of C–O bond was transformed to carbon,while Fe2M cores werein situtransformed to uniform binary MFe2O4nanoparticles,producing the final MFe2O4@C HPSs.In the as-obtained structure,uniform MFe2O4nanoparticles are confined in the interconnected network of carbon shells and assemble into 3D porous hybrid structures.These porous hybrid structures possess good electrolyte diffusion in the pores and good electronic conductivity through the networklike carbon shell-layer.As expected,the as-synthesized MFe2O4@C HPSs manifest superior electrochemical properties as anode materials for LIBs.Importantly,this hybrid structure indicates a small irreversible capacity loss during the first discharge/charge cycle with a higher initial Coulombic efficiency of 77.3 wt%.

    The MFe2O4@C HPSs composite was synthesized by simply carbonizing dual-functional heterometallic Fe2M clusters.As a precursor,taking the Fe2Co clusters as an example,the heterometallic Fe2Co clusters were first prepared as a microcrystalline product,and the structure of the clusters was identified by single-crystal X-ray diffraction(XRD)with a formula of FeIII2CoIIO(CH3COO)6(H2O)3·2H2O according to previous report[29].Briefly,the Fe2Co cluster is heterometallic mixed-valent complex with three metal centers arranging in the apex of an equilateral triangle(the middle image in Fig.1),which is reinforced by one central O atom and six CH3COO?ligands on three edges of triangle.Due to the imposed D3hmolecular symmetry,Fe and Co atoms are indistinguishable in triangle but the atom ratio can be determined by inductively coupled plasma atomic emission spectroscopy(ICP-AES,Table S1 in Supporting information).In this structure,the total bond energies of metal and six oxygen coordination bonds should be higher than that of a single carbon-oxygen bond which will break easily.Finally,CoFe2O4@C HPSs formed in the calcination.

    The phase composition and crystalline structure of the synthesized materials are depicted by X-ray diffraction(XRD)investigations.The XRD patterns of the Fe2M clusters were shown in Fig.S1(Supporting information),which can be indexed to FeIII2MIIO(CH3COO)6(H2O)3·2H2O without any impurity.After annealing treatment at 400 °C,the Fe2M clusters can be easily converted to MFe2O4@C HPSs(denoted as MFe2O4@C HPSs-400).Fig.2a shows XRD patterns of CoFe2O4@C HPSs-400 and CoFe2O4@C HPSs-300.It is obviously that all the diffraction peaks assigned to cubic CoFe2O4(JCPDS No.03–0864),and no other peaks exist.In the CoFe2O4crystal structure(Fig.2b),all the tetrahedral sites were occupied by the Fe atom(marked by orange),and the octahedral sites were occupied by the Fe atom(marked by yellow)and Co atom(marked by blue),indicating the typical inverse spinel structure.By comparing the peak intensities,it found that the crystallinity of CoFe2O4@C HPSs-400 is better than that of CoFe2O4@C HPSs-300.The XRD patterns of CoFe2O4@C HPSs-500(the Fe2Co heterometallic cluster calcined at 500 °C)was shown in Fig.S2(Supporting information).It is clearly found that the cobalt metal obtained at 500 °C,indicating that a reduction reaction occurred.No diffraction peaks of carbon in CoFe2O4@C HPSs-400 were detected due to its amorphous feature.The Raman spectroscopy were further conducted to verify the porous carbon shell.As shown in Fig.2c,the characteristic D and G peaks were located at 1347 and 1587 cm?1,respectively.Generally,theID/IGratio is used to evaluate the defects of carbon[30,31].Here theID/IGis 0.804,indicating the porous carbon shell has more electroactive sites than graphite carbon,which is conducive to the diffusion of lithium-ion as well as beneficial to improving lithium storage performance[32].

    Fig.2.(a)XRD patterns of the CoFe2O4@C HPSs.(b)Crystal structure of inverse spinel CoFe2O4.(c)Raman spectrum,(d,e)FESEM images,(f)TEM image and(g-i)HRTEM images of the CoFe2O4@C HPSs-400.(j)STEM-EDX element mappings of Co(blue),Fe(yellow),C(red)and O(green).

    Fig.3.Electrochemical performance of the CoFe2O4@C HPSs-400.(a)The first five CVs at a scan rate of 0.1 mV/s.(b)Galvanostatic charge/discharge profiles of the 1st,2nd,5th,20th,50th and 100th cycles at a current density of 0.2 A/g.(c)Rate capability at different current densities.Cycling performance at a current density of(d)0.5 A/g,(e)1 A/g and 2 A/g.

    The detailed morphology of the synthesized materials was investigated by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).Fe2M clusters exhibited an irregular block with the relatively smooth surfaces(Fig.S3 in Supporting information).The CoFe2O4@C HPSs-400 had a morphology analogous to Fe2Co clusters(Fig.2),although the surface becomes rough and the size is slightly reduced.As shown in Figs.2d-f,the CoFe2O4@C HPSs-400 is composed of nanoparticles with the narrow size distribution at about 10 nm,and myriad mesopores from the assembly of nanoparticles are observable.The structure of the CoFe2O4@C HPSs-400 is further explored through typical TEM and high-resolution TEM(HRTEM)images.As shown in Figs.2g and h,the nanoparticles are core-shell structures in which the core is coated by a porous carbon shell with a thickness of about 2–5 nm.The presence of the carbon layer plays an important role in the formation of CoFe2O4@C HPSs,because it can prevent the aggregation of CoFe2O4particles and the formation of larger particles during high-temperature calcination.The carbon-containing composite obtained by calcining heterometallic clusters had a permeable structure,favorable for the rapid diffusion of electrolyte.Thermogravimetric analysis shows that the carbon content of CoFe2O4@C HPSs-400 is 5.3 wt%(Fig.S4 in Supporting information).Fig.2h shows distinct lattice fringes with a distance of 0.486 nm corresponding to the(111)planes of CoFe2O4.Furthermore,scanning TEM(STEM)and energy-dispersive X-ray(EDX)elemental mappings are shown in Figs.2i and j,indicating the Co,Fe,C and O are well distributed through the whole composites.The energy dispersive X-ray spectrum(EDX)revealed that the atomic ratio of Co to Fe is 1:2.07(Fig.S5 in Supporting information).The ICP-AES further determined the molar ratio of Co to Fe to be 1:1.8(Table S1 in Supporting information).The above results proved the successful preparation of CoFe2O4@C HPSs-400.The structure and composition characterization of CoFe2O4@C HPSs-400 were further examined by X-ray photo-electron spectroscopy(XPS)spectra and Brunauer-Emmett-Teller(BET)surface area(Fig.S6 in Supporting information).Interestingly,the same methodology can be applied to prepare other MFe2O4@C HPSs composite materials,such as MnFe2O4@C HPSs,NiFe2O4@C HPSs,ZnFe2O4@C HPSs,demonstrating the universality of the synthesis method.Correspondingly,MnFe2O4@C HPSs,NiFe2O4@C HPSs,ZnFe2O4@C HPSs have a similar structure to CoFe2O4@C HPSs,although they are slightly different in size and length.These differences in diameter and length are due to the different coordination reactions between metal ions and coordinating atoms which has a great influence on the nucleation and subsequent growth of the heterometallic cluster Fe2M.The XRD patterns and SEM images of MnFe2O4@C HPSs,NiFe2O4@C HPSs and ZnFe2O4@C HPSs are shown in Fig.S7(Supporting information).

    The electrochemical properties of the as-prepared CoFe2O4@C HPSs are evaluated as anode materials for LIBs.The cyclic voltammogram(CV)curves of the CoFe2O4@C HPSs-400 for the first five cycles in the voltage range of 0.01–3.0 V at a scan rate of 0.1 mV/s are shown in Fig.3a.During the first discharge scan,the peak centered at 0.64 V is attributed to the reduction reaction of Fe3+and Co2+to metallic Fe and Co,along with the formation of Li2O and solid electrolyte interface(SEI)films[33].This cathodic peak shifts to 0.83 V in the subsequent cycles.The broad anodic peak at 1.23 V is associated with the oxidation of Fe and Co to Fe2O3and CoO[34,35].The electrochemical reaction can be expressed by the following equations:

    The difference between the peaks in the initial cycle and the successive cycles is assigned to the polarization processes of the electrode,which causes irreversible capacity loss in the first cycle[36,37].Nevertheless,the CV curves are well overlapping except for the initial discharge,indicating the good reaction reversibility and structural stability of the CoFe2O4@C-400 HPSs.The representative galvanostatic charge-discharge voltage profiles of the CoFe2O4@C-400 HPSs at 0.2 A/g for different cycles are presented in Fig.3b.The observed redox plateaus in the charge-discharge profiles match well with the CV curves.The voltage plateau of the first discharge curve at around 0.65 V can be attributable to the formation of SEI layers and the lithiation/delithiation reaction.The CoFe2O4@C HPSs-400 displays the initial discharge and charge capacities of 1164.2 and 899.7 mAh/g,respectively,corresponding to an initial Coulombic efficiency(CE)of 77.3%.The initial capacity loss can be ascribed to the irreversible formation of SEI films and irreversible insertion of the lithium ion into the CoFe2O4@C HPSs-400[38].In the subsequent cycles,the CE almost exceeds 90%,suggesting an improved cycling stability and reversibility.

    Notably,the calcination temperature has a great influence on the electrochemical performance of the electrodes[39].The rate capability and cycle stability of the CoFe2O4@C HPSs obtained at different calcination temperature are evaluated,as shown in Figs.3c-e.The CoFe2O4@C HPSs-400 can deliver average capacities of 1045,970,878,778 and 711 mAh/g at gradually increasing current densities of 0.2,0.5,1.0,1.5 and 2.0 A/g,respectively,much better than CoFe2O4@C HPSs-300(Fig.3c).The high performance of the CoFe2O4@C HPSs-400 can be ascribed to the highly crystalline than that of CoFe2O4@C HPSs-300.More importantly,the larger specific surface area of the CoFe2O4@C HPSs-400 can make the electrode and electrolyte contact better and improve the lithium storage efficiency during lithium intercalation/deintercalation process.Even when the current density returns to 0.5 A/g and 0.2 A/g,the specific capacity of CoFe2O4@C HPSs-400 can still reach 868 and 1135 mAh/g,revealing the excellent structural stability of the CoFe2O4@C HPSs-400.The cycling stability of CoFe2O4@C HPSs-400 and CoFe2O4@C HPSs-300 were compared at the current density of 0.5 A/g(Fig.3d).CoFe2O4@C HPSs-400 displays prominent cycling stability with the specific capacity of 1040 mAh/g after 390 cycles,while the specific capacity of the CoFe2O4@C HPSs-300 is only 608 mAh/g.The long-term cycling stability of CoFe2O4@C HPSs-400 at a current density of 1 A/g and 2 A/g are further evaluated.As shown in Fig.3e,the CoFe2O4@C HPSs-400 anode exhibited a specific capacity of 520 mAh/g after 530 cycles at 1 A/g and still maintains at 390 mAh/g at 2 A/g after 650 cycles,indicating the excellent structure robustness.Postmortem study shows that the shape and structural integrity of the CoFe2O4@C HPSs-400 can be well retained after 50 cycles(Fig.S8 in Supporting information).The outstanding performance of the CoFe2O4@C HPSs-400 might be attributed to the unique structural and compositional features.To be specific,the construction of CoFe2O4nanoparticle and carbon subunits not only enables a short diffusion distance for fast diffusion of Li ions but also provides sufficient contact between active material and electrolyte for the rapid charge-transfer reaction.Moreover,the carbon coated secondary CoFe2O4nanoparticles can effectively withstand large volume variation upon cycling,therefore maintaining structural integrity.In addition,the carbon shell can enhance the electronic conductivity thus improving the rate capability,as well as the electrochemical reactivity further improving the electrochemical property.In the meanwhile,the electrochemical performance of MnFe2O4@C HPSs,NiFe2O4@C HPSs,and ZnFe2O4@C HPSs are also studied.As shown in Figs.S9-S11(Supporting information),these MFe2O4@C HPSs show high specific capacities,enhanced cycling durability and good rate tolerance as anodes for LIBs.The performances of MFe2O4@C HPSs are evaluated by comparison with other related reports as anode materials of LIBs in Table S2(Supporting information),suggesting the superior electrochemistry behaviors of the MFe2O4@C HPSs in this works.

    Fig.4.Kinetics analysis of the CoFe2O4@C HPSs-400 electrode.(a)CV curves of the fresh cells at various scan rates.(b) b-value analysis using the relationship between the peak currents and scan rates.(c)Contribution ratio of the capacitive and diffusion-controlled charges at different scan rates.(d)Separation of the capacitive(purple region)and diffusion currents at a scan rate of 1.0 mV/s.(e)GITT voltage profiles.(f)Reaction resistance in discharge and charge process,respectively.

    To comprehensively explore the electrochemical reaction kinetics of CoFe2O4@C HPSs-400 electrode,the CV curves at different scan rates from 0.2 mV/s to 1.0 mV/s were performed,as shown in Fig.4a.In general,the peak current(i)and scan rate(v)obey the following relationship[40-42]:logi=loga+blogv,whereaandbare fitting parameters.Thebvalue can be obtained from the slope of the plot of logi versuslogv.The Li storage mechanism is determined by thebvalue.b=0.5 represents that the electrochemical process is diffusion-controlled while 1.0 means capacitive-controlled process.As shown in Fig.4b,the calculatedbvalues are 0.79 and 0.88 for the reduction and the oxidation peaks,respectively,indicating the mixed process dominated by both diffusion-controlled and capacitive-controlled process.The ratio of the contributions from the capacitive contribution(k1v)and diffusion-controlled contribution(k2v1/2)at a fixed potential(V)can be quantified by the following formula[40]:i=k1v+k2v1/2,wherek1andk2are constant parameters.As shown in Fig.4c,the capacitive contribution grows progressively as a function of the scan rate,so that it achieves a maximum value of 82% at 1 mV/s in Fig.4d.Thus,it is demonstrated that the majority mechanism of Li storage in CoFe2O4@C HPSs-400 electrode is in line with the capacitive-controlled processes,which greatly contributes to the high-rate capability.The capacitance dominant process can be mainly derived from the structural superiority of CoFe2O4@C HPSs-400 composite,in which nanosized CoFe2O4can offer reduced diffusion pathways for both lithium ions and electrons while the carbon coating affords superior electrolyte accessibility to the electrochemically active CoFe2O4nanoparticles,accounting for excellent electrochemical performances[43].

    To further interpret the diffusivity of active lithium species in CoFe2O4@C HPSs-400 during the charge/discharge process,galvanostatic intermittent titration technique(GITT)and electrochemical impedance spectroscopy(EIS)were conducted.GITT curves of CoFe2O4@C HPSs-400 are shown in Fig.4e,in which the dotted lines showed the quasi equilibrium open-circuit-voltages(OCVs).The internal resistance is derived from dividing the voltages difference between the OCVs and the closed circuit voltages(CCVs)by the pulse current[44].The internal resistance changes of CoFe2O4@C HPSs-400 in the charge/discharge process were shown in Fig.4f.It can be seen that the internal resistance in the discharge process decreased gradually,which can be ascribed to that the formation of metals or intermetallics enhanced the electronic conductivity and the immersion of the electrolyte accelerated the migration ions.Upon charge,there is a gradually increase of the internal resistance along with the release of lithium ions,which is contrary to the discussion above.The enhanced diffusion kinetics of CoFe2O4@C HPSs-400 can also be verified by EIS(Fig.S12 in Supporting information).The Nyquist plots of the CoFe2O4@C HPSs-400 electrode are constituted of the semicircle at the high frequencies(charge-transfer resistance,Rct)and the slope of the line at the low-frequencies(Warburg impedanceRw).TheRctof the CoFe2O4@C HPSs-400 electrode after the 50 cycles was evidently smaller than that after the first cycle,which confirms the remarkably accelerated reaction kinetics upon cycles.The boosted diffusion coefficient of Li ion resulted from the hierarchical structure with mesoporous and the presence of the carbon shell.

    Through a one-step method,a controlled synthesis of the carbon shell-encapsulated MFe2O4composites was achieved.That’s to say,the bifunctional heterometallic Fe2M cluster was calcined to obtain the final product MFe2O4@C HPSs,including CoFe2O4@C HPSs,MnFe2O4@C HPSs,NiFe2O4@C HPSs and ZnFe2O4@C HPSs.This method is very versatile and has the potential to be further extended to other materials.The prepared MFe2O4@C HPSs showed excellent lithium storage performance as an anode material.The CoFe2O4@C HPSs-400 remains 1040 mAh/g after 390 cycles at a current density of 0.5 A/g and 520 mAh/g after 530 cycles at a current density of 1 A/g.This work not only makes a significant contribution to the synthesis methodology of novel composite structure,but also to the application of transition metal oxides as negative electrodes of lithium ion batteries.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China(No.21871164),the Taishan Scholar Project Foundation of Shandong Province(No.ts20190908),the Natural Science Foundation of Shandong Province(No.ZR2019MB024),the China Postdoctoral Science Foundation(No.2018M632666),and the Special Fund for Postdoctoral Innovation Program of Shandong Province(No.201901003).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.074.

    精品免费久久久久久久清纯 | 国产男靠女视频免费网站| 一级片免费观看大全| 国产一区二区三区视频了| 91国产中文字幕| 在线观看免费视频网站a站| 国产成人精品久久二区二区免费| 精品一区二区三区四区五区乱码| 一本一本久久a久久精品综合妖精| 在线观看免费视频日本深夜| 视频区欧美日本亚洲| 老司机深夜福利视频在线观看| 搡老乐熟女国产| 欧美日韩视频精品一区| 男女床上黄色一级片免费看| 欧美日韩精品网址| 中文字幕人妻熟女乱码| 亚洲精品粉嫩美女一区| 亚洲国产欧美日韩在线播放| 91老司机精品| 三级毛片av免费| 欧美精品人与动牲交sv欧美| 精品亚洲乱码少妇综合久久| 99久久99久久久精品蜜桃| 一区二区av电影网| 久久人妻福利社区极品人妻图片| 国产精品香港三级国产av潘金莲| 亚洲一区中文字幕在线| 国产99久久九九免费精品| 日本av免费视频播放| 亚洲成人国产一区在线观看| 成年版毛片免费区| 国产99久久九九免费精品| 欧美国产精品一级二级三级| 性色av乱码一区二区三区2| 成年动漫av网址| 黄网站色视频无遮挡免费观看| 超碰成人久久| netflix在线观看网站| xxxhd国产人妻xxx| 国产亚洲欧美精品永久| 久久亚洲真实| 一二三四社区在线视频社区8| 变态另类成人亚洲欧美熟女 | 欧美黄色片欧美黄色片| 飞空精品影院首页| 精品国产乱子伦一区二区三区| 麻豆av在线久日| 69av精品久久久久久 | av视频免费观看在线观看| 久久久久久久精品吃奶| √禁漫天堂资源中文www| 欧美性长视频在线观看| 日韩视频在线欧美| a在线观看视频网站| 黄色丝袜av网址大全| 下体分泌物呈黄色| 亚洲第一青青草原| 如日韩欧美国产精品一区二区三区| 国产在线精品亚洲第一网站| 久久国产精品影院| 日本精品一区二区三区蜜桃| 午夜老司机福利片| 99国产精品一区二区三区| 波多野结衣av一区二区av| 黄频高清免费视频| 黄色丝袜av网址大全| 精品少妇一区二区三区视频日本电影| 一二三四社区在线视频社区8| 波多野结衣一区麻豆| 国产成人av激情在线播放| 动漫黄色视频在线观看| 露出奶头的视频| 国产一区二区在线观看av| 91九色精品人成在线观看| 免费看a级黄色片| 老司机影院毛片| 亚洲伊人久久精品综合| 激情在线观看视频在线高清 | 午夜福利在线观看吧| 黑人猛操日本美女一级片| 一边摸一边抽搐一进一出视频| av在线播放免费不卡| 国产精品 国内视频| 高清在线国产一区| 免费在线观看影片大全网站| 久久中文字幕人妻熟女| 国产片内射在线| 国产亚洲av高清不卡| 宅男免费午夜| 国产极品粉嫩免费观看在线| 成人永久免费在线观看视频 | 9色porny在线观看| 日韩欧美国产一区二区入口| 精品福利永久在线观看| 高潮久久久久久久久久久不卡| 悠悠久久av| 久久精品人人爽人人爽视色| e午夜精品久久久久久久| 成人永久免费在线观看视频 | 高潮久久久久久久久久久不卡| 久久久久久久大尺度免费视频| 女性生殖器流出的白浆| 精品久久蜜臀av无| 动漫黄色视频在线观看| 90打野战视频偷拍视频| 大码成人一级视频| 亚洲精品中文字幕在线视频| 国产av精品麻豆| 亚洲成a人片在线一区二区| 又黄又粗又硬又大视频| 亚洲第一青青草原| 国产97色在线日韩免费| 亚洲欧美激情在线| 精品国产一区二区三区久久久樱花| 精品久久蜜臀av无| 精品国产超薄肉色丝袜足j| 在线天堂中文资源库| 黄色片一级片一级黄色片| netflix在线观看网站| 久久国产精品男人的天堂亚洲| 夜夜爽天天搞| 91老司机精品| 国产深夜福利视频在线观看| 久久精品91无色码中文字幕| 欧美久久黑人一区二区| 男女午夜视频在线观看| 亚洲黑人精品在线| 丁香六月欧美| 人妻 亚洲 视频| 久久性视频一级片| 一区二区三区乱码不卡18| 亚洲欧美色中文字幕在线| 电影成人av| 久久人妻av系列| 免费在线观看视频国产中文字幕亚洲| 午夜福利乱码中文字幕| 18禁黄网站禁片午夜丰满| 一本久久精品| 国产精品久久久人人做人人爽| 香蕉国产在线看| 91精品国产国语对白视频| 丝袜喷水一区| 桃红色精品国产亚洲av| 黑人操中国人逼视频| 亚洲国产看品久久| 美女主播在线视频| 老熟妇乱子伦视频在线观看| 成人亚洲精品一区在线观看| 婷婷丁香在线五月| 欧美日韩亚洲高清精品| 天堂中文最新版在线下载| 国产精品免费大片| 成人特级黄色片久久久久久久 | 国产男女内射视频| 中文亚洲av片在线观看爽 | bbb黄色大片| 中文字幕精品免费在线观看视频| 十八禁网站免费在线| 亚洲人成伊人成综合网2020| 欧美激情久久久久久爽电影 | 亚洲欧美一区二区三区久久| 91麻豆精品激情在线观看国产 | 国产精品偷伦视频观看了| 精品高清国产在线一区| 男女无遮挡免费网站观看| 黄片大片在线免费观看| av不卡在线播放| 1024香蕉在线观看| 男人操女人黄网站| 国产精品熟女久久久久浪| 精品乱码久久久久久99久播| 十分钟在线观看高清视频www| 在线观看66精品国产| 十八禁网站网址无遮挡| 美女扒开内裤让男人捅视频| 亚洲色图av天堂| www.999成人在线观看| 99久久精品国产亚洲精品| 757午夜福利合集在线观看| 久久亚洲精品不卡| 日韩有码中文字幕| 国产精品免费视频内射| 成在线人永久免费视频| 免费看十八禁软件| 真人做人爱边吃奶动态| 他把我摸到了高潮在线观看 | 国产真人三级小视频在线观看| 久久九九热精品免费| 咕卡用的链子| 久久中文看片网| 亚洲人成电影观看| 99国产精品一区二区三区| 一本一本久久a久久精品综合妖精| 日韩一卡2卡3卡4卡2021年| 水蜜桃什么品种好| 女人久久www免费人成看片| 欧美另类亚洲清纯唯美| 乱人伦中国视频| av超薄肉色丝袜交足视频| 黄色毛片三级朝国网站| 国产精品国产av在线观看| 热99re8久久精品国产| 99九九在线精品视频| 国产欧美日韩一区二区三区在线| 久久久久国内视频| 99精品在免费线老司机午夜| 国产一区二区三区视频了| 久久人妻熟女aⅴ| 青青草视频在线视频观看| 涩涩av久久男人的天堂| 中文字幕人妻熟女乱码| 老熟妇乱子伦视频在线观看| 一个人免费在线观看的高清视频| 天堂8中文在线网| 色在线成人网| 视频区图区小说| 亚洲欧美精品综合一区二区三区| 中文字幕人妻丝袜制服| 日日摸夜夜添夜夜添小说| 国产又色又爽无遮挡免费看| 亚洲伊人久久精品综合| 午夜视频精品福利| 亚洲av国产av综合av卡| 国产在视频线精品| 19禁男女啪啪无遮挡网站| www.精华液| 每晚都被弄得嗷嗷叫到高潮| 又大又爽又粗| 国产老妇伦熟女老妇高清| 欧美激情极品国产一区二区三区| 久久国产精品人妻蜜桃| 精品亚洲成国产av| 99久久国产精品久久久| 日韩中文字幕欧美一区二区| 欧美精品一区二区大全| 中文字幕精品免费在线观看视频| 国产精品一区二区在线观看99| 久久久久精品国产欧美久久久| 乱人伦中国视频| a在线观看视频网站| 一本大道久久a久久精品| 久久久久精品人妻al黑| 夫妻午夜视频| 亚洲国产看品久久| 亚洲免费av在线视频| 丝袜在线中文字幕| 1024视频免费在线观看| 不卡av一区二区三区| 国产一区二区三区综合在线观看| 国产日韩一区二区三区精品不卡| 国产日韩欧美在线精品| 女警被强在线播放| 超碰97精品在线观看| 亚洲av日韩在线播放| 亚洲精品av麻豆狂野| 国产免费av片在线观看野外av| 成人国产av品久久久| 免费看十八禁软件| 亚洲色图av天堂| 黑丝袜美女国产一区| 久久久久久久久免费视频了| 18禁国产床啪视频网站| 丰满人妻熟妇乱又伦精品不卡| 在线观看人妻少妇| 老司机午夜十八禁免费视频| 狠狠精品人妻久久久久久综合| 亚洲人成电影观看| 亚洲欧美日韩另类电影网站| 欧美精品人与动牲交sv欧美| www日本在线高清视频| 露出奶头的视频| 午夜免费鲁丝| 亚洲,欧美精品.| 精品久久蜜臀av无| 少妇精品久久久久久久| 亚洲人成伊人成综合网2020| 老熟妇仑乱视频hdxx| av网站免费在线观看视频| 精品国产国语对白av| 国产欧美日韩精品亚洲av| 亚洲国产中文字幕在线视频| 日本欧美视频一区| 久久久久久亚洲精品国产蜜桃av| 人人妻,人人澡人人爽秒播| 国产精品成人在线| 亚洲欧美激情在线| a在线观看视频网站| a级毛片黄视频| 黑丝袜美女国产一区| 精品国内亚洲2022精品成人 | 国产在线视频一区二区| 伦理电影免费视频| 欧美黑人精品巨大| www.精华液| 欧美av亚洲av综合av国产av| 日本一区二区免费在线视频| 一级黄色大片毛片| 亚洲精品自拍成人| 亚洲午夜精品一区,二区,三区| 天天添夜夜摸| 99国产精品99久久久久| 黄色视频不卡| 精品第一国产精品| 午夜福利一区二区在线看| 18禁裸乳无遮挡动漫免费视频| 好男人电影高清在线观看| 国产av又大| 在线观看免费视频日本深夜| 色精品久久人妻99蜜桃| 777久久人妻少妇嫩草av网站| 极品教师在线免费播放| 亚洲午夜理论影院| 国产男女超爽视频在线观看| 日日摸夜夜添夜夜添小说| 99精品欧美一区二区三区四区| 国产片内射在线| 久久精品熟女亚洲av麻豆精品| 国产单亲对白刺激| 无遮挡黄片免费观看| 极品人妻少妇av视频| 女人被躁到高潮嗷嗷叫费观| 久久香蕉激情| 亚洲国产成人一精品久久久| 美女主播在线视频| 丝袜在线中文字幕| 精品熟女少妇八av免费久了| 老熟妇仑乱视频hdxx| 国产av又大| 精品国产超薄肉色丝袜足j| 久久久久国内视频| 亚洲中文字幕日韩| 欧美精品人与动牲交sv欧美| 欧美精品亚洲一区二区| 欧美精品人与动牲交sv欧美| 国产精品国产高清国产av | 国产精品亚洲av一区麻豆| 伊人久久大香线蕉亚洲五| tocl精华| 亚洲国产成人一精品久久久| bbb黄色大片| 999久久久国产精品视频| 成人黄色视频免费在线看| 亚洲欧美日韩另类电影网站| 超色免费av| 亚洲专区国产一区二区| 丝袜人妻中文字幕| 麻豆乱淫一区二区| 嫁个100分男人电影在线观看| 欧美日韩av久久| 国产福利在线免费观看视频| 欧美性长视频在线观看| 天天操日日干夜夜撸| 在线十欧美十亚洲十日本专区| 叶爱在线成人免费视频播放| 亚洲va日本ⅴa欧美va伊人久久| 国产精品自产拍在线观看55亚洲 | 亚洲国产毛片av蜜桃av| 狂野欧美激情性xxxx| 国产男靠女视频免费网站| 极品人妻少妇av视频| 亚洲精品在线观看二区| 99久久精品国产亚洲精品| 国产精品影院久久| 性少妇av在线| 波多野结衣av一区二区av| 成人国语在线视频| 国产xxxxx性猛交| 欧美成人免费av一区二区三区 | 中文字幕人妻丝袜一区二区| 50天的宝宝边吃奶边哭怎么回事| 午夜两性在线视频| 一级片免费观看大全| av免费在线观看网站| 亚洲av日韩在线播放| www日本在线高清视频| 亚洲av第一区精品v没综合| 国产在视频线精品| 国产成人精品久久二区二区91| 欧美性长视频在线观看| 亚洲国产欧美一区二区综合| 中文亚洲av片在线观看爽 | 色视频在线一区二区三区| 高清视频免费观看一区二区| 日日摸夜夜添夜夜添小说| 成人免费观看视频高清| 丰满少妇做爰视频| 狠狠狠狠99中文字幕| 在线十欧美十亚洲十日本专区| 国产伦人伦偷精品视频| 水蜜桃什么品种好| 国产精品成人在线| 狠狠精品人妻久久久久久综合| 午夜老司机福利片| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人欧美在线观看 | 亚洲七黄色美女视频| a级毛片黄视频| 亚洲精华国产精华精| 亚洲色图av天堂| 1024视频免费在线观看| 婷婷成人精品国产| 国产极品粉嫩免费观看在线| 午夜福利视频在线观看免费| www.精华液| 一区福利在线观看| 黑人欧美特级aaaaaa片| 啦啦啦 在线观看视频| 中文字幕高清在线视频| 色94色欧美一区二区| 精品久久久精品久久久| 男女免费视频国产| av免费在线观看网站| 超色免费av| 老司机靠b影院| 人人妻人人澡人人看| 人人妻,人人澡人人爽秒播| 国产一区二区在线观看av| 午夜福利视频在线观看免费| 午夜成年电影在线免费观看| 午夜福利,免费看| 国产av国产精品国产| 色94色欧美一区二区| 久久精品亚洲精品国产色婷小说| 老鸭窝网址在线观看| 亚洲五月色婷婷综合| 成人手机av| 三上悠亚av全集在线观看| 热99re8久久精品国产| 久久久国产欧美日韩av| 亚洲欧洲日产国产| 人妻一区二区av| 久久青草综合色| 女性生殖器流出的白浆| 不卡av一区二区三区| 久久免费观看电影| 欧美日韩黄片免| 热99re8久久精品国产| 无遮挡黄片免费观看| 国产精品免费大片| 亚洲久久久国产精品| 成人精品一区二区免费| 满18在线观看网站| 国产精品亚洲一级av第二区| 国产精品美女特级片免费视频播放器 | 他把我摸到了高潮在线观看 | 久久人妻福利社区极品人妻图片| 老熟妇乱子伦视频在线观看| 制服诱惑二区| 国产日韩欧美亚洲二区| 亚洲欧洲日产国产| 国产在线视频一区二区| 国产在视频线精品| 久久精品成人免费网站| 在线观看一区二区三区激情| 日韩中文字幕视频在线看片| 他把我摸到了高潮在线观看 | 肉色欧美久久久久久久蜜桃| 少妇 在线观看| 亚洲熟女精品中文字幕| 精品亚洲成国产av| 伦理电影免费视频| 国产欧美亚洲国产| 国产成+人综合+亚洲专区| 交换朋友夫妻互换小说| 婷婷成人精品国产| 成人国语在线视频| 91麻豆精品激情在线观看国产 | 国产精品一区二区免费欧美| 亚洲av电影在线进入| 色老头精品视频在线观看| 最新的欧美精品一区二区| 在线亚洲精品国产二区图片欧美| 在线av久久热| 国产91精品成人一区二区三区 | 久久久久久久精品吃奶| 另类精品久久| 国产成人免费观看mmmm| 精品人妻在线不人妻| 久久99热这里只频精品6学生| 国产男女超爽视频在线观看| 国产精品98久久久久久宅男小说| 最黄视频免费看| videos熟女内射| 法律面前人人平等表现在哪些方面| 天堂动漫精品| 国产在视频线精品| 欧美亚洲 丝袜 人妻 在线| 老熟妇仑乱视频hdxx| 亚洲第一欧美日韩一区二区三区 | 欧美成人免费av一区二区三区 | 日韩欧美免费精品| 一边摸一边做爽爽视频免费| 亚洲国产av新网站| 亚洲精品久久成人aⅴ小说| 我的亚洲天堂| 国产伦人伦偷精品视频| 动漫黄色视频在线观看| 十分钟在线观看高清视频www| 日韩欧美一区二区三区在线观看 | 岛国在线观看网站| 后天国语完整版免费观看| 亚洲美女黄片视频| 最近最新中文字幕大全电影3 | 午夜福利在线观看吧| 国产欧美日韩一区二区三区在线| 人妻久久中文字幕网| 99国产精品免费福利视频| 午夜福利影视在线免费观看| 免费人妻精品一区二区三区视频| 午夜免费成人在线视频| 久久ye,这里只有精品| 女人久久www免费人成看片| 成年人午夜在线观看视频| 青草久久国产| 亚洲国产毛片av蜜桃av| 国产成人av激情在线播放| 欧美激情高清一区二区三区| 精品国产亚洲在线| 亚洲精品乱久久久久久| 男女床上黄色一级片免费看| av不卡在线播放| 日本av免费视频播放| 欧美av亚洲av综合av国产av| 黄色a级毛片大全视频| 久久中文字幕人妻熟女| 天堂俺去俺来也www色官网| 国产成人免费观看mmmm| 精品乱码久久久久久99久播| 成人永久免费在线观看视频 | 新久久久久国产一级毛片| 亚洲欧洲精品一区二区精品久久久| 人人妻人人澡人人爽人人夜夜| 国产精品98久久久久久宅男小说| 国产成人一区二区三区免费视频网站| 80岁老熟妇乱子伦牲交| 精品国产国语对白av| 丝袜人妻中文字幕| 精品亚洲成a人片在线观看| 最新美女视频免费是黄的| 久久婷婷成人综合色麻豆| 成年女人毛片免费观看观看9 | 99国产综合亚洲精品| 亚洲三区欧美一区| 精品久久久久久电影网| 亚洲精品一二三| 咕卡用的链子| 青草久久国产| 久久国产精品男人的天堂亚洲| 久久99热这里只频精品6学生| 国产成人精品无人区| 三上悠亚av全集在线观看| 午夜成年电影在线免费观看| 一个人免费在线观看的高清视频| 下体分泌物呈黄色| 免费在线观看黄色视频的| 久热这里只有精品99| 丝袜美足系列| 久久免费观看电影| 十八禁高潮呻吟视频| 国产一区二区 视频在线| 久久人妻熟女aⅴ| 少妇粗大呻吟视频| 午夜成年电影在线免费观看| 久久国产精品大桥未久av| 一区二区三区激情视频| 亚洲国产欧美在线一区| 国产三级黄色录像| 又紧又爽又黄一区二区| 日韩大片免费观看网站| 精品少妇黑人巨大在线播放| 色老头精品视频在线观看| 黄色片一级片一级黄色片| 国产欧美日韩一区二区三| 天天躁日日躁夜夜躁夜夜| 两性夫妻黄色片| 午夜福利欧美成人| 免费一级毛片在线播放高清视频 | 自线自在国产av| 在线播放国产精品三级| 大陆偷拍与自拍| 妹子高潮喷水视频| 亚洲avbb在线观看| 免费高清在线观看日韩| 热re99久久精品国产66热6| 亚洲国产欧美在线一区| 成人免费观看视频高清| 亚洲中文字幕日韩| 老司机福利观看| 午夜福利免费观看在线| 国产亚洲一区二区精品| 亚洲第一欧美日韩一区二区三区 | 热99国产精品久久久久久7| 亚洲人成电影免费在线| 另类亚洲欧美激情| 高清欧美精品videossex| 国产熟女午夜一区二区三区| 两个人免费观看高清视频| 香蕉久久夜色| 美女主播在线视频| 一进一出好大好爽视频| 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩综合在线一区二区| av视频免费观看在线观看| 高清欧美精品videossex| 国产极品粉嫩免费观看在线| a级片在线免费高清观看视频| 国产精品熟女久久久久浪| 热99re8久久精品国产| 久久av网站| 成年版毛片免费区| 桃花免费在线播放| 亚洲精品粉嫩美女一区| 国产视频一区二区在线看| 亚洲综合色网址|