• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mixed transition-metal oxides@carbon core-shell nanostructures derived from heterometallic clusters for enhanced lithium storage

    2022-03-14 09:30:14YantingChuShenglinXiong
    Chinese Chemical Letters 2022年1期

    Yanting Chu,Shenglin Xiong

    School of Chemistry and Chemical Engineering,State Key Laboratory of Crystal Materials,Shandong University,Ji’nan 250100,China

    ABSTRACT Multicomponent binary metal oxide-involved hybrid structures with unique physicochemical properties have received extensive attention due to their fascinating electrochemical performance.Herein,a flexible strategy,which involves the preparation of dual-functional heterometallic Fe2M clusters and their subsequent sintering treatment,is developed to engineer novel 3D hierarchical porous structures assembled with MFe2O4(M=Co,Mn,Ni and Zn)nanoparticles confined within carbon outer shell(denoted as MFe2O4@C HPSs).In this intriguing construction,it can be observed that MFe2O4@C HPSs comprised of carbon coated secondary MFe2O4 nanoparticles with an interconnected carbon network.The as-prepared MFe2O4@C HPSs possess combined advantages of high capacity of MFe2O4 and high conductivity of carbon.As expected,the MFe2O4@C HPSs offer a high reversible capacity,high cycling stability and superior rate performance.The interconnected conductive carbon shells facilitates fast ion and electron transport and accommodates the mechanical strain.In addition,nanosized MFe2O4 particles,which shorten the iontransport path and provide extra electroactive sites,also improve the reaction kinetics.Moreover,these MFe2O4@C HPSs exhibit good structural integrity during repeated charging and discharging.The research perspective and strategy reported here are highly versatile and shed new light on the synthesis of other advanced electrode for various applications.

    Keywords:MFe2O4 Core-shell nanoparticles Heterometallic clusters Anode Lithium?ion batteries

    Transition metal oxides(TMOs),as a significant class of inorganic solid materials,have been widely investigated as electrode materials for energy storage devices including fuel cells,electrochemical capacitors(ECs),and lithium-ion batteries(LIBs)[1-7].In particular,binary metal oxides with two different metal cations exhibit high electrochemical activities because of their complex chemical composition and the synergic effects of multiple metal species[8,9].For example,spinel CoFe2O4with a high theoretical capacity of 916 mAh/g,possesses much better electrical conductivity and hence has been considered as a promising anode material for LIBs[10-14].However,it is difficult to synthesize multicomponent hybrid structures of binary metal oxides because different materials with unique physicochemical properties could not easily be contained simultaneously during the preparation process.

    In recent years,metal–organic frameworks(MOFs)with diverse chemical compositions,designable topological architectures and well-defined structures are of enormous potential as an emerging class of well-ordered crystalline inorganic-organic hybrid porous materials for various applications[15-17].Importantly,MOFs can be readily transformed to porous carbon-based composite materials with metal oxides,metal sulfides,and metal phosphides,which always exhibit incomparable properties with their single components[18-24].Different from MOFs,metal-organic clusters(MOCs)are another kind of inorganic-organic hybrid materials featured with atom-precise structures,polynuclear metal atoms aggregations,uniform sizes,zero-dimensional and free-standing nature[25].Notably,compared to polynuclear monometallic clusters,the heterometallic clusters(HMCs)are atom-precise molecular materials that have two or more than two kinds of metal atoms in one unity[26-28].Different metal centers in one cluster can bring in novel molecular structure due to different coordination preferences,various metal ratios,as well as enhanced properties due to the synergistic interactions between them.More importantly,more kinds of metal centers could induce the formation of hybrid metal compositions,such as mixed metal oxides,metal doped metal oxides,even some interesting heterojunctions.In spite of considerable efforts on the preparation of various derivative hybrid materials from the corresponding MOFs[18-23],to the best of our knowledge,the dual-functional properties of MOCs especially HMCs are completely unexplored to date.

    Fig.1.Schematic illustration of the synthesis process of CoFe2O4@C HPSs.

    Herein,for the first time,we report novel 3D hierarchical porous structures assembled with MFe2O4(M=CoFe2O4,MnFe2O4,NiFe2O4and ZnFe2O4)nanoparticles confined within carbon outer shell(denoted as MFe2O4@C HPSs)by using dualfunctional heterometallic FeIII2CoIIO(CH3COO)6(H2O)3·2H2O(Fe2M)clusters as both sacrificial template and carbon source.Compared with other methods meanwhile requiring metal and carbon sources,Fe2M clusters include both of two components in one precursor.Fe and M atoms were homogenously distributed in three apexes of an equilateral triangle.Upon pyrolysis,the cleavage of C–O bond was transformed to carbon,while Fe2M cores werein situtransformed to uniform binary MFe2O4nanoparticles,producing the final MFe2O4@C HPSs.In the as-obtained structure,uniform MFe2O4nanoparticles are confined in the interconnected network of carbon shells and assemble into 3D porous hybrid structures.These porous hybrid structures possess good electrolyte diffusion in the pores and good electronic conductivity through the networklike carbon shell-layer.As expected,the as-synthesized MFe2O4@C HPSs manifest superior electrochemical properties as anode materials for LIBs.Importantly,this hybrid structure indicates a small irreversible capacity loss during the first discharge/charge cycle with a higher initial Coulombic efficiency of 77.3 wt%.

    The MFe2O4@C HPSs composite was synthesized by simply carbonizing dual-functional heterometallic Fe2M clusters.As a precursor,taking the Fe2Co clusters as an example,the heterometallic Fe2Co clusters were first prepared as a microcrystalline product,and the structure of the clusters was identified by single-crystal X-ray diffraction(XRD)with a formula of FeIII2CoIIO(CH3COO)6(H2O)3·2H2O according to previous report[29].Briefly,the Fe2Co cluster is heterometallic mixed-valent complex with three metal centers arranging in the apex of an equilateral triangle(the middle image in Fig.1),which is reinforced by one central O atom and six CH3COO?ligands on three edges of triangle.Due to the imposed D3hmolecular symmetry,Fe and Co atoms are indistinguishable in triangle but the atom ratio can be determined by inductively coupled plasma atomic emission spectroscopy(ICP-AES,Table S1 in Supporting information).In this structure,the total bond energies of metal and six oxygen coordination bonds should be higher than that of a single carbon-oxygen bond which will break easily.Finally,CoFe2O4@C HPSs formed in the calcination.

    The phase composition and crystalline structure of the synthesized materials are depicted by X-ray diffraction(XRD)investigations.The XRD patterns of the Fe2M clusters were shown in Fig.S1(Supporting information),which can be indexed to FeIII2MIIO(CH3COO)6(H2O)3·2H2O without any impurity.After annealing treatment at 400 °C,the Fe2M clusters can be easily converted to MFe2O4@C HPSs(denoted as MFe2O4@C HPSs-400).Fig.2a shows XRD patterns of CoFe2O4@C HPSs-400 and CoFe2O4@C HPSs-300.It is obviously that all the diffraction peaks assigned to cubic CoFe2O4(JCPDS No.03–0864),and no other peaks exist.In the CoFe2O4crystal structure(Fig.2b),all the tetrahedral sites were occupied by the Fe atom(marked by orange),and the octahedral sites were occupied by the Fe atom(marked by yellow)and Co atom(marked by blue),indicating the typical inverse spinel structure.By comparing the peak intensities,it found that the crystallinity of CoFe2O4@C HPSs-400 is better than that of CoFe2O4@C HPSs-300.The XRD patterns of CoFe2O4@C HPSs-500(the Fe2Co heterometallic cluster calcined at 500 °C)was shown in Fig.S2(Supporting information).It is clearly found that the cobalt metal obtained at 500 °C,indicating that a reduction reaction occurred.No diffraction peaks of carbon in CoFe2O4@C HPSs-400 were detected due to its amorphous feature.The Raman spectroscopy were further conducted to verify the porous carbon shell.As shown in Fig.2c,the characteristic D and G peaks were located at 1347 and 1587 cm?1,respectively.Generally,theID/IGratio is used to evaluate the defects of carbon[30,31].Here theID/IGis 0.804,indicating the porous carbon shell has more electroactive sites than graphite carbon,which is conducive to the diffusion of lithium-ion as well as beneficial to improving lithium storage performance[32].

    Fig.2.(a)XRD patterns of the CoFe2O4@C HPSs.(b)Crystal structure of inverse spinel CoFe2O4.(c)Raman spectrum,(d,e)FESEM images,(f)TEM image and(g-i)HRTEM images of the CoFe2O4@C HPSs-400.(j)STEM-EDX element mappings of Co(blue),Fe(yellow),C(red)and O(green).

    Fig.3.Electrochemical performance of the CoFe2O4@C HPSs-400.(a)The first five CVs at a scan rate of 0.1 mV/s.(b)Galvanostatic charge/discharge profiles of the 1st,2nd,5th,20th,50th and 100th cycles at a current density of 0.2 A/g.(c)Rate capability at different current densities.Cycling performance at a current density of(d)0.5 A/g,(e)1 A/g and 2 A/g.

    The detailed morphology of the synthesized materials was investigated by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).Fe2M clusters exhibited an irregular block with the relatively smooth surfaces(Fig.S3 in Supporting information).The CoFe2O4@C HPSs-400 had a morphology analogous to Fe2Co clusters(Fig.2),although the surface becomes rough and the size is slightly reduced.As shown in Figs.2d-f,the CoFe2O4@C HPSs-400 is composed of nanoparticles with the narrow size distribution at about 10 nm,and myriad mesopores from the assembly of nanoparticles are observable.The structure of the CoFe2O4@C HPSs-400 is further explored through typical TEM and high-resolution TEM(HRTEM)images.As shown in Figs.2g and h,the nanoparticles are core-shell structures in which the core is coated by a porous carbon shell with a thickness of about 2–5 nm.The presence of the carbon layer plays an important role in the formation of CoFe2O4@C HPSs,because it can prevent the aggregation of CoFe2O4particles and the formation of larger particles during high-temperature calcination.The carbon-containing composite obtained by calcining heterometallic clusters had a permeable structure,favorable for the rapid diffusion of electrolyte.Thermogravimetric analysis shows that the carbon content of CoFe2O4@C HPSs-400 is 5.3 wt%(Fig.S4 in Supporting information).Fig.2h shows distinct lattice fringes with a distance of 0.486 nm corresponding to the(111)planes of CoFe2O4.Furthermore,scanning TEM(STEM)and energy-dispersive X-ray(EDX)elemental mappings are shown in Figs.2i and j,indicating the Co,Fe,C and O are well distributed through the whole composites.The energy dispersive X-ray spectrum(EDX)revealed that the atomic ratio of Co to Fe is 1:2.07(Fig.S5 in Supporting information).The ICP-AES further determined the molar ratio of Co to Fe to be 1:1.8(Table S1 in Supporting information).The above results proved the successful preparation of CoFe2O4@C HPSs-400.The structure and composition characterization of CoFe2O4@C HPSs-400 were further examined by X-ray photo-electron spectroscopy(XPS)spectra and Brunauer-Emmett-Teller(BET)surface area(Fig.S6 in Supporting information).Interestingly,the same methodology can be applied to prepare other MFe2O4@C HPSs composite materials,such as MnFe2O4@C HPSs,NiFe2O4@C HPSs,ZnFe2O4@C HPSs,demonstrating the universality of the synthesis method.Correspondingly,MnFe2O4@C HPSs,NiFe2O4@C HPSs,ZnFe2O4@C HPSs have a similar structure to CoFe2O4@C HPSs,although they are slightly different in size and length.These differences in diameter and length are due to the different coordination reactions between metal ions and coordinating atoms which has a great influence on the nucleation and subsequent growth of the heterometallic cluster Fe2M.The XRD patterns and SEM images of MnFe2O4@C HPSs,NiFe2O4@C HPSs and ZnFe2O4@C HPSs are shown in Fig.S7(Supporting information).

    The electrochemical properties of the as-prepared CoFe2O4@C HPSs are evaluated as anode materials for LIBs.The cyclic voltammogram(CV)curves of the CoFe2O4@C HPSs-400 for the first five cycles in the voltage range of 0.01–3.0 V at a scan rate of 0.1 mV/s are shown in Fig.3a.During the first discharge scan,the peak centered at 0.64 V is attributed to the reduction reaction of Fe3+and Co2+to metallic Fe and Co,along with the formation of Li2O and solid electrolyte interface(SEI)films[33].This cathodic peak shifts to 0.83 V in the subsequent cycles.The broad anodic peak at 1.23 V is associated with the oxidation of Fe and Co to Fe2O3and CoO[34,35].The electrochemical reaction can be expressed by the following equations:

    The difference between the peaks in the initial cycle and the successive cycles is assigned to the polarization processes of the electrode,which causes irreversible capacity loss in the first cycle[36,37].Nevertheless,the CV curves are well overlapping except for the initial discharge,indicating the good reaction reversibility and structural stability of the CoFe2O4@C-400 HPSs.The representative galvanostatic charge-discharge voltage profiles of the CoFe2O4@C-400 HPSs at 0.2 A/g for different cycles are presented in Fig.3b.The observed redox plateaus in the charge-discharge profiles match well with the CV curves.The voltage plateau of the first discharge curve at around 0.65 V can be attributable to the formation of SEI layers and the lithiation/delithiation reaction.The CoFe2O4@C HPSs-400 displays the initial discharge and charge capacities of 1164.2 and 899.7 mAh/g,respectively,corresponding to an initial Coulombic efficiency(CE)of 77.3%.The initial capacity loss can be ascribed to the irreversible formation of SEI films and irreversible insertion of the lithium ion into the CoFe2O4@C HPSs-400[38].In the subsequent cycles,the CE almost exceeds 90%,suggesting an improved cycling stability and reversibility.

    Notably,the calcination temperature has a great influence on the electrochemical performance of the electrodes[39].The rate capability and cycle stability of the CoFe2O4@C HPSs obtained at different calcination temperature are evaluated,as shown in Figs.3c-e.The CoFe2O4@C HPSs-400 can deliver average capacities of 1045,970,878,778 and 711 mAh/g at gradually increasing current densities of 0.2,0.5,1.0,1.5 and 2.0 A/g,respectively,much better than CoFe2O4@C HPSs-300(Fig.3c).The high performance of the CoFe2O4@C HPSs-400 can be ascribed to the highly crystalline than that of CoFe2O4@C HPSs-300.More importantly,the larger specific surface area of the CoFe2O4@C HPSs-400 can make the electrode and electrolyte contact better and improve the lithium storage efficiency during lithium intercalation/deintercalation process.Even when the current density returns to 0.5 A/g and 0.2 A/g,the specific capacity of CoFe2O4@C HPSs-400 can still reach 868 and 1135 mAh/g,revealing the excellent structural stability of the CoFe2O4@C HPSs-400.The cycling stability of CoFe2O4@C HPSs-400 and CoFe2O4@C HPSs-300 were compared at the current density of 0.5 A/g(Fig.3d).CoFe2O4@C HPSs-400 displays prominent cycling stability with the specific capacity of 1040 mAh/g after 390 cycles,while the specific capacity of the CoFe2O4@C HPSs-300 is only 608 mAh/g.The long-term cycling stability of CoFe2O4@C HPSs-400 at a current density of 1 A/g and 2 A/g are further evaluated.As shown in Fig.3e,the CoFe2O4@C HPSs-400 anode exhibited a specific capacity of 520 mAh/g after 530 cycles at 1 A/g and still maintains at 390 mAh/g at 2 A/g after 650 cycles,indicating the excellent structure robustness.Postmortem study shows that the shape and structural integrity of the CoFe2O4@C HPSs-400 can be well retained after 50 cycles(Fig.S8 in Supporting information).The outstanding performance of the CoFe2O4@C HPSs-400 might be attributed to the unique structural and compositional features.To be specific,the construction of CoFe2O4nanoparticle and carbon subunits not only enables a short diffusion distance for fast diffusion of Li ions but also provides sufficient contact between active material and electrolyte for the rapid charge-transfer reaction.Moreover,the carbon coated secondary CoFe2O4nanoparticles can effectively withstand large volume variation upon cycling,therefore maintaining structural integrity.In addition,the carbon shell can enhance the electronic conductivity thus improving the rate capability,as well as the electrochemical reactivity further improving the electrochemical property.In the meanwhile,the electrochemical performance of MnFe2O4@C HPSs,NiFe2O4@C HPSs,and ZnFe2O4@C HPSs are also studied.As shown in Figs.S9-S11(Supporting information),these MFe2O4@C HPSs show high specific capacities,enhanced cycling durability and good rate tolerance as anodes for LIBs.The performances of MFe2O4@C HPSs are evaluated by comparison with other related reports as anode materials of LIBs in Table S2(Supporting information),suggesting the superior electrochemistry behaviors of the MFe2O4@C HPSs in this works.

    Fig.4.Kinetics analysis of the CoFe2O4@C HPSs-400 electrode.(a)CV curves of the fresh cells at various scan rates.(b) b-value analysis using the relationship between the peak currents and scan rates.(c)Contribution ratio of the capacitive and diffusion-controlled charges at different scan rates.(d)Separation of the capacitive(purple region)and diffusion currents at a scan rate of 1.0 mV/s.(e)GITT voltage profiles.(f)Reaction resistance in discharge and charge process,respectively.

    To comprehensively explore the electrochemical reaction kinetics of CoFe2O4@C HPSs-400 electrode,the CV curves at different scan rates from 0.2 mV/s to 1.0 mV/s were performed,as shown in Fig.4a.In general,the peak current(i)and scan rate(v)obey the following relationship[40-42]:logi=loga+blogv,whereaandbare fitting parameters.Thebvalue can be obtained from the slope of the plot of logi versuslogv.The Li storage mechanism is determined by thebvalue.b=0.5 represents that the electrochemical process is diffusion-controlled while 1.0 means capacitive-controlled process.As shown in Fig.4b,the calculatedbvalues are 0.79 and 0.88 for the reduction and the oxidation peaks,respectively,indicating the mixed process dominated by both diffusion-controlled and capacitive-controlled process.The ratio of the contributions from the capacitive contribution(k1v)and diffusion-controlled contribution(k2v1/2)at a fixed potential(V)can be quantified by the following formula[40]:i=k1v+k2v1/2,wherek1andk2are constant parameters.As shown in Fig.4c,the capacitive contribution grows progressively as a function of the scan rate,so that it achieves a maximum value of 82% at 1 mV/s in Fig.4d.Thus,it is demonstrated that the majority mechanism of Li storage in CoFe2O4@C HPSs-400 electrode is in line with the capacitive-controlled processes,which greatly contributes to the high-rate capability.The capacitance dominant process can be mainly derived from the structural superiority of CoFe2O4@C HPSs-400 composite,in which nanosized CoFe2O4can offer reduced diffusion pathways for both lithium ions and electrons while the carbon coating affords superior electrolyte accessibility to the electrochemically active CoFe2O4nanoparticles,accounting for excellent electrochemical performances[43].

    To further interpret the diffusivity of active lithium species in CoFe2O4@C HPSs-400 during the charge/discharge process,galvanostatic intermittent titration technique(GITT)and electrochemical impedance spectroscopy(EIS)were conducted.GITT curves of CoFe2O4@C HPSs-400 are shown in Fig.4e,in which the dotted lines showed the quasi equilibrium open-circuit-voltages(OCVs).The internal resistance is derived from dividing the voltages difference between the OCVs and the closed circuit voltages(CCVs)by the pulse current[44].The internal resistance changes of CoFe2O4@C HPSs-400 in the charge/discharge process were shown in Fig.4f.It can be seen that the internal resistance in the discharge process decreased gradually,which can be ascribed to that the formation of metals or intermetallics enhanced the electronic conductivity and the immersion of the electrolyte accelerated the migration ions.Upon charge,there is a gradually increase of the internal resistance along with the release of lithium ions,which is contrary to the discussion above.The enhanced diffusion kinetics of CoFe2O4@C HPSs-400 can also be verified by EIS(Fig.S12 in Supporting information).The Nyquist plots of the CoFe2O4@C HPSs-400 electrode are constituted of the semicircle at the high frequencies(charge-transfer resistance,Rct)and the slope of the line at the low-frequencies(Warburg impedanceRw).TheRctof the CoFe2O4@C HPSs-400 electrode after the 50 cycles was evidently smaller than that after the first cycle,which confirms the remarkably accelerated reaction kinetics upon cycles.The boosted diffusion coefficient of Li ion resulted from the hierarchical structure with mesoporous and the presence of the carbon shell.

    Through a one-step method,a controlled synthesis of the carbon shell-encapsulated MFe2O4composites was achieved.That’s to say,the bifunctional heterometallic Fe2M cluster was calcined to obtain the final product MFe2O4@C HPSs,including CoFe2O4@C HPSs,MnFe2O4@C HPSs,NiFe2O4@C HPSs and ZnFe2O4@C HPSs.This method is very versatile and has the potential to be further extended to other materials.The prepared MFe2O4@C HPSs showed excellent lithium storage performance as an anode material.The CoFe2O4@C HPSs-400 remains 1040 mAh/g after 390 cycles at a current density of 0.5 A/g and 520 mAh/g after 530 cycles at a current density of 1 A/g.This work not only makes a significant contribution to the synthesis methodology of novel composite structure,but also to the application of transition metal oxides as negative electrodes of lithium ion batteries.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China(No.21871164),the Taishan Scholar Project Foundation of Shandong Province(No.ts20190908),the Natural Science Foundation of Shandong Province(No.ZR2019MB024),the China Postdoctoral Science Foundation(No.2018M632666),and the Special Fund for Postdoctoral Innovation Program of Shandong Province(No.201901003).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.074.

    国产亚洲av嫩草精品影院| 在线观看美女被高潮喷水网站 | 午夜福利欧美成人| 日本与韩国留学比较| 永久网站在线| 精品人妻偷拍中文字幕| 男人舔奶头视频| 国产乱人视频| 午夜两性在线视频| 日韩欧美在线乱码| netflix在线观看网站| 国产精品人妻久久久久久| 国产在线男女| 中文字幕人妻熟人妻熟丝袜美| 一个人免费在线观看电影| 国产高清激情床上av| ponron亚洲| 日韩免费av在线播放| 欧美+亚洲+日韩+国产| 亚洲精品在线观看二区| 国产野战对白在线观看| 亚洲欧美日韩卡通动漫| 女生性感内裤真人,穿戴方法视频| 色播亚洲综合网| 深夜精品福利| 国产三级黄色录像| avwww免费| 日韩欧美 国产精品| 国产精品1区2区在线观看.| 色综合婷婷激情| 91在线观看av| 男女那种视频在线观看| 欧美高清成人免费视频www| 久久久久久久久中文| 国产免费一级a男人的天堂| 国产成人aa在线观看| 国产中年淑女户外野战色| 成年女人看的毛片在线观看| 国产激情偷乱视频一区二区| 亚洲人成网站高清观看| 又黄又爽又刺激的免费视频.| 日韩大尺度精品在线看网址| 久久久久精品国产欧美久久久| 中文在线观看免费www的网站| 在线播放国产精品三级| 波多野结衣巨乳人妻| 国产精品野战在线观看| 亚洲欧美精品综合久久99| 色综合欧美亚洲国产小说| 亚洲五月婷婷丁香| 国产精华一区二区三区| 毛片女人毛片| 男人狂女人下面高潮的视频| 欧美潮喷喷水| 99国产精品一区二区三区| 国产av麻豆久久久久久久| 亚洲欧美日韩高清在线视频| 久久伊人香网站| 天堂网av新在线| 亚洲avbb在线观看| 久久天躁狠狠躁夜夜2o2o| 超碰av人人做人人爽久久| 女生性感内裤真人,穿戴方法视频| 亚州av有码| 亚洲综合色惰| 男人舔奶头视频| 久久久久久九九精品二区国产| 熟女电影av网| av中文乱码字幕在线| 亚洲精品日韩av片在线观看| 搡女人真爽免费视频火全软件 | 久久天躁狠狠躁夜夜2o2o| 嫩草影院入口| 51国产日韩欧美| 亚洲国产精品久久男人天堂| 欧美最黄视频在线播放免费| 亚洲va日本ⅴa欧美va伊人久久| 一进一出抽搐gif免费好疼| 午夜a级毛片| 久久中文看片网| 在线观看一区二区三区| 国产欧美日韩一区二区三| 一个人免费在线观看电影| 真人一进一出gif抽搐免费| 首页视频小说图片口味搜索| 国产色爽女视频免费观看| 18+在线观看网站| 三级男女做爰猛烈吃奶摸视频| 日本与韩国留学比较| 97超视频在线观看视频| 色哟哟·www| 欧美xxxx黑人xx丫x性爽| 狂野欧美白嫩少妇大欣赏| 亚洲男人的天堂狠狠| 少妇的逼水好多| 日本成人三级电影网站| 亚洲专区中文字幕在线| 精品久久久久久久人妻蜜臀av| 国内久久婷婷六月综合欲色啪| 欧美高清性xxxxhd video| 怎么达到女性高潮| 老司机深夜福利视频在线观看| 全区人妻精品视频| 欧美又色又爽又黄视频| 久久久久久久久大av| 极品教师在线免费播放| 午夜福利视频1000在线观看| 亚洲第一欧美日韩一区二区三区| 免费人成在线观看视频色| 欧美区成人在线视频| 免费电影在线观看免费观看| 男女床上黄色一级片免费看| 亚洲国产色片| 亚洲va日本ⅴa欧美va伊人久久| 国内揄拍国产精品人妻在线| 亚洲国产色片| 亚洲一区二区三区不卡视频| 久久99热这里只有精品18| 男插女下体视频免费在线播放| 免费人成在线观看视频色| 男人舔奶头视频| 一夜夜www| 亚洲人成网站在线播| .国产精品久久| 亚洲av美国av| 久久久久性生活片| 欧美绝顶高潮抽搐喷水| 国产精品一区二区三区四区久久| 性欧美人与动物交配| 日本熟妇午夜| 精品午夜福利在线看| 99精品久久久久人妻精品| 波多野结衣巨乳人妻| 国产野战对白在线观看| 午夜老司机福利剧场| 亚洲欧美日韩高清在线视频| 2021天堂中文幕一二区在线观| 黄色视频,在线免费观看| 国产精品久久久久久久久免 | 久久精品影院6| 男人的好看免费观看在线视频| 美女被艹到高潮喷水动态| av在线蜜桃| 九九热线精品视视频播放| 久久99热6这里只有精品| 成人永久免费在线观看视频| 亚洲综合色惰| 美女高潮的动态| 婷婷精品国产亚洲av| 亚洲av免费在线观看| 成人性生交大片免费视频hd| 欧美日韩国产亚洲二区| 久久精品国产清高在天天线| 午夜老司机福利剧场| 欧美潮喷喷水| 久久婷婷人人爽人人干人人爱| 亚洲精品久久国产高清桃花| 成人精品一区二区免费| 亚洲精品成人久久久久久| 最近最新免费中文字幕在线| 99精品在免费线老司机午夜| eeuss影院久久| 观看美女的网站| 亚洲男人的天堂狠狠| 午夜福利在线观看免费完整高清在 | 久久99热这里只有精品18| 深爱激情五月婷婷| 别揉我奶头 嗯啊视频| 国产欧美日韩精品一区二区| 一区二区三区高清视频在线| av在线天堂中文字幕| 日本撒尿小便嘘嘘汇集6| 一本综合久久免费| 免费看a级黄色片| 免费搜索国产男女视频| 最近最新中文字幕大全电影3| 国内少妇人妻偷人精品xxx网站| 18禁在线播放成人免费| 男女那种视频在线观看| 亚洲精品日韩av片在线观看| 午夜老司机福利剧场| 丁香六月欧美| 日韩欧美 国产精品| 在线观看美女被高潮喷水网站 | 美女大奶头视频| 日本 欧美在线| 可以在线观看毛片的网站| 日韩成人在线观看一区二区三区| 久久天躁狠狠躁夜夜2o2o| 精品国内亚洲2022精品成人| 少妇丰满av| 久久午夜福利片| 中文字幕久久专区| 3wmmmm亚洲av在线观看| 成人av在线播放网站| 看片在线看免费视频| av国产免费在线观看| 一边摸一边抽搐一进一小说| 精品久久久久久久久久免费视频| 成人三级黄色视频| 一本一本综合久久| 婷婷精品国产亚洲av| 国产黄a三级三级三级人| 桃色一区二区三区在线观看| 又紧又爽又黄一区二区| 亚洲最大成人av| 中文字幕免费在线视频6| 免费在线观看影片大全网站| 嫩草影院入口| 搞女人的毛片| 九色成人免费人妻av| 色av中文字幕| 午夜福利高清视频| 日本 欧美在线| 啦啦啦韩国在线观看视频| 欧美又色又爽又黄视频| 免费观看的影片在线观看| 国产精品亚洲美女久久久| 99热只有精品国产| 美女高潮的动态| 动漫黄色视频在线观看| 男女之事视频高清在线观看| 高潮久久久久久久久久久不卡| 午夜免费成人在线视频| 欧美色视频一区免费| 欧美激情国产日韩精品一区| 国产三级黄色录像| 一本精品99久久精品77| 国产真实伦视频高清在线观看 | 国产又黄又爽又无遮挡在线| 一级a爱片免费观看的视频| 久久性视频一级片| 亚洲一区二区三区不卡视频| 欧美精品国产亚洲| 亚洲第一电影网av| 亚洲乱码一区二区免费版| 毛片女人毛片| 一个人看的www免费观看视频| 精品午夜福利在线看| 男人狂女人下面高潮的视频| 在线观看av片永久免费下载| 成人无遮挡网站| 可以在线观看毛片的网站| 一a级毛片在线观看| 精品欧美国产一区二区三| 黄色一级大片看看| 色综合站精品国产| 中文字幕久久专区| 亚洲综合色惰| 国产亚洲欧美98| 国产视频一区二区在线看| 久久久久久大精品| 夜夜躁狠狠躁天天躁| 97人妻精品一区二区三区麻豆| 亚洲欧美日韩高清专用| 国语自产精品视频在线第100页| 少妇的逼好多水| 国产成人啪精品午夜网站| 日韩免费av在线播放| 欧美成人一区二区免费高清观看| 天堂av国产一区二区熟女人妻| 99国产极品粉嫩在线观看| 最近最新免费中文字幕在线| 人人妻人人看人人澡| 国产精品,欧美在线| 亚洲欧美激情综合另类| 国产爱豆传媒在线观看| 成人无遮挡网站| 搡老熟女国产l中国老女人| 免费av毛片视频| 99热这里只有是精品在线观看 | 别揉我奶头~嗯~啊~动态视频| 在线十欧美十亚洲十日本专区| 久久人人爽人人爽人人片va | 精品一区二区三区视频在线观看免费| 亚洲七黄色美女视频| 丁香六月欧美| 天堂动漫精品| 国产精品一区二区免费欧美| 他把我摸到了高潮在线观看| 成年女人毛片免费观看观看9| 悠悠久久av| 日韩高清综合在线| 99国产精品一区二区三区| 深夜精品福利| 中文字幕人妻熟人妻熟丝袜美| 日本与韩国留学比较| 成人av在线播放网站| 亚洲精品一卡2卡三卡4卡5卡| 亚洲狠狠婷婷综合久久图片| 精品国内亚洲2022精品成人| 久久久久久久久久黄片| 免费黄网站久久成人精品 | 亚洲avbb在线观看| 亚洲真实伦在线观看| 欧美成狂野欧美在线观看| 伦理电影大哥的女人| 噜噜噜噜噜久久久久久91| 国产成人a区在线观看| 少妇被粗大猛烈的视频| 久久久国产成人精品二区| 色哟哟哟哟哟哟| 女人十人毛片免费观看3o分钟| 看片在线看免费视频| 精品一区二区免费观看| 亚洲人成网站在线播| 亚洲国产精品999在线| 精品一区二区三区视频在线| 国产午夜福利久久久久久| 91久久精品国产一区二区成人| 国产精品野战在线观看| 国产一区二区亚洲精品在线观看| 人妻丰满熟妇av一区二区三区| 色在线成人网| 夜夜夜夜夜久久久久| 亚洲一区二区三区色噜噜| 欧美成人a在线观看| 欧美精品啪啪一区二区三区| 国产高清有码在线观看视频| 国内精品一区二区在线观看| 一区二区三区四区激情视频 | 欧美黑人巨大hd| 一本综合久久免费| 极品教师在线免费播放| 国产熟女xx| 噜噜噜噜噜久久久久久91| 人妻丰满熟妇av一区二区三区| 久久精品国产清高在天天线| 观看免费一级毛片| 亚洲综合色惰| 久久精品国产亚洲av天美| 午夜福利欧美成人| 夜夜夜夜夜久久久久| 波多野结衣高清无吗| 国产欧美日韩一区二区精品| 1000部很黄的大片| 欧美日韩福利视频一区二区| 欧美一区二区精品小视频在线| 桃红色精品国产亚洲av| 亚洲中文字幕日韩| 国产亚洲精品久久久com| 国产精品1区2区在线观看.| 亚洲最大成人av| 欧美日韩国产亚洲二区| 舔av片在线| 免费av观看视频| 深夜精品福利| 亚洲av成人精品一区久久| 高清日韩中文字幕在线| 乱码一卡2卡4卡精品| www.色视频.com| 日本三级黄在线观看| 精华霜和精华液先用哪个| 日本黄色片子视频| 国产三级在线视频| 极品教师在线视频| 2021天堂中文幕一二区在线观| 国内精品久久久久久久电影| 亚洲自拍偷在线| 国产69精品久久久久777片| 亚洲精品亚洲一区二区| 99久久精品国产亚洲精品| 国内少妇人妻偷人精品xxx网站| 99在线视频只有这里精品首页| 99视频精品全部免费 在线| 日韩欧美精品免费久久 | 一级作爱视频免费观看| 成人av一区二区三区在线看| 成人av在线播放网站| 国产高清视频在线播放一区| 国产成人av教育| 男人舔奶头视频| 精品无人区乱码1区二区| 日韩精品青青久久久久久| 精品无人区乱码1区二区| 成人国产一区最新在线观看| 日本黄色片子视频| av国产免费在线观看| 色av中文字幕| 日韩欧美一区二区三区在线观看| 黄色丝袜av网址大全| 一进一出好大好爽视频| 夜夜躁狠狠躁天天躁| 亚洲av成人av| 天堂av国产一区二区熟女人妻| 国产一区二区激情短视频| 欧美最黄视频在线播放免费| 亚洲av电影在线进入| 赤兔流量卡办理| 国产一区二区激情短视频| 真人做人爱边吃奶动态| a级毛片a级免费在线| 午夜免费男女啪啪视频观看 | 亚洲内射少妇av| av专区在线播放| 精品久久久久久久久av| 午夜免费男女啪啪视频观看 | 亚洲内射少妇av| 99久久精品一区二区三区| a级毛片a级免费在线| 欧美日本视频| 岛国在线免费视频观看| 一级黄色大片毛片| 日本一二三区视频观看| 91久久精品电影网| 免费在线观看亚洲国产| 91av网一区二区| 一卡2卡三卡四卡精品乱码亚洲| 一a级毛片在线观看| 亚洲精品乱码久久久v下载方式| 日韩欧美一区二区三区在线观看| 亚洲在线自拍视频| 欧美性猛交黑人性爽| 国产精品人妻久久久久久| 午夜福利免费观看在线| 国产午夜精品论理片| 日本a在线网址| 一个人看视频在线观看www免费| 一个人免费在线观看的高清视频| 一本综合久久免费| 夜夜爽天天搞| 永久网站在线| 午夜激情欧美在线| 亚洲欧美日韩无卡精品| 欧美另类亚洲清纯唯美| 久久99热这里只有精品18| 精品久久久久久久久久久久久| 男女床上黄色一级片免费看| 中文字幕高清在线视频| 嫩草影院新地址| 亚洲欧美日韩东京热| 毛片一级片免费看久久久久 | 午夜免费成人在线视频| 老司机福利观看| 婷婷六月久久综合丁香| 男女那种视频在线观看| 成年女人永久免费观看视频| 欧美日本视频| 老鸭窝网址在线观看| 国产老妇女一区| 高清毛片免费观看视频网站| 亚洲中文字幕一区二区三区有码在线看| 久久久国产成人免费| 欧美+亚洲+日韩+国产| 成人鲁丝片一二三区免费| 精品人妻视频免费看| 成熟少妇高潮喷水视频| 亚洲综合色惰| 国产精品野战在线观看| 美女xxoo啪啪120秒动态图 | 久久午夜亚洲精品久久| 亚洲专区中文字幕在线| 首页视频小说图片口味搜索| 精品一区二区免费观看| 日日夜夜操网爽| 国内毛片毛片毛片毛片毛片| 亚洲av五月六月丁香网| 禁无遮挡网站| 午夜福利在线在线| 国产v大片淫在线免费观看| 少妇被粗大猛烈的视频| 一本精品99久久精品77| 欧美日韩中文字幕国产精品一区二区三区| 91九色精品人成在线观看| 两个人视频免费观看高清| 亚洲精品影视一区二区三区av| 人妻制服诱惑在线中文字幕| 日韩高清综合在线| 国产爱豆传媒在线观看| 久久精品国产99精品国产亚洲性色| 男人舔女人下体高潮全视频| 亚洲av成人精品一区久久| 久久久久久国产a免费观看| 在线观看舔阴道视频| 日日干狠狠操夜夜爽| 亚洲中文字幕日韩| 亚洲人成伊人成综合网2020| 少妇人妻一区二区三区视频| 欧美高清性xxxxhd video| 国产成年人精品一区二区| 国产伦精品一区二区三区四那| 黄色视频,在线免费观看| 国内精品一区二区在线观看| 嫁个100分男人电影在线观看| 不卡一级毛片| 国产视频内射| 国产精品av视频在线免费观看| 九色国产91popny在线| 国产一区二区激情短视频| 久久精品国产亚洲av涩爱 | 精品人妻偷拍中文字幕| 久久精品国产99精品国产亚洲性色| 精品国产三级普通话版| 啦啦啦韩国在线观看视频| 午夜亚洲福利在线播放| 国产精品98久久久久久宅男小说| 久久九九热精品免费| av在线观看视频网站免费| 日本在线视频免费播放| 99在线人妻在线中文字幕| 熟妇人妻久久中文字幕3abv| 桃红色精品国产亚洲av| 欧美日本亚洲视频在线播放| 国产久久久一区二区三区| 十八禁网站免费在线| 在线观看舔阴道视频| 中亚洲国语对白在线视频| 久久久久久九九精品二区国产| 亚洲精品456在线播放app | 亚洲精品在线观看二区| 精品午夜福利视频在线观看一区| 国产蜜桃级精品一区二区三区| av在线老鸭窝| 欧美日韩中文字幕国产精品一区二区三区| 老熟妇乱子伦视频在线观看| 可以在线观看的亚洲视频| 久久精品国产自在天天线| 免费观看精品视频网站| 日日干狠狠操夜夜爽| 久久精品91蜜桃| 国产69精品久久久久777片| 91麻豆精品激情在线观看国产| 中文字幕高清在线视频| 嫩草影院入口| 日韩欧美国产一区二区入口| 亚洲第一电影网av| 噜噜噜噜噜久久久久久91| 99久久九九国产精品国产免费| 别揉我奶头~嗯~啊~动态视频| 美女免费视频网站| 久久午夜亚洲精品久久| 精品人妻视频免费看| 又黄又爽又刺激的免费视频.| 色综合站精品国产| 网址你懂的国产日韩在线| 欧美色视频一区免费| 美女免费视频网站| 啦啦啦韩国在线观看视频| 国产高清有码在线观看视频| 国产精品久久久久久久电影| 亚洲欧美激情综合另类| 亚洲,欧美精品.| 日日摸夜夜添夜夜添小说| 日本免费a在线| 999久久久精品免费观看国产| 免费看日本二区| 高清日韩中文字幕在线| 好看av亚洲va欧美ⅴa在| 免费观看的影片在线观看| 精品久久久久久,| 淫妇啪啪啪对白视频| a级毛片免费高清观看在线播放| 免费无遮挡裸体视频| av女优亚洲男人天堂| 久久国产乱子免费精品| 中文字幕久久专区| 亚洲黑人精品在线| 91午夜精品亚洲一区二区三区 | 又紧又爽又黄一区二区| 99久久精品国产亚洲精品| 国产精品免费一区二区三区在线| 亚洲无线观看免费| 欧美成狂野欧美在线观看| 精华霜和精华液先用哪个| 窝窝影院91人妻| 99国产精品一区二区蜜桃av| 日韩人妻高清精品专区| 高清在线国产一区| 超碰av人人做人人爽久久| 永久网站在线| 特大巨黑吊av在线直播| 国产亚洲欧美在线一区二区| 国产成+人综合+亚洲专区| 亚洲成av人片免费观看| 少妇丰满av| 亚洲三级黄色毛片| 亚洲欧美日韩卡通动漫| 久久精品人妻少妇| 久久伊人香网站| 听说在线观看完整版免费高清| 99视频精品全部免费 在线| 欧美3d第一页| 亚洲精品粉嫩美女一区| 久久久久国产精品人妻aⅴ院| 日韩有码中文字幕| 久久精品国产清高在天天线| 日日摸夜夜添夜夜添av毛片 | 亚洲在线自拍视频| 一个人免费在线观看电影| 国产高潮美女av| 日韩欧美在线二视频| 淫秽高清视频在线观看| 久久精品91蜜桃| 女人被狂操c到高潮| 亚洲激情在线av| 亚洲中文日韩欧美视频| 97热精品久久久久久| 老熟妇仑乱视频hdxx| 老司机午夜福利在线观看视频| 国产精品,欧美在线| 日本熟妇午夜| 国产精品美女特级片免费视频播放器| av在线观看视频网站免费| 久久伊人香网站| 88av欧美| 成人亚洲精品av一区二区| 亚洲中文日韩欧美视频| 综合色av麻豆| 91狼人影院| 一个人免费在线观看电影| 成人高潮视频无遮挡免费网站| 亚洲aⅴ乱码一区二区在线播放| 欧美最新免费一区二区三区 | 99热这里只有是精品在线观看 | 在线免费观看不下载黄p国产 |