• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    B-incorporated,N-doped hierarchically porous carbon nanosheets as anodes for boosted potassium storage capability

    2022-03-14 09:30:10YuHuChengTngHitoLiAijunDuWeiLuoMinghongWuHijioZhng
    Chinese Chemical Letters 2022年1期

    Yu Hu,Cheng Tng,Hito Li,Aijun Du,Wei Luo,Minghong Wu,Hijio Zhng,?

    aInstitute of Nanochemistry and Nanobiology,Shanghai University,Shanghai 200444,China

    bSchool of Chemistry,Physics and Mechanical Engineering,Science and Engineering Faculty,Queensland University of Technology,Brisbane QLD 4001,Australia

    cSchool of Environmental and Chemical Engineering,Shanghai University,Shanghai 200444,China

    dState Key Laboratory for Modification of Chemical Fibers and Polymer Materials,College of Materials Science and Engineering,Donghua University,Shanghai 201620,China

    ABSTRACT Carbonaceous nanomaterials with porous structure have become the highly promising anode materials for potassium-ion batteries(PIBs)due to their abundant resources,low-cost,and excellent conductivity.Nevertheless,the sluggish reaction kinetics and inferior cycling life caused by the large radius of K ions severely restrict their commercial development.Herein,B,N co-doped hierarchically porous carbon nanosheets(BNPC)are achieved via a facile template-assisted route,followed by a simple one-step carbonization process.The resultant BNPC possesses a unique porous structure,large surface area,and high-level B,N co-doping.The structural features endows it with remarkable potassium storage performances,which delivers a high reversible capacity(242.2 mAh/g at 100 mA/g after 100 cycles),and long cycling stability(123.1 mAh/g at 2000 mA/g and 62.9 mAh/g at 5000 mA/g after 2000 cycles,respectively).Theoretical simulations further validate that the rich B doping into N-modified carbon configuration can greatly boost the potassium storage capability of the BNPC anode.

    Keywords:Carbon nanosheets Hierarchical nanostructure B,N co-doping Anode materials Potassium-ion batteries

    Currently,the development and application of new energy have aroused significant attention along with the massive consumption of fossil fuels[1].Although lithium-ion batteries(LIBs)still dominate the overall energy storage markets[2],the overuse of Li resources and their uneven distribution on the earth further obstruct their large-scale applications[3].Thus,it is very imperative to explore the low-cost battery system with ideal electrochemical performances[4,5].Recently,potassium-ion batteries(PIBs)have been adapted as a highly appealing replaceable for LIBs owing to rich natural reserves,low redox potential,and similar electrochemical properties to Li[6-8].Nonetheless,in comparison to Li+(0.76 ?A)and Na+(1.02 ?A),the larger radius of K+(2.72 ?A)generally means the worse reaction kinetics and greater volume expansions during charge-discharge process,thereby causing low capacity,inferior rate performance,and dissatisfied cycling life[9,10].Therefore,it remains significantly desirable to develop advanced electrode materials for PIBs,especially for anode hosts.

    In these potential anodes,carbonaceous materials show an unparalleled advantage because of economic benefits,chemical stability,and superior conductivity[11,12].Significant attempts have been made to modulate the structure and composition of carbon anodes for optimizing their K+storage capabilities[13].Of them,the construction of three-dimensional(3D)hierarchical nanostructures composed of two-dimensional(2D)nanosheets has been confirmed to a direct and scalable method[14,15].Such a unique 2D/3D heterostructure can shorten the transmission path of electrons/ions and promote their diffusion kinetics in the electrochemical process,thus achieving the superior performance.For example,Yuet al.reported the 3D mesoporous carbon nanosheets with excellent energy storage properties[16].Jiet al.prepared Bicontinuous porous carbon spheres,showing a fast transmission behavior of K ions[17].Besides,the doping of heteroatoms such as N,S,B,is another popular protocol[18,19],which can not only improve the conductivity of carbon materials,but also provide more defects for potassium storage.Our recent work also demonstrates the advantages ofin-situN-doping into Ti3C2Txnanosheets,in favor of Na+storage[20].Compared with the single element doping,the co-doping of dual atoms(e.g.,B and N)is more attractive by fully taking advantage of their merits.Moreover,the doping process can also induce the enlargement of interlayer spacing of carbon materials[21].However,the current research mainly focuses on one or two directions for the carbon nanostructure regulating.Hence,exploring carbon electrodes with multiple structural meritsviaa facile and controllable strategy is highly desirable.

    Fig.1.(a)Schematic illustration of synthetic procedures of BNPC.(b,c)SEM images,(d-f)TEM images,(g)HRTEM image,and(h)STEM image and the EDX elemental mapping of BNPC.

    Herein,we present the controllable preparation of B,N codoped porous carbon nanosheets(BNPC)by skillfully selecting Nacetylglucosamine and MgO as the carbon precursor and hard template,respectively.The BNPC product shows large surface area,high-level B,N co-doping,distinct hierarchical nanostructure,and increased interlayer spacing.Such an ingenious configuration endows the BNPC anode with a remarkable potassium storage capability.Based on the experimental and theoretical results,the main reason for the excellent electrochemical performance is as follows:(1)High reversible capacity derived from more active sites owing to the co-doping of B and N into the carbon framework and high surface area;(2)Fast charge transfer dynamics caused by the 3D hierarchical nanostructure built by 2D carbon nanosheets and enlarged interlayer spacing;(3)Long cycling stability at high current density benefiting from the highly stable 3D conductive network.

    Fig.1a describes the entire synthetic process of BNPC.First,the MgO template with a particle size of about 50 nm was prepared(Fig.S1 in Supporting information).Second,N-acetylglucosamine precursor was pyrolyzed onto the MgO surface under the hydrothermal condition.After that,the resultant was uniformly mixed with a certain amount of boric acid by grinding,followed by a simple one-step carbonization process.At last,the MgO template was fully removed by acid washing.Here,it should be mentioned that another product was totally solid carbon spheres at the absence of the MgO template(Fig.S2 in Supporting information),indicating the vital role of the template in the formation of porous structures.

    Seen from SEM images(Figs.1b and c),the as-synthesized BNPC product shows a well-defined morphology and unique 3D hierarchical nanostructure,which is well constructed by many thin carbon nanosheets.Meanwhile,these randomly stacked nanosheets are interconnected to each other to produce a large number of open spaces.That will be beneficial for the transmission and diffusion of electrons/ions,and alleviation of the large volume changes during cycles.The TEM image in Fig.1d demonstrates that BNPC is mainly composed of folded interconnected nanosheets,which are well consistent with SEM observations.The detailed structure is further identified by the high magnification TEM images(Figs.1e and f).Interestingly,it is found that many holes exist into the rough surface of carbon nanosheets,as framed by the yellow dash line.That may be caused by the released gas molecules from the decomposition of boric acid during carbonization process,manifesting the abundant porosity.Additionally,the NPC product exhibits a totally different structure(Fig.S3 in Supporting information),suggesting that the B doping process further induces the formation of such a unique hierarchical structure for BNPC.Fig.1g shows the HRTEM image of BNPC.Clearly,it displays a relatively low crystallinity and expanded interlayer spacing of 0.364 nm,corresponding to the(002)crystal plane of carbon,which is larger than 0.335 nm of graphite[22].STEM image and EDX elemental mapping(Fig.1h)affirm the existence and good distributions of B and N elements in BNPC.

    Fig.2a shows XRD patterns of two products.There are two broad diffraction peaks centered at 25.4° and 42.9° in the NPC sample,corresponding to the(002)and(101)planes of carbon.That is the typical feature of amorphous carbon materials.Differently,the(002)broad peak of BNPC is shifted to the low degree at about 24.2°,suggesting an enlarged interlayer spacing.According to the Bragg equation,the layer spacing(002)of BNPC and NPC are calculated to be 0.365 nm and 0.34 nm,respectively,in line with the HRTEM analysis.The expansion reason for BNPC can be resulted from the boron and nitrogen co-doping.Raman spectroscopy is an effective tool to analyze the carbon microstructure.As displayed in Fig.2b,the D band at 1340 cm?1is described as the disordered carbon,whereas the G band at 1570 cm?1is characteristic of graphitization carbon.And their ratioID/IGusually reflects the graphitization degree of carbon materials[23].BNPC shows a higherID/IGof 1.04 than that of NPC(0.97),signifying the presence of more defects owing to the B,N co-doping into the carbon framework.The texture properties of two samples were further analyzed by N2absorption-desorption isotherm.As shown in Fig.2c,Figs.S4a and b(Supporting information),BNPC and NPC both show a type-IV hysteresis loop at the relative pressure ofP/P0=0.5–0.9,indicating the appearance of mesopores[24].The Barrett-Emmett-Teller(BET)surface area of BNPC is 528.5 m2/g,much higher than 361.6 m2/g of NPC.Importantly,the pore size distribution curve(inset of Fig.2c)further illustrates two kinds of different mesopores centered at 3.7 and 15–33 nm,matching well with the SEM/TEM observations.Such a unique hierarchical nanostructure with large mesopores will in favor of the K+fast transport dynamics.

    X-ray photoelectron spectroscopy(XPS)was further applied to detect the chemical state of BNPC.The high-resolution C 1s spectrum in Fig.2d shows five peaks at the binding energy of 283.9,284.81,285.62,286.54 and 289.18 eV,which are ascribed to CB,C–C,C–O,C=O or C=C and O–C=O,respectively[25,26].Additionally,five peaks appear at the binding energy of 530.7,531.6,532.67,533.86 and 535.23 eV in Fig.S5(Supporting information),corresponding to O=N,C=O(O-I),C–OH(O-II),COOH(O-III)and O-B,respectively[25].Impressively,four distinct peaks exist in Fig.2e,which belong to B-C(189.69 eV),B-C2O(190.73 eV),B-N(191.66 eV)and B-O or B-CO2(192.42 eV)[27,28],verifying the successful doping of B atoms.Fig.2f presents the high-resolution N 1s spectrum of BNPC.That is deconvoluted into N-B(397.73 eV),pyridinic N(N-6,398.8 eV),pyrrolic N(N-5,399.7 eV),graphitic N(NQ,401.23 eV)and N–O(403.17 eV),respectively[28].The ratio of pyridine N and pyrrole N is about 43.1% and 34.9%,respectively(Fig.S6 in Supporting information).As reported,the existence of N-5 and N-6 can bring more additional defects,thereby improve the storage of K+[26].The quantitative analysis shows that about 6.79 at% boron and 7.18 at% nitrogen have been successfully incorporated into the carbon configuration(Fig.S7 in Supporting information).Such a high-level B,N co-doping is expected to improve the storage potassium performance thanks to the formation of more defects and increased active sites[29].

    Fig.2.(a)XRD patterns,(b)Raman spectra,(c)N2 sorption isotherm(inset of(c)is its pore size distribution curve).(d-f)High-resolution XPS spectra for C 1s,B 1s and N 1s of BNPC.

    Fig.3.(a)CV curves of the first three cycles at 0.1 mV/s.(b)GDC curves of BNPC electrode at 100 mA/g.(c)Cycling performances at 100 mA/g.(d)Rate capabilities at different current densities ranging from 50 mA/g to 2000 mA/g.(e)Capacity retention of BNPC and NPC electrodes.(f)GDC curves at different current densities.(g)Long cycling stabilities of BNPC electrode at 2000 mA/g and 5000 mA/g over 2000 cycles,respectively.

    The electrochemical performances of BNPC and NPC electrodes as PIBs anodes were systemically studied.Fig.3a illustrates the CV curves of the BNPC electrode for the initial three cycles at 0.1 mV/s.The CV curve of the first cycle exhibits anodic peak at 0.5 V,and cathodic peaks at 0.6 V.The cathodic peak at 0.6 V is attributed to the decomposition of the electrolyte and the generation of a solid electrolyte intermediate phase(SEI)[30],which obviously weakens in the second cycle.The broad anodic peak at near 0.5 V is related to the step potassiation process in carbonbased electrodes[31].Importantly,CV curves almost overlap in the subsequent two cycles,indicating its excellent electrochemical reversibility.Fig.3b shows charge/discharge profiles of BNPC electrode for the first three cycles within the voltage window of 0.01–3.0 Vvs.K/K+at 0.1 A/g.The initial discharge and charge capacities are 1135.5 and 269.5 mAh/g,respectively,showing an initial coulomb efficiency(ICE)of 23.7%.The initial large capacity loss is mainly due to the electrolyte decomposition and the SEI film formation[32].Meanwhile,the low ICE can be enhanced by prepotassiation strategy.In the second cycle,the CE value is increased to 58.9%,and then maintained at about 99.0% after 100 cycles,indicating that the irreversible capacity loss can be relieved during cycling.

    Fig.4.(a)CV curves of BNPC electrode at different scan rates.(b) b-values plotted for the anodic peak and cathodic peak.(c)Capacitive behavior(yellow region)and diffusion behavior(green region)contributions of BNPC at 0.6 mV/s.(d)Normalized contribution ratio of capacitive behavior and diffusion behavior capacities at different scan rates of BNPC.(e)Electrochemical impedance spectra of BNPC and NPC electrodes(inset of(e))is the corresponding equivalent circuit).(f)K diffusion coefficients of BNPC and NPC electrodes.(g)Comparison of the potassium storage performances between the BNPC anode with previously reported carbonaceous materials.(h)Schematic illustration of possible potassium storage mechanism for BNPC.

    Fig.3c displays the cycling stability of two electrodes.Obviously,the BNPC demonstrates a higher reversible capacity and better cycling stability than the control NPC.The charge capacity of BNPC still maintains to be 242.4 mAh/g and nearly 100% coulombic efficiency after 100 cycles at 0.1 A/g,while NPC only provides the capacity of 160 mAh/g.The rate performance of BNPC and NPC electrodes at current density from 0.05 A/g to 2 A/g are presented in Fig.3d.Notably,BNPC exhibits high reversible specific capacities of 314.5,301.2,255.4,227.1 and 176.1 mAh/g at current densities of 50,100,200,500 and 1000 mA/g,respectively.Even at 2000 mA/g,a large reversible specific capacity of 134.5 mAh/g can still be reached.Moreover,when the current density was reset to 100 mA/g,a discharge capacity was recovered to 274.7 mAh/g for BNPC,illustrating an outstanding reversible stability at high current densities.That corresponds to the capacity retention of 100,84.9,75.5,58.5,44.7 and 91.7,respectively(Fig.3e).In comparison,NPC has low reversible capacities of 259.5 and 36.1 mAh/g at current densities of 50 and 2000 mA/g,respectively.Fig.3f shows the charge-discharge curves of BNPC at different current densities,implying capacitive-controlled storage processes.To better show the superiority of BNPC as anodes for PIBs,we also investigate its long-term cycling performance at 2000 mA/g and 5000 mA/g.As shown in Fig.3g,BNPC still keeps a high reversible capacity of 123.1 mAh/g and 62.9 mAh/g after 2000 cycles,respectively,and large coulombic efficiency of nearly 100%.In contrast,NPC only delivers a low capacity of 58.0 mAh/g after 500 cycles at 2000 mA/g(Fig.S8 in Supporting information).Moreover,the BNPC electrode retains the 3D nanostructure well after cycling,which verifies its good structural stability(Fig.S9 in Supporting information).As listed in Table S1(Supporting information),the BNPC anode for PIBs developed in the work outperforms most of the reported carbon-based anodes,highlighting the superiority of B,N co-doping.

    CV measurements at various scan rates ranging from 0.1 mV/s to 2.0 mV/s were further measured to investigate the potassium storage kinetics of BNPC and NPC(Fig.4a and Fig.S10a in Supporting information).As shown in these curves,BNPC maintains the original shape,which becomes broader with increasing scan rates.Furthermore,even the scan rate reaches as high as 2.0 mV/s,the basic characteristics remain well,indicating that BNPC possesses a superior response capability to PIBs.

    The K+storage contribution including the surface capacitive and diffusion contribution was investigated according to the power-law formula[33]:

    Theb-value can be obtained to determine the electrochemical behavior predominated by semi-infinite diffusion(b~0.5)or capacitive process(b~1.0).In Fig.4b,the anodic process exhibitsb-value of 0.88,while cathodic process is 0.73.As a result,the electrochemical process is mainly determined by the surface capacitance,resulting from the high surface area and rich defects owing to the co-doping of B and N.

    The following formula can be analyzed the contribution value of the capacitance control process:

    Fig.4c shows a 70.7% of capacitive contribution(yellow region)from the total capacity at 0.6 mV/s for BNPC.Meanwhile,the capacitance contribution rate gradually increases as the scan rate increasing(Fig.4d).When the scan rate is added from 0.2 mV/s to 1 mV/s,the capacitance contribution rate increases from 61.5% to 79.8%,much higher than those of NPC(Fig.S10b in Supporting information).The above results reveal that the capacitance-guided and diffusion-controlled processes are both embodied in the electrochemical reaction of BNPC,and the contribution rate of the surface dominant behavior is in a larger proportion.This high capacitance contribution is mainly due to the presence of many defects in the BNPC anode.

    Fig.5.The top and side views of K+ adsorption on(a)graphitic,(e)pyridinic- and(i)pyrrolic N-functionalized carbon(N–C).The corresponding K adsorbed geometries of B-doped(b-d)graphitic,(f-h)pyridinic- and(j-m)pyrrolic-N functionalized carbon(B-N-C)at marked I,II,III and IV sites,respectively.The adsorption energies and bond lengths of N-K and B-K are listed below each geometry.Purple,brown,gray,green and white spheres represent K,C,N,B and H atoms,respectively.(n,o)Charge density difference(isovalue of 0.001 e/?A3)for K adsorbed pyridinic-N functionalized carbon without and with B(II)substitution.Cyan and yellow areas reflect the electron depletion and accumulation.Blue and red circles show the charge difference around doped N and B center,respectively.

    The electrochemical impedance spectra(EIS)of BNPC and NPC were also measured for further analysis of their diffusion kinetics.Fig.4e shows the initial Nyquist plots of BNPC and NPC electrodes.The impedance spectrum contains an inclined line at the low frequency range and a concave semicircle at the high frequency range,which are assigned to the resistance to charge transfer(Rct)and Warburg impedance(Zw),respectively.The Z-view software analysis indicates that BNPC has a smaller resistance of 331.4Ωthan that of NPC(839.5Ω),revealing a better conductivity and faster diffusion kinetics.

    Galvanostatic intermittent titration(GITT)was applied to identify the K+diffusion coefficient(D)of two electrodes under different voltages.DKvalue can be calculated by the following formula[34]:

    From the GITT results(Fig.4f and Fig.S11),we can see that the D value of BNPC is 10?9cm2/s to 10?12cm2/s,while the NPC is 10?10to 10?13,further verifying the faster diffusivity of K+for BNPC.Impressively,the superior rate performance for potassium storage is comparable to most of previous carbon-based anodes,as summarized in Fig.4g[35-39].Fig.4h describes the schematic diagram of possible storage potassium mechanism of BNPC.Considering that K ions tend to form K-intercalated carbon compounds(KICs)at defect sites[39],more additional defects brought by the B,N co-doping are favorable for the adsorption of K ions,and the unique hierarchical nanostructure can facilitate the rapid transport of K ions and electrons,thus boosting the potassium storage performance for BNPC anode.

    For the sake of clarifying the superior potassium storage performance,we then examine the adsorbed behavior of K ions on Nfunctionalized carbon(N–C)layers with and without the B doping.According to previous work[40],three types of N–C nanosheets are adopted in our calculations.As illustrated in Figs.5a,e,i,the adsorption energies of K+are ?0.84,?1.69 and ?2.54 eV for graphitic,pyridinic and pyrrolic N–C layer,respectively.The bond length of K-N in graphitic N case is significantly larger than other two cases,leading to much weaker K+adsorption performance.As a result,K ions prefer to adsorb onto the pyrrolic N–C layer compared with graphilic and pyridinic ones.

    The K+adsorption on N–C layer after B doping(B-N-C)was further evaluated.Fig.5 gives the corresponding adsorption energies and bond lengths of K-N and K-B for each K adsorbed B-N-C layer.Generally,the different B-doped sites show the small impact on the following K adsorption.For B-graphitic N–C case,the absolute values of the adsorption energies reach up to 1.60 eV,which is remarkably larger than that of graphilic N–C layer(0.84 eV),indicating the enhanced K+adsorption performance.Despite of the initial position set for K+adsorption,it largely shifts towards B side during relaxation,suggesting that B sites are more attractive for K+adsorption than N sites.Besides,such enhanced performance also happens when B doping into the pyridinic and pyrrolic N–C nanosheets.In two cases,doped N and B atoms simultaneously work on and balances the K+adsorption.Additionally,we also calculate the charge density difference of the K adsorbed pyridinic N–C with and without B(II)doping.As displayed in Figs.5n and o,the charge density around N site(blue circle)almost remains unchanged with and without the existence of B.However,the accumulated electrons around B(red circle)are remarkably increased in comparison to those around C or N,mainly resulting in the enhanced K+adsorption performance.Taken together,the doping of B atoms will greatly improve the K+capability of N-modified carbon layers.

    To sum up,we have developed a scalable structural engineering technique for synthesis of B,N co-doped porous carbon nanosheets through a facile template-assisted route and simple carbonization process.Such a unique architecture can facilitate the transmission of ions/electrons,and the co-doping of B and N can increase the conductivity and offer more defects for K ions storage.All of the structural merits together account for the outstanding potassium storage capability.The constructed BNPC anode delivers a high reversible capacity(242.2 mAh/g at 100 mA/g after 100 cycles)and an outstanding long-term cycling stability(123.1 mAh/g at 2000 mA/g and 62.9 mAh/g at 5000 mA/g after 2000 cycles,respectively).The present study proposed can also provide a scalable feasibility for the development and design of advanced carbonbased electrode materials.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The work was supported by Shuguang Program from Shanghai Education Development Foundation and Shanghai Municipal Education Commission(No.18SG035),and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University(No.KF2015).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.063.

    国产视频内射| 国产黄色视频一区二区在线观看| 狂野欧美白嫩少妇大欣赏| 国产日韩欧美亚洲二区| 国产亚洲一区二区精品| 久久久欧美国产精品| 免费观看av网站的网址| 日日撸夜夜添| 91在线精品国自产拍蜜月| 黄色视频在线播放观看不卡| 一区二区日韩欧美中文字幕 | 波野结衣二区三区在线| 少妇丰满av| 久久人人爽av亚洲精品天堂| 妹子高潮喷水视频| 欧美老熟妇乱子伦牲交| 久久久亚洲精品成人影院| 亚洲精品色激情综合| av卡一久久| 国产一级毛片在线| 久久久久国产网址| 亚洲av成人精品一二三区| 日本av手机在线免费观看| 日韩一区二区三区影片| 日日摸夜夜添夜夜添av毛片| 日本av免费视频播放| 又粗又硬又长又爽又黄的视频| 丰满少妇做爰视频| 久久久久久久亚洲中文字幕| 高清午夜精品一区二区三区| 亚洲综合色网址| 能在线免费看毛片的网站| 九九爱精品视频在线观看| 人人妻人人爽人人添夜夜欢视频| 午夜av观看不卡| 成人18禁高潮啪啪吃奶动态图 | 99视频精品全部免费 在线| 国产极品粉嫩免费观看在线 | 国产又色又爽无遮挡免| 国产精品偷伦视频观看了| 免费久久久久久久精品成人欧美视频 | 久久99一区二区三区| 最近最新中文字幕免费大全7| 好男人视频免费观看在线| 18禁观看日本| 亚洲国产日韩一区二区| 最新中文字幕久久久久| 黄色怎么调成土黄色| 日韩一区二区三区影片| www.av在线官网国产| 国产 一区精品| 美女xxoo啪啪120秒动态图| 午夜激情福利司机影院| 人人妻人人爽人人添夜夜欢视频| 亚洲色图 男人天堂 中文字幕 | 欧美日韩国产mv在线观看视频| 成年av动漫网址| 国产成人精品福利久久| 九九久久精品国产亚洲av麻豆| 美女福利国产在线| 中文字幕免费在线视频6| 免费看光身美女| 国产一区二区三区av在线| 美女xxoo啪啪120秒动态图| 性色av一级| 国产伦理片在线播放av一区| 国产精品无大码| 人人澡人人妻人| 久久精品久久久久久久性| 尾随美女入室| 亚洲美女黄色视频免费看| 黑人欧美特级aaaaaa片| 亚洲精品国产av蜜桃| www.av在线官网国产| 国产欧美日韩综合在线一区二区| 性色avwww在线观看| av在线app专区| 国产av精品麻豆| 日本vs欧美在线观看视频| 一区二区三区免费毛片| 欧美97在线视频| 午夜福利网站1000一区二区三区| 久久久国产一区二区| 久久久久网色| 日韩欧美一区视频在线观看| 只有这里有精品99| 观看美女的网站| 久热久热在线精品观看| videosex国产| 亚洲av.av天堂| 中文字幕精品免费在线观看视频 | 久久人妻熟女aⅴ| 国产一区亚洲一区在线观看| 亚洲精品第二区| 蜜桃在线观看..| 中文欧美无线码| 校园人妻丝袜中文字幕| 99久久人妻综合| 免费av不卡在线播放| 日本wwww免费看| videossex国产| 国产亚洲av片在线观看秒播厂| 黑丝袜美女国产一区| av免费在线看不卡| 人妻少妇偷人精品九色| 人妻 亚洲 视频| 亚洲av国产av综合av卡| 久久 成人 亚洲| 自线自在国产av| 成人亚洲欧美一区二区av| 成人国语在线视频| 性色av一级| 亚洲精品美女久久av网站| 日本wwww免费看| 我要看黄色一级片免费的| 日本欧美视频一区| 国产午夜精品久久久久久一区二区三区| 观看美女的网站| 高清毛片免费看| 最近中文字幕2019免费版| 国产精品国产三级国产av玫瑰| 简卡轻食公司| 欧美激情 高清一区二区三区| av免费观看日本| 男男h啪啪无遮挡| 狠狠精品人妻久久久久久综合| 久久女婷五月综合色啪小说| 91久久精品国产一区二区三区| 国产片特级美女逼逼视频| 日韩欧美一区视频在线观看| 黄片无遮挡物在线观看| 国产成人a∨麻豆精品| 精品亚洲成a人片在线观看| 国产一区二区三区综合在线观看 | 视频中文字幕在线观看| 亚洲av不卡在线观看| 亚洲成色77777| 一本色道久久久久久精品综合| 精品一区二区三区视频在线| 不卡视频在线观看欧美| av又黄又爽大尺度在线免费看| 97精品久久久久久久久久精品| 人人妻人人爽人人添夜夜欢视频| 日韩三级伦理在线观看| 在线免费观看不下载黄p国产| 精品人妻熟女毛片av久久网站| 日韩不卡一区二区三区视频在线| 久久久久精品性色| 人人妻人人爽人人添夜夜欢视频| 成人国产av品久久久| 最近中文字幕2019免费版| 一级片'在线观看视频| 国产视频内射| 黑丝袜美女国产一区| 少妇人妻久久综合中文| 日韩成人av中文字幕在线观看| 精品卡一卡二卡四卡免费| 久久99热这里只频精品6学生| 黄色视频在线播放观看不卡| 97在线人人人人妻| 久久鲁丝午夜福利片| 色网站视频免费| 国产av精品麻豆| av免费观看日本| 亚洲,一卡二卡三卡| 久久精品国产亚洲网站| 男人添女人高潮全过程视频| 九九在线视频观看精品| 伦理电影免费视频| 久久精品久久久久久久性| 在线精品无人区一区二区三| 91午夜精品亚洲一区二区三区| 免费人妻精品一区二区三区视频| 国产熟女午夜一区二区三区 | 亚洲国产日韩一区二区| 在线观看三级黄色| 久久99热6这里只有精品| 亚洲人成77777在线视频| 国产成人精品婷婷| 丝瓜视频免费看黄片| 久久99一区二区三区| 在线观看美女被高潮喷水网站| 亚洲精品乱码久久久v下载方式| 日本黄大片高清| 一级毛片电影观看| 亚洲五月色婷婷综合| av在线老鸭窝| 久久久欧美国产精品| 看十八女毛片水多多多| 日本色播在线视频| 久久ye,这里只有精品| 亚洲精品第二区| 国产精品嫩草影院av在线观看| 精品亚洲成国产av| 最近中文字幕2019免费版| 日本av免费视频播放| 国产精品一区二区在线不卡| 国产精品熟女久久久久浪| 精品亚洲成国产av| 免费高清在线观看日韩| 五月伊人婷婷丁香| 色视频在线一区二区三区| 美女国产高潮福利片在线看| 久久精品国产a三级三级三级| 大香蕉久久网| 高清av免费在线| 欧美成人精品欧美一级黄| 肉色欧美久久久久久久蜜桃| 黄色毛片三级朝国网站| 国产成人午夜福利电影在线观看| 一本—道久久a久久精品蜜桃钙片| 免费黄色在线免费观看| 夜夜看夜夜爽夜夜摸| 黄片播放在线免费| 丁香六月天网| 日本色播在线视频| 人妻系列 视频| 免费高清在线观看日韩| 中国国产av一级| 黑人巨大精品欧美一区二区蜜桃 | 看十八女毛片水多多多| 最新的欧美精品一区二区| 国产亚洲欧美精品永久| 日韩欧美精品免费久久| 成年av动漫网址| 久久久久国产网址| 自拍欧美九色日韩亚洲蝌蚪91| 啦啦啦啦在线视频资源| 中文天堂在线官网| 性色avwww在线观看| 国产成人一区二区在线| 免费av中文字幕在线| 自线自在国产av| 婷婷色麻豆天堂久久| av电影中文网址| 尾随美女入室| 国产亚洲欧美精品永久| 日本91视频免费播放| 亚洲熟女精品中文字幕| 少妇人妻精品综合一区二区| 国产成人精品无人区| 久久99热这里只频精品6学生| 青春草视频在线免费观看| 成人黄色视频免费在线看| av女优亚洲男人天堂| 大香蕉久久网| 久久午夜综合久久蜜桃| 精品人妻在线不人妻| 99热网站在线观看| 在线亚洲精品国产二区图片欧美 | 99热这里只有精品一区| 日本与韩国留学比较| 日韩亚洲欧美综合| 精品国产一区二区三区久久久樱花| 久久综合国产亚洲精品| 国产成人午夜福利电影在线观看| 国产男女内射视频| 日本欧美视频一区| 亚洲精品乱久久久久久| 三上悠亚av全集在线观看| 视频在线观看一区二区三区| 国产精品嫩草影院av在线观看| 女人久久www免费人成看片| av一本久久久久| 丁香六月天网| 又大又黄又爽视频免费| 超碰97精品在线观看| 亚洲人成77777在线视频| 亚洲精品国产色婷婷电影| 三上悠亚av全集在线观看| 国产极品天堂在线| 老司机影院成人| 伦理电影大哥的女人| 国产片内射在线| 国产亚洲av片在线观看秒播厂| 欧美人与性动交α欧美精品济南到 | 欧美亚洲 丝袜 人妻 在线| 夜夜骑夜夜射夜夜干| 黄色一级大片看看| av在线播放精品| 99久久精品一区二区三区| 99热网站在线观看| 伊人久久国产一区二区| 最新中文字幕久久久久| 中文字幕制服av| 久久免费观看电影| 午夜激情av网站| 99视频精品全部免费 在线| 黑人欧美特级aaaaaa片| 久久久久久久大尺度免费视频| 91精品一卡2卡3卡4卡| 久久久久精品久久久久真实原创| 欧美另类一区| 国产精品一二三区在线看| 亚洲中文av在线| 美女xxoo啪啪120秒动态图| 大又大粗又爽又黄少妇毛片口| 日本wwww免费看| 国产精品久久久久久久久免| 伊人亚洲综合成人网| 国产片内射在线| 精品99又大又爽又粗少妇毛片| 亚洲无线观看免费| 午夜av观看不卡| 中国国产av一级| 亚洲av综合色区一区| 大香蕉久久网| 色吧在线观看| 高清欧美精品videossex| 考比视频在线观看| 伊人亚洲综合成人网| 制服人妻中文乱码| 日韩亚洲欧美综合| 午夜免费观看性视频| 欧美精品人与动牲交sv欧美| 亚洲精品国产色婷婷电影| 亚洲精品国产av成人精品| 精品亚洲成a人片在线观看| 美女大奶头黄色视频| 亚洲精品av麻豆狂野| 乱码一卡2卡4卡精品| 精品国产一区二区三区久久久樱花| 日日撸夜夜添| 久久午夜福利片| tube8黄色片| 国产女主播在线喷水免费视频网站| 伦理电影免费视频| 欧美成人精品欧美一级黄| 久久热精品热| 熟女人妻精品中文字幕| a级毛片在线看网站| 男人爽女人下面视频在线观看| 国产av精品麻豆| 丝袜美足系列| 成年人免费黄色播放视频| 视频中文字幕在线观看| 久久av网站| 久久久精品94久久精品| 人妻 亚洲 视频| 日韩av免费高清视频| 亚洲第一av免费看| 少妇的逼好多水| 黄色欧美视频在线观看| 国产男女内射视频| 亚洲人成网站在线观看播放| 男女高潮啪啪啪动态图| a级片在线免费高清观看视频| 色哟哟·www| 亚洲丝袜综合中文字幕| 亚洲欧洲日产国产| h视频一区二区三区| 国产国拍精品亚洲av在线观看| 国产成人精品一,二区| 免费不卡的大黄色大毛片视频在线观看| 亚洲图色成人| 亚洲国产av新网站| 伊人久久国产一区二区| 一本—道久久a久久精品蜜桃钙片| 99久久人妻综合| 日本wwww免费看| 黑人巨大精品欧美一区二区蜜桃 | 制服人妻中文乱码| 一级爰片在线观看| 免费观看a级毛片全部| 最后的刺客免费高清国语| 80岁老熟妇乱子伦牲交| 久久精品久久久久久噜噜老黄| 久久国内精品自在自线图片| 亚洲国产精品999| 日本vs欧美在线观看视频| 亚洲欧美日韩另类电影网站| 国产在线视频一区二区| 日韩一本色道免费dvd| 啦啦啦中文免费视频观看日本| 亚洲精华国产精华液的使用体验| 国产综合精华液| 欧美激情国产日韩精品一区| 中文字幕av电影在线播放| 日韩,欧美,国产一区二区三区| 男女边吃奶边做爰视频| 日日啪夜夜爽| 午夜福利网站1000一区二区三区| 久久久久久久精品精品| 韩国高清视频一区二区三区| 老司机影院毛片| 国国产精品蜜臀av免费| 日本黄色片子视频| 色网站视频免费| 能在线免费看毛片的网站| 熟女电影av网| 亚洲av免费高清在线观看| 国产成人精品无人区| 简卡轻食公司| 蜜臀久久99精品久久宅男| 日韩一区二区三区影片| 69精品国产乱码久久久| 伊人久久国产一区二区| 亚洲av福利一区| 精品一品国产午夜福利视频| 国产片内射在线| 亚洲国产精品999| 校园人妻丝袜中文字幕| 欧美最新免费一区二区三区| 国内精品宾馆在线| 午夜日本视频在线| 国产69精品久久久久777片| 哪个播放器可以免费观看大片| 久久久久久久国产电影| 成人国产av品久久久| 爱豆传媒免费全集在线观看| 免费黄频网站在线观看国产| 日本猛色少妇xxxxx猛交久久| 99久久精品一区二区三区| 日韩强制内射视频| 国产精品99久久久久久久久| 亚洲,一卡二卡三卡| 亚洲av二区三区四区| 亚洲综合精品二区| 国产精品 国内视频| 麻豆精品久久久久久蜜桃| 亚洲色图 男人天堂 中文字幕 | 日韩视频在线欧美| 国产高清国产精品国产三级| 国产欧美亚洲国产| 亚洲综合精品二区| 伊人亚洲综合成人网| 久久精品国产亚洲网站| 精品国产乱码久久久久久小说| 亚洲图色成人| 国产成人精品婷婷| 亚洲无线观看免费| 丝袜美足系列| 满18在线观看网站| 一级黄片播放器| 男人操女人黄网站| av在线app专区| 国产成人精品婷婷| 久久久精品免费免费高清| 一区二区av电影网| 欧美精品高潮呻吟av久久| 国产精品三级大全| 十八禁网站网址无遮挡| 一级毛片我不卡| 寂寞人妻少妇视频99o| 丝袜脚勾引网站| 亚洲精品,欧美精品| 一本色道久久久久久精品综合| 欧美 日韩 精品 国产| 草草在线视频免费看| 久久精品国产亚洲av天美| 亚洲精品色激情综合| 考比视频在线观看| 亚洲,一卡二卡三卡| 夫妻性生交免费视频一级片| 国产精品嫩草影院av在线观看| 亚洲av国产av综合av卡| 18禁观看日本| 亚洲综合色网址| 国产精品不卡视频一区二区| 91精品伊人久久大香线蕉| 人体艺术视频欧美日本| 国产 精品1| 久久久午夜欧美精品| 亚洲国产成人一精品久久久| 黑人高潮一二区| 日韩一区二区视频免费看| 久久综合国产亚洲精品| 欧美日韩综合久久久久久| 日韩亚洲欧美综合| 中文欧美无线码| 99久久人妻综合| 国产国拍精品亚洲av在线观看| 纯流量卡能插随身wifi吗| 色94色欧美一区二区| 欧美性感艳星| 99久久精品一区二区三区| 日本猛色少妇xxxxx猛交久久| 日韩成人伦理影院| 久久 成人 亚洲| 欧美xxⅹ黑人| 日韩亚洲欧美综合| 91精品三级在线观看| 99久久综合免费| 我的老师免费观看完整版| 午夜激情福利司机影院| 久久精品久久久久久噜噜老黄| 免费黄频网站在线观看国产| 伦理电影免费视频| 人妻制服诱惑在线中文字幕| 好男人视频免费观看在线| 日韩,欧美,国产一区二区三区| 制服人妻中文乱码| 中文字幕久久专区| 日韩不卡一区二区三区视频在线| 成人二区视频| 午夜日本视频在线| 国产精品久久久久久精品电影小说| .国产精品久久| 高清不卡的av网站| 久久av网站| 国产男人的电影天堂91| 十八禁高潮呻吟视频| 国产精品三级大全| 久久久久国产网址| 中文乱码字字幕精品一区二区三区| 亚洲精品aⅴ在线观看| 国产片特级美女逼逼视频| av.在线天堂| 午夜91福利影院| 女性生殖器流出的白浆| 亚洲欧美日韩卡通动漫| 在线精品无人区一区二区三| 国产在视频线精品| 一区二区三区精品91| 亚洲少妇的诱惑av| 午夜久久久在线观看| 九草在线视频观看| 亚洲国产色片| 日本色播在线视频| 日韩视频在线欧美| av在线播放精品| 我的老师免费观看完整版| 国产一级毛片在线| 欧美精品国产亚洲| 少妇被粗大的猛进出69影院 | 亚洲欧美精品自产自拍| 久久国产亚洲av麻豆专区| 国产成人精品福利久久| 国产在视频线精品| 亚洲美女黄色视频免费看| 亚洲国产精品国产精品| 黑人猛操日本美女一级片| 国产午夜精品一二区理论片| 男女边吃奶边做爰视频| 亚洲国产精品国产精品| 久久99蜜桃精品久久| 国产无遮挡羞羞视频在线观看| 国产黄频视频在线观看| 国产精品久久久久久精品电影小说| 中文字幕人妻丝袜制服| 亚洲精品国产av成人精品| 国产在线视频一区二区| av在线播放精品| av有码第一页| 日韩欧美精品免费久久| freevideosex欧美| 在线观看人妻少妇| 欧美性感艳星| 日本黄大片高清| 美女视频免费永久观看网站| 久久人人爽人人爽人人片va| 伦理电影大哥的女人| 51国产日韩欧美| 亚洲av成人精品一二三区| 国产又色又爽无遮挡免| 男男h啪啪无遮挡| 久久精品国产亚洲av涩爱| 免费观看性生交大片5| 亚洲在久久综合| 国产高清有码在线观看视频| 国产在线免费精品| 王馨瑶露胸无遮挡在线观看| 国产精品一区二区在线观看99| 久久韩国三级中文字幕| 夫妻性生交免费视频一级片| 国产精品国产三级国产专区5o| 一本—道久久a久久精品蜜桃钙片| 国产精品99久久久久久久久| 亚洲精品日本国产第一区| 婷婷色综合大香蕉| 免费人成在线观看视频色| av卡一久久| 只有这里有精品99| 黄色欧美视频在线观看| 男男h啪啪无遮挡| 永久网站在线| a级毛片黄视频| 亚洲精品乱码久久久久久按摩| 秋霞在线观看毛片| 一区二区三区精品91| 18禁动态无遮挡网站| 色婷婷av一区二区三区视频| av黄色大香蕉| 久久人人爽人人爽人人片va| 久久久久久久久久久免费av| 日韩一区二区三区影片| 亚洲国产欧美在线一区| 国产免费现黄频在线看| 丰满饥渴人妻一区二区三| 中文精品一卡2卡3卡4更新| www.av在线官网国产| 午夜激情福利司机影院| 日韩三级伦理在线观看| 女人久久www免费人成看片| 久久精品国产亚洲网站| 在线观看三级黄色| 日日摸夜夜添夜夜添av毛片| 亚洲精品av麻豆狂野| 久久久久久久久久人人人人人人| 日韩免费高清中文字幕av| 你懂的网址亚洲精品在线观看| 大香蕉97超碰在线| 男女啪啪激烈高潮av片| 黑人巨大精品欧美一区二区蜜桃 | 在线免费观看不下载黄p国产| 免费不卡的大黄色大毛片视频在线观看| 人妻制服诱惑在线中文字幕| 99热6这里只有精品| 大码成人一级视频| 五月开心婷婷网| 韩国高清视频一区二区三区| 九色成人免费人妻av| 熟女电影av网| 亚洲精品国产av蜜桃| 美女xxoo啪啪120秒动态图|