• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    B-incorporated,N-doped hierarchically porous carbon nanosheets as anodes for boosted potassium storage capability

    2022-03-14 09:30:10YuHuChengTngHitoLiAijunDuWeiLuoMinghongWuHijioZhng
    Chinese Chemical Letters 2022年1期

    Yu Hu,Cheng Tng,Hito Li,Aijun Du,Wei Luo,Minghong Wu,Hijio Zhng,?

    aInstitute of Nanochemistry and Nanobiology,Shanghai University,Shanghai 200444,China

    bSchool of Chemistry,Physics and Mechanical Engineering,Science and Engineering Faculty,Queensland University of Technology,Brisbane QLD 4001,Australia

    cSchool of Environmental and Chemical Engineering,Shanghai University,Shanghai 200444,China

    dState Key Laboratory for Modification of Chemical Fibers and Polymer Materials,College of Materials Science and Engineering,Donghua University,Shanghai 201620,China

    ABSTRACT Carbonaceous nanomaterials with porous structure have become the highly promising anode materials for potassium-ion batteries(PIBs)due to their abundant resources,low-cost,and excellent conductivity.Nevertheless,the sluggish reaction kinetics and inferior cycling life caused by the large radius of K ions severely restrict their commercial development.Herein,B,N co-doped hierarchically porous carbon nanosheets(BNPC)are achieved via a facile template-assisted route,followed by a simple one-step carbonization process.The resultant BNPC possesses a unique porous structure,large surface area,and high-level B,N co-doping.The structural features endows it with remarkable potassium storage performances,which delivers a high reversible capacity(242.2 mAh/g at 100 mA/g after 100 cycles),and long cycling stability(123.1 mAh/g at 2000 mA/g and 62.9 mAh/g at 5000 mA/g after 2000 cycles,respectively).Theoretical simulations further validate that the rich B doping into N-modified carbon configuration can greatly boost the potassium storage capability of the BNPC anode.

    Keywords:Carbon nanosheets Hierarchical nanostructure B,N co-doping Anode materials Potassium-ion batteries

    Currently,the development and application of new energy have aroused significant attention along with the massive consumption of fossil fuels[1].Although lithium-ion batteries(LIBs)still dominate the overall energy storage markets[2],the overuse of Li resources and their uneven distribution on the earth further obstruct their large-scale applications[3].Thus,it is very imperative to explore the low-cost battery system with ideal electrochemical performances[4,5].Recently,potassium-ion batteries(PIBs)have been adapted as a highly appealing replaceable for LIBs owing to rich natural reserves,low redox potential,and similar electrochemical properties to Li[6-8].Nonetheless,in comparison to Li+(0.76 ?A)and Na+(1.02 ?A),the larger radius of K+(2.72 ?A)generally means the worse reaction kinetics and greater volume expansions during charge-discharge process,thereby causing low capacity,inferior rate performance,and dissatisfied cycling life[9,10].Therefore,it remains significantly desirable to develop advanced electrode materials for PIBs,especially for anode hosts.

    In these potential anodes,carbonaceous materials show an unparalleled advantage because of economic benefits,chemical stability,and superior conductivity[11,12].Significant attempts have been made to modulate the structure and composition of carbon anodes for optimizing their K+storage capabilities[13].Of them,the construction of three-dimensional(3D)hierarchical nanostructures composed of two-dimensional(2D)nanosheets has been confirmed to a direct and scalable method[14,15].Such a unique 2D/3D heterostructure can shorten the transmission path of electrons/ions and promote their diffusion kinetics in the electrochemical process,thus achieving the superior performance.For example,Yuet al.reported the 3D mesoporous carbon nanosheets with excellent energy storage properties[16].Jiet al.prepared Bicontinuous porous carbon spheres,showing a fast transmission behavior of K ions[17].Besides,the doping of heteroatoms such as N,S,B,is another popular protocol[18,19],which can not only improve the conductivity of carbon materials,but also provide more defects for potassium storage.Our recent work also demonstrates the advantages ofin-situN-doping into Ti3C2Txnanosheets,in favor of Na+storage[20].Compared with the single element doping,the co-doping of dual atoms(e.g.,B and N)is more attractive by fully taking advantage of their merits.Moreover,the doping process can also induce the enlargement of interlayer spacing of carbon materials[21].However,the current research mainly focuses on one or two directions for the carbon nanostructure regulating.Hence,exploring carbon electrodes with multiple structural meritsviaa facile and controllable strategy is highly desirable.

    Fig.1.(a)Schematic illustration of synthetic procedures of BNPC.(b,c)SEM images,(d-f)TEM images,(g)HRTEM image,and(h)STEM image and the EDX elemental mapping of BNPC.

    Herein,we present the controllable preparation of B,N codoped porous carbon nanosheets(BNPC)by skillfully selecting Nacetylglucosamine and MgO as the carbon precursor and hard template,respectively.The BNPC product shows large surface area,high-level B,N co-doping,distinct hierarchical nanostructure,and increased interlayer spacing.Such an ingenious configuration endows the BNPC anode with a remarkable potassium storage capability.Based on the experimental and theoretical results,the main reason for the excellent electrochemical performance is as follows:(1)High reversible capacity derived from more active sites owing to the co-doping of B and N into the carbon framework and high surface area;(2)Fast charge transfer dynamics caused by the 3D hierarchical nanostructure built by 2D carbon nanosheets and enlarged interlayer spacing;(3)Long cycling stability at high current density benefiting from the highly stable 3D conductive network.

    Fig.1a describes the entire synthetic process of BNPC.First,the MgO template with a particle size of about 50 nm was prepared(Fig.S1 in Supporting information).Second,N-acetylglucosamine precursor was pyrolyzed onto the MgO surface under the hydrothermal condition.After that,the resultant was uniformly mixed with a certain amount of boric acid by grinding,followed by a simple one-step carbonization process.At last,the MgO template was fully removed by acid washing.Here,it should be mentioned that another product was totally solid carbon spheres at the absence of the MgO template(Fig.S2 in Supporting information),indicating the vital role of the template in the formation of porous structures.

    Seen from SEM images(Figs.1b and c),the as-synthesized BNPC product shows a well-defined morphology and unique 3D hierarchical nanostructure,which is well constructed by many thin carbon nanosheets.Meanwhile,these randomly stacked nanosheets are interconnected to each other to produce a large number of open spaces.That will be beneficial for the transmission and diffusion of electrons/ions,and alleviation of the large volume changes during cycles.The TEM image in Fig.1d demonstrates that BNPC is mainly composed of folded interconnected nanosheets,which are well consistent with SEM observations.The detailed structure is further identified by the high magnification TEM images(Figs.1e and f).Interestingly,it is found that many holes exist into the rough surface of carbon nanosheets,as framed by the yellow dash line.That may be caused by the released gas molecules from the decomposition of boric acid during carbonization process,manifesting the abundant porosity.Additionally,the NPC product exhibits a totally different structure(Fig.S3 in Supporting information),suggesting that the B doping process further induces the formation of such a unique hierarchical structure for BNPC.Fig.1g shows the HRTEM image of BNPC.Clearly,it displays a relatively low crystallinity and expanded interlayer spacing of 0.364 nm,corresponding to the(002)crystal plane of carbon,which is larger than 0.335 nm of graphite[22].STEM image and EDX elemental mapping(Fig.1h)affirm the existence and good distributions of B and N elements in BNPC.

    Fig.2a shows XRD patterns of two products.There are two broad diffraction peaks centered at 25.4° and 42.9° in the NPC sample,corresponding to the(002)and(101)planes of carbon.That is the typical feature of amorphous carbon materials.Differently,the(002)broad peak of BNPC is shifted to the low degree at about 24.2°,suggesting an enlarged interlayer spacing.According to the Bragg equation,the layer spacing(002)of BNPC and NPC are calculated to be 0.365 nm and 0.34 nm,respectively,in line with the HRTEM analysis.The expansion reason for BNPC can be resulted from the boron and nitrogen co-doping.Raman spectroscopy is an effective tool to analyze the carbon microstructure.As displayed in Fig.2b,the D band at 1340 cm?1is described as the disordered carbon,whereas the G band at 1570 cm?1is characteristic of graphitization carbon.And their ratioID/IGusually reflects the graphitization degree of carbon materials[23].BNPC shows a higherID/IGof 1.04 than that of NPC(0.97),signifying the presence of more defects owing to the B,N co-doping into the carbon framework.The texture properties of two samples were further analyzed by N2absorption-desorption isotherm.As shown in Fig.2c,Figs.S4a and b(Supporting information),BNPC and NPC both show a type-IV hysteresis loop at the relative pressure ofP/P0=0.5–0.9,indicating the appearance of mesopores[24].The Barrett-Emmett-Teller(BET)surface area of BNPC is 528.5 m2/g,much higher than 361.6 m2/g of NPC.Importantly,the pore size distribution curve(inset of Fig.2c)further illustrates two kinds of different mesopores centered at 3.7 and 15–33 nm,matching well with the SEM/TEM observations.Such a unique hierarchical nanostructure with large mesopores will in favor of the K+fast transport dynamics.

    X-ray photoelectron spectroscopy(XPS)was further applied to detect the chemical state of BNPC.The high-resolution C 1s spectrum in Fig.2d shows five peaks at the binding energy of 283.9,284.81,285.62,286.54 and 289.18 eV,which are ascribed to CB,C–C,C–O,C=O or C=C and O–C=O,respectively[25,26].Additionally,five peaks appear at the binding energy of 530.7,531.6,532.67,533.86 and 535.23 eV in Fig.S5(Supporting information),corresponding to O=N,C=O(O-I),C–OH(O-II),COOH(O-III)and O-B,respectively[25].Impressively,four distinct peaks exist in Fig.2e,which belong to B-C(189.69 eV),B-C2O(190.73 eV),B-N(191.66 eV)and B-O or B-CO2(192.42 eV)[27,28],verifying the successful doping of B atoms.Fig.2f presents the high-resolution N 1s spectrum of BNPC.That is deconvoluted into N-B(397.73 eV),pyridinic N(N-6,398.8 eV),pyrrolic N(N-5,399.7 eV),graphitic N(NQ,401.23 eV)and N–O(403.17 eV),respectively[28].The ratio of pyridine N and pyrrole N is about 43.1% and 34.9%,respectively(Fig.S6 in Supporting information).As reported,the existence of N-5 and N-6 can bring more additional defects,thereby improve the storage of K+[26].The quantitative analysis shows that about 6.79 at% boron and 7.18 at% nitrogen have been successfully incorporated into the carbon configuration(Fig.S7 in Supporting information).Such a high-level B,N co-doping is expected to improve the storage potassium performance thanks to the formation of more defects and increased active sites[29].

    Fig.2.(a)XRD patterns,(b)Raman spectra,(c)N2 sorption isotherm(inset of(c)is its pore size distribution curve).(d-f)High-resolution XPS spectra for C 1s,B 1s and N 1s of BNPC.

    Fig.3.(a)CV curves of the first three cycles at 0.1 mV/s.(b)GDC curves of BNPC electrode at 100 mA/g.(c)Cycling performances at 100 mA/g.(d)Rate capabilities at different current densities ranging from 50 mA/g to 2000 mA/g.(e)Capacity retention of BNPC and NPC electrodes.(f)GDC curves at different current densities.(g)Long cycling stabilities of BNPC electrode at 2000 mA/g and 5000 mA/g over 2000 cycles,respectively.

    The electrochemical performances of BNPC and NPC electrodes as PIBs anodes were systemically studied.Fig.3a illustrates the CV curves of the BNPC electrode for the initial three cycles at 0.1 mV/s.The CV curve of the first cycle exhibits anodic peak at 0.5 V,and cathodic peaks at 0.6 V.The cathodic peak at 0.6 V is attributed to the decomposition of the electrolyte and the generation of a solid electrolyte intermediate phase(SEI)[30],which obviously weakens in the second cycle.The broad anodic peak at near 0.5 V is related to the step potassiation process in carbonbased electrodes[31].Importantly,CV curves almost overlap in the subsequent two cycles,indicating its excellent electrochemical reversibility.Fig.3b shows charge/discharge profiles of BNPC electrode for the first three cycles within the voltage window of 0.01–3.0 Vvs.K/K+at 0.1 A/g.The initial discharge and charge capacities are 1135.5 and 269.5 mAh/g,respectively,showing an initial coulomb efficiency(ICE)of 23.7%.The initial large capacity loss is mainly due to the electrolyte decomposition and the SEI film formation[32].Meanwhile,the low ICE can be enhanced by prepotassiation strategy.In the second cycle,the CE value is increased to 58.9%,and then maintained at about 99.0% after 100 cycles,indicating that the irreversible capacity loss can be relieved during cycling.

    Fig.4.(a)CV curves of BNPC electrode at different scan rates.(b) b-values plotted for the anodic peak and cathodic peak.(c)Capacitive behavior(yellow region)and diffusion behavior(green region)contributions of BNPC at 0.6 mV/s.(d)Normalized contribution ratio of capacitive behavior and diffusion behavior capacities at different scan rates of BNPC.(e)Electrochemical impedance spectra of BNPC and NPC electrodes(inset of(e))is the corresponding equivalent circuit).(f)K diffusion coefficients of BNPC and NPC electrodes.(g)Comparison of the potassium storage performances between the BNPC anode with previously reported carbonaceous materials.(h)Schematic illustration of possible potassium storage mechanism for BNPC.

    Fig.3c displays the cycling stability of two electrodes.Obviously,the BNPC demonstrates a higher reversible capacity and better cycling stability than the control NPC.The charge capacity of BNPC still maintains to be 242.4 mAh/g and nearly 100% coulombic efficiency after 100 cycles at 0.1 A/g,while NPC only provides the capacity of 160 mAh/g.The rate performance of BNPC and NPC electrodes at current density from 0.05 A/g to 2 A/g are presented in Fig.3d.Notably,BNPC exhibits high reversible specific capacities of 314.5,301.2,255.4,227.1 and 176.1 mAh/g at current densities of 50,100,200,500 and 1000 mA/g,respectively.Even at 2000 mA/g,a large reversible specific capacity of 134.5 mAh/g can still be reached.Moreover,when the current density was reset to 100 mA/g,a discharge capacity was recovered to 274.7 mAh/g for BNPC,illustrating an outstanding reversible stability at high current densities.That corresponds to the capacity retention of 100,84.9,75.5,58.5,44.7 and 91.7,respectively(Fig.3e).In comparison,NPC has low reversible capacities of 259.5 and 36.1 mAh/g at current densities of 50 and 2000 mA/g,respectively.Fig.3f shows the charge-discharge curves of BNPC at different current densities,implying capacitive-controlled storage processes.To better show the superiority of BNPC as anodes for PIBs,we also investigate its long-term cycling performance at 2000 mA/g and 5000 mA/g.As shown in Fig.3g,BNPC still keeps a high reversible capacity of 123.1 mAh/g and 62.9 mAh/g after 2000 cycles,respectively,and large coulombic efficiency of nearly 100%.In contrast,NPC only delivers a low capacity of 58.0 mAh/g after 500 cycles at 2000 mA/g(Fig.S8 in Supporting information).Moreover,the BNPC electrode retains the 3D nanostructure well after cycling,which verifies its good structural stability(Fig.S9 in Supporting information).As listed in Table S1(Supporting information),the BNPC anode for PIBs developed in the work outperforms most of the reported carbon-based anodes,highlighting the superiority of B,N co-doping.

    CV measurements at various scan rates ranging from 0.1 mV/s to 2.0 mV/s were further measured to investigate the potassium storage kinetics of BNPC and NPC(Fig.4a and Fig.S10a in Supporting information).As shown in these curves,BNPC maintains the original shape,which becomes broader with increasing scan rates.Furthermore,even the scan rate reaches as high as 2.0 mV/s,the basic characteristics remain well,indicating that BNPC possesses a superior response capability to PIBs.

    The K+storage contribution including the surface capacitive and diffusion contribution was investigated according to the power-law formula[33]:

    Theb-value can be obtained to determine the electrochemical behavior predominated by semi-infinite diffusion(b~0.5)or capacitive process(b~1.0).In Fig.4b,the anodic process exhibitsb-value of 0.88,while cathodic process is 0.73.As a result,the electrochemical process is mainly determined by the surface capacitance,resulting from the high surface area and rich defects owing to the co-doping of B and N.

    The following formula can be analyzed the contribution value of the capacitance control process:

    Fig.4c shows a 70.7% of capacitive contribution(yellow region)from the total capacity at 0.6 mV/s for BNPC.Meanwhile,the capacitance contribution rate gradually increases as the scan rate increasing(Fig.4d).When the scan rate is added from 0.2 mV/s to 1 mV/s,the capacitance contribution rate increases from 61.5% to 79.8%,much higher than those of NPC(Fig.S10b in Supporting information).The above results reveal that the capacitance-guided and diffusion-controlled processes are both embodied in the electrochemical reaction of BNPC,and the contribution rate of the surface dominant behavior is in a larger proportion.This high capacitance contribution is mainly due to the presence of many defects in the BNPC anode.

    Fig.5.The top and side views of K+ adsorption on(a)graphitic,(e)pyridinic- and(i)pyrrolic N-functionalized carbon(N–C).The corresponding K adsorbed geometries of B-doped(b-d)graphitic,(f-h)pyridinic- and(j-m)pyrrolic-N functionalized carbon(B-N-C)at marked I,II,III and IV sites,respectively.The adsorption energies and bond lengths of N-K and B-K are listed below each geometry.Purple,brown,gray,green and white spheres represent K,C,N,B and H atoms,respectively.(n,o)Charge density difference(isovalue of 0.001 e/?A3)for K adsorbed pyridinic-N functionalized carbon without and with B(II)substitution.Cyan and yellow areas reflect the electron depletion and accumulation.Blue and red circles show the charge difference around doped N and B center,respectively.

    The electrochemical impedance spectra(EIS)of BNPC and NPC were also measured for further analysis of their diffusion kinetics.Fig.4e shows the initial Nyquist plots of BNPC and NPC electrodes.The impedance spectrum contains an inclined line at the low frequency range and a concave semicircle at the high frequency range,which are assigned to the resistance to charge transfer(Rct)and Warburg impedance(Zw),respectively.The Z-view software analysis indicates that BNPC has a smaller resistance of 331.4Ωthan that of NPC(839.5Ω),revealing a better conductivity and faster diffusion kinetics.

    Galvanostatic intermittent titration(GITT)was applied to identify the K+diffusion coefficient(D)of two electrodes under different voltages.DKvalue can be calculated by the following formula[34]:

    From the GITT results(Fig.4f and Fig.S11),we can see that the D value of BNPC is 10?9cm2/s to 10?12cm2/s,while the NPC is 10?10to 10?13,further verifying the faster diffusivity of K+for BNPC.Impressively,the superior rate performance for potassium storage is comparable to most of previous carbon-based anodes,as summarized in Fig.4g[35-39].Fig.4h describes the schematic diagram of possible storage potassium mechanism of BNPC.Considering that K ions tend to form K-intercalated carbon compounds(KICs)at defect sites[39],more additional defects brought by the B,N co-doping are favorable for the adsorption of K ions,and the unique hierarchical nanostructure can facilitate the rapid transport of K ions and electrons,thus boosting the potassium storage performance for BNPC anode.

    For the sake of clarifying the superior potassium storage performance,we then examine the adsorbed behavior of K ions on Nfunctionalized carbon(N–C)layers with and without the B doping.According to previous work[40],three types of N–C nanosheets are adopted in our calculations.As illustrated in Figs.5a,e,i,the adsorption energies of K+are ?0.84,?1.69 and ?2.54 eV for graphitic,pyridinic and pyrrolic N–C layer,respectively.The bond length of K-N in graphitic N case is significantly larger than other two cases,leading to much weaker K+adsorption performance.As a result,K ions prefer to adsorb onto the pyrrolic N–C layer compared with graphilic and pyridinic ones.

    The K+adsorption on N–C layer after B doping(B-N-C)was further evaluated.Fig.5 gives the corresponding adsorption energies and bond lengths of K-N and K-B for each K adsorbed B-N-C layer.Generally,the different B-doped sites show the small impact on the following K adsorption.For B-graphitic N–C case,the absolute values of the adsorption energies reach up to 1.60 eV,which is remarkably larger than that of graphilic N–C layer(0.84 eV),indicating the enhanced K+adsorption performance.Despite of the initial position set for K+adsorption,it largely shifts towards B side during relaxation,suggesting that B sites are more attractive for K+adsorption than N sites.Besides,such enhanced performance also happens when B doping into the pyridinic and pyrrolic N–C nanosheets.In two cases,doped N and B atoms simultaneously work on and balances the K+adsorption.Additionally,we also calculate the charge density difference of the K adsorbed pyridinic N–C with and without B(II)doping.As displayed in Figs.5n and o,the charge density around N site(blue circle)almost remains unchanged with and without the existence of B.However,the accumulated electrons around B(red circle)are remarkably increased in comparison to those around C or N,mainly resulting in the enhanced K+adsorption performance.Taken together,the doping of B atoms will greatly improve the K+capability of N-modified carbon layers.

    To sum up,we have developed a scalable structural engineering technique for synthesis of B,N co-doped porous carbon nanosheets through a facile template-assisted route and simple carbonization process.Such a unique architecture can facilitate the transmission of ions/electrons,and the co-doping of B and N can increase the conductivity and offer more defects for K ions storage.All of the structural merits together account for the outstanding potassium storage capability.The constructed BNPC anode delivers a high reversible capacity(242.2 mAh/g at 100 mA/g after 100 cycles)and an outstanding long-term cycling stability(123.1 mAh/g at 2000 mA/g and 62.9 mAh/g at 5000 mA/g after 2000 cycles,respectively).The present study proposed can also provide a scalable feasibility for the development and design of advanced carbonbased electrode materials.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The work was supported by Shuguang Program from Shanghai Education Development Foundation and Shanghai Municipal Education Commission(No.18SG035),and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University(No.KF2015).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.063.

    亚洲一区高清亚洲精品| 日韩中文字幕欧美一区二区| 18禁黄网站禁片免费观看直播| АⅤ资源中文在线天堂| 黄片大片在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲色图av天堂| 亚洲精品一区av在线观看| 久久精品影院6| 18禁裸乳无遮挡免费网站照片| 久久草成人影院| 黄色毛片三级朝国网站| 12—13女人毛片做爰片一| 亚洲激情在线av| 免费搜索国产男女视频| 久久伊人香网站| 757午夜福利合集在线观看| 人人妻人人澡欧美一区二区| 国产精品av久久久久免费| 亚洲成av人片免费观看| 脱女人内裤的视频| 亚洲成人久久性| 两个人的视频大全免费| 免费电影在线观看免费观看| 高清毛片免费观看视频网站| 亚洲精品国产一区二区精华液| 亚洲专区字幕在线| av国产免费在线观看| 香蕉丝袜av| 很黄的视频免费| 真人做人爱边吃奶动态| 一区二区三区高清视频在线| 亚洲av成人av| 女警被强在线播放| 中文资源天堂在线| 一级a爱片免费观看的视频| 久久中文字幕人妻熟女| 精品欧美一区二区三区在线| 老熟妇乱子伦视频在线观看| 久久精品国产清高在天天线| 成年人黄色毛片网站| 最近最新中文字幕大全电影3| 国产黄片美女视频| 国产精品,欧美在线| 丝袜人妻中文字幕| 观看免费一级毛片| 身体一侧抽搐| 亚洲熟妇熟女久久| 精品无人区乱码1区二区| 一级毛片高清免费大全| 男女午夜视频在线观看| 极品教师在线免费播放| 成人亚洲精品av一区二区| 在线十欧美十亚洲十日本专区| 亚洲自拍偷在线| 久久人妻福利社区极品人妻图片| 午夜福利成人在线免费观看| 老司机在亚洲福利影院| 宅男免费午夜| 欧美日韩一级在线毛片| 久久久久免费精品人妻一区二区| 国产一区在线观看成人免费| 这个男人来自地球电影免费观看| 人妻丰满熟妇av一区二区三区| 999精品在线视频| 国产欧美日韩精品亚洲av| 两个人视频免费观看高清| tocl精华| 国产精华一区二区三区| 特级一级黄色大片| 熟女电影av网| 国产成人系列免费观看| 两个人免费观看高清视频| 日韩三级视频一区二区三区| 久久人妻福利社区极品人妻图片| 国产精品一及| 黄色视频不卡| 伊人久久大香线蕉亚洲五| 国产精品久久久人人做人人爽| 成在线人永久免费视频| 一本久久中文字幕| 成人亚洲精品av一区二区| 黑人操中国人逼视频| 色哟哟哟哟哟哟| www日本黄色视频网| 琪琪午夜伦伦电影理论片6080| 亚洲五月天丁香| 少妇的丰满在线观看| 日本一本二区三区精品| 欧美日韩国产亚洲二区| 亚洲一区二区三区色噜噜| 午夜福利欧美成人| 麻豆国产97在线/欧美 | 久久精品国产亚洲av高清一级| 一级作爱视频免费观看| 又大又爽又粗| 成熟少妇高潮喷水视频| 特级一级黄色大片| 成人特级黄色片久久久久久久| 国产一区在线观看成人免费| 国产亚洲精品久久久久5区| 热99re8久久精品国产| 精品国产乱子伦一区二区三区| 老熟妇乱子伦视频在线观看| 少妇人妻一区二区三区视频| 老汉色av国产亚洲站长工具| 在线观看午夜福利视频| 99久久综合精品五月天人人| 国产人伦9x9x在线观看| 又黄又粗又硬又大视频| 精品电影一区二区在线| 久久精品国产清高在天天线| 国产伦人伦偷精品视频| 久久香蕉激情| 制服人妻中文乱码| 成年版毛片免费区| 欧美黑人精品巨大| 久久中文字幕一级| 国产日本99.免费观看| 在线播放国产精品三级| 欧美激情久久久久久爽电影| 最好的美女福利视频网| 草草在线视频免费看| 麻豆国产97在线/欧美 | 国产单亲对白刺激| 91老司机精品| 少妇熟女aⅴ在线视频| 国产高清视频在线播放一区| 欧美在线黄色| 久久香蕉国产精品| 日韩大码丰满熟妇| 性欧美人与动物交配| 最新美女视频免费是黄的| 久久久久久久久中文| 三级男女做爰猛烈吃奶摸视频| www.自偷自拍.com| 男女做爰动态图高潮gif福利片| 床上黄色一级片| 亚洲国产欧美一区二区综合| 狂野欧美白嫩少妇大欣赏| 欧洲精品卡2卡3卡4卡5卡区| 精品高清国产在线一区| 麻豆久久精品国产亚洲av| 国产不卡一卡二| av超薄肉色丝袜交足视频| 淫妇啪啪啪对白视频| 嫩草影视91久久| 国产伦人伦偷精品视频| 看免费av毛片| 美女大奶头视频| 欧美成人一区二区免费高清观看 | 欧美成人午夜精品| 国产高清视频在线观看网站| 成人国产综合亚洲| 一二三四社区在线视频社区8| 免费在线观看亚洲国产| 白带黄色成豆腐渣| 亚洲av成人av| 色综合欧美亚洲国产小说| 熟女电影av网| 亚洲av电影在线进入| 午夜福利成人在线免费观看| 91字幕亚洲| 性色av乱码一区二区三区2| 天堂影院成人在线观看| 精品久久久久久,| 麻豆av在线久日| 黄色毛片三级朝国网站| 日本免费一区二区三区高清不卡| 他把我摸到了高潮在线观看| 亚洲精品美女久久av网站| 人妻丰满熟妇av一区二区三区| 亚洲精品在线美女| 琪琪午夜伦伦电影理论片6080| x7x7x7水蜜桃| 成人精品一区二区免费| 日韩欧美 国产精品| 日韩三级视频一区二区三区| 亚洲人与动物交配视频| 波多野结衣巨乳人妻| 成人av一区二区三区在线看| 日韩三级视频一区二区三区| 别揉我奶头~嗯~啊~动态视频| 国产av一区在线观看免费| 好看av亚洲va欧美ⅴa在| 精品国产超薄肉色丝袜足j| 午夜a级毛片| 久久人妻福利社区极品人妻图片| 欧美成狂野欧美在线观看| 午夜久久久久精精品| 亚洲国产精品合色在线| 精品国产乱码久久久久久男人| 久久九九热精品免费| 丰满人妻熟妇乱又伦精品不卡| 国产伦在线观看视频一区| 亚洲精品中文字幕在线视频| 丝袜美腿诱惑在线| 啦啦啦观看免费观看视频高清| 日韩欧美精品v在线| 久久精品91无色码中文字幕| 黑人操中国人逼视频| 亚洲美女视频黄频| 欧美色欧美亚洲另类二区| 黑人巨大精品欧美一区二区mp4| 欧美性猛交黑人性爽| 国产成人啪精品午夜网站| 18禁观看日本| 嫁个100分男人电影在线观看| 在线观看舔阴道视频| 国产蜜桃级精品一区二区三区| 亚洲人与动物交配视频| 精品一区二区三区视频在线观看免费| 欧美zozozo另类| 免费在线观看日本一区| 国产一区在线观看成人免费| 久久久久性生活片| 麻豆久久精品国产亚洲av| 岛国在线免费视频观看| 黑人操中国人逼视频| 亚洲成人国产一区在线观看| 一卡2卡三卡四卡精品乱码亚洲| 免费在线观看影片大全网站| 中亚洲国语对白在线视频| 精品久久久久久久人妻蜜臀av| 午夜a级毛片| 午夜老司机福利片| 麻豆久久精品国产亚洲av| 99国产精品一区二区蜜桃av| 韩国av一区二区三区四区| 香蕉av资源在线| 欧美3d第一页| www.自偷自拍.com| 1024手机看黄色片| 亚洲中文字幕日韩| 亚洲国产精品成人综合色| 日日爽夜夜爽网站| 欧美黑人欧美精品刺激| 成人亚洲精品av一区二区| 亚洲 国产 在线| 一本久久中文字幕| av免费在线观看网站| 一个人免费在线观看的高清视频| 正在播放国产对白刺激| 国产一区二区在线观看日韩 | 男人舔女人下体高潮全视频| 99久久国产精品久久久| 妹子高潮喷水视频| 亚洲黑人精品在线| 国产精品亚洲美女久久久| 天堂动漫精品| 最新美女视频免费是黄的| 久久久久久免费高清国产稀缺| 99国产综合亚洲精品| 99热这里只有是精品50| 香蕉av资源在线| 国产v大片淫在线免费观看| 18禁观看日本| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜两性在线视频| 1024视频免费在线观看| 久久久久国产精品人妻aⅴ院| 国产三级黄色录像| 日本一本二区三区精品| 国产私拍福利视频在线观看| 亚洲国产精品久久男人天堂| 国产不卡一卡二| 免费在线观看亚洲国产| 好男人电影高清在线观看| 男人的好看免费观看在线视频 | 18美女黄网站色大片免费观看| 韩国av一区二区三区四区| 长腿黑丝高跟| 精品久久久久久久久久免费视频| 日韩欧美一区二区三区在线观看| 午夜福利成人在线免费观看| av国产免费在线观看| x7x7x7水蜜桃| 亚洲av成人不卡在线观看播放网| 欧美日韩一级在线毛片| 悠悠久久av| 99riav亚洲国产免费| 色老头精品视频在线观看| 一个人免费在线观看的高清视频| 精品久久久久久久人妻蜜臀av| 欧美黄色片欧美黄色片| 中文在线观看免费www的网站 | 午夜久久久久精精品| 五月伊人婷婷丁香| 可以免费在线观看a视频的电影网站| 999久久久国产精品视频| 在线观看免费日韩欧美大片| 亚洲熟女毛片儿| 免费搜索国产男女视频| 亚洲午夜精品一区,二区,三区| 亚洲性夜色夜夜综合| 日日爽夜夜爽网站| 国产一区二区激情短视频| 国产在线精品亚洲第一网站| 91麻豆精品激情在线观看国产| 色综合欧美亚洲国产小说| 亚洲真实伦在线观看| 欧美色视频一区免费| 国产乱人伦免费视频| 黄频高清免费视频| 欧美性长视频在线观看| 亚洲精品中文字幕一二三四区| 黑人操中国人逼视频| 国产一区二区激情短视频| 男女那种视频在线观看| 宅男免费午夜| 欧美久久黑人一区二区| 国产精品,欧美在线| 国产成人啪精品午夜网站| 美女免费视频网站| 亚洲第一欧美日韩一区二区三区| 欧美又色又爽又黄视频| 免费在线观看亚洲国产| 亚洲真实伦在线观看| 国产麻豆成人av免费视频| 久久婷婷成人综合色麻豆| 这个男人来自地球电影免费观看| 在线观看免费视频日本深夜| 丝袜人妻中文字幕| 国产亚洲精品久久久久久毛片| 一级片免费观看大全| 色老头精品视频在线观看| 一个人免费在线观看电影 | 日韩成人在线观看一区二区三区| 三级毛片av免费| 欧美一区二区精品小视频在线| 亚洲成av人片免费观看| 老汉色∧v一级毛片| 91国产中文字幕| 婷婷精品国产亚洲av| 亚洲一码二码三码区别大吗| 精品日产1卡2卡| 免费看a级黄色片| 久久久精品国产亚洲av高清涩受| 欧美+亚洲+日韩+国产| 久久香蕉激情| 18禁观看日本| 亚洲欧美激情综合另类| 国产亚洲精品第一综合不卡| 夜夜夜夜夜久久久久| 97碰自拍视频| e午夜精品久久久久久久| 国产三级中文精品| 亚洲成a人片在线一区二区| 人人妻,人人澡人人爽秒播| 国产成人aa在线观看| 一进一出抽搐gif免费好疼| 亚洲欧美日韩高清专用| 午夜福利高清视频| 亚洲人与动物交配视频| 日本五十路高清| 精品无人区乱码1区二区| 好男人电影高清在线观看| 亚洲成人久久爱视频| 一区二区三区高清视频在线| 热99re8久久精品国产| 好男人电影高清在线观看| bbb黄色大片| 好男人电影高清在线观看| 在线观看日韩欧美| 亚洲av成人不卡在线观看播放网| 亚洲免费av在线视频| 日本五十路高清| 老司机午夜十八禁免费视频| 亚洲欧美日韩无卡精品| 欧美另类亚洲清纯唯美| 国产精品久久久久久精品电影| 高清在线国产一区| 亚洲av美国av| 亚洲 欧美一区二区三区| 长腿黑丝高跟| 午夜日韩欧美国产| 国产精品av久久久久免费| 国产伦在线观看视频一区| 欧美日韩乱码在线| 岛国在线观看网站| 夜夜爽天天搞| 亚洲国产高清在线一区二区三| 午夜免费激情av| 精品国产超薄肉色丝袜足j| 成年人黄色毛片网站| 三级国产精品欧美在线观看 | 日日夜夜操网爽| av有码第一页| 搡老熟女国产l中国老女人| 日韩欧美免费精品| 国产精品乱码一区二三区的特点| 亚洲aⅴ乱码一区二区在线播放 | 久久这里只有精品19| www.自偷自拍.com| 欧美中文日本在线观看视频| 搡老岳熟女国产| 欧美极品一区二区三区四区| 一进一出好大好爽视频| 怎么达到女性高潮| videosex国产| 特级一级黄色大片| a级毛片在线看网站| av福利片在线观看| 日本一二三区视频观看| 日本免费一区二区三区高清不卡| 亚洲成a人片在线一区二区| 亚洲国产精品sss在线观看| 可以免费在线观看a视频的电影网站| 精华霜和精华液先用哪个| 亚洲av电影不卡..在线观看| 丰满的人妻完整版| 久久久久久久久免费视频了| 色综合站精品国产| 超碰成人久久| 麻豆av在线久日| 动漫黄色视频在线观看| 在线观看免费午夜福利视频| 最好的美女福利视频网| 精品久久久久久成人av| 黄色女人牲交| 精品国内亚洲2022精品成人| 天天添夜夜摸| 曰老女人黄片| 青草久久国产| 亚洲av成人不卡在线观看播放网| 国产v大片淫在线免费观看| 国产高清激情床上av| 最近最新中文字幕大全电影3| 亚洲av成人av| netflix在线观看网站| 51午夜福利影视在线观看| 老熟妇乱子伦视频在线观看| 国产亚洲av嫩草精品影院| 免费在线观看影片大全网站| 国产视频内射| 男人舔女人下体高潮全视频| 黑人欧美特级aaaaaa片| 国产精品爽爽va在线观看网站| 欧美 亚洲 国产 日韩一| 欧美在线一区亚洲| 999久久久精品免费观看国产| 禁无遮挡网站| 午夜福利在线在线| 色av中文字幕| 美女高潮喷水抽搐中文字幕| 男男h啪啪无遮挡| 国产伦人伦偷精品视频| 黑人巨大精品欧美一区二区mp4| 亚洲欧美日韩高清专用| 中亚洲国语对白在线视频| av福利片在线观看| 成人av在线播放网站| 精品人妻1区二区| 女人被狂操c到高潮| 亚洲精品久久成人aⅴ小说| 黑人欧美特级aaaaaa片| 舔av片在线| 欧美日韩国产亚洲二区| 中亚洲国语对白在线视频| 不卡一级毛片| 最新在线观看一区二区三区| 久久99热这里只有精品18| 精品一区二区三区av网在线观看| 国产精品自产拍在线观看55亚洲| 国产乱人伦免费视频| 久久午夜亚洲精品久久| 男女午夜视频在线观看| 在线播放国产精品三级| av有码第一页| 成人国产综合亚洲| 好男人在线观看高清免费视频| 婷婷精品国产亚洲av在线| 校园春色视频在线观看| 岛国视频午夜一区免费看| 色综合婷婷激情| 成人午夜高清在线视频| 欧美日韩黄片免| 亚洲人与动物交配视频| 在线观看一区二区三区| 国内精品久久久久精免费| 欧美性猛交╳xxx乱大交人| 曰老女人黄片| 国产真实乱freesex| 午夜福利18| 国产av一区在线观看免费| 两人在一起打扑克的视频| av在线播放免费不卡| 亚洲人成网站高清观看| 亚洲狠狠婷婷综合久久图片| 白带黄色成豆腐渣| 国产真实乱freesex| 国产精品久久久av美女十八| 黑人欧美特级aaaaaa片| 亚洲九九香蕉| 小说图片视频综合网站| 精品无人区乱码1区二区| 午夜a级毛片| 看免费av毛片| 国产高清有码在线观看视频 | 母亲3免费完整高清在线观看| 国产99白浆流出| 桃色一区二区三区在线观看| 久久天堂一区二区三区四区| 波多野结衣巨乳人妻| 99国产精品一区二区蜜桃av| 亚洲成人久久性| 亚洲第一欧美日韩一区二区三区| 99精品欧美一区二区三区四区| 9191精品国产免费久久| 久久天躁狠狠躁夜夜2o2o| 国产精品综合久久久久久久免费| 精品日产1卡2卡| 十八禁网站免费在线| 成人永久免费在线观看视频| 国产亚洲av嫩草精品影院| 国产亚洲精品第一综合不卡| 久久人妻av系列| 俄罗斯特黄特色一大片| 亚洲成人免费电影在线观看| 亚洲免费av在线视频| 91麻豆精品激情在线观看国产| 色综合婷婷激情| 久久精品91无色码中文字幕| 神马国产精品三级电影在线观看 | 19禁男女啪啪无遮挡网站| 欧美精品啪啪一区二区三区| 午夜精品在线福利| 啦啦啦免费观看视频1| 午夜精品一区二区三区免费看| 性色av乱码一区二区三区2| 日本黄色视频三级网站网址| 性欧美人与动物交配| 日韩欧美三级三区| 亚洲自偷自拍图片 自拍| 亚洲五月婷婷丁香| 亚洲欧美日韩无卡精品| 怎么达到女性高潮| cao死你这个sao货| 一进一出抽搐gif免费好疼| 美女扒开内裤让男人捅视频| 欧美一区二区国产精品久久精品 | 国产伦人伦偷精品视频| 久久婷婷成人综合色麻豆| 精品日产1卡2卡| 国产黄a三级三级三级人| 757午夜福利合集在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| av在线播放免费不卡| 国产激情偷乱视频一区二区| 男女视频在线观看网站免费 | 99热这里只有精品一区 | 欧美成人性av电影在线观看| 悠悠久久av| 亚洲国产中文字幕在线视频| 欧美性猛交黑人性爽| 麻豆成人av在线观看| 免费在线观看亚洲国产| 在线免费观看的www视频| 欧美 亚洲 国产 日韩一| 欧美人与性动交α欧美精品济南到| 午夜福利欧美成人| 男男h啪啪无遮挡| 丝袜人妻中文字幕| 久久国产乱子伦精品免费另类| 亚洲在线自拍视频| 一夜夜www| 99久久久亚洲精品蜜臀av| 成人亚洲精品av一区二区| 欧美一区二区国产精品久久精品 | 国产成人精品无人区| 亚洲专区中文字幕在线| 日本在线视频免费播放| 国产精品精品国产色婷婷| 精品国产亚洲在线| 成熟少妇高潮喷水视频| 亚洲无线在线观看| 成人特级黄色片久久久久久久| 亚洲第一欧美日韩一区二区三区| 19禁男女啪啪无遮挡网站| 亚洲电影在线观看av| 成年女人毛片免费观看观看9| 国产精品一区二区三区四区久久| 亚洲一区中文字幕在线| 精品无人区乱码1区二区| 免费在线观看完整版高清| 99国产精品一区二区三区| 可以在线观看的亚洲视频| 国产欧美日韩一区二区三| 搞女人的毛片| 日本一区二区免费在线视频| 国产精品一及| 少妇熟女aⅴ在线视频| 狂野欧美白嫩少妇大欣赏| 黄片小视频在线播放| 757午夜福利合集在线观看| 午夜老司机福利片| 亚洲精品色激情综合| 亚洲av五月六月丁香网| 国产视频内射| 九色成人免费人妻av| 国产精品1区2区在线观看.| 免费在线观看成人毛片| 波多野结衣高清作品| 曰老女人黄片| 桃色一区二区三区在线观看| 99在线人妻在线中文字幕| 一级黄色大片毛片| 成年女人毛片免费观看观看9| av有码第一页| 亚洲电影在线观看av| 99热这里只有精品一区 | 18禁裸乳无遮挡免费网站照片| 搡老岳熟女国产| 亚洲国产欧美网| 欧美色视频一区免费|