• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SbPS4:A novel anode for high-performance sodium-ion batteries

    2022-03-14 09:30:06MiaoYangZhonghuiSunPingNieHaiyueYuCheneZhaoMengxuanYuZhongzhenLuoHongoGengXinglongWu
    Chinese Chemical Letters 2022年1期

    Miao Yang,Zhonghui Sun,Ping Nie,Haiyue Yu,Chene Zhao,Mengxuan Yu,Zhongzhen Luo,Hongo Geng,Xinglong Wu,f,??

    aSchool of Materials Engineering,Changshu Institute of Technology,Changshu 215500,China

    bFaculty of Chemistry,Northeast Normal University,Changchun 130024,China

    cCenter for Advanced Analytical Science,School of Chemistry and Chemical Engineering,Guangzhou University,Guangzhou 510006,China

    dKey Laboratory of Preparation and Application of Environmental Friendly Materials(Jilin Normal University),Ministry of Education,Changchun 130103,China

    eKey Laboratory of Eco-materials Advanced Technology,College of Materials Science and Engineering,Fuzhou University,Fuzhou 350108,China

    fKey Laboratory for UV Light-Emitting Materials and Technology,Northeast Normal University,Ministry of Education,Changchun 130024, China

    1These authors contributed equally to this work.

    ABSTRACT With the in-depth research of sodium-ion batteries(SIBs),the development of novel sodium-ion anode material has become a top priority.In this work,tube cluster-shaped SbPS4 was synthesized by a high-temperature solid phase reaction.Then the typical short tubular ternary thiophosphate SbPS4 compounded with graphene oxide(SbPS4/GO)was successfully synthesized after ultrasonication and freeze-drying.SbPS4 shows a high theoretical specific capacity(1335 mAh/g)according to the conversionalloying dual mechanisms.The unique short tube inserted in the spongy graphene structure of SbPS4/GO results in boosting the Na ions transport and alleviating the huge volume change in the charging and discharging processes,improving the sodium storage performance.Consequently,the tubular SbPS4 compounded with 10% GO provides an outstanding capacity of 359.58 mAh/g at 500 mA/g.The result indicates that SbPS4/GO anode has a promising application potential for SIBs.

    Keywords:Sodium-ion batteries High-capacity anode Thiophosphate SbPS4/GO Full cell

    Recently,due to the fluctuation of fossil energy prices,global warming caused by the destruction of ecosystems,and fossil fuels are gradually drying up.Researchers have conducted a lot of work in the development of sustainable energy[1].Solar energy,wind energy,and tidal energy stand out owing to their renewability,but there are many limitations in actual commercial applications[2].Therefore,it is particularly important to use cheap,efficient and safe equipment to store the generated energy.Among the numerous energy storage systems,lithium-ion batteries(LIBs)are well developed with the advantages of light density,small size and high energy density.Also,LIBs have been widely applied in many commercial fields,from small digital products to automobiles[3].However,there have obvious shortcomings of LIBs,such as the scarce resources and uneven distribution of lithium salts in the earth’s crust.With the large-scale commercial application of LIBs,the price of lithium resources rises quickly,which significantly limits the applicability of LIBs in stationary energy storage[4–6].Therefore,sodium-ion,potassium-ion batteries[7]and aqueous zinc-ion batteries[8]have gradually developed.

    Sodium-ion batteries(SIBs)have become a promising candidate to LIBs owing to the similar electrochemical reaction mechanism[9].In terms of material cost,the high abundance of sodium-based resources makes it indisputable have an advantage over lithiumbased materials.However,Na+/Na couple has higher redox potential than that of Li+/Li.Due to the large mass and atomic radius of sodium,the energy density of SIBs is low and their cycling performance is poor[10–12].Therefore,it is significant to find more suitable electrode materials[13],especially anode materials[14].An ideal anode material should have the advantages of economy,high-capacity storage property,good rate capability and low reaction potential[15].The electrode materials based on conversion reaction mechanism,especially the metal sulfides and phosphides[16]are the promising anode materials of SIBs.However,their drastic volume expansion and chemical instability seriously impede the rate and cycling performance,limiting their practical application.Because of the high theoretical specific capacity and relatively low redox potential,alloy anodes have attracted much attention for SIBs.At present,the research hotspots of alloy anodes mainly include the following two elements,Sn and Sb[17,18].But there is a serious problem in both of them.As the charge and discharge processes proceed,the electrode materials undergo huge volume change,which lead to the cracking of the electrode materials and the deterioration of battery cycling stability.Therefore,exploring novel anode materials with excellent electrochemical performance is urgently needed for practical applications.

    Thiophosphate has come into the field of researchers due to its high conductivity and low Vander Waals force.It is widely used in supercapacitors,photocatalysts,and electrocatalysts[19,20].However,when used as electrode material,due to the presence of phosphorus and sulfur,it is accompanied by drastic volume change during cycling process.Therefore,alleviating volume change based on its excellent electrochemical performance is the top priority of current research.Among them,the modification of the material itself and the coating of carbon materials are considered effective methods.In this work,we use SbPS4as an anode for SIBs[21].Due to the combination of alloying and conversion mechanisms,the theoretical specific capacity of SbPS4is 1335 mAh/g.In order to alleviate its volume effect,the tube cluster SbPS4is fragmented to form the short tube and composited with graphene oxide(GO).When used as an anode of SIBs,a splendid reversible capacity of 772.2 mAh/g was obtained at 0.1 A/g.While further improving the current density to 5 A/g,a charge capacity of 360 mAh/g has remained.When it returns original current density,the SbPS4/GO can obtain a capacity of 637.33 mAh/g,proving the structural stability of the SbPS4/GO at a high rate.The resultant SbPS4/GO is considered to improve the electron/Na+transport and relieve the volume change during charging/discharging process.The SbPS4/GO material displays high competitiveness in comparison with binary metal sulfides and phosphides for SIBs.

    Scheme 1 shows the detailed preparation process of SbPS4/GO.Firstly,the tube cluster SbPS4is synthesized by the hightemperature calcination method.After that,SbPS4is transformed into a short tube by fragmentation.Lastly,SbPS4/GO is obtained by composite with GO and freeze-drying.During the preparation process,the short tubular SbPS4is embedded in the spongy GO.Through the addition of GO,the conductivity of the material can be improved,the transmission distance of sodium ions and electrons can also be shortened,and the volume expansion during charging and discharging can be alleviated,resulting in the improvement of the electrochemical performance.The chemical composition and structure of the product are discussed in detail in Fig.1a,and the diffraction peaks of SbPS4prepared by high-temperature calcination are well matched.The diffraction peak intensity of SbPS4decreased after adding GO,which was due to the reduction of the size of SbPS4and the compound of carbon.Raman results on SbPS4/GO and GO show that the intensity ratio of D-band and Gband(ID/IG)of the two samples are 1.01 and 0.98,respectively(Fig.1b).The higherID/IGratio indicates the amorphous state of the carbonaceous materials owing to the porous feature[22].

    Scheme 1.The synthesis process of SbPS4/GO composite.

    Fig.1.The structural characterizations of SbPS4/GO:(a)XRD patterns,(b)Raman spectra.

    Fig.2.(a)Upright metallographic microscope image of tube cluster SbPS4.SEM images of(b)SbPS4 after fragmentation and(c)SbPS4/GO.TEM image of(d)SbPS4/GO and elemental mapping of(e-h)SbPS4GO.(i)HRTEM image of SbPS4/GO.

    Tube cluster SbPS4can be clearly observed in the upright metallurgical microscope image(Fig.2a).After fragmenting,its original tubules remain almost intact,and the size of each unit is significantly reduced(Fig.2b).As displayed in the SEM image(Fig.2c),GO glues together the nanosized short tubes of SbPS4to form a continuous conductive network that can significantly promote electron transfer.In addition,due to the presence of spongy graphene,there are obvious pore channels to guarantee the electrolyte complete penetration and the rapid ions migration.SbPS4/GO has a large number of pore channels,which can also be determined through the pore size distribution diagram(Fig.S1 in Supporting information).The element mappings of SbPS4/GO in Figs.2d–h confirm the uniform distribution of Sb,P,S and C,which is consistent with the SEM image shown in Fig.S2(Supporting information).The lattice spacing of 0.564 nm in the HRTEM image coincides with the(004)plane of the crystal SbPS4(Fig.2i),indicating the good purity of SbPS4.

    Fig.3a shows the discharge/charge profiles of SbPS4,SbPS4-X45 and SbPS4/GO composite in the initial five cycles.SbPS4-X45 was selected as the comparison material because it has the best electrochemical performance as shown in Fig.S3(Supporting information).SbPS4composited with 10% GO has the highest ionic conductivity and the lowest resistance value(Fig.S4 in Supporting information).The specific capacities of SbPS4,SbPS4-X45,and SbPS4/GO at 0.1 A/g are 356.6,717.2 and 772.71 mAh/g,respectively.The improved electrochemical performance of SbPS4/GO is ascribed to the nanominiaturization of tubular materials and the appropriate amount of composite with carbon materials(GO).

    Fig.3.(a)Galvanostatic curves of SbPS4,SbPS4-X45,SbPS4/GO at 0.1 A/g for the initial five cycles.(b)CV profiles of SbPS4/GO for the five cycles at 0.2 mV/s.(c)Long cycling performance of SbPS4,SbPS4-X45,SbPS4/GO and corresponding Coulombic efficiency at 1 A/g.(d)Nyquist plots.(e)Rate performance at various current densities.

    The electrochemical properties of SbPS4/GO are studied by the CV tests at a sweep rate of 0.2 mV/s(Fig.3b).At the first cathodic process,a peak located at 1.4 V can be indexed as the intercalation of Na+into the SbPS4/GO,while the distinct peak near 1.2 V is attributed to the conversion reaction of Na2S.The peak at 0.8 V corresponds to the breaking of P-S bond and the production of Na3P and Sb,while the peak at 0.23 V ascribes to the production of Na3Sb[23].During the initial anodic scan,the weak broad peak located at 0.25 V indicates Na3P desodiation,and the peak at 0.77 V attributed to Na3Sb dealloying.The next 1.5 V and 1.6 V peaks ascribe to Na2S and Na+further desodiation reaction[24].Remarkably,the CV profiles remain almost overlapped,suggesting the excellent electrochemical reversibility.Therefore,the corresponding redox reactions mechanism of SbPS4can be listed as follows:

    SbPS4+ 14Na++ 14e?→Na3Sb + 4Na2S + Na3P

    Na3P ?3Na++ 3e?+ P

    Na3Sb ?3Na++ 3e?+ Sb

    Na2S ?2Na++ 2e?+ S

    Fig.3c shows the cycling performance of different samples at 1 A/g.The reversible capacity of SbPS4/GO is 420.52 mAh/g after 100 cycles with the initial coulombic efficiency of 57%,which is superior to SbPS4–X45 and SbPS4.The Nyquist plots of the three samples consist of a depressed semicircle at the high frequency corresponding to the charge transfer process and an oblique line at the low frequency corresponding to the charge transfer process and an oblique line at the low frequency representing Na+diffusion process,confirming a faster electronic and ionic transport of SbPS4/GO than that of SbPS4-X45 and bare SbPS4(Fig.3d).The EIS plots of materials with different mixed graphene content are shown in Fig.S5a(Supporting information).It can be seen that SbPS4composited with 10% GO has the smallest resistance value.As expected,it exhibits the best electrochemical performance,which is consistent with the data shown in Fig.S4.The EIS analysis in Fig.S5b(Supporting information)shows that the charge transfer resistance(Rct)of the 100th cycle is lower than that of before cycling state,which may be due to the formation of the stable SEI layer between the electrode material and the electrolyte after repeated cycles,which is conducive to the transport of Na+.As shown in Fig.3e,the SbPS4/GO has the capacity of 359.58 mAh/g at 5 A/g.Importantly,the capacity of SbPS4/GO can return to 637.33 mAh/g when the current density returns to 0.1 A/g,indicating the structural stability of SbPS4/GO at a high rate.

    Fig.4. Ex situ XRD patterns of SbPS4/GO taken at different stages at 1 A/g.

    To further explore the possible reaction mechanism during the Na-insertion/extraction process,ex situXRD and XPS analysis of SbPS4/GO were performed at specific distinct potentials of the first charge/discharge curve.As shown in Fig.4,when the cell was discharged to 1.3 V,the Na2S was found[25].The presence of Na2S reveals that sodium ions react with sulfur after insertion into SbPS4.When the discharge voltage reaches 0.9 V,the characteristic peak of Sb has appeared.Further discharging to 0.3 V,Na3Sb was detected.After it was discharged to 0.05 V,the diffraction peak of Na3Sb becomes stronger and Na2S still exists.In the charging process,the diffraction peak of Sb appears again when the cell was charged to 1.0 V.With the extraction of sodium ions,the diffraction peaks of Na3Sb and S indicated that the desodiation reaction of Na2S and the dealloying process are not completed[26].After charging to 2 V,the signal of Na3Sb almost disappears.Compared with the original state,the diffraction peaks of fully charged state hardly change,further confirming the excellent reversibility of the SbPS4/GO.

    Fig.5.XPS analysis of the S 2p and P 2p signal for the electrodes at selected potentials in the first cycle.

    Fig.6.(a)CV curves at diverse sweep rates.(b)Linear relationship of log(i) vs.log(v).(c)Proportion of capacitive(shaded region)contribution at 0.1 mV/s.(d)Contribution percentage of capacitive and diffusion-controlled capacities vs. scan rates.

    XPS studies of the electrodes were carried out at various discharge/charge states in the first cycle.Fig.5 shows the highresolution S 2p and P 2p spectra of SbPS4/GO electrode with the SnP2S6and Cu3PS4as the references.In Fig.5a,the peaks corresponding to the S 2p3/2and S 2p1/2signals at 161.6 and 162.8 eV can be assigned to Na2S[27].The binding energy of 168.8 eV corresponds to S.It indicates that Na2S and S exist in the whole charge and discharge processes.Both the peak intensities of Na2S and S increase during the discharge process[28].There is still a tiny amount of Na2S and S at the end of the charging stage,indicating that the transformation reaction of S is not completely reversible.In Fig.5b,the two splitting peaks located at 132.6 and 133.7 eV were ascribed as the P-S bonding and 2p1/2of the P 2p spectrum,respectively[29].It can be seen that P elemental substance increases with the discharge process.Upon charging,the amount of P is gradually decreased with forming P-S bonding.As shown in Fig.S6a(Supporting information),the Sb 3d spectrum overlaps with O 1s spectrum and shows two peaks at 531 and 539.8 eV,which are attributed to the presence of Sb 3d3/2[30].In addition,535 and 532.5 eV correspond to the presence of O–C and O=C functional group,respectively[31].It can be seen from Fig.S6(Supporting information)that a large amount of Sb is generated as discharged to 0.5 V.With further discharging to 0.05 V,the amount of Sb decreases due to the occurrence of alloying reaction.When charged to 1.0 V,the dealloying of Na3Sb leads to an increase of Sb content.In the end,the charging is completed to 2.0 V,Sb still exists but the amount becomes less.In the C 1s spectrum of Fig.S6b,the peaks at 287.7 eV,285.5 eV and 284.3 eV can be ascribed to O–C=O,C–O and C–C bonds,respectively.

    To reveal the origin of high rate performance of SbPS4/GO,the sodium storage mechanism was studied by analyzing CV profiles at various scan rates from 0.1 mV/s to 1.0 mV/s(Fig.6a).The charge storage mechanism of SbPS4/GO can be quantified by dividing the current(i)at a fixed potential(v)into two mechanisms:k1vand k2v0.5.Here,aandbare adjustable parameters,vis scan rate,and k1and k2are constants.

    Fig.7.(a)Initial charge/discharge profiles of the full-cell and the homemade NVPOF cathode and SbPS4/GO anode in the half-cell.(b)Rate capability of the full-cell at different rates.

    If thebvalue approaches to 1,the electrochemical process is a surface-controlled process,such as adsorption/resolution[32].When thebvalue is 0.5,the process mainly relies on the diffusioncontrolled process[33].Fig.6b shows the fitting results of log(i)to log(v).The values ofbare 0.64,1.37,1.16 and 0.98,respectively.With the increase of scanning rate,the reaction of sodium ions is similar to the adsorption-desorption process,resulting in peak 2 being a surface-controlled process,and the same mechanism exists at peak 3[34].Fig.6c shows the normalized contribution percentage of capacitive and diffusion-controlled capacities.When the scanning rate is 0.1 mV/s,the capacitive contribution ratio reaches 60.1%.The contribution rate ofpseudo-capacitance is predominant with the increase of current density as shown in Fig.6d.The results indicate that pseudo-capacitance plays a decisive role in Naion storage at high scan rates,thus resulting in excellent rate capability[35].

    Motivated by such a superior specific capacity and an excellent rate capability of the SbPS4/GO anode.Na-ion full cell was constructed by coupling with Na3V2O2(PO4)2F(NVOPF)cathode for practical applications[36].The NVOPF cathode exhibits a high discharge capacity of~120 mAh/g at 0.1 C in a half-cell configuration.The typical charge/discharge curve of the Na-ion full cell shows an outstanding specific capacity of 119 mAh/g at 0.8 C between 1.2 V and 4.3 V(based on the weight of cathode)(Fig.7a).The full cell possesses two discharge plateaus located at 3.8–3.0 V and 2.5–1.8 V,respectively.Moreover,the specific capacity of 63 mAh/g could be obtained at 4 C(Fig.7b),indicating the superior rate capability of the Na-ion full cell.Furthermore,the full cell shows 62%capacity retention in comparison of the first cycle,exhibiting good cycling performance(Fig.S7 in Supporting information).Such a superior full cell performance indicates the potential application of SbPS4/GO anode for SIBs.

    In summary,the SbPS4/GO composite has been intensively studied as anode material for SIBs in this work.The unique structure boosts rapid reaction kinetics,inhibits electrode structural failure and agglomeration for volume change,suppresses the polysulfides shuttle behavior,resulting in excellent rate capability and good cycling performance.As an anode material for the half-cell,the SbPS4/GO exhibits a specific capacity of 772 mAh/g at 0.1 A/g.Moreover,a high capacity of 420.5 mAh/g could be also maintained after 100 cycles(1 A/g).Significantly,it has a high Na ion storage capacity of 119 mAh/g at 0.8 C in the full-cell configuration.The favorable advantages including low-cost composition,facile synthesis process,and excellent electrochemical performance enable the SbPS4/GO to be a potential anode material for high performance SIBs.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We gratefully acknowledge the financial support from the National Natural Science Foundation of China(Nos.91963118,51801030).This study is also supported by the Open Project Program of Key Laboratory of Preparation and Application of Environmental Friendly Materials(Jilin Normal University,No.2020004).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.065.

    亚洲欧美日韩高清在线视频 | 亚洲视频免费观看视频| 国产有黄有色有爽视频| 国产成人一区二区三区免费视频网站| 天堂8中文在线网| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲国产欧美一区二区综合| 成人国语在线视频| 啦啦啦中文免费视频观看日本| 成年人午夜在线观看视频| 亚洲伊人色综图| 午夜福利,免费看| 国产成人精品无人区| 女警被强在线播放| 热re99久久国产66热| 性色av一级| 一区福利在线观看| 国产精品 国内视频| 亚洲精品乱久久久久久| 高清欧美精品videossex| 好男人电影高清在线观看| 亚洲av美国av| 久久久国产成人免费| 制服人妻中文乱码| 午夜激情av网站| 国产精品麻豆人妻色哟哟久久| 女性生殖器流出的白浆| 日本wwww免费看| 精品少妇久久久久久888优播| av国产精品久久久久影院| 超碰成人久久| 无遮挡黄片免费观看| 女人久久www免费人成看片| 成人免费观看视频高清| 亚洲美女黄色视频免费看| 久9热在线精品视频| 99久久精品国产亚洲精品| 免费一级毛片在线播放高清视频 | 日韩 欧美 亚洲 中文字幕| 久久精品人人爽人人爽视色| 欧美日韩一级在线毛片| 久久人人爽av亚洲精品天堂| 亚洲熟女毛片儿| 久热这里只有精品99| 久久国产精品大桥未久av| 中文字幕人妻熟女乱码| 中国国产av一级| 777久久人妻少妇嫩草av网站| 免费黄频网站在线观看国产| 黄频高清免费视频| 久久久精品国产亚洲av高清涩受| 男女高潮啪啪啪动态图| 一本综合久久免费| 亚洲第一av免费看| 黄频高清免费视频| 国产精品亚洲av一区麻豆| 国产成人精品久久二区二区免费| 中文字幕制服av| 国产不卡av网站在线观看| 伊人亚洲综合成人网| av片东京热男人的天堂| 老司机亚洲免费影院| 精品亚洲成国产av| 国产精品av久久久久免费| 国产成人av教育| 国产日韩一区二区三区精品不卡| 动漫黄色视频在线观看| 女人久久www免费人成看片| 午夜精品久久久久久毛片777| 久久热在线av| 午夜视频精品福利| 免费高清在线观看日韩| 热99re8久久精品国产| 啦啦啦视频在线资源免费观看| 亚洲精品中文字幕在线视频| 高清视频免费观看一区二区| 精品熟女少妇八av免费久了| 亚洲国产毛片av蜜桃av| 天堂中文最新版在线下载| 亚洲av男天堂| 美女国产高潮福利片在线看| 久热这里只有精品99| 啪啪无遮挡十八禁网站| 伦理电影免费视频| 免费在线观看影片大全网站| 欧美日本中文国产一区发布| 亚洲欧美成人综合另类久久久| 久久 成人 亚洲| 少妇粗大呻吟视频| 99精国产麻豆久久婷婷| 91麻豆av在线| 久久久久国产精品人妻一区二区| 热99久久久久精品小说推荐| 香蕉国产在线看| 高潮久久久久久久久久久不卡| 在线观看www视频免费| 国产91精品成人一区二区三区 | 成年女人毛片免费观看观看9 | 午夜免费鲁丝| 动漫黄色视频在线观看| 国产精品.久久久| 国产熟女午夜一区二区三区| 午夜福利视频精品| 老熟女久久久| 国产av精品麻豆| 菩萨蛮人人尽说江南好唐韦庄| 99久久综合免费| 91字幕亚洲| 亚洲av日韩精品久久久久久密| 成人黄色视频免费在线看| 我的亚洲天堂| 亚洲全国av大片| 大香蕉久久网| 成人国语在线视频| 一二三四在线观看免费中文在| 国产精品久久久人人做人人爽| 日韩人妻精品一区2区三区| 欧美少妇被猛烈插入视频| 久热爱精品视频在线9| 国产一卡二卡三卡精品| 欧美成狂野欧美在线观看| 久久久久久久精品精品| 日韩欧美国产一区二区入口| 久久99一区二区三区| 熟女少妇亚洲综合色aaa.| 女性被躁到高潮视频| 欧美97在线视频| 亚洲成av片中文字幕在线观看| 99国产综合亚洲精品| 久久久久久久久久久久大奶| 国产麻豆69| 久久久久视频综合| 99国产精品99久久久久| 妹子高潮喷水视频| 国产主播在线观看一区二区| 久久人妻福利社区极品人妻图片| 亚洲天堂av无毛| 少妇的丰满在线观看| 久久热在线av| 又紧又爽又黄一区二区| 少妇精品久久久久久久| 岛国毛片在线播放| 久久亚洲国产成人精品v| 亚洲精品一区蜜桃| 欧美亚洲日本最大视频资源| 久热这里只有精品99| 亚洲成av片中文字幕在线观看| 别揉我奶头~嗯~啊~动态视频 | 叶爱在线成人免费视频播放| 精品一区在线观看国产| 丝瓜视频免费看黄片| 国内毛片毛片毛片毛片毛片| 成人影院久久| 久久久久久人人人人人| 最近最新中文字幕大全免费视频| 久久影院123| 老司机靠b影院| 亚洲av电影在线进入| 久久久久国产一级毛片高清牌| 一二三四在线观看免费中文在| 日本精品一区二区三区蜜桃| 777米奇影视久久| 亚洲精品第二区| 黄色视频不卡| 国产成人啪精品午夜网站| 丰满饥渴人妻一区二区三| 女人久久www免费人成看片| 国产成人欧美在线观看 | 久久精品国产综合久久久| 精品一区二区三卡| 别揉我奶头~嗯~啊~动态视频 | 免费看十八禁软件| 国产免费一区二区三区四区乱码| 久久久久久久国产电影| 成年美女黄网站色视频大全免费| 久久久久久久精品精品| 午夜福利视频在线观看免费| 欧美xxⅹ黑人| 看免费av毛片| 亚洲国产毛片av蜜桃av| 免费观看a级毛片全部| 亚洲精品国产av成人精品| 国产免费av片在线观看野外av| 亚洲一卡2卡3卡4卡5卡精品中文| 男人爽女人下面视频在线观看| 久久亚洲国产成人精品v| 国产成人一区二区三区免费视频网站| 秋霞在线观看毛片| 在线观看免费视频网站a站| 精品少妇黑人巨大在线播放| 后天国语完整版免费观看| 黑人操中国人逼视频| 日韩精品免费视频一区二区三区| 亚洲欧美成人综合另类久久久| 亚洲一区中文字幕在线| 色94色欧美一区二区| 亚洲国产中文字幕在线视频| av线在线观看网站| 久久免费观看电影| 搡老熟女国产l中国老女人| 亚洲精品久久成人aⅴ小说| 69精品国产乱码久久久| 国产在视频线精品| 久久久水蜜桃国产精品网| 大码成人一级视频| www.自偷自拍.com| 汤姆久久久久久久影院中文字幕| 国产精品久久久久成人av| 热99久久久久精品小说推荐| 可以免费在线观看a视频的电影网站| 欧美成人午夜精品| 亚洲九九香蕉| 久久青草综合色| 91成人精品电影| 超色免费av| 搡老熟女国产l中国老女人| 热99久久久久精品小说推荐| 久久久精品国产亚洲av高清涩受| 丰满饥渴人妻一区二区三| 精品国产一区二区三区久久久樱花| 国产精品 欧美亚洲| 女人被躁到高潮嗷嗷叫费观| 啪啪无遮挡十八禁网站| 久久国产亚洲av麻豆专区| 国产主播在线观看一区二区| 在线av久久热| 午夜视频精品福利| 伊人亚洲综合成人网| 少妇猛男粗大的猛烈进出视频| 巨乳人妻的诱惑在线观看| 成年人黄色毛片网站| av不卡在线播放| 美女高潮喷水抽搐中文字幕| 日本猛色少妇xxxxx猛交久久| 中文字幕制服av| 久久久久久久久久久久大奶| 一本久久精品| 性高湖久久久久久久久免费观看| 国产精品欧美亚洲77777| 亚洲精品国产av蜜桃| 人成视频在线观看免费观看| 欧美日韩国产mv在线观看视频| 九色亚洲精品在线播放| 日韩视频一区二区在线观看| 一级毛片女人18水好多| a级片在线免费高清观看视频| 国产精品秋霞免费鲁丝片| 久久人人爽人人片av| 亚洲九九香蕉| 中文字幕高清在线视频| 一本一本久久a久久精品综合妖精| 一本色道久久久久久精品综合| 国产精品一二三区在线看| 国产亚洲精品久久久久5区| 精品第一国产精品| 午夜福利一区二区在线看| 国产一区二区在线观看av| 亚洲成人免费电影在线观看| 亚洲欧美一区二区三区黑人| 色播在线永久视频| 在线天堂中文资源库| 欧美中文综合在线视频| 99久久人妻综合| 十八禁人妻一区二区| 免费在线观看视频国产中文字幕亚洲 | 宅男免费午夜| 久久久久久亚洲精品国产蜜桃av| 韩国精品一区二区三区| 美女主播在线视频| 国产精品一二三区在线看| 满18在线观看网站| 美女福利国产在线| 精品少妇黑人巨大在线播放| 国产日韩一区二区三区精品不卡| 国产av一区二区精品久久| 最新在线观看一区二区三区| 亚洲av成人不卡在线观看播放网 | 亚洲 国产 在线| av网站免费在线观看视频| 黑人操中国人逼视频| 99国产精品免费福利视频| 国产成人啪精品午夜网站| 女人高潮潮喷娇喘18禁视频| 精品国产乱码久久久久久小说| 亚洲国产精品成人久久小说| 成年美女黄网站色视频大全免费| 人妻人人澡人人爽人人| 久久av网站| 亚洲天堂av无毛| 国产精品一区二区精品视频观看| 亚洲一码二码三码区别大吗| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩一卡2卡3卡4卡2021年| 一区二区三区激情视频| 视频在线观看一区二区三区| 国产精品一区二区精品视频观看| 人成视频在线观看免费观看| 久久久久网色| 亚洲欧美一区二区三区黑人| 老司机深夜福利视频在线观看 | 国产精品久久久久久精品电影小说| 大陆偷拍与自拍| 亚洲欧美日韩高清在线视频 | 国产黄色免费在线视频| 亚洲专区国产一区二区| 久久免费观看电影| 九色亚洲精品在线播放| 母亲3免费完整高清在线观看| 亚洲专区字幕在线| 国产免费现黄频在线看| 国产av国产精品国产| 欧美老熟妇乱子伦牲交| 欧美少妇被猛烈插入视频| 日本欧美视频一区| 成年女人毛片免费观看观看9 | 亚洲欧美一区二区三区久久| 免费高清在线观看日韩| netflix在线观看网站| 国产欧美亚洲国产| 一级毛片精品| 国产欧美亚洲国产| av在线播放精品| 欧美激情 高清一区二区三区| 亚洲国产中文字幕在线视频| 日本91视频免费播放| 久久久国产成人免费| 亚洲三区欧美一区| 欧美日韩成人在线一区二区| 一区二区三区激情视频| 国产色视频综合| 狂野欧美激情性bbbbbb| 午夜福利在线观看吧| 老熟妇仑乱视频hdxx| 丝袜人妻中文字幕| 久久久久国产精品人妻一区二区| 男女下面插进去视频免费观看| 真人做人爱边吃奶动态| 亚洲精品粉嫩美女一区| 中文字幕av电影在线播放| 亚洲久久久国产精品| av天堂久久9| 国产在线观看jvid| 国产区一区二久久| 午夜免费成人在线视频| e午夜精品久久久久久久| 91字幕亚洲| tocl精华| 女人被躁到高潮嗷嗷叫费观| 嫁个100分男人电影在线观看| 一二三四在线观看免费中文在| 欧美xxⅹ黑人| 不卡av一区二区三区| 免费观看人在逋| 美国免费a级毛片| 啦啦啦 在线观看视频| 亚洲av电影在线观看一区二区三区| 午夜免费观看性视频| 夜夜夜夜夜久久久久| 在线观看舔阴道视频| 亚洲精品一二三| 日韩有码中文字幕| 不卡av一区二区三区| 国产精品久久久人人做人人爽| 制服诱惑二区| 王馨瑶露胸无遮挡在线观看| 精品亚洲成国产av| 纵有疾风起免费观看全集完整版| 国产精品一区二区免费欧美 | 久久九九热精品免费| netflix在线观看网站| 日韩精品免费视频一区二区三区| 久久久久国内视频| 亚洲国产欧美网| 少妇被粗大的猛进出69影院| bbb黄色大片| a级毛片黄视频| 在线天堂中文资源库| 国产男人的电影天堂91| 热re99久久精品国产66热6| 欧美激情高清一区二区三区| 久久热在线av| 波多野结衣av一区二区av| 麻豆av在线久日| av国产精品久久久久影院| 国产在线观看jvid| 如日韩欧美国产精品一区二区三区| 国产亚洲精品一区二区www | 精品国产一区二区三区四区第35| 狂野欧美激情性xxxx| 99久久人妻综合| 少妇人妻久久综合中文| 天天影视国产精品| 国产激情久久老熟女| 人妻 亚洲 视频| 久久久久精品国产欧美久久久 | 成年女人毛片免费观看观看9 | 成年人午夜在线观看视频| cao死你这个sao货| 国产亚洲av高清不卡| 在线观看免费日韩欧美大片| 每晚都被弄得嗷嗷叫到高潮| 精品国产一区二区久久| videos熟女内射| 一本色道久久久久久精品综合| 国产一区有黄有色的免费视频| 老司机午夜福利在线观看视频 | 人妻 亚洲 视频| 色婷婷av一区二区三区视频| 婷婷色av中文字幕| 电影成人av| 在线十欧美十亚洲十日本专区| 亚洲一码二码三码区别大吗| 亚洲欧美日韩另类电影网站| 中文欧美无线码| 老汉色∧v一级毛片| 欧美日韩一级在线毛片| 精品亚洲乱码少妇综合久久| 少妇的丰满在线观看| 精品视频人人做人人爽| 成人18禁高潮啪啪吃奶动态图| 国产精品二区激情视频| 在线观看www视频免费| 一区在线观看完整版| 亚洲 国产 在线| 操美女的视频在线观看| 男女无遮挡免费网站观看| www.熟女人妻精品国产| 欧美黑人欧美精品刺激| 亚洲成人手机| 亚洲欧美一区二区三区黑人| 侵犯人妻中文字幕一二三四区| 汤姆久久久久久久影院中文字幕| 欧美 日韩 精品 国产| 久久久精品国产亚洲av高清涩受| 国产日韩欧美在线精品| 欧美国产精品一级二级三级| 亚洲国产精品999| 午夜免费鲁丝| 国产免费现黄频在线看| 老司机亚洲免费影院| av网站免费在线观看视频| 亚洲精品一卡2卡三卡4卡5卡 | 一本大道久久a久久精品| 一本一本久久a久久精品综合妖精| 国产精品一区二区在线不卡| 国产欧美日韩精品亚洲av| 啦啦啦视频在线资源免费观看| 最近中文字幕2019免费版| 免费在线观看视频国产中文字幕亚洲 | 亚洲 欧美一区二区三区| 国产免费现黄频在线看| 老司机影院成人| 色精品久久人妻99蜜桃| 欧美 日韩 精品 国产| 色婷婷av一区二区三区视频| 精品一品国产午夜福利视频| 国产精品一区二区在线不卡| 亚洲精品粉嫩美女一区| 夜夜骑夜夜射夜夜干| 老鸭窝网址在线观看| 99热全是精品| 在线观看免费午夜福利视频| 精品亚洲成国产av| av一本久久久久| www.999成人在线观看| 亚洲国产欧美网| 亚洲av日韩在线播放| 久久人人爽人人片av| 99精品久久久久人妻精品| 女人高潮潮喷娇喘18禁视频| svipshipincom国产片| 99re6热这里在线精品视频| 亚洲国产欧美网| 亚洲一码二码三码区别大吗| av免费在线观看网站| 这个男人来自地球电影免费观看| 欧美日韩黄片免| 亚洲国产av新网站| 日韩视频在线欧美| 黄色a级毛片大全视频| 老司机影院毛片| 亚洲国产精品成人久久小说| 欧美日韩视频精品一区| av在线app专区| 日本猛色少妇xxxxx猛交久久| 18禁裸乳无遮挡动漫免费视频| 欧美在线黄色| av天堂久久9| 女性生殖器流出的白浆| 大片免费播放器 马上看| 久久久久精品人妻al黑| 黄色怎么调成土黄色| 久久精品国产综合久久久| 亚洲国产日韩一区二区| 国产成人av激情在线播放| 十八禁网站网址无遮挡| 黄色毛片三级朝国网站| 一区二区日韩欧美中文字幕| 老司机午夜福利在线观看视频 | 老司机亚洲免费影院| 国产成人精品无人区| 天天添夜夜摸| 一区二区三区四区激情视频| 亚洲久久久国产精品| 久久久久久久久免费视频了| 欧美av亚洲av综合av国产av| 高清av免费在线| 国产主播在线观看一区二区| 久久ye,这里只有精品| 精品国产一区二区三区四区第35| 国产激情久久老熟女| 热99久久久久精品小说推荐| 9色porny在线观看| 亚洲成人国产一区在线观看| 国产高清videossex| 另类亚洲欧美激情| svipshipincom国产片| 在线永久观看黄色视频| 91大片在线观看| 久久久水蜜桃国产精品网| 国产av国产精品国产| 国产欧美亚洲国产| 啦啦啦在线免费观看视频4| 日韩三级视频一区二区三区| 窝窝影院91人妻| 女人久久www免费人成看片| 国产免费视频播放在线视频| 国产欧美亚洲国产| 国产1区2区3区精品| 成人亚洲精品一区在线观看| 青青草视频在线视频观看| 欧美老熟妇乱子伦牲交| 久久久久久久久免费视频了| 精品人妻熟女毛片av久久网站| 久久99热这里只频精品6学生| 国产伦理片在线播放av一区| 人人妻人人添人人爽欧美一区卜| 日本精品一区二区三区蜜桃| 我的亚洲天堂| 91精品三级在线观看| 精品少妇久久久久久888优播| 国产欧美日韩精品亚洲av| 中文字幕av电影在线播放| 成人免费观看视频高清| netflix在线观看网站| 天堂中文最新版在线下载| 欧美日韩av久久| 一区二区三区精品91| 天天躁夜夜躁狠狠躁躁| 亚洲成国产人片在线观看| 欧美av亚洲av综合av国产av| 日韩大片免费观看网站| 国产不卡av网站在线观看| 搡老熟女国产l中国老女人| 大香蕉久久成人网| 亚洲国产毛片av蜜桃av| 看免费av毛片| 伊人亚洲综合成人网| 韩国精品一区二区三区| 国产精品一区二区在线不卡| 欧美激情高清一区二区三区| 国产伦人伦偷精品视频| 精品少妇一区二区三区视频日本电影| 99热网站在线观看| a级片在线免费高清观看视频| 脱女人内裤的视频| 国产精品一区二区在线观看99| 欧美性长视频在线观看| 欧美成狂野欧美在线观看| 国产真人三级小视频在线观看| 一级毛片女人18水好多| 欧美精品人与动牲交sv欧美| 国产在线一区二区三区精| 久久影院123| 成年美女黄网站色视频大全免费| 欧美 日韩 精品 国产| 亚洲欧洲日产国产| 亚洲av电影在线进入| 韩国高清视频一区二区三区| 狂野欧美激情性xxxx| 啦啦啦 在线观看视频| 国产精品1区2区在线观看. | 女性生殖器流出的白浆| 国产日韩欧美视频二区| 精品久久蜜臀av无| 亚洲中文av在线| 99热全是精品| 精品久久蜜臀av无| 亚洲中文av在线| 亚洲精品成人av观看孕妇| 一本色道久久久久久精品综合| 国产一区二区三区综合在线观看| 女性被躁到高潮视频| 精品国产一区二区久久| 欧美黄色片欧美黄色片| 美女国产高潮福利片在线看| 国产麻豆69| 日本精品一区二区三区蜜桃| 9热在线视频观看99| 色婷婷av一区二区三区视频| 精品少妇黑人巨大在线播放| 水蜜桃什么品种好| 最新在线观看一区二区三区| 在线天堂中文资源库| 久久国产精品影院| 国产精品亚洲av一区麻豆| 人妻一区二区av| 欧美日韩av久久| 两人在一起打扑克的视频| 日本黄色日本黄色录像| 欧美日韩精品网址| 国产97色在线日韩免费| www.av在线官网国产| 麻豆乱淫一区二区| 午夜激情久久久久久久|