• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mitigating side reaction for high capacity retention in lithium-sulfur batteries

    2022-03-14 09:29:58YongCaiQiJinKaixinZhaoXinzhiMaXitianZhang
    Chinese Chemical Letters 2022年1期

    Yong Cai,Qi Jin,Kaixin Zhao,Xinzhi Ma,Xitian Zhang

    Key Laboratory for Photonic and Electronic Bandgap Materials,Ministry of Education,School of Physics and Electronic Engineering,Harbin Normal University,Harbin 150025,China

    ABSTRACT Li–S batteries have shown great potential as secondary energy batteries.However,the side reaction between Li anodes and polysulfides seriously limited their practical application.Herein,the artificial protective film,which is consisted of Li-Nafion and TiO2,was designed and successfully prepared to achieve a corrosion-resistant Li anode in Li-S battery.In the composite protective film,the Li-Nafion could effi-ciently prevent the contact between Li anodes and polysulfides,and the incorporation of TiO2 nanoparticles into the Nafion could significantly increase the ionic conductivity and mechanical strength of the protective film.Li-Li symmetric cells with an optimal artificial protective film exhibited an extended cyclelife of 750 h at a current density of 1 mA/cm2 in Li2S8 electrolyte.Moreover,the Li–S full battery with an optimal protective Li anode exhibited higher capacity retention of 777.4 mAh/g after 100 cycles at 0.1 C as well as better rate performance than the cell with a pure Li anode.This work provides alternative insights to suppress the side reaction for Li–S batteries with high capacity retention.

    Keywords:Nafion/TiO2 Artificial protection film Li anode Side reaction Lithium-sulfur batteries

    Lithium-sulfur(Li–S)batteries have become a very promising next-generation energy battery due to the high theoretical energy density(2600 Wh/kg),environmental friendliness,and abundant S reserve[1–6].However,the practical application of Li–S batteries have been severely hindered due to the capacity attenuation caused by the side reaction between polysulfides(PSs)in electrolyte and Li metal anode[7–9].So far,the side reaction is rarely discussed from the perspective of the anode protection in previous reports.Under the action of concentration field,the soluble high-order PSs can migrate to the side of the Li metal anode and then react with it to form low-order PSs.Moreover,under both the action of concentration field and electric field,low-order PSs can move back to the side of the cathode and react with it,resulting in the loss of active materials such as S and Li.The successive reactions cause serious decline of capacity[10].Hence,it is urgent to develop a strategy to mitigate the side reaction for high-capacity retention in Li–S batteries.

    Among all methods,the artificial protective film is a feasible strategy to suppress the occurrence of the side reaction[11–14].As a representative work,Lai’s group fabricated anin-situartificial protective film through the chemical reaction between Mg2N3and Li foil for stable lithium anode[15].Regrettably,the PSs in electrolyte could infiltrate into the protective film and react with the Li metal anode,which would result in the formation of Li2S on the surface of the Li anode[16].The Li2S will exacerbate the instability of the routine solid electrolyte interface(SEI)film,and further aggravate the anode failure[17].Therefore,it is very difficult for the individual inorganic films as the protective film of the Li anode to protect it.The mixed application of inorganic and organic materials as the protective film was suggested[18].In which,organic materials can efficiently inhibit the PSs in electrolyte to infiltrate into the protective film,while inorganic materials can improve the lithium-ionic conductivity and the mechanical strength of the protective film[10,19–21].Based on this consideration,Nafion materials are usually applied[10,18].It is attributed to that(i)the Nafion materials exhibit a stable electrochemical performance,(ii)the Nafion has a high-lithium-affinity feature,and(iii)the Nafion molecule chain contains the sulfonate group(-SO3?),which can prevent PSs from contacting with the Li anode by static electricity[22–26].As a representative work,our group achieves a stable Li metal electrode in Li–S batteries by the Nafion-based doublelayer protective film[10].The outstanding performance indicated the positive effect of the Nafion-based film for the Li metal anode protection.Unfortunately,in this work,the side reaction is simply concerned.It is necessary to understand the side reaction and suppress it.Herein,we propose a protective film being consisted of the TiO2and Nafion(The detailed experimental section could be found in Supporting information.),in which TiO2could not only increase the ionic conductivity and the mechanical strength of the film,but also make the film’s electrical potential more negative thanks to the synergistic effect of Nafion and TiO2for inhibiting the infiltration of PSs to suppress the side reaction[27–29].In a word,the composite film can not only alter the interface properties of the Li metal anode to promote the uniform lithium plating,but also suppress the side reaction for high-capacity retention in Li–S batteries.The ionic conductivity and electrical potential of the protective film are adjusted by changing the content of TiO2[27,30–33].The optimized Li-Nafion/TiO2with 0.10 wt% TiO2(denoted as LNT-0.10)film exhibits a much higher lithium-ion conductivity and a lower negative electrical potential.Therefore,the symmetric cells,using the Li foil protected by LNT-0.10(denoted as LLNT-0.10)as electrodes,exhibit the extended cycle-life in Li2S8electrolyte for 750 h at a current density of 1 mA/cm2with a fixed capacity of 1 mAh/cm2and 420 h at an ultra-high-capacity density of 10 mAh/cm2thanks to the presence of the composite film.Moreover,the symmetric cell shows a longer cycle-life(175 h)than the pure Li anode(70 h)in Li2S8electrolyte,using the ultra-thin Li anode protected by LNT-0.10,with the thickness of 50μm.The Li–S full batteries with a LLNT-0.10 anode also exhibit higher capacity retention of 777.4 mAh/g and better rate performance of 550.7 mAh/g at 1 C.These results successfully demonstrate the feasibility of the synergistic effect of Nafion and TiO2to suppress the side reaction for high capacity retention in Li-S batteries.

    Fig.1.(a)The fabrication process of protected electrodes.Top-view SEM images of(b)LLNT-0,(c)LLNT-0.05,(d)LLNT-0.10,(e)LLNT-0.20 electrode surfaces.

    Fig.2.(a)Lithium-ionic conductivity and(b)lithium-ionic nucleation overpotential of Nafion/TiO2 film with different contents of TiO2.Zeta potentials of(c)different protective films and(d)UV–vis absorption spectra of different protective films.(e)Cycling life of symmetric cells with different electrodes in Li2S8 electrolyte at the current density of 1 mA/cm2 and capacity density of 1 mAh/cm2.

    The preparation progress of the Li metal protected by Li-Nafion/TiO2(LLNT)electrodes is shown in Fig.1a.Firstly,the Li-Nafion solution(15 μL)was dripped on a Li foil and dried at room temperature for 12 h.The top-view SEM image of the electrode shows a smooth and flat surface,as shown in Fig.1b.After drying,Li-Nafion/TiO2(LNT)solutions(35 μL)with different TiO2contents were dripped on the resulting electrodes and dried at 60 °C for 12 h to form an artificial protective film.The thickness of LNT-0.10 artificial film is approximate 1.5 μm(Fig.S1 in Supporting information).The color of the electrodes changes from silvery-white to off-white.Their top-view scanning electron microscopy(SEM)images are shown in Figs.1c–e.From the SEM images in Figs.1c–e,many white spots on the surface of LLNTs are observed,indicating the existence of TiO2nanoparticle clusters due to the addition of TiO2.As shown in Fig.S2(Supporting information),the element mapping images of Nafion/TiO2film demonstrate that TiO2nanoparticles are uniformly dispersed in Nafion.To further reveal the composition of protective films,X-ray diffraction(XRD)analysis was employed.Fig.S3(Supporting information)shows the XRD patterns of the steel sheet,Li-Nafion/TiO2films with different TiO2contents and the standard card of TiO2(JCPDS No.34–180).The reason for choosing steel sheet is to avoid the appearance of the corresponding peaks caused by the lithium metal oxidation.In Fig.S3,XRD peaks at 43.8°,51.2° are attributed to the pure steel sheet,and the XRD peak centered at 17.3° originates from the sulfonate ion chain of Nafion[18].In addition,the XRD peak at 27.3° is labeled to(110)plane of TiO2.Moreover,as shown in Fig.S4(Supporting information),the characteristic absorption bands of Nafion centered at 1213,1147 and 980 cm?1can be clearly observed in FTIR spectra.In addition,the absorption bands centered at 1648 and 1058 cm?1are attributed to the lithium sulfonate,further confirming the existence of Nafion[18].The lithium-ionic conductivity of a protective film is an important parameter to determine the lifetime of a lithium anode.It is calculated from Eq.1[34]:

    The higher lithium-ionic conductivity stands for the better ability of the protective film to redistribute the lithium ions flux for achieving a stable anode[35].Electrochemical impedance spectroscopy(EIS)of the protective films are shown in Fig.S5(Supporting information),the LLNT-0.10 electrode exhibits the lowest equivalent series impedance compared to the other electrodes,indicating the highest lithium-ionic conductivity of the LLNT-0.10 electrode.From Fig.2a,the pure Li-Nafion film exhibits the lowest ionic conductivity(4.19×10?5S/cm),while the LNT-0.10 film exhibits the highest ionic conductivity(36.1×10?5S/cm),due to the incorporation of the TiO2.However,when TiO2content reaches the 0.20 wt%,the ionic conductivity of the LNT-0.20 film appears to decrease,which could be due to the reason that the larger size and higher density of TiO2nanoparticle clusters hinder the lithium ion migration[18].To further investigate the effect of the protective films on the lithium-ion nucleation overpotential,Li-Cu batteries were fabricated.The LNT-0.10 film exhibits the lowest lithium-ion nucleation overpotential(23 mV),indicating that it is favorable for lithium ions to migrate compared to the other protective films(Fig.2b).In other words,the LNT-0.10 film can promote a stable and uniform deposition of lithium ions.To know the capacity of protective films for inhibiting the side reaction,the zeta potential was performed.The more negative zeta potential is,the better inhibitory effect on LiPSs does[10,22–26].From the Fig.2c,the absolute zeta potential value gradually increases with the increase of TiO2content.This is because that the introduction of TiO2results in the long chain of sulfonate ions of Nafion into short chain by the electrostatic interaction,exposing more negative charged sites[28,29].Among all Li-Nafionbased protective films,the LNT-0.10 film shows the most negative zeta potential(?5.46 mV),indicating its excellent inhibition effect on LiPSs.With the addition of TiO2,the absolute value of zeta potential of Nafion/TiO2first increases because the TiO2nanoparticles change the shape of the ionic cluster and increases the density of the negatively charge sites(-SO3?on the side chains)[18].However,the TiO2content is further increased(reaching 0.20 wt%),and aggregation of TiO2nanoparticles would occur(Fig.1e),leading to that the specific surface area of the corresponding TiO2becomes small and the ability to change the shape of the ionic cluster begins to become weak.To further prove this result and further understand the corrosion resistance of different electrodes,we conducted an electrode corrosion experiment.The pure Li foil,LLNT-0,LLNT-0.05,LLNT-0.10 and LLNT-0.20 were put into 5 mL of 4 mmol/L Li2S8solution,respectively.After Li2S8fully reacts with the Li metal anode,we measured the residual concentration of Li2S8in the solution by ultraviolet-visible absorption spectrum to judge the degree of the side reaction.The higher Li2S8concentration is remained,the higher corrosion resistance of the electrode is achieved.As shown in Fig.2d,among all the solutions,the solution containing LLNT-0.10 possesses the highest concentration of Li2S8,which is close to the original Li2S8solution,further confirming the suitable TiO2content plays an important role in inhibiting the occurrence of the side reaction.

    The mechanical properties of the protective films are also an important parameter.The mechanical properties of the protective films were studied by atomic force microscopy(AFM).As shown in Figs.S6 and S7(Supporting information),the mechanical strength of LNT-0.10 film(3.28 GPa)is much higher than that of LNT-0 film(1.44 GPa),suggesting that the incorporation of TiO2makes the protective film become tougher to adapt to the changes of the Li anode volume.

    Subsequently,Li,LLNT-0,LLNT-0.05,LLNT-0.10 and LLNT-0.20 symmetric cells were assembled with Li2S8electrolyte to testify the repellent effect of the protective films on LiPSs in the electrolyte.As shown in Fig.2e,the pure Li electrode exhibits the initial polarization of 100 mV and the cycle life of 140 h at the current density of 1 mA/cm2and the capacity of 1 mAh/cm2.Apparently,as shown in Fig.S8(Supporting information),the polarization increases suddenly to 210 mV when the battery cycles for 180 h.Such a phenomenon could be caused by the severe corrosion of Li2S8in electrolyte(Figs.S10a and b in Supporting information)[10].Excitingly,as shown in Fig.2e,LLNT-0.10 exhibits the lowest initial polarization of 70 mV and the longest cycle-life(750 h).The polarization of LLNT-0.10 remains unchanged at about 70 mV when the battery cycles for around 670 h(Fig.S9 in Supporting information).It could be attributed to the side reaction to be well suppressed(Figs.S10c and d in Supporting information).Although LLNT-0,LLNT-0.05,LLNT-0.20 also show an extended cycle-life,the batteries still fail at only 250 h,330 h and 300 h,respectively.The failure of these batteries is mainly due to the insufficient suppression of the side reaction.

    Fig.3.(a)Voltage-time curves of Li,LLNT-0 and LLNT-0.10 symmetric cells at a current density of 5 mA/cm2 and capacity density of 5 mAh/cm2 in Li2S8 electrolyte.EIS of Li,LLNT-0 and LLNT-0.10 symmetric cells(b)before cycling and(c)after cycling.

    In order to further understand the effect of the protective films on the Li anode,the batteries were disassembled after 15 cycles at a current density of 1 mA/cm2and a capacity of 1 mAh/cm2.From the top-view SEM images in Figs.S10a and b,a rough and looser structure with some holes and cracks is observed on the surface of the pure Li anode,which could be caused by seriously corrosive effect of Li2S8.In contrast,as shown in Figs.S10c and d,a smoother and compact structure is observed on the surface of the LLNT-0.10 anode,indicating that the Li electrode corrosion is well suppressed.The Li striping morphologies on Li and LLNT-0.10 electrodes were also detected to account for the stability of anodes.Figs.S11a and b(Supporting information)show the pure Li anode surface with some holes and cracks,demonstrating uneven Li ion extraction and serious electrode corrosion.Differently,a smooth and flat striping surface is detected on the LLNT-0.10 anode,which proves the integrity and excellent protection effect of the film to the Li anode(Figs.S11c and d in Supporting information).In the corresponding optical image,we observe the surface of LLNT-0.10 remains unchanged as cycling before.However,the surface of the pure Li anode has turned from metallic bright white to black,which could be caused by the corrosion of Li2S8in electrolyte.Fig.S12(Supporting information)shows the Li deposited morphologies on the surface of the pure Li and LLNT-0.10 electrodes at a current density of 5 mA/cm2and capacity 5 mAh/cm2.The surface of the LLNT-0.10 electrode(Figs.S12c and d)is flatter than the pure Li electrode(Figs.S12a and b),which can further confirm the excellent protective effect of the Nafion/TiO2film.

    In addition,the charge-discharge curves of voltage-time were performed at a high current density and high-capacity of 5 mA/cm2and 5 mAh/cm2.In Fig.3a,the LLNT-0.10 anode exhibits a much longer cycle life(100 h)than the pure Li anode(20 h)and LLNT-0 anode(50 h).The extended cycle-life could be mainly attributed to the suppression of the electrode corrosion.The EIS measurements were also made.In Fig.3b,the pure Li anode exhibits the lowest impedance(48Ω)for the transportation of Li ions through SEI(RSEI)before cycling.However,LLNT-0.10(120Ω)and LLNT-0(183Ω)exhibits a much higherRSEIthan the pure Li anode,which is due to the presence of protective films to hinder the lithium-ion transmission[10,18].Unfortunately,theRSEIof the pure Li anode increases to 126Ωafter 5 cycles at high current density,while theRSEIof LLNT-0.10 rapidly decreases to 14Ω(Fig.3c)due to infiltration of electrolyte into the protective film during cycling and the excellent protection of the Li anode[10].Moreover,the electrode thickness and volume expansion rate were calculated to compare the stability of anodes by the cross-sectional SEM images(theoretically,1 mAh/cm2for Li corresponds to 4.85 μm).In Fig.S13(Supporting information),after plating the capacity of 5 mAh/cm2on different electrodes,the pure Li anode exhibits a looser structure with the thickness of 51.7 μm and suffers a much larger volume expansion rate of 113%,while the LLNT-0.10 exhibits a compact structure with the thickness of 33.2 μm and a lower volume expansion rate of 36%(Fig.S14 in Supporting information).This is because the composite film could not only prevent the corrosion from PSs,but also promote the lithium-ion flow to plate evenly.Moreover,the stable performance of the LLNT-0.10 symmetric cell with ultrahigh-capacity of 10 mAh/cm2can be up to 420 h(Fig.S15 in Supporting information).These results have successfully proved the outstanding protective effect of the composite film.In order to explore whether the protective film can achieve a stable anode cycle for an ultra-thin Li foil with a thickness of 50 μm,the symmetric cells were assembled,using Li2S8electrolyte.In Fig.S16(Supporting information),the LLNT-0.10 still shows an extended cycle life(175 h)compared to the pure Li electrode(around 70 h).These results illustrate that the protective film is also feasible under the ultra-thin lithium foil batteries.

    The specific Li–S batteries were assembled for testing the shuttle current,using C/S as cathodes with the average sulfur loading of 1.3 mg/cm2,pure Li and LLNT-0.10 as anodes and 40 μm etherbased electrolyte without LiNO3as electrolyte.In Fig.S17(Supporting information),the battery with LLNT-0.10 anode shows the much lower shuttle current compared to the battery with the pure Li anode,demonstrating the side reaction is well suppressed by the LNT-0.10 film.Moreover,Li–S full batteries were assembled using standard ether-based Li–S electrolyte,C/S as cathodes and Li,LLNT-0,0.10 as anodes.In Fig.4a,CV curves exhibit the almost identical redox peaks,implying the presence of protective films did not affect the kinetics of redox reaction[10].In addition,galvanostatic charge-discharge(GCD)profiles were also performed at the current density of 0.1 C with average sulfur loading of 1.3 mg/cm2.In Fig.4b,the battery with the pure Li anode exhibits the initial capacity of 1021.6 mAh/g and decays to 780.9 mAh/g after 10 cycles at 0.1 C.In sharp contrast,the battery with LLNT-0.10 anode exhibits a similar initial capacity of 1037.3 mAh/g,but it can still remain a high capacity of 957.1 mAh/g after 10 cycles at 0.1 C.The Li-S battery with LLNT-0 anode exhibits the initial capacity of 1014.6 mAh/g and a capacity retention of 800.7 mAh/g.The higher capacity retention of LLNT-0.10 could be attributed to the excellent suppression of the side reaction.Fig.4c shows their cycling performances at 0.1 C.The capacity of the battery with LLNT-0.10 anode decreases from 1037.3 mAh/g to 777.4 mAh/g with a capacity retention rate of 74.9% after 100 cycles.The batteries with the pure Li anode and LLNT-0 anode exhibit the capacity retention of 557.4 and 593.2 mAh/g with capacity retention rate of 54.5 and 58.4% after 100 cycles.The rate performances are shown in Fig.4d.The battery with the LLNT-0.10 exhibits a much higher discharge capacity retention of 550.7 mAh/g at the current density of 1 C compared to the pure Li anode(212.7 mAh/g)and LLNT-0 anode(214.5 mAh/g).In addition,when the current density is decreased from 1 C to 0.1 C,the LLNT-0.10 anode still maintains the higher discharge capacity of 926.3 mAh/g than the pure Li anode(754.3 mAh/g)and LLNT-0 anode(791.1 mAh/g),indicating the side reaction is well suppressed by the synergistic effect of the Li-Nafion and TiO2in the LNT-0.10 film.Moreover,the cycle performances for 300 cycles at 0.5 C are shown in Fig.4e,the batteries with the pure Li anode,LLNT-0 anode and LLNT-0.10 anode exhibit the similar initial capacity of 743.2 mAh/g,820 mAh/g and 789.1 mAh/g.However,LLNT-0.10 anode maintains the higher capacity and capacity retention rate of 466.1 mAh/g and 59.07% compared to the pure Li anode(211 mAh/g and 28.39%)and LLNT-0 anode(330.4 mAh/g and 40.29%).

    Fig.4.(a)CV curves in the voltage range of 1.5 V-3 V.(b)1st and 10th GCD curves at 0.1 C.(c)Cycle performances at 0.1 C for 100 cycles.(d)Rate performance at different rates.(e)Cycle performances at 0.5 C for 300 cycles for Li–S batteries with Li,LLNT-0 and LLNT-0.10 as anodes in standard Li–S electrolyte.

    In summary,the Li-Nafion/TiO2composite films were fabricated and showed high lithium ionic conductivity,high mechanical properties and negative zeta potential.The LNT-0.10 is an optimized protective film in our experiment.The LLNT-0.10 symmetric cell achieves an extended cycle-life of 750 h and the Li–S full battery with the LLNT-0.10 as an anode delivers a high-capacity retention rate of 74.9% and the better rate performance of 550.7 mAh/g at 1 C.The improvement of the electrochemical performance could be attributed to the result that the side reaction is completely suppressed.Our work provides alternative insights into exploring the inhibitory effect of the artificial protective film on the side reaction.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This study was partially supported by grants from the National Natural Science Foundation of China(Nos.51772069 and 52072099).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.05.065.

    久久久精品欧美日韩精品| 日韩国内少妇激情av| 婷婷色综合www| 国产精品1区2区在线观看.| 能在线免费观看的黄片| 亚洲欧洲国产日韩| 欧美不卡视频在线免费观看| 午夜免费激情av| 国产一区二区在线观看日韩| 亚洲最大成人中文| 97精品久久久久久久久久精品| 国产精品人妻久久久影院| 老司机影院毛片| 中文字幕制服av| 亚洲真实伦在线观看| 日韩视频在线欧美| 97热精品久久久久久| 免费观看a级毛片全部| 色5月婷婷丁香| 久久精品国产亚洲网站| 丰满乱子伦码专区| 久久国产乱子免费精品| 国产精品一区二区三区四区免费观看| 久久99热6这里只有精品| 一级a做视频免费观看| 中文欧美无线码| av福利片在线观看| 国产 一区 欧美 日韩| 一本久久精品| 男女国产视频网站| 国国产精品蜜臀av免费| 久久人人爽人人爽人人片va| 自拍偷自拍亚洲精品老妇| 赤兔流量卡办理| 一级黄片播放器| 听说在线观看完整版免费高清| 男人舔女人下体高潮全视频| h日本视频在线播放| 中文字幕久久专区| 51国产日韩欧美| 久久精品久久精品一区二区三区| 亚洲av成人精品一二三区| 国产高潮美女av| 国产精品99久久久久久久久| 91精品国产九色| 91在线精品国自产拍蜜月| 婷婷六月久久综合丁香| 欧美区成人在线视频| 欧美潮喷喷水| 午夜激情福利司机影院| 国产高清有码在线观看视频| 亚洲精品色激情综合| 亚洲自拍偷在线| 亚洲欧美一区二区三区黑人 | 九草在线视频观看| 别揉我奶头 嗯啊视频| 在现免费观看毛片| 欧美性猛交╳xxx乱大交人| 美女黄网站色视频| 婷婷色麻豆天堂久久| 免费无遮挡裸体视频| 久久久久久久久久久丰满| 在线 av 中文字幕| 校园人妻丝袜中文字幕| 日日撸夜夜添| 国产av在哪里看| 最近中文字幕2019免费版| 免费av观看视频| 亚洲人成网站在线播| 男人爽女人下面视频在线观看| 69人妻影院| 床上黄色一级片| 免费观看a级毛片全部| 天堂中文最新版在线下载 | 亚洲国产精品成人综合色| 亚洲国产精品专区欧美| 亚洲av国产av综合av卡| 肉色欧美久久久久久久蜜桃 | 国产91av在线免费观看| 午夜精品在线福利| 听说在线观看完整版免费高清| 国产成人福利小说| 国产极品天堂在线| 国产精品一区二区三区四区免费观看| 久久精品国产鲁丝片午夜精品| 精品欧美国产一区二区三| 乱人视频在线观看| 久久精品国产自在天天线| 国产熟女欧美一区二区| 午夜免费观看性视频| 国产无遮挡羞羞视频在线观看| 毛片一级片免费看久久久久| 精品久久久久久电影网| 69精品国产乱码久久久| 少妇的逼水好多| 日韩中文字幕欧美一区二区 | 欧美日韩精品网址| www.熟女人妻精品国产| 亚洲一区二区三区欧美精品| 国产av一区二区精品久久| 亚洲精品国产av蜜桃| 成年人午夜在线观看视频| 精品少妇久久久久久888优播| 亚洲av福利一区| 中文欧美无线码| 亚洲欧美一区二区三区黑人 | 日本色播在线视频| 免费女性裸体啪啪无遮挡网站| 18在线观看网站| 99香蕉大伊视频| 男女啪啪激烈高潮av片| 色94色欧美一区二区| 亚洲在久久综合| 国产成人一区二区在线| 国产一区有黄有色的免费视频| 超碰97精品在线观看| a级毛片黄视频| 久久韩国三级中文字幕| 国产片内射在线| 97在线视频观看| 美女国产视频在线观看| 久久久久精品久久久久真实原创| 久久99精品国语久久久| 肉色欧美久久久久久久蜜桃| 色94色欧美一区二区| 国产精品不卡视频一区二区| 少妇精品久久久久久久| 亚洲国产成人一精品久久久| 久久久久久久大尺度免费视频| 久久久久网色| 亚洲精品国产av成人精品| 久久久久久久久免费视频了| 最近最新中文字幕免费大全7| 丰满迷人的少妇在线观看| 人妻人人澡人人爽人人| 久久久久久久国产电影| 黄片小视频在线播放| 成人毛片60女人毛片免费| 日韩伦理黄色片| 中国国产av一级| 大片电影免费在线观看免费| 亚洲一区二区三区欧美精品| 天堂中文最新版在线下载| 伦理电影大哥的女人| 18+在线观看网站| 两个人免费观看高清视频| 国产探花极品一区二区| 麻豆av在线久日| 人人妻人人澡人人看| 最近中文字幕高清免费大全6| 天堂8中文在线网| 国产亚洲欧美精品永久| 国产精品亚洲av一区麻豆 | 欧美最新免费一区二区三区| 不卡视频在线观看欧美| 伦精品一区二区三区| 久热这里只有精品99| 久久久久久久亚洲中文字幕| 如何舔出高潮| 国产成人欧美| 999久久久国产精品视频| 国产精品国产三级国产专区5o| 日韩免费高清中文字幕av| 热re99久久国产66热| 久久精品久久精品一区二区三区| 爱豆传媒免费全集在线观看| 亚洲第一区二区三区不卡| 日本-黄色视频高清免费观看| 国产精品国产av在线观看| 春色校园在线视频观看| 国产女主播在线喷水免费视频网站| 美国免费a级毛片| 国产精品免费大片| 精品久久蜜臀av无| 大片电影免费在线观看免费| 国产精品 欧美亚洲| 国产片内射在线| 久久久久久久久免费视频了| 天美传媒精品一区二区| 免费观看性生交大片5| 久久精品国产综合久久久| 超碰成人久久| 9热在线视频观看99| 中国三级夫妇交换| 亚洲精品,欧美精品| 亚洲熟女精品中文字幕| 免费人妻精品一区二区三区视频| 一区在线观看完整版| 最新中文字幕久久久久| 亚洲欧美成人综合另类久久久| 婷婷色麻豆天堂久久| 久久99精品国语久久久| 亚洲熟女精品中文字幕| 国产极品粉嫩免费观看在线| 日韩一卡2卡3卡4卡2021年| 国产精品亚洲av一区麻豆 | 色婷婷av一区二区三区视频| 少妇人妻 视频| 视频区图区小说| 国产精品人妻久久久影院| 欧美精品av麻豆av| 啦啦啦中文免费视频观看日本| 在线观看国产h片| 黄色怎么调成土黄色| 一级a爱视频在线免费观看| 国产无遮挡羞羞视频在线观看| 婷婷色av中文字幕| 久久久久久久大尺度免费视频| 亚洲国产成人一精品久久久| 亚洲少妇的诱惑av| 日本欧美视频一区| 成人午夜精彩视频在线观看| 秋霞伦理黄片| a级片在线免费高清观看视频| 欧美日本中文国产一区发布| 国产成人精品福利久久| 人人妻人人澡人人爽人人夜夜| 99精国产麻豆久久婷婷| 男女免费视频国产| 男的添女的下面高潮视频| 超色免费av| 亚洲熟女精品中文字幕| 日韩精品有码人妻一区| 免费不卡的大黄色大毛片视频在线观看| 成人国产av品久久久| 秋霞伦理黄片| 欧美变态另类bdsm刘玥| 熟女av电影| 国产免费现黄频在线看| 色网站视频免费| 国产福利在线免费观看视频| 一级,二级,三级黄色视频| 男女边摸边吃奶| 青草久久国产| 欧美日韩视频精品一区| 亚洲成国产人片在线观看| 中国三级夫妇交换| 丰满乱子伦码专区| 亚洲,一卡二卡三卡| 亚洲欧美清纯卡通| 欧美精品亚洲一区二区| 欧美成人精品欧美一级黄| videos熟女内射| 少妇被粗大的猛进出69影院| 亚洲,欧美,日韩| 欧美激情极品国产一区二区三区| 边亲边吃奶的免费视频| 成人手机av| 亚洲av.av天堂| 国产精品一区二区在线不卡| 99久久综合免费| 久久久久网色| 亚洲欧美日韩另类电影网站| 自线自在国产av| 一区二区日韩欧美中文字幕| 国产探花极品一区二区| 永久免费av网站大全| 一级片免费观看大全| 哪个播放器可以免费观看大片| 成年女人毛片免费观看观看9 | 久久久久精品久久久久真实原创| 亚洲成国产人片在线观看| 精品午夜福利在线看| 国产亚洲欧美精品永久| 综合色丁香网| 日本欧美国产在线视频| 三级国产精品片| 亚洲欧美色中文字幕在线| 99国产精品免费福利视频| 欧美日韩一区二区视频在线观看视频在线| 丝袜人妻中文字幕| 女人精品久久久久毛片| 校园人妻丝袜中文字幕| 中文乱码字字幕精品一区二区三区| 久久久久久久国产电影| 少妇被粗大的猛进出69影院| 欧美日韩一区二区视频在线观看视频在线| 亚洲一区二区三区欧美精品| 免费在线观看黄色视频的| 欧美另类一区| 亚洲国产欧美网| 国产精品国产三级国产专区5o| videos熟女内射| 午夜福利一区二区在线看| 久久久国产精品麻豆| 亚洲精品aⅴ在线观看| 久久精品亚洲av国产电影网| 性少妇av在线| 久久ye,这里只有精品| av卡一久久| a级毛片黄视频| 欧美成人午夜免费资源| 亚洲人成网站在线观看播放| 99国产综合亚洲精品| 青草久久国产| 亚洲精品乱久久久久久| 一区二区三区四区激情视频| 国产成人aa在线观看| 日本91视频免费播放| 99国产精品免费福利视频| 男女下面插进去视频免费观看| 国产成人91sexporn| 精品第一国产精品| 免费日韩欧美在线观看| 国产精品蜜桃在线观看| 午夜福利乱码中文字幕| 美女脱内裤让男人舔精品视频| freevideosex欧美| 久久久久国产一级毛片高清牌| 亚洲av免费高清在线观看| 国产精品久久久av美女十八| 成人亚洲精品一区在线观看| 视频在线观看一区二区三区| 各种免费的搞黄视频| 亚洲,一卡二卡三卡| 狂野欧美激情性bbbbbb| 高清在线视频一区二区三区| 亚洲久久久国产精品| 久久久亚洲精品成人影院| 少妇的丰满在线观看| 久久韩国三级中文字幕| 欧美日韩亚洲高清精品| 熟女av电影| 婷婷色麻豆天堂久久| 国产视频首页在线观看| 国产精品99久久99久久久不卡 | 国产日韩欧美亚洲二区| 亚洲人成77777在线视频| 日韩不卡一区二区三区视频在线| 久久久久久久精品精品| 性色av一级| 国产成人一区二区在线| 只有这里有精品99| 一边亲一边摸免费视频| 又黄又粗又硬又大视频| 国产深夜福利视频在线观看| 90打野战视频偷拍视频| 99热国产这里只有精品6| 久久青草综合色| 亚洲精品在线美女| 久久久久精品人妻al黑| 精品国产乱码久久久久久小说| 国精品久久久久久国模美| 女的被弄到高潮叫床怎么办| 欧美黄色片欧美黄色片| 大香蕉久久成人网| 9色porny在线观看| 美女视频免费永久观看网站| 看免费成人av毛片| 日韩不卡一区二区三区视频在线| 亚洲成人手机| 午夜福利视频在线观看免费| 国产成人精品久久久久久| 大码成人一级视频| 亚洲一区中文字幕在线| 欧美97在线视频| 日韩一本色道免费dvd| 亚洲精品国产一区二区精华液| 亚洲精品国产av成人精品| 亚洲第一av免费看| 午夜福利网站1000一区二区三区| 国产男女内射视频| 免费黄色在线免费观看| 宅男免费午夜| 如日韩欧美国产精品一区二区三区| 久久午夜综合久久蜜桃| 国产亚洲一区二区精品| 捣出白浆h1v1| 亚洲欧美成人综合另类久久久| 国产免费一区二区三区四区乱码| 91成人精品电影| 男女下面插进去视频免费观看| 欧美精品av麻豆av| 婷婷色av中文字幕| 99国产精品免费福利视频| 欧美人与性动交α欧美精品济南到 | 波野结衣二区三区在线| 狠狠婷婷综合久久久久久88av| 又粗又硬又长又爽又黄的视频| 国产 精品1| 亚洲,欧美,日韩| 亚洲欧美成人综合另类久久久| 丰满少妇做爰视频| tube8黄色片| 一级,二级,三级黄色视频| 久久热在线av| 丝瓜视频免费看黄片| 肉色欧美久久久久久久蜜桃| 亚洲av福利一区| 少妇人妻精品综合一区二区| 高清视频免费观看一区二区| 婷婷色综合大香蕉| 精品卡一卡二卡四卡免费| 国产一区有黄有色的免费视频| 边亲边吃奶的免费视频| 制服人妻中文乱码| 成人二区视频| 国产精品一区二区在线观看99| 少妇的丰满在线观看| 97精品久久久久久久久久精品| 精品少妇黑人巨大在线播放| 91aial.com中文字幕在线观看| 91精品伊人久久大香线蕉| 国产一级毛片在线| 亚洲三级黄色毛片| 天天躁夜夜躁狠狠久久av| 熟女少妇亚洲综合色aaa.| 国产黄色视频一区二区在线观看| 黄色 视频免费看| 亚洲,欧美精品.| 亚洲国产精品国产精品| 看免费成人av毛片| 久久久久久伊人网av| 亚洲欧美清纯卡通| 日韩欧美一区视频在线观看| 亚洲精品日韩在线中文字幕| 精品一区在线观看国产| 婷婷色av中文字幕| 久久国产精品大桥未久av| 国产精品人妻久久久影院| 少妇熟女欧美另类| 在线天堂中文资源库| 性少妇av在线| 美女国产高潮福利片在线看| 亚洲欧美成人精品一区二区| 日韩大片免费观看网站| 久久久久久人妻| 制服诱惑二区| 国产免费一区二区三区四区乱码| 一级爰片在线观看| 亚洲激情五月婷婷啪啪| 日本爱情动作片www.在线观看| 日日啪夜夜爽| 亚洲激情五月婷婷啪啪| 美国免费a级毛片| 色94色欧美一区二区| 啦啦啦在线免费观看视频4| 在线观看人妻少妇| 亚洲av欧美aⅴ国产| 两个人看的免费小视频| 乱人伦中国视频| 亚洲美女黄色视频免费看| 亚洲国产精品成人久久小说| 欧美xxⅹ黑人| 国产成人a∨麻豆精品| 久久精品熟女亚洲av麻豆精品| 国产精品 国内视频| 在线观看美女被高潮喷水网站| 久久精品国产亚洲av天美| 国产成人精品无人区| 久久久久久久精品精品| 久久久国产欧美日韩av| 午夜福利一区二区在线看| 成年美女黄网站色视频大全免费| 丰满迷人的少妇在线观看| av线在线观看网站| 麻豆av在线久日| 国产1区2区3区精品| 日本欧美视频一区| 丝袜人妻中文字幕| 黄片播放在线免费| videos熟女内射| 电影成人av| 久久青草综合色| 午夜福利视频在线观看免费| 婷婷色麻豆天堂久久| 99久久综合免费| 国产精品国产av在线观看| 少妇人妻 视频| 最近2019中文字幕mv第一页| 成年人免费黄色播放视频| 国产一区亚洲一区在线观看| 另类精品久久| 天堂中文最新版在线下载| 人人澡人人妻人| 天天影视国产精品| 欧美精品一区二区免费开放| 欧美人与性动交α欧美软件| 人妻一区二区av| 少妇的丰满在线观看| 婷婷成人精品国产| 男女下面插进去视频免费观看| 久久久久久久精品精品| av在线老鸭窝| 中文欧美无线码| 老司机亚洲免费影院| 国产成人精品福利久久| 夫妻午夜视频| 乱人伦中国视频| 在线观看免费日韩欧美大片| 99久国产av精品国产电影| 亚洲在久久综合| 国产激情久久老熟女| av在线app专区| 街头女战士在线观看网站| 亚洲综合精品二区| 熟女av电影| 777米奇影视久久| 成年av动漫网址| 免费高清在线观看视频在线观看| 午夜福利影视在线免费观看| 黄片小视频在线播放| 色吧在线观看| 秋霞在线观看毛片| 午夜福利在线观看免费完整高清在| 亚洲国产精品一区三区| 涩涩av久久男人的天堂| 日韩中字成人| 97精品久久久久久久久久精品| 久久国产精品大桥未久av| 丰满迷人的少妇在线观看| 青春草视频在线免费观看| 日韩伦理黄色片| 亚洲av免费高清在线观看| 女性生殖器流出的白浆| 国产片内射在线| 一级爰片在线观看| 26uuu在线亚洲综合色| 一边摸一边做爽爽视频免费| 在线天堂最新版资源| 天美传媒精品一区二区| 午夜免费男女啪啪视频观看| 18禁裸乳无遮挡动漫免费视频| 18禁动态无遮挡网站| 亚洲精品自拍成人| 亚洲精品日本国产第一区| 欧美+日韩+精品| 国产精品三级大全| 在线观看一区二区三区激情| 成人国产麻豆网| 建设人人有责人人尽责人人享有的| 永久网站在线| av卡一久久| 国产一区二区三区综合在线观看| 精品久久蜜臀av无| 老熟女久久久| 亚洲精品,欧美精品| 成年人午夜在线观看视频| 欧美日韩综合久久久久久| 91在线精品国自产拍蜜月| 国产精品国产av在线观看| 又粗又硬又长又爽又黄的视频| 亚洲美女搞黄在线观看| 欧美日韩精品成人综合77777| 国产乱来视频区| 丝袜人妻中文字幕| 欧美日韩精品网址| 一级毛片黄色毛片免费观看视频| 久久97久久精品| 国产毛片在线视频| 亚洲精品国产色婷婷电影| 精品视频人人做人人爽| 自拍欧美九色日韩亚洲蝌蚪91| 极品少妇高潮喷水抽搐| 精品国产乱码久久久久久小说| 蜜桃国产av成人99| 国产极品天堂在线| 国产精品99久久99久久久不卡 | 水蜜桃什么品种好| 亚洲精品一二三| 国产亚洲最大av| 精品人妻在线不人妻| 亚洲精品国产一区二区精华液| 新久久久久国产一级毛片| 亚洲美女视频黄频| 国产欧美日韩一区二区三区在线| 亚洲美女黄色视频免费看| 三级国产精品片| 一区二区三区精品91| 日韩中文字幕欧美一区二区 | 亚洲av免费高清在线观看| 最近中文字幕2019免费版| 好男人视频免费观看在线| 日韩,欧美,国产一区二区三区| 久久久久久久久免费视频了| 久久av网站| 久久人人爽av亚洲精品天堂| 亚洲第一青青草原| 久久热在线av| 熟女av电影| 久久热在线av| 国产精品二区激情视频| 精品第一国产精品| 亚洲,欧美,日韩| av在线播放精品| 成年人免费黄色播放视频| 国产av国产精品国产| 国产在线免费精品| 亚洲成人手机| 最近中文字幕2019免费版| 国产在视频线精品| 免费观看av网站的网址| 美女国产高潮福利片在线看| 91午夜精品亚洲一区二区三区| 欧美成人午夜精品| 91国产中文字幕| 欧美成人精品欧美一级黄| 国产欧美日韩综合在线一区二区| 纯流量卡能插随身wifi吗| 免费在线观看黄色视频的| 丝瓜视频免费看黄片| 日日撸夜夜添| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产欧美在线一区| 久久国产精品男人的天堂亚洲| 777米奇影视久久| 日韩精品免费视频一区二区三区| 国产亚洲午夜精品一区二区久久| 久久精品aⅴ一区二区三区四区 | 啦啦啦视频在线资源免费观看| 国产精品.久久久| 午夜日韩欧美国产| 中文字幕另类日韩欧美亚洲嫩草| 欧美 亚洲 国产 日韩一| 男女免费视频国产|