• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phosphate-induced interfacial electronic engineering in VPO4-Ni2P heterostructure for improved electrochemical water oxidation

    2022-03-14 09:29:56KunChenKekeMoYuBiDelongDunShungmingChenChengmingWngNingZhngRnLongXiojunWuLiSongYujieXiong
    Chinese Chemical Letters 2022年1期

    Kun Chen,Keke Mo,Yu Bi,Delong Dun,Shungming Chen,Chengming Wng,Ning Zhng,Rn Long,?,Xiojun Wu,Li Song,Yujie Xiong,b,??

    aHefei National Laboratory for Physical Sciences at the Microscale,Frontiers Science Center for Planetary Exploration and Emerging Technologies,School of Chemistry and Materials Science,National Synchrotron Radiation Laboratory,and CAS Center for Excellence in Nanoscience,University of Science and Technology of China,Hefei 230026,China

    bInstitute of Energy,Hefei Comprehensive National Science Center,Hefei 230031,China

    cSchool of Energy and Environment Science,Anhui University of Technology,Maanshan 243032,China

    dDepartment of Applied Physics,The Hong Kong Polytechnic University,Hong Kong,China

    1These authors contributed equally to this work.

    ABSTRACT Anodic oxygen evolution reaction(OER)is the key bottleneck for water electrolysis technique owing to its sluggish reaction kinetics.Interfacial engineering on the rationally designed heterostructure can regulate the electronic states efficiently for intrinsic activity improvement.Here,we report a co-phosphorization approach to construct a VPO4-Ni2P heterostructure on nickel foam with strongly chemical binding,wherein phosphate acts as electronic modifier for Ni2P electrocatalyst.Profiting from the interfacial interaction,it is uncovered that electron shifts from Ni2P to VPO4 to render valence increment in Ni species.Such an electronic manipulation rationalizes the chemical affinities of various oxygen intermediates in OER pathway,giving a substantially reduced energy barrier.As a result,the advanced VPO4-Ni2P heterostructure only requires an overpotential of 289 mV to deliver a high current density of 350 mA/cm2 for OER in alkaline electrolyte,together with a Tafel slope as low as 28 mV/dec.This work brings fresh insights into interfacial engineering for advanced electrocatalyst design.

    Keywords:Heterostructure Interfacial electron transfer Phosphate Oxygen evolution reaction Chemical affinity

    Hydrogen has long been regarded as clean energy carrier for sustainable but intermittent energy storage and value-added feedstock for modern chemical manufacture[1,2].Water electrolysis is an innovative approach towards hydrogen production without carbon emission,yet its industrial application still fails to be realized owing to the low electricity conversion efficiency[3–5].Related to cathodic hydrogen evolution reaction(HER),anodic oxygen evolution reaction(OER)undergoes a four-electron transfer process with sluggish reaction kinetics,typically determining the overall efficiency[6,7].Current state-of-the-art OER electrocatalysts are noble-metal-based oxide such as RuO2and IrO2,which still require an overpotential of>300 mV to reach the benchmark current density of 10 mA/cm2[8].Moreover,their high-cost and low-durability nature largely hinder the exploration for substantial large-scale implementations.In this regard,it is of high urgency to seek the OER electrocatalyst alternatives with low cost,high activity and good durability[9,10].

    Given the tunable electronic states,3d transition-metal-based materials have received increasing attention as OER electrocatalysts,especially in alkaline electrolyte[9–15].Among the materials,transition metal phosphide is a promising class of candidates due to their approximately zero-valent metallic feature with high electronic conductivity[16–19].Extensive approaches have been devoted to developing the OER electrocatalyst advances from the viewpoint of both crystal and electronic structures,including metal/phosphorus component regulation and exotic atomic doping.Regardless of these glorious accomplishments,it still confronts a great challenge to improve the intrinsic activity of metal phosphides.Fundamental studies unveil that the electronic states of catalytically active sites play the decisive roles in molecular adsorption and activation(i.e.,chemical affinity of adsorbates)to govern the intrinsic activity[5–7].Such a goal of electronic manipulation can be achieved by the construction of nanoscale interface through rational heterostructure design[20–22].The key knob is to ensure the chemical interaction at the interface for efficient electron coupling and transfer.

    Fig.1.Structural characterizations of VPO4-Ni2P heterostructure.(a)XRD pattern.(b)Low-resolution and(c)high-resolution SEM images.(d)HRTEM image.(e)SEMbased EDS mapping profiles of Ni(yellow),V(violet),P(cyan)and O(blue)elements,respectively.

    Inspired by the above considerations,here we develop a cophosphorization strategy for constructing a VPO4-Ni2P heterostructure anchored on nickel foam(NF)with strongly interfacial interaction.Phosphate is regarded as a critical species for OER activity improvement[17,23].In out heterostructure,VPO4serves as a robust electronic modulator to withdraw electron from Ni2Pviathe strong electron coupling,giving a key contribution to interfacial electron transfer from Ni2P to VPO4.Such a heterostructure renders the electron density deficiency in Ni2P with more oxidized Ni species.Theoretical simulations reveal that the chemical affinities of oxygen intermediates in OER pathway(i.e.,?OH,?O and?OOH)are rationalized to lower the overall energy barrier for activity enhancement.As a result,this advanced heterostructure achieves a remarkable OER activity with a low overpotential of 289 mV at a large current density of 350 mA/cm2and a high turnover frequency(TOF)value of 0.378 s–1at an overpotential of 290 mV in alkaline media.

    The VPO4-Ni2P heterostructure catalyst anchored on NF(Fig.S1 in Supporting information)is synthesized through a two-step procedure as illustrated in Scheme S1(Supporting information).A vanadium oxide(VOx)precursor is firstly synthesized on NFviathe hydrothermal method(step I in Scheme S1).SEM images(Fig.S2 in Supporting information)manifest that VOxis grown vertically on NF substrate with the nanosheet structure.Then the as-obtained VOx/NF precursor undergoes a thermal treatment to achieve the co-phosphorization using NaH2PO2as phosphorus source(Step II in Scheme S1).Phase characterization through XRD(Fig.1a)indicates that this phosphorization process not only converts VOxinto VPO4(PDF#76-2023)but also functionalizes the surface of NF with Ni2P(PDF#74-1385),thereby forming a VPO4-Ni2P heterostructure.Considering the tight generation of VOxprecursor on NF,such a cophosphorization strategy can offer a strongly chemical interaction at the interface.Similar phosphorization treatment of bare VOxand NF yields VPO4and Ni2P/NF samples for references,respectively(Figs.S3 and S4 in Supporting information).SEM images of VPO4-Ni2P heterostructure(Figs.1b and c)manifest that VPO4maintains the well-defined nanosheet structure.To be different,the porous structure is observable for VPO4(Fig.1c)compared to pristine VOxwith smooth surface.This unique porous feature can facilitate the diffusion of reactants on catalyst surface to promote the reactant diffusion and mass transfer efficiency[24,25].

    Fig.2.Valence state investigations of Ni2P-VPO4 heterostructure.(a)Highresolution Ni 2p and(b)V 2p XPS spectra.(c)Normalized Ni and(d)V K-edge XANES spectra.

    To resolve the interface of VPO4and Ni2P,HRTEM is further employed to characterize the boundary of this heterostructure.Fig.1d clearly shows two lattice fringe spacings of 0.356 and 0.338 nm,which can be indexed to the(111)plane of VPO4and(001)plane of Ni2P,respectively.The small lattice mismatch enables the tight lattice interaction between VPO4and Ni2P,which benefits the interfacial charge transfer.We also conduct EDS mapping to resolve the SEM-based elemental dispersion of VPO4-Ni2P sample.As shown in Fig.1e,the aggregated dispersion of Ni and V signals at the interface further corroborates the heterojunction feature.

    To resolve the chemical states of VPO4-Ni2P heterostructure,X-ray photoelectron spectroscopy(XPS)measurements are conducted.The deconvolution results of metal(Ni and V)2p core-level spectrums show the distinct difference of valence states between VPO4-Ni2P heterostructure and pristine Ni2P or VPO4.In Ni 2p region(Fig.2a),Niδ+ in phosphide(853.1 and 870.4 eV),oxidized Ni2+(856.9 and 874.7 eV)and Ni3+(858.5 and 877.1 eV)species are readily observable for both Ni2P and VPO4-Ni2P heterostructure,together with the shakeup satellites at 862.7 and 880.8 eV[17,26].Intuitively,the relative amount of Niδ+ species in VPO4-Ni2P heterostructure apparently decreases from 28% to 13% related to Ni2P,indicative of the existence of more oxidized Ni2+and Ni3+species(Fig.S5 in Supporting information).The increment of oxidized Ni species can supply more active sites for OER,which is supposed to give the vital contribution to the activity enhancement.On the other hand,contrary trend is recognized for V component.As indicated in Fig.2b,the overall V 2p XPS spectrum of both 2p3/2and 2p1/2doublets can be deconvoluted to several peaks,which are assigned to V2+(513.6 and 521 eV),V4+(516.2 and 523.9 eV)and V5+(517.7 and 525.5 eV)species,respectively[15,27].Compared with reference VPO4,the predominant vanadium species of VPO4-Ni2P heterostructure changes from V5+to V4+(Fig.S6 in Supporting information),together with an average valence reduction from +4.72 to +3.85.Such a valence variation for both Ni and V components manifests the strong chemical interaction at the interface of Ni2P and VPO4,giving the robust electron transfer from Ni2P to VPO4.

    Fig.3.OER activity evaluation.(a)LSV polarization curves at a scan rate of 5 mV/s.(b)Specific overpotential values at current density of 50 mA/cm2(orange column)and TOF values at overpotential of 270 mV(violet column),respectively.(c)The determined Cdl values.(d)Tafel plots derived from polarization curves in Fig.3a.(e)Nyquist plots at 1.5 V vs.RHE.(f)Chronopotentiometry curve of VPO4-Ni2P heterostructure catalyst at the current density of 10 mA/cm2 for stability test.Inset is LSV polarization curve after 1000 CV cycles.

    This electronic interaction observation is further consolidated by synchrotron radiation-based X-ray absorption near edge structure(XANES)spectra.As shown in normalized Ni K-edge XANES spectra(Fig.2c),the absorption edge of VPO4-Ni2P heterostructure shifts towards the higher photon energy,suggesting the increased Ni valence.Concomitantly,V K-edge XANES spectra of VPO4-Ni2P heterostructure exhibits a red-shift absorption edge(Fig.2d).To be specific,the pre-edge absorption predominantly originates from the distorted symmetry of octahedral V5+O6moiety,whereas the significantly lower intensity in VPO4-Ni2P heterostructure related to VPO4reference signifies the valence decrease(i.e.,V4+and/or V2+species)[28].As the electronic state of catalytic sites can alter the chemical affinity of adsorbed oxygen species,it is highly anticipated that the interfacial charge regulation in VPO4-Ni2P heterostructure can have the profound influence on OER performance.

    Upon acquiring the structural information,we are now in a position to assess the OER activity of our VPO4-Ni2P heterostructure.The electrochemical OER performance of VPO4-Ni2P heterostructure catalyst is evaluated in a standard three-electrode system using O2-saturated 1 mol/L KOH as electrolyte(see Experimental Section in Supporting information).Pristine Ni2P and VPO4supported by NF are also tested for comparison,together with benchmark IrO2.Fig.3a displays the collected linear sweep voltammogram(LSV)polarization curves of various catalysts,clearly exhibiting that VPO4-Ni2P heterostructure catalyst delivers the best OER activity.The overpotential(η)at the desired current density of 50 mA/cm2is extracted to quantitatively elucidate the activity.To be specific,VPO4-Ni2P heterostructure requires anηof 237 mV(Fig.3b,orange column),which is substantially lower than that of benchmark IrO2(302 mV),Ni2P(399 mV),and VPO4(441 mV)catalysts.Moreover,VPO4-Ni2P heterostructure reaches a high current density of 350 mA/cm2at a low potential input of 1.519 Vvs.reversible hydrogen electrode(RHE)(i.e.,η=289 mV).This remarkable performance with large current density indicates the promising potential from the viewpoint of practical application.It is noteworthy that the anodic redox peak prior to water oxidation exhibits distinct difference among VPO4-Ni2P heterostructure and pristine Ni2P catalysts.This redox can be assigned to the preoxidation of surface Ni species,which plays the critical roles in constructing active sites and determining the OER activity.The redox peak of VPO4-Ni2P heterostructure is much intense than that of Ni2P,showing more catalytically active sites for OER.Such a catalytic site increment can be interpreted by the robust charge transfer in interfacial Ni-(PO4)-V backbone,which turns more metallic Ni-P species to oxidized Ni species,as substantiated by XPS result(Fig.2a).

    Considering the increased active site amount,we normalize the current density with veritably active sites to give the turnover frequency(TOF)values for assessing the intrinsic activity more fairly(Fig.S7 in Supporting information).As shown in Fig.3b(violet column),VPO4-Ni2P heterostructure delivers a TOF value of 0.378 s–1atη=290 mV,14.6,26.7 and 45.3 times higher than benchmark IrO2,Ni2P and VPO4catalysts,respectively.Such a high TOF value manifests that the intrinsic activity of catalytic sites is also significantly improved by the construction of heterojunction between VPO4and Ni2P.Moreover,a negative shift of redox peak(~20 mV)is also observable for Ni2P-VPO4heterostructure related to Ni2P reference.Owing to the alkaline condition,the catalyst surface is typically covered by the pre-adsorbed hydroxyl species,and the Ni species pre-oxidation is always accompanied by hydroxyl deprotonation.This negative shift implies the facilitated Ni pre-oxidation and pre-adsorbed hydroxyl deprotonation.We rationalize that this facilitated redox electrochemistry is also ascribed to interfacial electron transfer from Ni2P to VPO4,which renders electron density depletion in Ni2P(i.e.,valence increment of Ni species).The altered Ni pre-oxidation feature is followed by a double-layer charging response to render the large electrochemical active surface area(ECSA).Specifically,the double-layer capacitance(Cdl)of Ni2P-VPO4heterostructure is determined to be 8.77 mF/cm2(Fig.3c and Fig.S8 in Supporting information),6.0- and 15.9-fold increase related to VPO4and Ni2P,respectively.

    To gain insights into reaction kinetics,the Tafel slopes are obtained as shown in Fig.3d.The large Tafel slopes of 110 and 96 mV/dec for Ni2P and VPO4catalysts indicate the sluggish OER kinetics.Remarkably,VPO4-Ni2P heterostructure endows an apparently reduced Tafel slope of 28 mV/dec,even lower than that of benchmark IrO2(57 mV/dec),suggesting that OER is accelerated by interfacial electronic effect.Meanwhile,we also measure the electrochemical impedance spectroscopy(EIS)to probe the charge transfer efficiency at catalyst/electrolyte interface.The smallest semicircle of VPO4-Ni2P heterostructure in Nyquist plot(Fig.3e)indicates the reduced charge transfer resistance(Rct)that accelerates electron transfer at catalyst/electrolyte interface.It is worth noting that our VPO4-Ni2P heterostructure catalyst exhibits the competitive OER activity in comparison with the recently reported phosphide-based OER electrocatalyst advances(Table S1 in Supporting information).

    Fig.4.DFT simulations.(a)The atomic schematic illustration of stable VPO4-Ni2P heterostructure.(b)Isosurfaces of charge density difference.Differential charge density by first-principles simulations illustrates the increase(olive color)and decrease(cyan color)of electron distributions.(c)PDOS diagrams of Ni2P,VPO4 and VPO4-Ni2P heterostructure models.(d)Free energy diagram of OER pathway on Ni2P and VPO4-Ni2P heterostructure models.

    The catalytic stability is also a vitally important parameter to evaluate the priority of catalyst candidate.To this end,we perform both chronopotentiometry and CV measurements for VPO4-Ni2P heterostructure catalyst.A 20-h chronopotentiometry test shows that anηbelow 250 mV is consecutively maintained to achieve a desired current density of 10 mA/cm2(Fig.3f).Meanwhile,LSV polarization curve after 1000 CV cycles also demonstrates the outstanding potential-current response without perceptible activity decline compared with the initial one(inset in Fig.3f).Both the measurements declare the high stability of our VPO4-Ni2P heterostructure catalyst towards alkaline water oxidation.Structural characterizations after the durability tests demonstrate that the VPO4-Ni2P catalyst well retains the phase and porous nanosheet morphology(see XRD pattern and SEM image in Fig.S9 in Supporting information).Furthermore,XPS measurements of surface metallic elements reveal that the Ni and V elements are oxidized to higher oxidation states as compared with the pristine ones(Fig.S10 in Supporting information).This valence variation coincides with the pre-oxidation typically observed in electrochemical experiments,suggesting the nature of surface metallic species as catalytic sites in water oxidation.In particular,the Ni-P species are oxidized to Nix+species that play the role as catalytic sites.

    To further look into the fundamental origin of OER activity enhancement towards VPO4-Ni2P heterostructure,density functional theory(DFT)calculations are performed to construct the theoretical model for this heterojunction,resolving the electronic states and simulating the OER pathway.Ni2P(200)and VPO4(022)surfaces(Fig.S11 in Supporting information)are chosen to build the heterostructure based on the experimental observation.A stable atomic structure of the established VPO4-Ni2P heterostructure is schemed in Fig.4a.It is recognized that the O atoms in VPO4bind strongly with the Ni or P atoms in Ni2P.Such a chemical interaction will give rise to the interfacial charge redistribution.Owing to the larger electronegativity of O element than Ni or P element,it can be predicated that VPO4overlayer obtains electrons from Ni2P.This conjecture is corroborated by charge density analysis.The computed isosurfaces of charge density difference(Fig.4b)clearly demonstrate the electron depletion at Ni2P surface(cyan color)and electron aggregation at VPO4surface(olive color),respectively.Bader charge analysis further quantitatively consolidates that this charge redistribution results in electron shift of 5.579|e|from Ni2P to VPO4.The computed results well coincide with the experimental observations(i.e.,XPS and XANES results in Fig.2).

    Furthermore,we examine the electronic structure of the heterostructure.According to the total density of state(TDOS)diagram(Fig.S12 in Supporting information),bare Ni2P shows the metallic nature as the electronic state crosses the Fermi level(EF),whilst an obvious energy band is observable aroundEFfor bare VPO4.This electronic feature indicates that charge transfer is largely impeded in VPO4,leading to the low catalytic activity.After constructing VPO4-Ni2P heterostructure,the substantially increased electron density atEFmanifests the improvement of electrical conductivity,further facilitating the electron transfer between catalyst surface and adsorbates.Specifically,their projected density of state(PDOS)diagrams are depicted in Fig.4c.It is recognized that the electron density increment for VPO4-Ni2P heterostructure is mainly contributed by V 3d orbitals.Since VPO4receives electrons from Ni2P owing to interfacial charge transfer,EFshifts toward V 3d orbitals and finally a proportion of unoccupied 3d orbitals of V is filled.Moreover,the Ni d-band center in VPO4-Ni2P heterostructure(–2.11 eVvs.EF)is computed to downshift related to that in bare Ni2P(–2.09 eVvs.EF).Such an electronic regulation is also believed to tailor the chemical affinities of oxygen intermediates at catalyst surface,playing a vital role in the catalytic activity[29–31].

    To look into the impact on reaction process,we investigate the adsorption behaviors of key intermediates(i.e.,?OH,?O and?OOH)on bare Ni2P and VPO4-Ni2P heterostructure surfaces,respectively(Table S2 in Supporting information).Fig.4d shows the Gibbs free energy diagram of the OER 4e–pathway based on the well-established adsorbate evolution mechanism(i.e.,H2O(l)→?OH →?O →?OOH →O2(g))[32].On Ni2P(200)surface,the rate-limiting step(RLS)of OER is step IV to form O2molecule,since?OOH is adsorbed too strongly on the surface.The free energy change of RLS is determined to be 2.53 eV(i.e.,overpotential of 1.30 V).Differently,as for VPO4-Ni2P heterostructure surface,the chemical affinities of oxygen intermediates are rationalized by the regulated electronic structure,weakening their binding strengths at catalytic site.As a result,the RLS of OER on VPO4-Ni2P heterostructure surface turns to oxygen coupling process(i.e.,step III).The related free energy change is reduced to 1.97 eV(i.e.,overpotential of 0.74 V),manifesting the activity improvement for VPO4-Ni2P heterostructure catalyst.

    In summary,we have constructed a VPO4-Ni2P heterostructure on nickel foam substrate as a high-performance OER electrocatalytic advance.Both experimental and theoretical studies uncover the strong coupling interaction at the interface of VPO4and Ni2P.Specifically,VPO4acts as robust electronic modulator to trigger the electron transfer from Ni2P to VPO4through interfacial Ni-(PO4)-V backbone,giving rise to electron deficiency in Ni2P.Such an electronic modulation contributes more catalytic sites.More importantly,the chemical affinities of oxygen intermediates are rationalized to weaken the binding strength on VPO4-Ni2P heterostructure,altering the rate-limiting step to improve the intrinsic activity towards alkaline water oxidation.As a result,the VPO4-Ni2P heterostructure delivers a remarkable OER activity with a low overpotential of 289 mV at a large current density of 350 mA/cm2and a high TOF value of 0.378 s–1at an overpotential of 290 mV.This work offers new insights into seeking low-cost,high-performance OER electrocatalyst alternatives and also reaffirms the importance of interfacial engineering towards catalyst design at atomic precision.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was financially supported in part by National Key R&D Program of China(Nos.2020YFA0406103,2017YFA0207301),National Natural Science Foundation of China(Nos.21725102,91961106,U1832156,22075267,21803002),Science and Technological Fund of Anhui Province for Outstanding Youth(No.2008085J05),Youth Innovation Promotion Association of CAS(No.2019444),Young Elite Scientist Sponsorship Program by CAST,MOST(No.2018YFA0208603),Users with Excellence Program of Hefei Science Center CAS(No.2020HSC-UE003)and Postdoc Matching Fund Scheme of the Hong Kong Polytechnic University(No.1-W144).XAFS measurements were performed at the beamline 1W1B of the BSRF and beamline BL14W1 of SSRF.XPS experiments were performed at the photoemission endstations(BL10B)in NSRL.We thank the support from USTC Center for Micro- and Nanoscale Research and Fabrication.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.05.011.

    18禁观看日本| 成人国产av品久久久| 国产极品粉嫩免费观看在线| 两个人看的免费小视频| 国产探花极品一区二区| 高清欧美精品videossex| 久久ye,这里只有精品| 中文字幕av电影在线播放| 97人妻天天添夜夜摸| 亚洲av综合色区一区| 国产午夜精品一二区理论片| 日韩av不卡免费在线播放| 最新在线观看一区二区三区 | 19禁男女啪啪无遮挡网站| 丰满饥渴人妻一区二区三| 日韩一区二区三区影片| a级毛片黄视频| 国产男女内射视频| 欧美精品一区二区大全| www.自偷自拍.com| 亚洲欧美精品综合一区二区三区| 久久人人爽av亚洲精品天堂| 欧美av亚洲av综合av国产av | 午夜精品国产一区二区电影| 青青草视频在线视频观看| 久久性视频一级片| 亚洲在久久综合| 成人黄色视频免费在线看| 国产精品成人在线| 欧美日韩av久久| 女性被躁到高潮视频| 日韩av不卡免费在线播放| 999久久久国产精品视频| 精品国产一区二区三区久久久樱花| 亚洲婷婷狠狠爱综合网| 亚洲 欧美一区二区三区| 欧美激情极品国产一区二区三区| 少妇人妻精品综合一区二区| 丰满乱子伦码专区| 亚洲精品日韩在线中文字幕| 91aial.com中文字幕在线观看| 国产又爽黄色视频| 成人18禁高潮啪啪吃奶动态图| 国产成人精品久久久久久| 狂野欧美激情性bbbbbb| 久久青草综合色| 看免费av毛片| 丝袜人妻中文字幕| 亚洲色图 男人天堂 中文字幕| 成年人免费黄色播放视频| 捣出白浆h1v1| 国产女主播在线喷水免费视频网站| 国产熟女欧美一区二区| 亚洲精华国产精华液的使用体验| 久久亚洲国产成人精品v| 亚洲国产精品999| 亚洲成色77777| 亚洲精品aⅴ在线观看| 日本午夜av视频| 日韩大片免费观看网站| 国产99久久九九免费精品| 热re99久久国产66热| av国产精品久久久久影院| 国产精品一国产av| 午夜福利网站1000一区二区三区| 在线观看免费日韩欧美大片| 最近中文字幕2019免费版| 国产爽快片一区二区三区| 婷婷色综合www| 在线观看三级黄色| 电影成人av| 免费观看av网站的网址| 一本一本久久a久久精品综合妖精| 久久人人爽人人片av| 好男人视频免费观看在线| 国产国语露脸激情在线看| 永久免费av网站大全| 肉色欧美久久久久久久蜜桃| 亚洲专区中文字幕在线 | 久久精品亚洲熟妇少妇任你| 少妇人妻久久综合中文| 欧美亚洲 丝袜 人妻 在线| 亚洲,欧美,日韩| 九草在线视频观看| 七月丁香在线播放| 日韩免费高清中文字幕av| 欧美日韩av久久| 成年女人毛片免费观看观看9 | 国产不卡av网站在线观看| 在现免费观看毛片| av国产久精品久网站免费入址| 欧美另类一区| 99香蕉大伊视频| 久久久亚洲精品成人影院| 国产精品欧美亚洲77777| 777久久人妻少妇嫩草av网站| 精品国产一区二区三区四区第35| 日韩一本色道免费dvd| svipshipincom国产片| 一级a爱视频在线免费观看| 考比视频在线观看| 最黄视频免费看| 久久国产亚洲av麻豆专区| 18禁观看日本| 最近中文字幕2019免费版| 少妇的丰满在线观看| 亚洲四区av| 日韩电影二区| 日本午夜av视频| 国产免费视频播放在线视频| 国产精品久久久久久精品古装| 日本黄色日本黄色录像| 亚洲成国产人片在线观看| 亚洲四区av| 一区二区日韩欧美中文字幕| 男人操女人黄网站| 亚洲欧美一区二区三区久久| 男女午夜视频在线观看| 欧美精品高潮呻吟av久久| 婷婷色av中文字幕| 啦啦啦啦在线视频资源| 美女主播在线视频| 亚洲精品自拍成人| 久久久亚洲精品成人影院| 最近最新中文字幕大全免费视频 | 一边摸一边做爽爽视频免费| 99九九在线精品视频| 日本欧美国产在线视频| 女人被躁到高潮嗷嗷叫费观| 女人被躁到高潮嗷嗷叫费观| 久久久久人妻精品一区果冻| 伦理电影免费视频| 国产精品欧美亚洲77777| 亚洲av福利一区| 亚洲精品乱久久久久久| 最黄视频免费看| 日日撸夜夜添| 免费人妻精品一区二区三区视频| 最近中文字幕2019免费版| 国产成人一区二区在线| 久久人妻熟女aⅴ| 观看av在线不卡| 丝袜美足系列| 韩国精品一区二区三区| 深夜精品福利| 精品人妻一区二区三区麻豆| 免费在线观看完整版高清| 国产野战对白在线观看| 老司机靠b影院| 妹子高潮喷水视频| 无遮挡黄片免费观看| 精品亚洲乱码少妇综合久久| 亚洲专区中文字幕在线 | 欧美日韩亚洲综合一区二区三区_| 这个男人来自地球电影免费观看 | 国产有黄有色有爽视频| 制服人妻中文乱码| 波多野结衣av一区二区av| 亚洲av欧美aⅴ国产| 成年女人毛片免费观看观看9 | 啦啦啦中文免费视频观看日本| 中文精品一卡2卡3卡4更新| av网站在线播放免费| 精品一区在线观看国产| 熟妇人妻不卡中文字幕| 久久久久久久久久久久大奶| av卡一久久| 成年av动漫网址| 老熟女久久久| 亚洲精品久久成人aⅴ小说| 精品久久久精品久久久| 中文字幕高清在线视频| 国产国语露脸激情在线看| 一级毛片 在线播放| 日本wwww免费看| 成人国产麻豆网| 日韩成人av中文字幕在线观看| 日韩制服丝袜自拍偷拍| 亚洲av欧美aⅴ国产| 亚洲精品久久午夜乱码| 久久精品熟女亚洲av麻豆精品| 综合色丁香网| 女人被躁到高潮嗷嗷叫费观| 久久免费观看电影| 精品卡一卡二卡四卡免费| 美女中出高潮动态图| 成人手机av| 少妇猛男粗大的猛烈进出视频| 国产精品久久久久久精品古装| 999精品在线视频| 精品亚洲乱码少妇综合久久| 91成人精品电影| 男女无遮挡免费网站观看| 人人妻人人爽人人添夜夜欢视频| 国产免费现黄频在线看| 免费观看av网站的网址| 51午夜福利影视在线观看| 亚洲精品aⅴ在线观看| 国产精品一国产av| 操美女的视频在线观看| 啦啦啦中文免费视频观看日本| 欧美日韩av久久| 国语对白做爰xxxⅹ性视频网站| 亚洲av综合色区一区| 一区福利在线观看| 久久久久精品人妻al黑| 天天操日日干夜夜撸| 性少妇av在线| 啦啦啦视频在线资源免费观看| 韩国av在线不卡| 成人午夜精彩视频在线观看| 亚洲第一区二区三区不卡| 日韩大片免费观看网站| 欧美日韩视频高清一区二区三区二| 国产99久久九九免费精品| 亚洲一区中文字幕在线| 亚洲av综合色区一区| 少妇人妻精品综合一区二区| tube8黄色片| 中文字幕人妻丝袜一区二区 | 青春草亚洲视频在线观看| 一本大道久久a久久精品| 韩国精品一区二区三区| 日韩,欧美,国产一区二区三区| 日本色播在线视频| 多毛熟女@视频| 黄色视频在线播放观看不卡| 亚洲欧美色中文字幕在线| 色94色欧美一区二区| 看非洲黑人一级黄片| 一级片'在线观看视频| 亚洲精品日本国产第一区| 精品亚洲成a人片在线观看| 欧美人与善性xxx| 一级,二级,三级黄色视频| 少妇人妻久久综合中文| 91精品伊人久久大香线蕉| 亚洲精品国产区一区二| 人人妻人人爽人人添夜夜欢视频| 18在线观看网站| 七月丁香在线播放| 中文字幕av电影在线播放| 999精品在线视频| 无遮挡黄片免费观看| 精品亚洲成国产av| 在线观看一区二区三区激情| 亚洲男人天堂网一区| 亚洲七黄色美女视频| 国产 一区精品| 人成视频在线观看免费观看| 只有这里有精品99| 爱豆传媒免费全集在线观看| 丝袜美足系列| 超碰97精品在线观看| av视频免费观看在线观看| 日韩人妻精品一区2区三区| 欧美日韩福利视频一区二区| 日本vs欧美在线观看视频| 少妇猛男粗大的猛烈进出视频| 伊人久久大香线蕉亚洲五| 一区二区日韩欧美中文字幕| 亚洲欧美一区二区三区黑人| 亚洲综合色网址| bbb黄色大片| 免费久久久久久久精品成人欧美视频| 最近手机中文字幕大全| 宅男免费午夜| 这个男人来自地球电影免费观看 | 久久狼人影院| 久久久久久久久久久久大奶| 久久热在线av| 丝瓜视频免费看黄片| 欧美在线一区亚洲| 久久综合国产亚洲精品| 涩涩av久久男人的天堂| 欧美日韩成人在线一区二区| 亚洲成人手机| 午夜福利乱码中文字幕| 欧美日韩视频精品一区| 国产精品嫩草影院av在线观看| 亚洲视频免费观看视频| 日本午夜av视频| 男人爽女人下面视频在线观看| 精品少妇黑人巨大在线播放| 久久精品久久久久久噜噜老黄| 亚洲精品国产av成人精品| 国产午夜精品一二区理论片| 国产 一区精品| av电影中文网址| 欧美97在线视频| 亚洲色图 男人天堂 中文字幕| 国语对白做爰xxxⅹ性视频网站| 午夜影院在线不卡| 亚洲激情五月婷婷啪啪| 国产99久久九九免费精品| 亚洲成人av在线免费| 久久精品亚洲av国产电影网| 亚洲国产欧美在线一区| 亚洲精品国产av成人精品| 欧美最新免费一区二区三区| 国产精品久久久av美女十八| 亚洲一码二码三码区别大吗| 亚洲色图 男人天堂 中文字幕| 国产女主播在线喷水免费视频网站| 久久久久网色| av一本久久久久| 在线观看免费高清a一片| 麻豆乱淫一区二区| 亚洲精品中文字幕在线视频| www.自偷自拍.com| 18禁国产床啪视频网站| 人成视频在线观看免费观看| 亚洲国产av新网站| 国产成人欧美在线观看 | 十八禁高潮呻吟视频| 国产在线视频一区二区| a级毛片在线看网站| 欧美xxⅹ黑人| 亚洲成人国产一区在线观看 | 高清黄色对白视频在线免费看| 女人久久www免费人成看片| 捣出白浆h1v1| 国产成人啪精品午夜网站| 不卡视频在线观看欧美| 伊人亚洲综合成人网| 国产黄频视频在线观看| 亚洲欧美成人综合另类久久久| 国产精品人妻久久久影院| 欧美日韩视频高清一区二区三区二| 成年人午夜在线观看视频| 人人妻,人人澡人人爽秒播 | 亚洲欧美精品综合一区二区三区| 涩涩av久久男人的天堂| 亚洲第一青青草原| 这个男人来自地球电影免费观看 | 人人妻,人人澡人人爽秒播 | 国产深夜福利视频在线观看| 看十八女毛片水多多多| 欧美日韩视频精品一区| 国产高清国产精品国产三级| 老司机影院成人| 飞空精品影院首页| 考比视频在线观看| 日韩一区二区视频免费看| 伦理电影免费视频| 亚洲欧洲精品一区二区精品久久久 | 国产精品久久久av美女十八| 亚洲人成网站在线观看播放| 久久天躁狠狠躁夜夜2o2o | 午夜老司机福利片| 多毛熟女@视频| av国产久精品久网站免费入址| 啦啦啦中文免费视频观看日本| 久久青草综合色| av国产精品久久久久影院| 在现免费观看毛片| 精品亚洲成a人片在线观看| 欧美老熟妇乱子伦牲交| 在线看a的网站| 哪个播放器可以免费观看大片| 久久久精品94久久精品| 老司机亚洲免费影院| 人人妻,人人澡人人爽秒播 | 如何舔出高潮| 99国产精品免费福利视频| 亚洲精品自拍成人| 中国国产av一级| 亚洲精品第二区| 亚洲人成网站在线观看播放| 国产精品国产三级专区第一集| 国产视频首页在线观看| 高清不卡的av网站| 天堂俺去俺来也www色官网| 国产精品熟女久久久久浪| 国产伦理片在线播放av一区| 成人影院久久| 亚洲欧美成人精品一区二区| 亚洲av电影在线观看一区二区三区| 日韩视频在线欧美| 亚洲av福利一区| 国产亚洲av片在线观看秒播厂| 日韩不卡一区二区三区视频在线| 久久久久久久国产电影| 日本午夜av视频| 热re99久久精品国产66热6| 亚洲av中文av极速乱| 国产精品一区二区精品视频观看| 欧美精品一区二区大全| 国产精品久久久久久精品电影小说| 亚洲欧美精品自产自拍| 在现免费观看毛片| av网站免费在线观看视频| 国产老妇伦熟女老妇高清| 肉色欧美久久久久久久蜜桃| 亚洲四区av| 国产免费福利视频在线观看| 9热在线视频观看99| 亚洲一码二码三码区别大吗| 国产精品一区二区精品视频观看| 丝袜人妻中文字幕| 国产精品国产三级国产专区5o| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美日韩另类电影网站| 丝袜人妻中文字幕| 妹子高潮喷水视频| 精品国产乱码久久久久久小说| 女的被弄到高潮叫床怎么办| 欧美日韩一级在线毛片| 99久久人妻综合| 国产麻豆69| 国产深夜福利视频在线观看| 最近最新中文字幕免费大全7| 国产日韩欧美亚洲二区| 国产精品人妻久久久影院| 日本欧美视频一区| 高清av免费在线| 在线观看一区二区三区激情| 自拍欧美九色日韩亚洲蝌蚪91| 少妇精品久久久久久久| 亚洲国产欧美在线一区| 人妻 亚洲 视频| 国产精品 欧美亚洲| 精品一品国产午夜福利视频| 桃花免费在线播放| 日本欧美视频一区| av一本久久久久| 亚洲欧美成人精品一区二区| 最近中文字幕高清免费大全6| 在线天堂中文资源库| 成年动漫av网址| 一级毛片黄色毛片免费观看视频| 色综合欧美亚洲国产小说| 久久久久久人人人人人| 在线天堂中文资源库| 国产成人欧美在线观看 | 欧美人与性动交α欧美精品济南到| 国产精品欧美亚洲77777| 在线观看国产h片| 天堂俺去俺来也www色官网| 亚洲国产毛片av蜜桃av| 亚洲在久久综合| 超色免费av| 男女边吃奶边做爰视频| 久久热在线av| 国产精品蜜桃在线观看| 久久99精品国语久久久| 国产免费一区二区三区四区乱码| 亚洲精华国产精华液的使用体验| 国产精品人妻久久久影院| 伊人久久大香线蕉亚洲五| 中文欧美无线码| 国产精品久久久久久精品电影小说| 久久女婷五月综合色啪小说| 亚洲精品国产色婷婷电影| 中文字幕亚洲精品专区| 亚洲激情五月婷婷啪啪| 不卡av一区二区三区| 国产精品av久久久久免费| www.熟女人妻精品国产| 免费黄频网站在线观看国产| 午夜av观看不卡| 久久综合国产亚洲精品| 国产精品麻豆人妻色哟哟久久| 国产精品成人在线| a级毛片黄视频| 亚洲国产精品一区二区三区在线| 欧美日韩国产mv在线观看视频| 国产精品久久久久成人av| 成人午夜精彩视频在线观看| 亚洲综合色网址| 国产野战对白在线观看| 国产精品偷伦视频观看了| 国产日韩欧美视频二区| 母亲3免费完整高清在线观看| 日韩欧美精品免费久久| 美女高潮到喷水免费观看| 人人澡人人妻人| 天天影视国产精品| 久久久精品国产亚洲av高清涩受| 国产无遮挡羞羞视频在线观看| 国产极品天堂在线| a级毛片黄视频| 满18在线观看网站| 欧美人与性动交α欧美软件| 女性生殖器流出的白浆| 青青草视频在线视频观看| 国产精品久久久人人做人人爽| 91国产中文字幕| 日韩不卡一区二区三区视频在线| 婷婷色综合www| 亚洲久久久国产精品| 亚洲国产欧美在线一区| 精品亚洲成国产av| 老鸭窝网址在线观看| 无限看片的www在线观看| 成人亚洲欧美一区二区av| 久久ye,这里只有精品| 午夜影院在线不卡| 美女主播在线视频| 亚洲精品中文字幕在线视频| 街头女战士在线观看网站| 狂野欧美激情性bbbbbb| 欧美xxⅹ黑人| 国产男人的电影天堂91| 少妇被粗大猛烈的视频| 亚洲三区欧美一区| 中文天堂在线官网| 中文字幕精品免费在线观看视频| 叶爱在线成人免费视频播放| 亚洲国产欧美网| 午夜福利免费观看在线| 久久国产亚洲av麻豆专区| 国产欧美亚洲国产| 大片电影免费在线观看免费| 日日撸夜夜添| 在线亚洲精品国产二区图片欧美| 亚洲精品,欧美精品| 亚洲熟女毛片儿| 亚洲精品自拍成人| 免费观看性生交大片5| 久久精品国产亚洲av涩爱| 国产高清国产精品国产三级| 国产一卡二卡三卡精品 | 91精品伊人久久大香线蕉| 国产免费现黄频在线看| 久久97久久精品| 岛国毛片在线播放| 亚洲色图综合在线观看| 十八禁网站网址无遮挡| 91精品国产国语对白视频| 国产伦理片在线播放av一区| 综合色丁香网| 亚洲四区av| 久久鲁丝午夜福利片| 欧美另类一区| 欧美激情 高清一区二区三区| 91老司机精品| 国产成人一区二区在线| av在线播放精品| 久久久国产精品麻豆| 王馨瑶露胸无遮挡在线观看| 亚洲中文av在线| 午夜福利视频精品| 大陆偷拍与自拍| 亚洲一区中文字幕在线| 欧美精品一区二区大全| 午夜激情av网站| 日韩一本色道免费dvd| 女性被躁到高潮视频| 色网站视频免费| 久久久久精品性色| 十八禁人妻一区二区| 999精品在线视频| 亚洲欧美成人综合另类久久久| 十八禁高潮呻吟视频| 少妇的丰满在线观看| 精品国产一区二区三区四区第35| 久久久久人妻精品一区果冻| 久久久久久久久久久免费av| 精品国产国语对白av| 久久99一区二区三区| 在线 av 中文字幕| 国产女主播在线喷水免费视频网站| 在现免费观看毛片| 亚洲精品aⅴ在线观看| 夫妻午夜视频| 国产精品香港三级国产av潘金莲 | 女人精品久久久久毛片| 精品一品国产午夜福利视频| 久久综合国产亚洲精品| av.在线天堂| 菩萨蛮人人尽说江南好唐韦庄| 波多野结衣av一区二区av| 亚洲av福利一区| 热99久久久久精品小说推荐| 丰满迷人的少妇在线观看| 亚洲国产精品999| 亚洲色图综合在线观看| 丝袜美腿诱惑在线| 午夜91福利影院| 国产精品av久久久久免费| 亚洲欧美精品综合一区二区三区| 久久性视频一级片| 如何舔出高潮| 一本—道久久a久久精品蜜桃钙片| 天天躁狠狠躁夜夜躁狠狠躁| 欧美少妇被猛烈插入视频| 国产成人午夜福利电影在线观看| 国产视频首页在线观看| 国产伦理片在线播放av一区| 最近中文字幕高清免费大全6| 亚洲成人av在线免费| 国产精品久久久久久精品电影小说| 日韩大码丰满熟妇| 国产欧美日韩一区二区三区在线| 18禁裸乳无遮挡动漫免费视频| 在线观看免费视频网站a站| 欧美少妇被猛烈插入视频| 亚洲少妇的诱惑av| 日本av免费视频播放| 黄网站色视频无遮挡免费观看| 亚洲美女黄色视频免费看| 九九爱精品视频在线观看| 亚洲美女视频黄频| 18禁观看日本| 国产精品无大码| 女的被弄到高潮叫床怎么办| 少妇人妻久久综合中文| 国产一区有黄有色的免费视频| 久久久精品94久久精品| 亚洲第一青青草原| 啦啦啦中文免费视频观看日本| 午夜福利,免费看| 精品卡一卡二卡四卡免费| 国产一区二区 视频在线|