• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of second-order rate constants between carbonate radical and organics by deep neural network combined with molecular fingerprints

    2022-03-14 09:29:48PeizheSunHuixinShngyuLiHongYoRuochunZhng
    Chinese Chemical Letters 2022年1期

    Peizhe Sun,Huixin M,Shngyu Li,Hong Yo,Ruochun Zhng

    aSchool of Environmental Science and Engineering,Tianjin University,Tianjin 300072,China

    bSchool of Civil Engineering,Tianjin University,Tianjin 300072,China

    cBeijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard,Department of Municipal and Environmental Engineering,School of Civil Engineering,Beijing Jiaotong University,Beijing 100044,China

    dInstitute of Surface-Earth System Science,School of Earth System Science,Tianjin University,Tianjin 300072,China

    eTianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim,Tianjin University,Tianjin 300072,China

    ABSTRACT Carbonate radical is among the most important environmental relevant reactive species which govern the transformation and fate of pharmaceutical contaminants(PCs).However,reaction rate constants between carbonate radical and most of the PCs have not been experimentally determined,and quantitative structural-activity relationships(QSARs)have not been established for rate estimation.This study applied MaxMin data processing method and used molecular fingerprints(MF)as the input of a deep neural network(DNN)to predict the rate constants between carbonate radical and organic compounds.MF parameters and the hyper-structure of the DNN were adjusted to yield satisfactory accuracy of rate prediction.The vector length of 512 bits with radius of 1 for MF and 5 hidden layers gave the best performance.The optimized MaxMin-MF-DNN model was compared with some of the most commonly used QSARs and machine learning methods,including random data splitting,molecular descriptors,supporting vector machine,decision tree, etc.Results showed that the MF-DNN model out-performed the other methods by more than 10% increase in prediction accuracy.Applying this MF-DNN model,we estimated reaction rates between carbonate radical and pharmaceuticals used in human medicine(1576)and veterinary practice(390).Among them,46 drugs were identified as fast-reacting compounds,suggesting the important relations of their environmental fate with carbonate radical.

    Keywords:Deep neural network Carbonate radical Molecular fingerprints QSAR Pharmaceuticals

    A large amount of prescribed/fed pharmaceuticals are excreted and enter into surface aquatic system[1],resulting in huge threats to the ecosystem due to their toxicity and potential to induce drug resistance[2].Pharmaceuticals have been detected in various water matrices such as drinking water,surface water,groundwater,and wastewater at ng/L to μg/L levels[3–6].Meanwhile,most pharmaceuticals are not persistent and undergo transformation through different pathways,resulting in different abundance and environmental effects[7,8].Therefore,elucidation of their transformation kinetics and mechanism will benefit the management of pharmaceutical contamination and risk assessment.

    Structural transformation induced by environmental reactive species is one of the dominant pathways of pharmaceutical transformation in both natural waters and wastewaters[9,10].Hydroxyl radical(?OH)has drawn the most attention due to its high oxidation potential(E0(?OH/H2O)=1.9 ?2.7 V)and low selectivity[11–13].Carbonate radical(CO3??),which is normally generated from the reaction between?OH(or other reactive species such as triplet-excited state of dissolved organic matter(DOM)[14])and HCO3?/CO32?,is now increasingly investigated due to its prevalent occurrence[9,15,16].Carbonate radical is electrophilic and able to degrade pharmaceuticals(E0(CO3??/CO32?)=1.63 V at pH 8.4),but is more chemical-structurally selective than?OH[17].The background effect is considered lower than?OH and its steadystate concentration is usually higher,reaching above 10?14mol/L level depending on the DOM content and pH condition in sunlit surface water and around 10?12mol/L in advanced oxidation processes[18].This compensates its lower oxidation power and makes it a significant contributor to pharmaceutical transformation.In addition,when treating some pharmaceutical-containing waste matrices such as source separated urine,CO3??was reported as the dominant reactive species(at around 10?10mol/L)over?OH and contributed the most to the degradation of some antibiotics[15].

    Compared with?OH,fewer studies have reported the reactivity of CO3??towards pharmaceuticals.To date,there are only 49 pharmaceuticals with reported rate constants[19].In addition,although quantitative structure-activity relationships(QSARs)have been established to predict the reactivity of?OH[20],O3[21]and sulfate radical(SO4??)[22],the QSAR models are rather scarce on CO3??reactivity.Lack of reactivity information hinders the assessment of CO3??contribution to transformation pathways of pharmaceuticals in aquatic systems.

    The establishment of QSARs is highly dependent on the selection of the relevant molecular descriptors.There are more than 5000 descriptors currently,each representing a portion of the molecular properties[23].Selecting appropriate descriptors that can capture the entire picture of the reactivity is of huge diffi-culty.A simpler method without need of complicated descriptor is preferable.Molecular fingerprints(MF)encode structural features of molecules as binary vectors and has been adopted in developing QSAR models to predict ligand biological activity[24]and toxicity[25,26].Zhanget al.first used deep neural network(DNN)combined with MF to predict the reactivity of?OH towards organics[23].It showed that the obtained MF-DNN models had comparable prediction accuracies to the traditional QSARs.

    Therefore,in this study,DNN combined with MF was applied to establish a model for CO3??reactivity prediction.A data processing method(MaxMin)was applied to improve the accuracy of the model[27].The reactivity of human pharmaceuticals and veterinary drugs towards CO3??was predicted.

    A dataset containing 231 organic compounds and their secondorder rate constants with CO3??were extracted from the literatures[19,28].Because CO3??reacts with organic molecules primarily through electron transfer mechanism,there is likely nonnegligible influence of the speciation of compounds towards reacting with CO3??.Therefore,pKavalues were collected and the exact forms of the compounds under the pH conditions that the rate constants were determined.This led to a total of 252 distinct chemical forms applied for analysis(see Datasets excel file in Supporting information).Generally,for those compound/form with several reported rate constants,an average value was used.

    Chemical diversity and the application domain analysis is essential to build a structure-based predictive model.The dataset of 231 organic compounds covered element C,H,O,N,S,F,Cl,Br and P.The MaxMin algorithm(MaxMinPicker function in RDkit toolbox(https://www.rdkit.org/)),based on fingerprint similarity calculations[27],constructed a group of sub dataset which obtained the highest structural diversity in the overall data set.The chemical space distribution(defined by number of molecular features in MF and rate constants in this study)of the training set and test set was further evaluated.As shown in Fig.S1(Supporting information),they shared a similar chemical space.The application domain was evaluated using Tanimoto Similarity to avoid prediction for compounds differing significantly from the training set.Each compound was converted to MF,based on which the average distance Daveand the standard deviation of distanceσwere calculated.Zis an arbitrary parameter to control the significance level,which was set at 0.5 in this study.Therefore,the application domain threshold,DT,was defined by the equation(DT=Dave+Zσ).For the training dataset,theDTvalue was 0.933.If the distance between a compound in the test or validation datasets and its nearest neighbor in the training set exceededDT,the prediction was considered unreliable.

    We converted SMILES(simplified molecular-input line-entry system)strings of the compounds/forms to Morgan MF by the RDKit toolbox.The generated MF were binary vectors,each represents the presence of a certain structural feature.The length of MF was adjustable.Longer MF length stores more structural features.The Mordred application in python package[29]was used to calculate 1832 MD including constitutional,topological,geometrical descriptors,etc.

    We primarily evaluated the performance of the developed models by the root mean square error(RMSE),coefficient of determination(R2),accuracy of prediction(ACC).Description of these index is provided in Text S1(Supporting information).

    To achieve initial screening results of optimal set-up for rates prediction,we conducted an orthogonal experiment with an array of MF parameters and DNN structures.Radius and vector length are two essential MF parameters for Morgan fingerprint.As shown in Fig.S2(Supporting information),varying radius from 1 to 3 and vector length from 512 to 2048 did not result in significant difference in the RMSE values.Interestingly,within a single cell(for a certain DNN structure),the lowest RMSE often appeared at the combination of the smallest radius(i.e.,r=1)and the smallest vector length(i.e.,vl=512).This may indicate the reaction rates between organic compounds with carbonate radical are likely determined by local chemical properties instead of those at molecular level.And putting more diverse features(vector length)in the model input may diluted the importance of structures contributing to the difference in rates.

    In contrast to MF parameters,upgrading the DNN structure from simple to complex(i.e.,increasing the numbers of hidden layers and neurons)considerably improved the model performance.The optimal hyperparameters were around three hidden layers with 1024 neurons fully connected.Further increase of the complexity of model structure did not yield lower RMSE.

    Therefore,we took this structure as base structure and further adjusted model hyperparameters.The model with the best fitting results for validation dataset is shown in Fig.1.The RMSE value,R2and accuracy were 0.452,0.888 and 87.2%,respectively.

    External validation was performed using the data from literatures[16,30,31]and NIST database,in which most of the compounds are of environmental relevance.As shown in Fig.1,this model presented a satisfactory prediction for the external validation dataset with accuracy of 10/13.The ones out of EG 0.2/5 boundaries were still within one-order of magnitude.

    To evaluate if the combination of MaxMin,MF and DNN yielded the best results for carbonate radical rate prediction,we compared MaxMin with random selection for training set construction,MF with MD for model input,and DNN with multivariable linear regression,supporting vector machine,and other commonly used machine learning methods.

    The application of MaxMin dissimilarity-based selection(MaxMin)is expected to pick the most structurally diverse subset of molecules in a given dataset[27].However,it was not clear if MaxMin could result in better predictions for the rates of carbonate radical.Therefore,we tested the performance of MF-DNN using MaxMin selection and random selection,which is the most commonly applied in constructing training dataset.After 1000 epochs,the results of the best models were recorded(Table 1).Although theDTvalues of the training set of these two methods were approximately the same(DT=0.933–0.939),the performance of MaxMin significantly excelled those of random selection.Indeed,the prediction accuracy for MaxMin was over 20% higher than those of random selection(Table 1).

    Table 1 Performance of models for the training set and test set using MF,MD and different modeling methods.

    Fig.1.(A)The scatterplot of the predicted vs the experimental values of log for training,test and external validation datasets.(B)The structural of optimized DNN.

    Table 1 also shows the performance of models for the training set and test set using MD and different modeling methods.Comparing MF and MD(Model No.0,2,3 with No.12,13,14),the results of MF-based models were considerably superior to MDbased models.Indeed,the accuracy of the best performance of MD-based models was below 30%,significantly lower than that of MF-based models.

    Multivariable linear regression(MLR),deep neural network(DNN),and deep convolutional neural network(DCNN),random forest,supporting vector machine(SVM),etc.,are among the mostly commonly applied regression algorithms in machine learning.For MF-based models,1024 bits were initially applied as input data structure linearly for DNN model,whereas a 32 × 32 matrix constructed from 1024 bits was used for DCNN model.The MDDNN model took 1832 descriptors as input data,whereas MD was reconstructed into a 43 × 43 matrix with zero filling in empty space for DCNN models.The output layers of all models gave a single value which was used to compare with the target second-order rate constantComparing these 10 algorithms,DNN almost excelled in all quality index.Multivariable linear regression(MLR),decision tree and extra tree methods showed perfect fitting for training set,whereas these models performed poorly on test set,suggesting significant over-fitting results.DCNN yielded the second-best results of all modeling methods,whereas DCNN consumed significant high computing resource than DNN.For example,a 100-epoch running time on a laptop was over 30 min for DCNN,comparing with less than 30 s for DNN.

    Carbonate radical is primarily produced in sunlit surface water and advanced water treatment processes.Therefore,we chose pharmaceuticals used in human medicine and veterinary practice as the target chemicals because of their high adverse impact on eco-system and high probability to be exposed to carbonate radical.A group of 1576 drugs for human medicine was obtained from the subset of FDA drugs for sale in ZINC15 database(http://zinc.docking.org/substances/subsets/fda+forsale);and a group of 390 drugs with distinct molecular forms for veterinary use was extracted from the Green Book(USDA,https://www.fda.gov/animal-veterinary/products/approved-animaldrug-products-green-book).The total 1966 molecules had passed the check for model application domain(i.e.,the distances between target molecule and train dataset were withinDT),suggesting the prediction of rate constants of these pharmaceuticals was with high confidence.

    As shown in Fig.2,the frequency distribution of rate constants grouped into two distinct peaks at around logkof 6.5 and 8.0.Forty-six drugs(39 in human medicine,7 for veterinary medicine)were identified with rate constants higher than 109L mol?1s?1,suggesting that carbonate radical may significantly contribute to the overall environmental attenuation.It is worth noticing that 18 out of these carbonate-radical-reactive drugs are of high bioactive properties,such as anti-microbial effects and acute toxicity(Fig.2).The chemical structures are provided in Figs.S3 and S4(Supporting information).This finding may suggest future research on the environmental fate of those drugs should be conducted with the emphasize on reactions involving carbonate radical.

    Fig.2.The predicted rate constants of pharmaceuticals for human medicine(A),and veterinary use(B).High bioactive compounds with rate constants higher than 109 L mol?1s?1 were also listed.

    In conclusion,this study combined deep neural network with molecular fingerprints(MF-DNN)to construct a QSAR model,which successfully predicted the second-order rate constants between carbonate radical and organics.A new data processing method(MaxMin),which was designed to select a sub-group of molecules with maximized structural diversity,was applied to construct training dataset.This method helps to overcome the limited numbers of experimental data for carbonate radical.Applying this MF-DNN model,reaction rates between carbonate radical and pharmaceuticals used in human medicine(1576)and veterinary practice(390)were estimated.Among them,46 drugs were identified as fast-reacting compounds,suggesting the important relations of their environmental fate with carbonate radical.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(No.41703101)and the Beijing Outstanding Young Scientist Program(No.BJJWZYJH01201910004016).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.061.

    美女国产高潮福利片在线看| 国产精品乱码一区二三区的特点 | 国产乱人伦免费视频| 免费在线观看视频国产中文字幕亚洲| 色综合婷婷激情| 精品国内亚洲2022精品成人| 69精品国产乱码久久久| 国产精品精品国产色婷婷| 亚洲成人久久性| 黄色女人牲交| 国产精品综合久久久久久久免费 | 日本在线视频免费播放| 丝袜美腿诱惑在线| 男女下面进入的视频免费午夜 | 国内久久婷婷六月综合欲色啪| 成熟少妇高潮喷水视频| 精品日产1卡2卡| 最新美女视频免费是黄的| 99国产精品99久久久久| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产日韩欧美精品在线观看 | 狂野欧美激情性xxxx| 成人精品一区二区免费| 每晚都被弄得嗷嗷叫到高潮| 欧美成人免费av一区二区三区| 女同久久另类99精品国产91| 亚洲中文av在线| 色综合欧美亚洲国产小说| 91成年电影在线观看| 国产野战对白在线观看| 中文亚洲av片在线观看爽| 国产亚洲精品av在线| 亚洲国产精品久久男人天堂| 岛国视频午夜一区免费看| 精品国产乱子伦一区二区三区| 欧美日韩精品网址| 又大又爽又粗| 女性生殖器流出的白浆| 伦理电影免费视频| 热99re8久久精品国产| 99香蕉大伊视频| 如日韩欧美国产精品一区二区三区| 给我免费播放毛片高清在线观看| 午夜免费激情av| 国产精品久久久久久人妻精品电影| av视频在线观看入口| 日本精品一区二区三区蜜桃| 午夜福利一区二区在线看| 午夜a级毛片| 欧美在线黄色| 日韩 欧美 亚洲 中文字幕| 国产一级毛片七仙女欲春2 | 国产成人精品无人区| 久久久久久大精品| 欧美黑人欧美精品刺激| 成人三级黄色视频| 一区二区三区国产精品乱码| 久久久久久久久中文| 亚洲伊人色综图| 欧洲精品卡2卡3卡4卡5卡区| 欧美黑人欧美精品刺激| 好看av亚洲va欧美ⅴa在| 两性夫妻黄色片| 男女做爰动态图高潮gif福利片 | 亚洲欧洲精品一区二区精品久久久| 制服丝袜大香蕉在线| 欧美性长视频在线观看| 女同久久另类99精品国产91| 久久人妻熟女aⅴ| 欧美一区二区精品小视频在线| 免费一级毛片在线播放高清视频 | 夜夜看夜夜爽夜夜摸| 日韩国内少妇激情av| 精品一区二区三区av网在线观看| 大码成人一级视频| 女人精品久久久久毛片| 亚洲五月婷婷丁香| 国产成人精品在线电影| 国产精品永久免费网站| 激情视频va一区二区三区| 亚洲视频免费观看视频| 免费看十八禁软件| 很黄的视频免费| 午夜福利,免费看| 亚洲午夜精品一区,二区,三区| 长腿黑丝高跟| 老司机在亚洲福利影院| 午夜精品久久久久久毛片777| 欧美av亚洲av综合av国产av| 免费观看精品视频网站| 亚洲五月天丁香| 国产一区二区三区视频了| 亚洲精品久久国产高清桃花| 免费在线观看视频国产中文字幕亚洲| 男女下面进入的视频免费午夜 | 麻豆国产av国片精品| 最近最新中文字幕大全免费视频| 黄频高清免费视频| 亚洲精品美女久久久久99蜜臀| 国产91精品成人一区二区三区| 日本 av在线| 国产激情欧美一区二区| 老司机午夜十八禁免费视频| 国产麻豆69| bbb黄色大片| 欧美日韩福利视频一区二区| 久久精品91无色码中文字幕| 一边摸一边抽搐一进一小说| 亚洲黑人精品在线| 亚洲一码二码三码区别大吗| 人成视频在线观看免费观看| 黄频高清免费视频| 最近最新中文字幕大全免费视频| 精品免费久久久久久久清纯| 女生性感内裤真人,穿戴方法视频| 又黄又爽又免费观看的视频| 国产精品av久久久久免费| 国内久久婷婷六月综合欲色啪| 咕卡用的链子| 伊人久久大香线蕉亚洲五| 中文字幕人成人乱码亚洲影| 欧美午夜高清在线| 男女床上黄色一级片免费看| 国产欧美日韩一区二区精品| 国产亚洲精品久久久久久毛片| 国产精品久久久久久人妻精品电影| 国产精品1区2区在线观看.| 美女国产高潮福利片在线看| 亚洲人成网站在线播放欧美日韩| 少妇熟女aⅴ在线视频| 亚洲av成人一区二区三| 久久精品国产综合久久久| 久久人人爽av亚洲精品天堂| 久久久久国内视频| 久久精品91无色码中文字幕| 精品久久久久久久毛片微露脸| www.999成人在线观看| 国产亚洲精品第一综合不卡| 亚洲熟女毛片儿| 超碰成人久久| 国产成人av激情在线播放| 欧美日韩一级在线毛片| 母亲3免费完整高清在线观看| 亚洲男人天堂网一区| 久久精品国产亚洲av香蕉五月| 亚洲国产精品sss在线观看| 动漫黄色视频在线观看| 日日爽夜夜爽网站| 丁香六月欧美| 少妇的丰满在线观看| 真人一进一出gif抽搐免费| 免费在线观看黄色视频的| 99精品久久久久人妻精品| 两性夫妻黄色片| 国产色视频综合| 天天添夜夜摸| 人人妻人人爽人人添夜夜欢视频| 激情视频va一区二区三区| 91精品国产国语对白视频| 中文字幕久久专区| 热99re8久久精品国产| 十八禁人妻一区二区| 两个人视频免费观看高清| 天堂动漫精品| 国产一区二区三区综合在线观看| 亚洲精品中文字幕一二三四区| 十八禁网站免费在线| 成在线人永久免费视频| 国产成人精品在线电影| 久久精品国产清高在天天线| 又黄又爽又免费观看的视频| 我的亚洲天堂| 国产麻豆成人av免费视频| 黑丝袜美女国产一区| 国产av一区二区精品久久| 日本免费一区二区三区高清不卡 | 老熟妇乱子伦视频在线观看| 亚洲色图综合在线观看| svipshipincom国产片| tocl精华| 这个男人来自地球电影免费观看| 色播亚洲综合网| 黄色a级毛片大全视频| 国产成人精品在线电影| 国产一区二区在线av高清观看| 久久天堂一区二区三区四区| 国产在线观看jvid| 999久久久国产精品视频| 久久精品91蜜桃| 精品久久久久久久人妻蜜臀av | 精品卡一卡二卡四卡免费| aaaaa片日本免费| 亚洲美女黄片视频| 在线观看免费视频网站a站| 在线观看www视频免费| 亚洲人成网站在线播放欧美日韩| 国产一级毛片七仙女欲春2 | 成人三级做爰电影| 亚洲成国产人片在线观看| 一级作爱视频免费观看| av片东京热男人的天堂| 少妇的丰满在线观看| 亚洲精品av麻豆狂野| 在线观看舔阴道视频| 亚洲自偷自拍图片 自拍| 999久久久精品免费观看国产| 日本免费一区二区三区高清不卡 | 亚洲电影在线观看av| 成人三级黄色视频| 免费少妇av软件| 免费在线观看影片大全网站| 国产精品1区2区在线观看.| 777久久人妻少妇嫩草av网站| 亚洲国产高清在线一区二区三 | 亚洲第一av免费看| 不卡一级毛片| 老司机深夜福利视频在线观看| 法律面前人人平等表现在哪些方面| 精品欧美国产一区二区三| a级毛片在线看网站| 18禁美女被吸乳视频| 亚洲av熟女| 丰满的人妻完整版| 久久精品国产清高在天天线| 在线永久观看黄色视频| 人人妻人人澡欧美一区二区 | 久久人人97超碰香蕉20202| 国产乱人伦免费视频| 欧美日韩黄片免| 亚洲最大成人中文| 亚洲av片天天在线观看| 首页视频小说图片口味搜索| 国产区一区二久久| 夜夜躁狠狠躁天天躁| 精品国产国语对白av| 欧美 亚洲 国产 日韩一| 老司机深夜福利视频在线观看| 国产午夜福利久久久久久| 国产欧美日韩一区二区三区在线| 国产在线观看jvid| 精品久久久久久久毛片微露脸| 国内毛片毛片毛片毛片毛片| 亚洲国产精品成人综合色| 欧美成狂野欧美在线观看| 黄色片一级片一级黄色片| 精品第一国产精品| 欧美乱码精品一区二区三区| 色老头精品视频在线观看| 国产精品1区2区在线观看.| 精品国产亚洲在线| 午夜免费观看网址| 免费高清在线观看日韩| 欧美激情高清一区二区三区| 午夜亚洲福利在线播放| 亚洲熟妇中文字幕五十中出| 两个人视频免费观看高清| 国产av又大| 高清在线国产一区| 看片在线看免费视频| 国产精品 欧美亚洲| 欧美成人免费av一区二区三区| √禁漫天堂资源中文www| 国产熟女xx| 黑人巨大精品欧美一区二区mp4| 在线观看66精品国产| 老司机靠b影院| 97碰自拍视频| 午夜免费观看网址| av有码第一页| 亚洲av熟女| 中国美女看黄片| 国产熟女午夜一区二区三区| 亚洲精品国产色婷婷电影| 国产99久久九九免费精品| 久久青草综合色| 亚洲一区二区三区不卡视频| av有码第一页| 午夜福利一区二区在线看| 男女之事视频高清在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品一区二区免费欧美| 久久久久久免费高清国产稀缺| 精品人妻1区二区| 午夜免费成人在线视频| 美女高潮喷水抽搐中文字幕| 男人的好看免费观看在线视频 | 一本久久中文字幕| 人妻久久中文字幕网| 精品一区二区三区av网在线观看| 午夜免费鲁丝| 亚洲午夜精品一区,二区,三区| 黄色成人免费大全| 亚洲 欧美 日韩 在线 免费| 岛国视频午夜一区免费看| or卡值多少钱| 啪啪无遮挡十八禁网站| 99精品久久久久人妻精品| 欧美成狂野欧美在线观看| 日韩欧美在线二视频| 男男h啪啪无遮挡| 国产亚洲精品av在线| 国产精品乱码一区二三区的特点 | 亚洲一区高清亚洲精品| 成人亚洲精品av一区二区| 日韩欧美在线二视频| 国产区一区二久久| 精品午夜福利视频在线观看一区| 在线观看日韩欧美| 国产成人av教育| aaaaa片日本免费| 午夜久久久在线观看| 国产99久久九九免费精品| 国产精品一区二区精品视频观看| 免费少妇av软件| 美女高潮到喷水免费观看| 亚洲九九香蕉| a级毛片在线看网站| 日本一区二区免费在线视频| 可以在线观看毛片的网站| 国产精品一区二区精品视频观看| 亚洲国产精品999在线| av有码第一页| 男人操女人黄网站| 中出人妻视频一区二区| 成人精品一区二区免费| 波多野结衣高清无吗| 久久精品影院6| 色播亚洲综合网| 无人区码免费观看不卡| 精品高清国产在线一区| 亚洲中文字幕一区二区三区有码在线看 | 99re在线观看精品视频| 成人精品一区二区免费| 9热在线视频观看99| 亚洲精品一区av在线观看| 天堂√8在线中文| 1024视频免费在线观看| www国产在线视频色| 亚洲精品国产一区二区精华液| 国产成+人综合+亚洲专区| 色在线成人网| 国产精品九九99| 欧美成狂野欧美在线观看| 亚洲av片天天在线观看| 亚洲av成人不卡在线观看播放网| 人人妻,人人澡人人爽秒播| 亚洲久久久国产精品| 久久久国产精品麻豆| 一夜夜www| 欧美日韩一级在线毛片| 国产精品 欧美亚洲| 91在线观看av| 亚洲欧美日韩另类电影网站| 国产精品影院久久| 色综合站精品国产| 久久天躁狠狠躁夜夜2o2o| 黄色片一级片一级黄色片| 多毛熟女@视频| 精品久久久久久久人妻蜜臀av | 国产精品久久电影中文字幕| 精品国内亚洲2022精品成人| 精品一区二区三区视频在线观看免费| 亚洲专区中文字幕在线| 亚洲国产精品sss在线观看| 大陆偷拍与自拍| 国产成人影院久久av| 久久久精品国产亚洲av高清涩受| 人妻久久中文字幕网| 制服人妻中文乱码| 咕卡用的链子| 乱人伦中国视频| 日韩欧美一区二区三区在线观看| 十八禁网站免费在线| 国产高清有码在线观看视频 | 午夜影院日韩av| 日韩视频一区二区在线观看| 久久天躁狠狠躁夜夜2o2o| 别揉我奶头~嗯~啊~动态视频| 亚洲熟妇熟女久久| 亚洲精品粉嫩美女一区| 一个人观看的视频www高清免费观看 | 身体一侧抽搐| 在线观看免费视频网站a站| 露出奶头的视频| 人人妻人人澡人人看| 国产精品永久免费网站| 一区二区三区国产精品乱码| 一级a爱视频在线免费观看| 午夜福利高清视频| 啦啦啦 在线观看视频| 人成视频在线观看免费观看| 午夜精品久久久久久毛片777| 老司机午夜福利在线观看视频| 9色porny在线观看| 欧美乱色亚洲激情| 国产一区二区三区视频了| av天堂在线播放| 日韩 欧美 亚洲 中文字幕| 久久亚洲精品不卡| 亚洲狠狠婷婷综合久久图片| 亚洲色图综合在线观看| 99riav亚洲国产免费| x7x7x7水蜜桃| 国产日韩一区二区三区精品不卡| 亚洲一区二区三区不卡视频| 757午夜福利合集在线观看| 一本大道久久a久久精品| 激情视频va一区二区三区| 91国产中文字幕| 91成人精品电影| 电影成人av| 久久久久国产一级毛片高清牌| 国产亚洲精品av在线| 亚洲精品在线观看二区| 亚洲av第一区精品v没综合| 久久人妻av系列| 天天躁狠狠躁夜夜躁狠狠躁| 日本 欧美在线| 午夜成年电影在线免费观看| 女同久久另类99精品国产91| 99精品欧美一区二区三区四区| 精品熟女少妇八av免费久了| 香蕉久久夜色| 国产高清激情床上av| 国产av又大| 咕卡用的链子| 丰满的人妻完整版| 免费在线观看黄色视频的| 一级毛片精品| 日韩成人在线观看一区二区三区| 中亚洲国语对白在线视频| 窝窝影院91人妻| 中文字幕人成人乱码亚洲影| 91国产中文字幕| 久久 成人 亚洲| 91成人精品电影| 99riav亚洲国产免费| 看片在线看免费视频| 99re在线观看精品视频| 制服诱惑二区| 9191精品国产免费久久| 两个人免费观看高清视频| 国产区一区二久久| 亚洲午夜精品一区,二区,三区| 99精品欧美一区二区三区四区| 老司机午夜十八禁免费视频| 老司机在亚洲福利影院| 亚洲中文av在线| √禁漫天堂资源中文www| 老熟妇仑乱视频hdxx| 欧美成人性av电影在线观看| 亚洲在线自拍视频| 亚洲国产精品sss在线观看| 午夜免费激情av| 美国免费a级毛片| 午夜免费观看网址| 日本在线视频免费播放| 老司机靠b影院| 母亲3免费完整高清在线观看| 免费观看精品视频网站| 久久国产精品男人的天堂亚洲| 18禁美女被吸乳视频| 日日夜夜操网爽| 色在线成人网| av视频在线观看入口| 黄色a级毛片大全视频| 亚洲国产欧美日韩在线播放| 国产黄a三级三级三级人| av视频在线观看入口| 欧洲精品卡2卡3卡4卡5卡区| 每晚都被弄得嗷嗷叫到高潮| 国产精品自产拍在线观看55亚洲| 日本 av在线| 亚洲国产精品999在线| a级毛片在线看网站| 成人18禁在线播放| 动漫黄色视频在线观看| 在线免费观看的www视频| 亚洲一区高清亚洲精品| 欧美久久黑人一区二区| 丝袜美足系列| 亚洲欧美日韩无卡精品| 俄罗斯特黄特色一大片| 高清毛片免费观看视频网站| 美女 人体艺术 gogo| 精品国产国语对白av| 村上凉子中文字幕在线| 久久久精品欧美日韩精品| 美女 人体艺术 gogo| 中文字幕精品免费在线观看视频| 亚洲国产精品sss在线观看| 午夜福利视频1000在线观看 | 日本在线视频免费播放| 亚洲三区欧美一区| 女生性感内裤真人,穿戴方法视频| svipshipincom国产片| 成年版毛片免费区| 一区二区三区激情视频| 午夜福利免费观看在线| 亚洲人成电影免费在线| 国产精品一区二区在线不卡| 老司机靠b影院| 日韩视频一区二区在线观看| av片东京热男人的天堂| 美国免费a级毛片| 婷婷精品国产亚洲av在线| 国产黄a三级三级三级人| 久久午夜综合久久蜜桃| 欧美精品亚洲一区二区| 国产又爽黄色视频| 精品久久蜜臀av无| 免费一级毛片在线播放高清视频 | 岛国在线观看网站| АⅤ资源中文在线天堂| 国产成人影院久久av| 国产精品一区二区免费欧美| 国产av一区二区精品久久| 欧美色视频一区免费| 国产亚洲精品一区二区www| 日日摸夜夜添夜夜添小说| 欧美性长视频在线观看| 国产一区在线观看成人免费| 69av精品久久久久久| 黄色丝袜av网址大全| 丁香欧美五月| 91国产中文字幕| www日本在线高清视频| 大型av网站在线播放| 国产精品 欧美亚洲| 亚洲第一av免费看| 电影成人av| 看黄色毛片网站| 深夜精品福利| 18禁黄网站禁片午夜丰满| 曰老女人黄片| 日日干狠狠操夜夜爽| 欧美最黄视频在线播放免费| 人人妻人人澡欧美一区二区 | 亚洲av熟女| 久久伊人香网站| av天堂在线播放| 男人操女人黄网站| 中文字幕高清在线视频| 国产精品免费视频内射| 亚洲熟女毛片儿| 中文字幕人成人乱码亚洲影| 久久天躁狠狠躁夜夜2o2o| netflix在线观看网站| 波多野结衣av一区二区av| 最近最新免费中文字幕在线| 50天的宝宝边吃奶边哭怎么回事| 亚洲成人国产一区在线观看| 亚洲无线在线观看| 91成年电影在线观看| 老司机午夜福利在线观看视频| 韩国精品一区二区三区| 亚洲av成人av| 久久久久国内视频| 一级毛片女人18水好多| 久久精品国产亚洲av香蕉五月| 亚洲精品久久国产高清桃花| 精品久久久久久久人妻蜜臀av | 久久精品国产综合久久久| 亚洲色图av天堂| 在线永久观看黄色视频| 成人国语在线视频| 亚洲中文字幕一区二区三区有码在线看 | 国产亚洲精品综合一区在线观看 | 国产精品 国内视频| 午夜福利成人在线免费观看| 色尼玛亚洲综合影院| 一级黄色大片毛片| 久久婷婷人人爽人人干人人爱 | av在线播放免费不卡| 最新在线观看一区二区三区| 亚洲色图av天堂| 91精品三级在线观看| 成年人黄色毛片网站| 精品少妇一区二区三区视频日本电影| 亚洲久久久国产精品| 色综合欧美亚洲国产小说| 国产又色又爽无遮挡免费看| 两性夫妻黄色片| 国产亚洲精品一区二区www| 黄色 视频免费看| 两个人视频免费观看高清| 淫妇啪啪啪对白视频| 国产精品综合久久久久久久免费 | 日韩欧美一区二区三区在线观看| 亚洲aⅴ乱码一区二区在线播放 | 一级,二级,三级黄色视频| 精品久久久久久成人av| 一级a爱视频在线免费观看| 国产私拍福利视频在线观看| 国产极品粉嫩免费观看在线| 日韩国内少妇激情av| 亚洲激情在线av| 久久久久久久精品吃奶| 咕卡用的链子| 精品人妻在线不人妻| 制服诱惑二区| 91九色精品人成在线观看| 悠悠久久av| 一区福利在线观看| 在线观看午夜福利视频| 欧美性长视频在线观看| 这个男人来自地球电影免费观看| 精品国产超薄肉色丝袜足j| 黄色片一级片一级黄色片| 色在线成人网| 午夜久久久久精精品| 国产一区二区在线av高清观看| 国产成+人综合+亚洲专区| 国产97色在线日韩免费| 波多野结衣av一区二区av|