• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The InSe/g-CN van der Waals hybrid heterojunction as a photocatalyst for water splitting driven by visible light

    2022-03-14 09:29:32ChengHeFushengHnWenxueZhng
    Chinese Chemical Letters 2022年1期

    Cheng He,Fusheng Hn,Wenxue Zhng

    aState Key Laboratory for Mechanical Behavior of Materials,School of Materials Science and Engineering,Xi’an Jiaotong University,Xi’an 710049,China.

    bSchool of Materials Science and Engineering,Chang’an University,Xi’an 710064,China

    ABSTRACT Designing and developing the highly efficient photocatalysts is full of significance to achieve spontaneous photolysis water.In this work,using the first-principles calculations,we have performed a systematic theoretical study of water splitting photocatalytic activity of the InSe/g-CN heterojunction.It is concluded that the InSe/g-CN heterojunction is a typical type-II semiconductor,whose electrons and holes can be effectively separated.And the potential of the conduction band minimum(CBM)and valence band maximum(VBM)satisfy the requirements for photolysis water.Moreover,the changes of Gibbs free energy(ΔG)of the oxygen evolution reaction(OER)and the hydrogen evolution reaction(HER)are calculated to investigate thermodynamic sustainability of photolysis water.The results show that when pH=7,the potential driving force provided by the InSe/g-CN heterojunction can ensure the spontaneous progress of HER and OER.In addition,it is found that the solar conversion efficiency(ηS)of the InSe/g-CN heterojunction is up to 13.7%,which indicates it has broad commercial application prospects.Hence,the InSe/g-CN heterojunction is expected to be an excellent candidate for photolysis water.

    Keywords:Photolysis water First-principles Type-II semiconductor Solar-to-hydrogen

    As we all know,energy and environmental issues are the two major problems facing humanity today,and the key to solving these two problems is to search and utilize clean renewable energy[1-3].Hydrogen gas is a kind of gas with high combustion calorific value and non-polluting combustion product,hence,increasing the utilization efficiency of hydrogen energy can effectively alleviate the above two problems[4,5].At present,it is a feasible method to prepare hydrogen gas by photolysis water,which has attracted more and more attention[6-9].However,the current photolysis water efficiency is still low,and thus finding an efficient photocatalyst is the key to achieving photocatalytic water splitting[10-14].Generally,the photocatalysts that can be used to split water need to meet three requirements:1)suitable band gap(Eg),2)suitable conduction band(CB)and valence band(VB)position,3)effective segregation of the photogenerated electrons and holes in geometric space[15].The traditional photolysis water catalyst are ZnO[16,17],TiO2[18,19],WO3[20]and so on,which have the largeEgand can only use the violet and ultra violet parts of sunlight for water splitting[21].As a result,the sunlight utilization effi-ciency of them is low.Meanwhile,their electrons and holes recombine easily,which greatly reduces the efficiency of photolysis water[22].Above these disadvantages greatly limit their large-scale commercial applications in the area of photolysis water.Hence,it is needful to develop some more efficient catalysts for photolysis water.

    In recent years,more and more two dimensional(2D)nanomaterials with outstanding performance have been discovered,such as grapheme[23,24],molybdenum diselenide[25]and black phosphorene[26].Many 2D van der Waals(vdW)heterojunctions based on the arrangement and combination of several 2D nanomaterials not only have high solar conversion efficiency(ηS),but also have many large pores and active sites[27,28].Moreover,the strong inter-layer charge migration ability between adjacent layers has been verified both theoretically and experimentally,which is conducive to the spatial segregation of the electrons and holes[29,30].So these 2D vdW heterojunctions have huge application potential in the area of photolysis water.The single-layer III-VI group compound InSe(Eg=2.25 eV)has excellent photocatalytic activity in the process of water splitting[31].Meanwhile,it is inexpensive,has high chemical stability and high sunlight absorption capacity in acidic or neutral aqueous solutions.Besides,a new type of 2D nanomaterial,graphitic carbon nitride(g-CN)has already been prepared through the chemical reaction of Na and C3N3Cl3[32].The research results show thatg-CN has high specific surface area and numerous voids,which is very suitable for adsorption of small molecules such as OH,O,OOH[33,34].Furthermore,g-CN is mainly characterized by ultraviolet activity as well as thermodynamic stability and engineering[35].Therefore,bothg-CN and the singlelayer InSe have the great potential for photolysis water.Therefore,in this work,we have designed the InSe/g-CN vdW heterojunction,which can achieve effective segregation of the photogenerated electrons and holes in geometric space and keep high sensitivity to sunlight.More importantly,the InSe/g-CN heterojunction can completely use sunlight energy to split water without adding any electric field,which greatly reduces the cost of water splitting.

    Herein,firstly,the stability ofg-CN and the single-layer InSe are verified by performing the molecular dynamics(MD)simulations and phonon spectrum calculations.And the most stable heterojunction is obtained by calculations of the the formation energy(Ea).Then,the electronic properties of the InSe/g-CN heterojunction are analyzed,and we have found that the InSe/g-CN heterojunction is a typical type-II semiconductor withEgof 2.13 eV.Furthermore,in order to explore whether the water splitting reaction can implement spontaneously under the action of the photocatalyst,the changes of Gibbs free energy(ΔG)are calculated when the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)occur.Finally,the optical properties of the InSe/g-CN heterojunction are investigated to analyze the strength of light absorption and reflection.The results show that the InSe/g-CN heterojunction is a superior photocatalyst for water splitting,which provides corresponding theoretical basis for future experiments preparation.

    All the first-principle calculations based on the density functional theory(DFT)were performed by using the Vienna Ab initio Simulation Package(VASP)[36].The Generalized-Gradient-Approximation(GGA)and Perdew-Burke-Ernzerh(PBE)exchangecorrelation functional were employed to describe the wave function[37,38].The Projector-Augmented-Wave(PAW)potentials were adopted to describe the ion-electron interactions.To consider the vdW interactions between the layers,the dispersion corrected DFTD3 scheme was applied[39].In addition,because the PBE functional cannot accurately describe the electronic properties,the HSE06[40]hybrid functional was used to calculateEgof semiconductor.Meanwhile,the optical properties were calculated by using the Green’s function screened coulomb interaction(GW)[41]approximation combined with the Bethe-Salpeter-equation(BSE)[42].In order to reduce the impact of inter-layer interaction caused by periodic cycles,a vacuum layer of 20 ?A was added in the direction perpendicular to the nanosheets.In all calculations,the size of the Monkhorst-Pack k-point mesh in the 2D Brillouin zone was set to 5 × 5 × 1.The cutoff energy was 600 eV,and the convergence tolerances energy was 10?5eV/atom.Besides,Max.force,Max.stress and Max.displacement during system relaxation were set to 0.01 eV/?A,0.1 GPa and 0.005 ?A,respectively.MD calculations were provided by Forcite Module[43].Statistical ensemble was set to NVT(N was the number of atom,and V and T were constants)[44].Universal[44]forcefield was applied.The Nose[45]thermostat was adopted to keep temperature constant.The relaxation time was 1000 ps and time step was 1 fs.In addition,the current static calculations did not consider the excited states.

    The most stable structures ofg-CN and the single-layer InSe are obtained through geometric optimization.In order to fully prove the stability of the structures,MD simulations and the phonon vibration frequency calculations ofg-CN and the single-layer InSe are performed.MD simulations are carried out from 300 K to 500 K.To meet the minimum periodic boundary requirements,a 6 × 6 × 1g-CN supercell and a 10 × 10 × 1 single-layer InSe supercell are constructed.Figs.S1a and b(Supporting information)show the potential energy fluctuation ofg-CN and the single-layer InSe at 300,400 and 500 K.And the atomic structures ofg-CN and the singlelayer InSe after 1000 ps at 500 K are also shown in Figs.S1a and b.The results show that there is no significant structural change and the fluctuation of potential energy is very small over time at 500 K,which indicates thatg-CN and the single-layer InSe can still remain excellent structural stability at 500 K.Meanwhile,as shown in Fig.S2(Supporting information),there is no imaginary frequency in the phonon band structure,which further confirms that the structures ofg-CN and the single-layer are both steady.

    The InSe/g-CN vdW heterojunction is designed by a 1 × 1g-CN supercell and asingle-layer InSe supercell stacked along the direction perpendicular to the nanosheets.The lattice mismatch of the InSe/g-CN heterojunction is about 1.6%.In Fig.S1c(Supporting information),according to different stacking patterns ofg-CN and the single-layer InSe,four different heterojunctions are constructed,labeled as H1(the In atom is situated in the center ofg-CN hexagonal ring),H2(the Se atom is situated in the center ofg-CN hexagonal ring),H3(the In-Se bond is situated in the center ofg-CN hexagonal ring)and H4(theg-CN hexagonal ring is situated in the center of the InSe hexagonal ring).To check the stability of the heterojunctions,Eaper unit cell of the four heterojunctions are calculated by Eq.1[46]:

    whereEInSe/g-CN,Eg-CN andEInSeare the total energy of the InSe/g-CN heterojunction,g-CN and single-layer InSe,respectively.Eaof H1,H2,H3and H4are ?2.327,?2.315,?2.283 and ?2.321 eV,respectively.The negative value ofEaindicates that the four heterojunctions have systematic energy stability.Meanwhile,more negative value ofEameans the heterojunction is more steady.Consequently,H1stacking pattern withEaof ?2.327 eV is the most steady among four stacking patterns,and we choose it for the next calculations.

    To visualize the charge interaction mechanism between layers of the InSe/g-CN heterojunction,the charge density(Q(z))and the charge density difference(ΔQ(z))are calculated to analyze the charge distribution and charge migration.ΔQ(z)is evaluated by using Eq.2[31]:

    whereQ(z)InSe/g-CN,Q(z)g-CN andQ(z)InSerepresentQ(z)of the InSe/g-CN heterojunction,g-CN and single-layer InSe,respectively.As shown in Fig.1a,charges(the charges here refers to electrons)gather in theg-CN layer and dissipate in the InSe layer,indicating that charges are migrated from the InSe layer to theg-CN layer,which is mainly due to the strong electronegativity of the N atoms in theg-CN layer.Similar charge migration and redistribution have also been observed in the other 2D vdW heterojunctions[29].More importantly,the negatively chargedg-CN layer is conducive to the adsorption of the hydrogen ions,and the positively charged InSe layer is conducive to the adsorption of intermediates(OH?,O?,OOH?,HOOH?and O + OH?)during OER.And thus the electrons and holes are effectively segregated,and a built-in electric field is formed,which is conducive to the water splitting of the InSe/g-CN heterojunction.To order to further describe the interfacial electronic properties,the dipole momentμ(z)is also given by using Eq.3[31]:

    It is found by calculation that there is aμ(z)of ?4.27 D from the InSe layer to theg-CN layer,which confirms the formation of an interlayer dipole moment inside the heterojunction.

    Fig.1.(a)Charge density difference(blue line)and interface dipole moment(red line)along the Z-direction for the InSe/g-CN heterojunction;(b)HOMO and LUMO results of the InSe/g-CN heterojunction;(c)Energy band structure of g-CN;(d)Energy band structure of the single-layer InSe;(e)Energy band structure the InSe/g-CN heterojunction.

    Meanwhile,to gain further detailed of electronic properties,the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO)orbital distribution of the InSe/g-CN heterojunction are calculated.According to the positions occupied by the orbitals,the heterojunctions can be divided into two categories:When HOMO and LUMO are located in the same layer of the heterojunction,the heterojunction is labeled as type-I heterojunction.When HOMO and LUMO are located in two different layers of the heterojunction,the heterojunction is labeled as type-II heterojunction[47].Compared with the type-I heterojunctions,the most notable feature of the type-II heterojunction is the separation of the electrons and holes near the interface in the self-consistent quantum well.Fortunately,as shown in Fig.1b,the InSe/g-CN heterojunction belongs to type-II heterojunction,where HOMO and LUMO are located in the single-layer InSe andg-CN,respectively.Therefore,as a kind of type-II semiconductor,the InSe/g-CN heterojunction has successfully achieved the separation of the electrons and holes,which meets an important requirement for photolysis water.

    Then,the energy band structures ofg-CN,the single-layer InSe and InSe/g-CN heterojunction are calculated at the HSE06 level,as shown in Figs.1c–e.It can be seen that both the conduction band minimum(CBM)and the valence band maximum(VBM)ofg-CN reside at the K point.Therefore,g-CN is a direct bandgap semiconductor,and the value ofEgis 3.16 eV.CBM of the single-layer InSe reside at the G point,and VBM of the single-layer InSe reside between the M and G points.Therefore,the single-layer InSe is an indirect bandgap semiconductor,and the value ofEgis 2.25 eV.These results agree well with those previous reported[31,33].After the formation of the InSe/g-CN heterojunction,CBM of the InSe/g-CN heterojunction reside at the K point,and VBM of the InSe/g-CN heterojunction reside between the M and G points.Therefore,the InSe/g-CN heterojunction is an indirect bandgap semiconductor,and the value ofEgis 2.13 eV,which is in the energy range of visible light(1.6–3.2 eV),so the valence electrons can accept adequate energy given by visible light to complete the transition,yielding the electrons in the conduction bands and holes in the valence bands.Meanwhile,we can see that CBM and VBM of the InSe/g-CN heterojunction are contributed by theg-CN layer and the InSe layer,respectively,which proves again that the electrons and holes are segregated and the InSe/g-CN heterojunction is indeed a type-II heterojunction.

    Fig.2.(a)Electrostatic potential of the InSe/g-CN heterojunction.The red and pink dashed lines denote the fermi level and the vacuum energy level,respectively;(b)Potentials of band-edge positions for the InSe/g-CN heterojunction;(c)Potentials of band-edge positions at biaxial strains of ?5%,?3%,?1%,1%,3% and 5%.

    Moreover,in order to quantify the band alignments of the InSe/g-CN heterojunction,we need to determine the potentials of the band-edge positions.Firstly,the electrostatic potentials of the InSe/g-CN heterojunction is calculated,as shown in Fig.2a.Then,the work function(φ)of the InSe/g-CN heterojunction is also calculated,which is gained by using Eq.4[15]:

    whereEvacandEfare the electrostatic potential at the vacuum nearby the surface and the electrostatic potential at the Fermi level,respectively.Evac,Efandφof the InSe/g-CN heterojunction are 3.47,?2.17 and 5.64 eV,respectively.Meanwhile,the standard hydrogen potentialcan be obtained byeV + pH × 0.059 eV,and the standard oxygen potentialcan be obtained byThen,based onφand the relative positions of CBM,VBM and the Fermi level,the potential of CBM(Ec)and the potential of VBM(Ev)for the InSe/g-CN heterojunction are obtained,as shown in Fig.2b.Theoretically,to satisfy the requirements for the photolysis water,Ecof the photocatalysts should be higher than(when pH=0,when pH=7,andEvof the photocatalysts should be lower thanpH=0,)[50].The value ofEcfor the InSe/g-CN heterojunction is ?3.85 eV,which is 0.18 eV higher thanThe value ofEvfor the InSe/g-CN heterojunction is ?5.98 eV,which is 0.72 eV lower thanat pH=7.The electrons excited by light are migrated from the InSe layer to theg-CN layer,which leads to forms an internal electric field from the InSe layer to theg-CN layer.Here,although the built-in electric field promotes the recombination of the carriers,the photons stimulate the continuous generation of the carriers.The above two processes maintain a balance,which makes this built-in electric field stable.Then,similar to the principle of electrolyzing water,the InSe/g-CN heterojunction relies on this built-in electric field to split water.Theg-CN layer is the cathode of the built-in electric field,where HER occurs.And the InSe layer is the anode of the built-in electric field,where OER occurs.Therefore,it is concluded that the InSe/g-CN heterojunction satisfy the requirements for photolysis water in terms of potential.

    Furthermore,the InSe/g-CN heterojunction is applied biaxial strain from ?5% to +5% to explore the effect of strain on theEg.In Fig.S3(Supporting information),when the values of biaxial strain applied are ?5%,?3%,?1%,1%,3% and 5%,Egof the InSe/g-CN heterojunction are 2.38,2.62,2.31,1.92,1.55 and 1.22 eV,respectively.It is found thatEgincreases first and then declines with the decline of biaxial strain,andEgdeclines with the increase of biaxial strain.Then,the potentials of band-edge positions under different biaxial strain conditions are calculated,as shown in Fig.2c.Theoretically,the optimalEgfor photolysis water is between 2.0 eV and 2.2 eV.IfEgis too large,the utilization of visible light will be reduced,while ifEgis too small,the potential driving force of the water splitting reaction will be insufficient,and it will not even be able to provide adequate energy to make the valence electrons transition to CB.Therefore,when ?5%,?3% and ?1% biaxial strain are applied,the utilization of visible light will be reduced.When 1% biaxial strain is applied,the potential driving force that can be provided to HER is too small.When 3% and 5% biaxial strain are applied,Ecand Evcould not satisfy the requirements for photolysis water.Therefore,under the condition of not applying any strain,the effect of the InSe/g-CN heterojunction for photolysis water is the most ideal.

    In order to further explore whether the water splitting reaction can implement spontaneously driven by visible light,we need to judge the thermodynamic sustainability of water splitting reaction by calculatingΔGof each state in the HER and OER process.HER is divided into 2 steps(Eq.5)[51]:

    For OER,there are 3 paths[52].As shown in Figs.3a–c,path 1,path 2 and path 3 all contain 4 steps.Here,?represents the InSe/g-CN heterojunction substrate.OH?,O?,OOH?,HOOH?and O + OH?represent that OH,O,OOH,HOOH and O + OH are adsorbed on the substrate,respectively.ΔGis calculated by using Eq.6[53]:

    whereΔEis the variation of total energy.ΔZPEis the variation of zero point energy.Tis the temperature(298 K),andΔSis the variation of entropic contribution.ΔGU=?eU,where e is the electron charge andUis the potential difference.ΔGpH=?kBTln10 × pH,wherekBis the Boltzmann’s constant,and here,pH=7 is considered.More detailed,ZPEcould be calculated by using Eq.7:

    Subsequently,TScould be evaluated using Eq.8:

    wherehandvrepresent Planck’s constant and the vibrational frequency,respectively.Figs.3d–i show the lowest system energy adsorption sites of H,OH,O,OOH,HOOH and O+OH on the InSe/g-CN heterojunction,respectively.The potential driving force for HER(Ue)could be obtained byHere,when pH=7,Ue=0.18 eV.And the potential driving force for OER(Uh)can be obtained byHere,when pH=7,Uh=1.95 eV.According to the Sabatier principle[54],a good HER catalyst should be able to form a strong enough bond with the H atom in the first step of HER to promote the proton-electron migration process,and it should be beneficial to bond breakage and the release of H2in the second step of HER.Therefore,the most ideal result is thatΔGin the first step of HER should be less than 0 eV and close to 0 eV.As shown in Fig.3j,for HER,whenUe=0 V or 0.18 V,ΔGdecreases to ?1.02 eV and ?1.20 eV,(less than 0 eV and close to 0 eV),respectively,which proves that HER can implement spontaneously and the release of hydrogen gas is relatively easy.In Fig.3k,for path 1 of OER,whenUh=0 V,ΔGincreases each step to 3.44 eV eventually;whenUh=1.23 V(theoretical minimum potential driving force required for OER)orUh=1.95 V,ΔGincreases in the fourth reaction.In Fig.3l,for path 2 of OER,when 1.23 V or 1.95 V,ΔGalso increases in the fourth reaction.Therefore,for paths 1 and 2,the water splitting reaction cannot implement spontaneously.Meanwhile,the most difficult step is the release of oxygen in the fourth step(OOH?+ 3(H++ e?)→O2+ 4(H++ e?)+?),which requires a greater potential driving force.In Fig.3m,for path 3 of OER,when 1.23 V,ΔGincrease in the third reaction.Excitingly,whenUh=1.95 V,ΔGdeclines each step of OER,which implies that when the InSe/g-CN heterojunction is used as the photocatalyst,OER become feasible in thermodynamics.Meanwhile,the most difficult step is the third step reaction(O?+ 2(H++ e?)+ H2O →O+ OH?+ 3(H++ e?)),and this step determines the rate of entire OER.Therefore,it is concluded that the photogenerated carriers of the InSe/g-CN heterojunction can provide sufficient potential driving force to stimulate HER and OER processes without any other sacrificial reagents or promoters.

    As the photocatalysts for water splitting,optical properties are also particularly important,particularly the capability to use the visible light,because the energy of visible light accounts for 40%of the total energy of solar.To calculate the optical properties the InSe/g-CN heterojunction including real part of dielectric function(ε1(ω)),imaginary part of dielectric function(ε2(ω)),absorption coefficient(α(ω))and reflectivity(R(ω)),the GW + BSE approach is used.The calculated results ofε1(ω)andε2(ω)are shown in Figs.4a and b.Theα(ω)andR(ω)can be determined by using Eqs.(9)and(10)[55]:

    whereωis the frequency of electromagnetic waves.As shown in Fig.4c,there are several peaks forα(ω)of the InSe/g-CN heterojunction.The photon energy corresponding to the absorption peaks are 1.2,2.2,2.8,3.2 and 3.6 eV,respectively.And in the blue and violet light regions,the value ofα(ω)is larger than other visible light regions.The energy corresponding to blue and violet light is 3.0 eV,whileEgof the InSe/g-CN heterojunction is 2.13 eV,which means that the photons can provide adequate energy to facilitate the electrons to migrate from VB to CB.Unfortunately,in Fig.4d,it can be seen thatR(ω)is also relatively large in the blue and violet regions,which has a certain adverse effect on the InSe/g-CN heterojunction for photolysis water.

    Meanwhile,ηSis an important indicator to evaluate the catalytic efficiency of the photocatalysts[56].ηSof the photocatalysts can be calculated roughly by using Eq.11[57]:

    Fig.3.(a–c)Three oxygen evolution reaction(OER)paths;(d)Optimized geometries of H on the InSe/g-CN heterojunction during HER;(e–i)Optimized geometries of OH,O,OOH,HOOH and O + OH on the InSe/g-CN heterojunction during OER;(g) ΔG of HER at pH=7 and at different potential differences(0 and 0.18 V);(k) ΔG of OER for path 1 at pH=7 and at different potential differences(0,1.23 and 1.95 V);(l) ΔG of OER for path 2 at pH=7 and at different potential differences(0,1.23 and 1.95 V);(m) ΔG of OER for path 3 at pH=7 and at different potential differences(0,1.23 and 1.95 V).

    Fig.4.(a)The real part ε1(ω)of dielectric function;(b)The imaginary part ε2(ω)of dielectric function;(c)Absorption coefficient α(ω);(d)Reflectivity R(ω).

    whereΔG=1.23 eV,Eis the minimum photon energy required to make an electron jump from VB to CB.Here,E=Eg.I(?ω)is the spectral irradiance of the AM1.5 solar spectrum when the photon energy is equal to ?ω.According to the above formula,calculatedηSof the InSe/g-CN heterojunction is 13.7%,which is a relatively high value compared to the other water splitting photocatalysts[58].Therefore,it is economically viable to use the InSe/g-CN heterojunction as the photocatalyst to split water.

    In summary,according to the different stacking patterns ofg-CN and the single-layer InSe,we have constructed four InSe/g-CN heterojunctions,labeled as H1,H2,H3and H4.Then,H1stacking pattern(Ea=?2.327 eV)with the smallestEais selected for the subsequent calculations.The results show that the InSe/g-CN heterojunction is a type-II semiconductor withEgof 2.13 eV,whose HOMO and LUMO are separately contributed by theg-CN layer and InSe layer,respectively.EcandEvare ?3.85 eV and ?5.98 eV,respectively,which meet the requirements for photolysis water.Meanwhile,when pH=7,HER and OER can implement spontaneously under visible light irradiation without the need for sacrificial reagents and promoters,which verifies the thermodynamic sustainability of photolysis water.Besides,the InSe/g-CN heterojunction mainly absorbs blue and violet light,and itsηSis 13.7%.In short,these results indicate that the InSe/g-CN heterojunction is a kind of outstanding photocatalyst for water splitting,and it has very broad commercial application prospects.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors acknowledge supports by National Natural Science Foundation of China(NSFC,Nos.51471124,U1766216),National Key R&D Program of China(No.2018YFB0905600)and Natural Science Foundation of Shaanxi province,China(Nos.2019JM-189,2020JM-218).The authors also acknowledge supported by HPC Platform,Xi’an Jiaotong University.

    Appendix A.Supplementary data

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.07.010.

    成人国产麻豆网| 观看免费一级毛片| 伊人久久精品亚洲午夜| 黄片无遮挡物在线观看| 国产亚洲最大av| 亚洲四区av| 高清在线视频一区二区三区 | 丰满乱子伦码专区| 精品人妻熟女av久视频| 国产探花在线观看一区二区| 午夜福利高清视频| 国产精品日韩av在线免费观看| 亚洲综合精品二区| 女的被弄到高潮叫床怎么办| 中文资源天堂在线| 男女啪啪激烈高潮av片| 狂野欧美激情性xxxx在线观看| 乱系列少妇在线播放| 欧美一级a爱片免费观看看| h日本视频在线播放| 亚洲精品日韩av片在线观看| 久久99热这里只频精品6学生 | 97超碰精品成人国产| 日韩人妻高清精品专区| 久久综合国产亚洲精品| 国产精品久久久久久久久免| 特级一级黄色大片| 3wmmmm亚洲av在线观看| 久久6这里有精品| 国产精品久久久久久久久免| 人妻制服诱惑在线中文字幕| 五月伊人婷婷丁香| 岛国在线免费视频观看| 又爽又黄a免费视频| av福利片在线观看| 亚洲国产欧美在线一区| 99在线视频只有这里精品首页| 国产成人a区在线观看| 99视频精品全部免费 在线| 亚洲国产精品专区欧美| 1024手机看黄色片| 91精品一卡2卡3卡4卡| 亚洲av中文av极速乱| 国产精品日韩av在线免费观看| 能在线免费观看的黄片| 欧美97在线视频| 免费观看在线日韩| 男女国产视频网站| 如何舔出高潮| 九九在线视频观看精品| 亚洲内射少妇av| 国产精品久久久久久精品电影小说 | 国产精品一区二区性色av| av又黄又爽大尺度在线免费看 | 少妇高潮的动态图| 久久久久精品久久久久真实原创| 久久精品久久精品一区二区三区| 欧美高清性xxxxhd video| 网址你懂的国产日韩在线| 亚洲怡红院男人天堂| 精品久久久久久久末码| 级片在线观看| 亚洲中文字幕一区二区三区有码在线看| 久久婷婷人人爽人人干人人爱| 九九热线精品视视频播放| 插逼视频在线观看| 国产一区有黄有色的免费视频 | 国产美女午夜福利| 国产精品精品国产色婷婷| 久久久久久久午夜电影| 亚洲精品影视一区二区三区av| 午夜免费激情av| 午夜精品国产一区二区电影 | 国产乱人视频| 日韩中字成人| 听说在线观看完整版免费高清| 欧美色视频一区免费| 中文字幕免费在线视频6| 高清在线视频一区二区三区 | 亚洲av男天堂| 搡老妇女老女人老熟妇| 成人性生交大片免费视频hd| 极品教师在线视频| 国产欧美日韩精品一区二区| 国产精品久久久久久久电影| 最新中文字幕久久久久| 99九九线精品视频在线观看视频| 午夜激情福利司机影院| 亚洲av中文字字幕乱码综合| 久久精品91蜜桃| 日本黄色视频三级网站网址| 日韩一本色道免费dvd| 亚洲av免费在线观看| 亚洲av电影在线观看一区二区三区 | 99久久成人亚洲精品观看| av专区在线播放| 亚洲在久久综合| 身体一侧抽搐| 美女国产视频在线观看| 男女国产视频网站| 一级毛片我不卡| 51国产日韩欧美| 久久精品国产99精品国产亚洲性色| 老司机福利观看| 亚洲一区高清亚洲精品| 秋霞在线观看毛片| 极品教师在线视频| 久久久久久久国产电影| 蜜桃久久精品国产亚洲av| 久久久久久久久久久丰满| 国产久久久一区二区三区| 成年av动漫网址| 久久精品国产鲁丝片午夜精品| 亚洲av电影不卡..在线观看| 99热这里只有是精品在线观看| 亚洲成人久久爱视频| 亚洲欧美精品综合久久99| 免费在线观看成人毛片| 啦啦啦观看免费观看视频高清| 一级黄色大片毛片| 国产真实伦视频高清在线观看| 91久久精品国产一区二区三区| 精品一区二区三区视频在线| 真实男女啪啪啪动态图| 亚洲最大成人中文| 国产精品综合久久久久久久免费| 亚洲欧洲国产日韩| 国产成年人精品一区二区| 超碰av人人做人人爽久久| 一本一本综合久久| 国产乱人偷精品视频| 久久久久国产网址| 又粗又爽又猛毛片免费看| 亚洲美女视频黄频| 久久久精品欧美日韩精品| 亚洲精品国产av成人精品| 在线免费十八禁| 久久精品久久久久久久性| 高清在线视频一区二区三区 | 在线a可以看的网站| 欧美日韩一区二区视频在线观看视频在线 | 麻豆久久精品国产亚洲av| 深夜a级毛片| 男女边吃奶边做爰视频| 国语对白做爰xxxⅹ性视频网站| 欧美丝袜亚洲另类| 国产一区有黄有色的免费视频 | 在线免费十八禁| 麻豆精品久久久久久蜜桃| 韩国高清视频一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 免费看光身美女| 最近中文字幕2019免费版| 97人妻精品一区二区三区麻豆| 日韩强制内射视频| 亚洲国产精品成人久久小说| 联通29元200g的流量卡| 欧美精品一区二区大全| 99久久精品热视频| 美女xxoo啪啪120秒动态图| 欧美3d第一页| 国产精品乱码一区二三区的特点| 亚洲经典国产精华液单| 日本免费在线观看一区| 国产一级毛片七仙女欲春2| 在线观看av片永久免费下载| 日韩av在线免费看完整版不卡| 午夜日本视频在线| av卡一久久| 亚洲av男天堂| 久久久久久伊人网av| 黑人高潮一二区| 99久久无色码亚洲精品果冻| 国产中年淑女户外野战色| 女的被弄到高潮叫床怎么办| 97超碰精品成人国产| 日本-黄色视频高清免费观看| 国产精品一区二区性色av| 只有这里有精品99| 国产高清视频在线观看网站| 少妇猛男粗大的猛烈进出视频 | 天天躁夜夜躁狠狠久久av| 久久99热这里只有精品18| 天堂√8在线中文| av视频在线观看入口| 99在线视频只有这里精品首页| 极品教师在线视频| 国产精品人妻久久久久久| 亚洲在久久综合| 国产精品一区二区三区四区免费观看| 国内少妇人妻偷人精品xxx网站| 日本wwww免费看| 舔av片在线| 少妇裸体淫交视频免费看高清| 久久6这里有精品| 一区二区三区免费毛片| 国产老妇伦熟女老妇高清| 亚洲国产成人一精品久久久| 久久精品熟女亚洲av麻豆精品 | 亚洲国产精品成人久久小说| 啦啦啦啦在线视频资源| 国产高清三级在线| 亚洲在线观看片| 国产精品99久久久久久久久| 美女脱内裤让男人舔精品视频| 久久久午夜欧美精品| АⅤ资源中文在线天堂| 91在线精品国自产拍蜜月| a级毛色黄片| 亚洲丝袜综合中文字幕| av.在线天堂| 国产成人91sexporn| av卡一久久| 久久久久久久国产电影| 亚洲av中文字字幕乱码综合| 国产探花极品一区二区| 最近中文字幕2019免费版| av在线蜜桃| 亚洲欧美日韩无卡精品| av免费在线看不卡| 国产高清有码在线观看视频| 男人的好看免费观看在线视频| 桃色一区二区三区在线观看| 真实男女啪啪啪动态图| 特级一级黄色大片| 三级经典国产精品| 天天躁夜夜躁狠狠久久av| 我的女老师完整版在线观看| 日韩欧美三级三区| 日本猛色少妇xxxxx猛交久久| 狠狠狠狠99中文字幕| 国产精品熟女久久久久浪| 国产69精品久久久久777片| 尤物成人国产欧美一区二区三区| 久久久久久久久久成人| ponron亚洲| 亚洲国产欧洲综合997久久,| 成人无遮挡网站| 成人亚洲精品av一区二区| 亚洲性久久影院| 亚洲精品自拍成人| 国产成人福利小说| 观看美女的网站| 亚洲最大成人手机在线| 一级av片app| 欧美97在线视频| 欧美激情久久久久久爽电影| 我的老师免费观看完整版| 免费观看a级毛片全部| 亚洲国产欧美人成| 大香蕉97超碰在线| 婷婷色av中文字幕| 午夜福利成人在线免费观看| 中文字幕久久专区| 国产精品乱码一区二三区的特点| 亚洲中文字幕一区二区三区有码在线看| 精品久久久久久久久亚洲| 亚洲最大成人av| 一本一本综合久久| 一卡2卡三卡四卡精品乱码亚洲| 日韩在线高清观看一区二区三区| 美女脱内裤让男人舔精品视频| 久久国产乱子免费精品| 国产精品一区二区三区四区久久| 一边摸一边抽搐一进一小说| 成人二区视频| 日韩视频在线欧美| 夜夜看夜夜爽夜夜摸| 亚洲av福利一区| 亚洲国产最新在线播放| 亚洲国产精品国产精品| 亚洲国产日韩欧美精品在线观看| 午夜福利网站1000一区二区三区| 少妇丰满av| av在线天堂中文字幕| 久久精品夜色国产| 一级毛片aaaaaa免费看小| 九九在线视频观看精品| 久久久久精品久久久久真实原创| 亚洲av福利一区| 国产真实乱freesex| 美女被艹到高潮喷水动态| 中文字幕av在线有码专区| 国产白丝娇喘喷水9色精品| 2021天堂中文幕一二区在线观| 长腿黑丝高跟| 国语对白做爰xxxⅹ性视频网站| 亚洲精品456在线播放app| 国产探花极品一区二区| 国产 一区精品| 亚洲av熟女| 国产在视频线在精品| 在线天堂最新版资源| 国内揄拍国产精品人妻在线| 免费观看性生交大片5| 国产精品久久久久久久久免| 免费看光身美女| 久久久久精品久久久久真实原创| av视频在线观看入口| 日本三级黄在线观看| 在线天堂最新版资源| 国产精品人妻久久久影院| 毛片女人毛片| 欧美一级a爱片免费观看看| 国产女主播在线喷水免费视频网站 | av在线亚洲专区| 欧美一区二区精品小视频在线| 免费不卡的大黄色大毛片视频在线观看 | 中文天堂在线官网| 2022亚洲国产成人精品| 免费电影在线观看免费观看| 最近视频中文字幕2019在线8| 三级毛片av免费| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品无大码| 91精品伊人久久大香线蕉| 十八禁国产超污无遮挡网站| 精品熟女少妇av免费看| 国产av不卡久久| 能在线免费观看的黄片| 国产淫语在线视频| 日日啪夜夜撸| 性插视频无遮挡在线免费观看| 免费观看性生交大片5| 最近的中文字幕免费完整| 亚洲在线观看片| 国产精品1区2区在线观看.| 在线观看一区二区三区| 99国产精品一区二区蜜桃av| 亚洲人成网站在线播| 少妇高潮的动态图| av免费观看日本| 99久久无色码亚洲精品果冻| 特大巨黑吊av在线直播| 国产伦理片在线播放av一区| 男的添女的下面高潮视频| 国产一区二区亚洲精品在线观看| 能在线免费观看的黄片| 国产成人午夜福利电影在线观看| 色吧在线观看| 最近的中文字幕免费完整| 尾随美女入室| 哪个播放器可以免费观看大片| 一夜夜www| 成年av动漫网址| 色网站视频免费| 色哟哟·www| av女优亚洲男人天堂| 欧美高清成人免费视频www| ponron亚洲| 国国产精品蜜臀av免费| 亚洲欧美一区二区三区国产| 中文字幕av在线有码专区| 亚洲真实伦在线观看| 少妇猛男粗大的猛烈进出视频 | 色综合亚洲欧美另类图片| 午夜爱爱视频在线播放| 亚洲性久久影院| 3wmmmm亚洲av在线观看| 丰满少妇做爰视频| 男女那种视频在线观看| 又粗又爽又猛毛片免费看| 超碰av人人做人人爽久久| 亚洲图色成人| 人体艺术视频欧美日本| 久久久久久久久久黄片| 国产老妇伦熟女老妇高清| 精品国内亚洲2022精品成人| 我的老师免费观看完整版| 久久久精品欧美日韩精品| 久久草成人影院| 欧美最新免费一区二区三区| 国产亚洲91精品色在线| 国产麻豆成人av免费视频| 麻豆成人av视频| 热99在线观看视频| 亚洲欧美日韩高清专用| 午夜视频国产福利| 国产真实伦视频高清在线观看| 少妇猛男粗大的猛烈进出视频 | 国产成人福利小说| 一级黄片播放器| 国产探花极品一区二区| 黄片无遮挡物在线观看| 免费看美女性在线毛片视频| 三级国产精品片| 亚洲经典国产精华液单| 变态另类丝袜制服| 亚洲不卡免费看| 欧美精品一区二区大全| 午夜亚洲福利在线播放| 国产久久久一区二区三区| 成人毛片a级毛片在线播放| 久久综合国产亚洲精品| 亚洲图色成人| 夜夜看夜夜爽夜夜摸| 成年女人永久免费观看视频| 亚洲久久久久久中文字幕| 国产女主播在线喷水免费视频网站 | 中文资源天堂在线| 我的女老师完整版在线观看| 国产69精品久久久久777片| 欧美+日韩+精品| 亚洲伊人久久精品综合 | 99热精品在线国产| 亚洲精品自拍成人| 亚洲精品影视一区二区三区av| 可以在线观看毛片的网站| 五月伊人婷婷丁香| 成人特级av手机在线观看| 亚洲国产成人一精品久久久| 亚洲精品乱码久久久久久按摩| 久久精品久久精品一区二区三区| 国产在线一区二区三区精 | 亚洲18禁久久av| 啦啦啦啦在线视频资源| 亚洲国产精品合色在线| 我的女老师完整版在线观看| 国产人妻一区二区三区在| 少妇熟女aⅴ在线视频| 久久久久久久久大av| 韩国av在线不卡| 欧美不卡视频在线免费观看| 99热网站在线观看| 欧美色视频一区免费| 久久久久免费精品人妻一区二区| 色噜噜av男人的天堂激情| 美女cb高潮喷水在线观看| 波多野结衣巨乳人妻| 亚洲国产精品sss在线观看| 一边摸一边抽搐一进一小说| 青春草视频在线免费观看| 只有这里有精品99| 免费搜索国产男女视频| 99热这里只有是精品50| 中文字幕av成人在线电影| 嫩草影院新地址| 亚洲国产精品久久男人天堂| 寂寞人妻少妇视频99o| 最近视频中文字幕2019在线8| 老司机福利观看| 夜夜看夜夜爽夜夜摸| 中文字幕熟女人妻在线| 亚洲久久久久久中文字幕| 你懂的网址亚洲精品在线观看 | 久久久精品大字幕| 久久国产乱子免费精品| 国内精品宾馆在线| 日韩国内少妇激情av| 97在线视频观看| 国产 一区 欧美 日韩| 只有这里有精品99| 亚洲国产最新在线播放| 欧美变态另类bdsm刘玥| 亚洲精品成人久久久久久| 日本一二三区视频观看| 看黄色毛片网站| 在线观看一区二区三区| 亚洲国产精品成人久久小说| 97人妻精品一区二区三区麻豆| 美女xxoo啪啪120秒动态图| 99久久成人亚洲精品观看| 天天躁夜夜躁狠狠久久av| 毛片一级片免费看久久久久| 麻豆一二三区av精品| 久久精品久久久久久噜噜老黄 | 三级经典国产精品| 欧美一区二区国产精品久久精品| 嘟嘟电影网在线观看| 成人毛片a级毛片在线播放| 久久午夜福利片| 国产午夜精品论理片| 亚洲av免费在线观看| 特大巨黑吊av在线直播| 午夜福利高清视频| 亚洲国产最新在线播放| 伦精品一区二区三区| 国产精品一区二区三区四区久久| 老司机福利观看| 久久热精品热| 一区二区三区免费毛片| 欧美日本视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产日韩欧美在线精品| 哪个播放器可以免费观看大片| 午夜爱爱视频在线播放| av.在线天堂| 一本久久精品| 国产av码专区亚洲av| 91久久精品国产一区二区成人| 美女被艹到高潮喷水动态| 国产精品国产三级国产av玫瑰| 国产精品久久久久久久久免| 日韩av在线免费看完整版不卡| 丰满少妇做爰视频| 日本熟妇午夜| 综合色av麻豆| 精品久久久噜噜| 亚洲伊人久久精品综合 | 国产欧美日韩精品一区二区| 日日撸夜夜添| 欧美高清性xxxxhd video| 哪个播放器可以免费观看大片| 桃色一区二区三区在线观看| 亚洲激情五月婷婷啪啪| 国产精品嫩草影院av在线观看| 欧美最新免费一区二区三区| av在线播放精品| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品精品国产色婷婷| a级一级毛片免费在线观看| 亚洲18禁久久av| av黄色大香蕉| eeuss影院久久| 久久精品国产99精品国产亚洲性色| 男女啪啪激烈高潮av片| 国产老妇伦熟女老妇高清| 中文亚洲av片在线观看爽| 99久久无色码亚洲精品果冻| 日本熟妇午夜| 国产黄片视频在线免费观看| 91狼人影院| 国产精品精品国产色婷婷| 国产伦精品一区二区三区四那| 天堂√8在线中文| 亚洲av成人精品一区久久| 国产精品国产三级国产av玫瑰| 亚洲天堂国产精品一区在线| 亚洲伊人久久精品综合 | 夫妻性生交免费视频一级片| 最近中文字幕高清免费大全6| 亚洲性久久影院| 国产精品精品国产色婷婷| 麻豆一二三区av精品| 又粗又硬又长又爽又黄的视频| 久久久a久久爽久久v久久| 99热网站在线观看| 亚洲av不卡在线观看| 亚洲国产精品sss在线观看| 超碰97精品在线观看| 国产亚洲5aaaaa淫片| 一级黄片播放器| 亚洲激情五月婷婷啪啪| 久99久视频精品免费| 久久久久久九九精品二区国产| 国产真实乱freesex| 欧美精品一区二区大全| 乱系列少妇在线播放| 国产爱豆传媒在线观看| 亚洲成人久久爱视频| 午夜福利高清视频| 人妻少妇偷人精品九色| 日韩av不卡免费在线播放| a级毛色黄片| 2021天堂中文幕一二区在线观| 啦啦啦啦在线视频资源| 亚洲自拍偷在线| 又爽又黄无遮挡网站| 精品人妻视频免费看| 超碰97精品在线观看| 久久99蜜桃精品久久| 国产免费又黄又爽又色| av又黄又爽大尺度在线免费看 | 亚洲成人av在线免费| 成人无遮挡网站| 国产精品久久久久久久电影| 亚洲四区av| 日韩欧美 国产精品| 国产美女午夜福利| 久久久亚洲精品成人影院| 51国产日韩欧美| 国产三级中文精品| 免费在线观看成人毛片| 日本五十路高清| 欧美3d第一页| 五月伊人婷婷丁香| 一卡2卡三卡四卡精品乱码亚洲| 久久精品夜夜夜夜夜久久蜜豆| 欧美成人午夜免费资源| 色综合亚洲欧美另类图片| 午夜久久久久精精品| 久久久久久久久久黄片| 国产欧美日韩精品一区二区| 91久久精品国产一区二区三区| 97超碰精品成人国产| 亚洲av一区综合| 不卡视频在线观看欧美| 69av精品久久久久久| 精品不卡国产一区二区三区| 插阴视频在线观看视频| 大话2 男鬼变身卡| 乱系列少妇在线播放| 亚洲精品乱码久久久久久按摩| 三级国产精品片| 亚洲精品成人久久久久久| 欧美高清性xxxxhd video| 99久久精品热视频| 真实男女啪啪啪动态图| 国产一区二区在线av高清观看| 国产综合懂色| 久久久久精品久久久久真实原创| 亚洲一区高清亚洲精品| 少妇丰满av| 啦啦啦啦在线视频资源| 波多野结衣高清无吗| 少妇人妻精品综合一区二区| 日本五十路高清| 午夜福利成人在线免费观看| 久久久久精品久久久久真实原创| 亚洲精品一区蜜桃| 免费不卡的大黄色大毛片视频在线观看 | 亚洲av电影在线观看一区二区三区 | 久久99精品国语久久久| 超碰97精品在线观看| 日韩精品有码人妻一区|