• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Highly efficient photocatalytic reduction of nitrogen into ammonia by single Ru atom catalyst supported by BeO monolayer

    2022-03-14 09:29:30SifeiYunBeixiXuShujunLiWenioZhuShuliLeiWenyueGuoHoRen
    Chinese Chemical Letters 2022年1期

    Sifei Yun,Beixi Xu,Shujun Li,Wenio Zhu,Shuli Lei,?,Wenyue Guo,?,Ho Ren

    aSchool of Materials Science and Engineering,China University of Petroleum(East China),Qingdao 266580,China

    bHubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices,Hubei University of Arts and Science,Xiangyang 441053,China

    cInstitute of Mathematics,Free University of Berlin,Arnimallee 6,D-14195 Berlin,Germany

    ABSTRACT Ammonia(NH3)is one of the most important building blocks of the chemical industry and a promising sustainable energy carrier.Conventional production of NH3 via the Haber-Bosch process requires high temperature and high pressure,which is energy demanding and suffers safety issues.Photocatalytic nitrogen reduction reaction(NRR)is a green and sustainable route for NH3 production,and has been expected to be an alternative for NH3 production under mild conditions.However,solar-driven N2 activated has appeared as the bottleneck for photocatalytic NRR.In this work,we propose that single Ru atom supported by BeO monolayer is a promising photocatalytic single atom catalyst(SAC)for efficient N2 activation with visible illumination.The high efficiency originates from the enhanced absorption in the visible range,as well as the back-donation mechanism when N2 were adsorbed on the SAC.Our results show that N2 can be efficiently activated by the Ru/BeO SAC and be reduced to NH3 with extremely low limiting potential of ?0.41 V.The NRR process also exhibits dominate selectivity respect to hydrogen evolution.

    Keywords:Nitrogen reduction reaction Single atom catalyst Monolayer Ab initio Optical absorption spectra

    Ammonia(NH3)is one of the most important building blocks for chemicals,such as fertilizer,explosives,and hydrogen carriers[1,2].Industrial ammonia is produced by Haber-Bosch process under high temperature and high pressure conditions(300–500 °C and 150–300 atm),consuming 1%–2% of the total global energy and releasing millions of tons of CO2[3].Developing an environmentally friendly method under mild conditions is a great challenge to replace Haber-Bosch production of NH3[4].Up to date,solar-driven nitrogen reduction reaction(NRR)appears to be the most promising way due to the superiority with environmentally benign,low-energy consuming and sustainability[5].The great challenge of photocatalytic NRR is effectively activating N2molecule with photogenerated electron transferring to the antibinding orbitals of N2molecule,which requires the photocatalyst chemically adsorbing N2for effective activation of the inert triple bonds[6].N2can be activated by back-donation process.The lonepair electrons of N2would transfer to the empty orbitals of activated sites,while thedorpelectrons of activate sites can be donated into the anti-binding states of N2[7,8].Tremendous experimental efforts have been taken to evaluate the performance of different catalysts,such as metal alloys[9],oxide[10],nitride[11],MOF[6,12],ZIF[13],perovskites[14].Thanks to the development of single atom catalyst(SAC),some SACs have been expected to have superior catalytic performance for NRR[7,15-18].Rational design of NRR SAC is drawing more and more attention recently.

    Experimental design of NRR SAC is far from satisfactory and of high-cost.Density functional theory(DFT)calculations have been chosen as a convenient and low-cost approach for catalyst performance evaluation[19–22].More importantly,DFT provides deep insights into reaction mechanism at the atomic level[23–28].A promising NRR SAC has several prerequisites,such as thermodynamic and dynamic stabilities,the selectivity of NRR respect to hydrogen evolution reaction(HER),the ability to activate the inert N≡N triple bond[29],and more importantly,the limiting potential for contract the energy barrier of the rate-limiting step[19].As a general design SAC strategy,substrate materials are decorated by single heteroatom to form SAC,which acts as active site for N2adsorption and protonation with tunable electronic structures[30,31].

    Fig.1.(a)Schematic view of single TM anchoring in BeO monolayer.Lime,red and blue violet balls represent Be,O and TM atoms,respectively.(b)Difference between binding energy of single TM atom anchoring on BeO monolayer with a Be vacancy and cohesive energy of isolate TM atoms aggregating metal clusters.(c)Variations of energy and temperature versus the AIMD simulation time for Ru/BeO,and the insets denote the top and side view of Ru/BeO after AIMD simulation last for 5 ps at T=500 K.

    Bulk BeO is known to have a polar wurtzite structure with high thermal conductivity and hardness[32].It was claimed that few-layer BeO two-dimensional(2D)sheets with honeycomb structure can be synthesized through a wet chemistry approach[33].Recently,BeO monolayer is experimentally achievable on Ag(111)thin film by epitaxial growth[34].Theoretical study predicted that the electronic and magnetic properties of BeO monolayer can be tuned by intrinsic vacancy,transition metal substitutions and ribbon width[35–37].The optical properties of BeO monolayer has been reported for the heterostructure with germanene[38].BeO monolayer can also be used as two dimensional field-effect transistors on account of its insulting character[39].Compared with the bulk catalysts,2D catalysts has be reported to possess unique electronic structures and photocatalytic properties[40–42].Inspired by these,we thus wonder whether the BeO monolayer can be used for high efficient NRR catalyst.In this work,we rationally designed an excellent photocatalyst with thermodynamic stability,high activity and selectivity for NRR through single transition metal(TM)atom(TM=Sc,Ti,V,Cr,Mn,Fe,CO,Ni,Cu,Zn,Y,Zr,Nb,Mo,Ru,Rh,Pd,Ag and Cd)supported by BeO monolayer by using spin-polarized density functional theory.

    All calculations were performed by using the Viennaab initioSimulation Package(VASP)[43].The projected augmented wave pseudopotential method with a cutoff energy of 500 eV for planewave basis was set to treat the electron-ion interactions[44].All atomic structures were fully relaxed geometry optimization with a converging tolerance of 0.02 eV/?A for residual force and 10?6eV for energy.The van der Waals(vdW)interactions were described by the semi-empirical DFT-D3 method[45].A vacuum space in thez-direction was set to 20 ?A for preventing the interaction between periodic images.All catalysts are modeled by single TM atoms substituting one Be in BeO supercells(4 × 4 × 1).The Brillouin Zone was sampled with the Gamma centered mesh with a 3 × 3 × 1kpoint grid for geometry relaxation and a 5 × 5 × 1k-point grid for electron structure analysis.And the band structures and optical absorption spectra were calculated by HSE06 method.The dynamical stability of SACs were confirmed byab initiomolecular dynamics(AIMD)simulations in canonical ensemble with the Nose-Hoover thermostat.

    In order to investigate NRR process,six steps of coupled proton and electron transfer(CPET)are considered and the computational hydrogen electrode(CHE)model is employed in free energy profiles for reduction reaction,where the free energy of H++ e?is replaced by one-half of the chemical potential of the hydrogen molecule[46].The reaction Gibbs free energy of each elementary step is calculated by the following equation:ΔG=ΔE+ΔZPE-TΔS,whereΔEis the reaction energy,ΔZPEis the difference of zero point energy andΔSis the difference of reaction entropy between the product and reactant of each elementary step,respectively.Tis the absolute temperature.The entropy contribution of each gas phase species is obtained from NIST database[47].The optical absorption spectra is calculated based on the complex dielectric function[48].

    As shown in Fig.1a,a series of TM atoms(TM=Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Y,Zr,Nb,Mo,Ru,Rh,Pd,Ag and Cd)supported by BeO monolayer are screened as candidates for NRR.Binding energy(Eb)and cohesive energy(Ec)are calculated to determine the stability of SACs:

    whereETM/BeO,EBeO?,ETMandrepresent the energy of a TM atom anchored on Be vacancy,the energy of BeO monolayer with a Be vacancy,the energy of an isolated single TM atom in vacuum,and the energy of a TM atom in the bulk crystal unit cell,respectively.

    The anchoring single TM atom on BeO monolayer is thermodynamically favorable than diffusion and aggregation onceEb–Ec>0.As shown in Fig.1b,all SACs are stable.All calculated values are list in Table S1(Supporting information).Moreover,the thermal stability of Ru/BeO is further evaluated by AIMD simulation.Our results show that Ru/BeO is the best NRR catalyst among these 19 SACs.As shown in Fig.1c,during the AIMD equilibration,both the energy and temperature of Ru/BeO monolayer only oscillate within small ranges and there is no significant structure distortion at an elevated temperature of 500 K.The thermodynamical and dynamical stabilities of the Ru/BeO SAC meet the prerequisite as a promising NRR candidate.

    N2adsorption is the first process for NRR and effective activation of N2is vital for further protonation.As shown in Fig.S1(Supporting information),the interaction between N2and BeO monolayer is physical adsorption with adsorption energy around?0.10 eV.Besides,the distance between N and active site(Be or O)varies in the range of 2.93~3.33 ?A,which is larger than covalent N-Be(1.73 ?A)and N–O(1.34 ?A)bond lengths based on covalent radii[49].The bond length of N≡N is 1.11 ?A,which is equal to free N2molecular in our calculation.Therefore,N2can not be effectively activated by pure BeO monolayer and that SACs consist of single TM atoms and BeO monolayer are considered for further study.

    In order to make clear whether NRR or HER would dominate the reaction,the adsorption Gibbs free energies of H and N2with end-on and side-on pattern on SACs are calculated to evaluate the competitive adsorption between H2and N2.As shown in Fig.2a and Table S2(Supporting information),7 of 19 SACs are ruled out because these SACs neither adsorb H nor N2,namely,Fe/BeO,Ni/BeO,Cu/BeO,Zn/BeO,Pd/BeO,Ag/BeO,and Cd/BeO.H is the most favorable species on 4 SACs,that is Sc/BeO,V/BeO,Cr/BeO and Y/BeO,implying HER will dominate the reaction on these SACs.For the rest 8 SACs,Ti/BeO,Mn/BeO,Co/BeO and Rh/BeO prefer to adsorb N2with end-on pattern,and Zr/BeO,Nb/BeO,Mo/BeO and Ru/BeO prefer to side-on pattern,while both patterns would take place on Ti/BeO,Mn/BeO,Zr/BeO,Mo/BeO,and Ru/BeO.And the selectivity of HER/NRR(Table S3 in Supporting information)can be calculated by assuming that the occupation of SAC follows Boltzmann distribution:

    Fig.2.(a)The histogram of adsorption Gibbs free energies of H and N2 with endon and side-on pattern on SACs.(b)The Gibbs free energies of the first and last protonation reaction.The horizontal dashed line denotes the selective criteria of 0.65 eV[50,51].Blue,orange and green bars represent H adsorption,N2 with endon pattern and N2 with side-on pattern,respectively.

    whereΔGiis the adsorption Gibbs free energy of H and N2with end-on and side-on adsorption configurations,kis Boltzmann constant,andTis the reaction temperature of 298.15 K.So 8 SACs will be assessed in detail for protonation in the following parts.

    The first and last protonation step of these 8 SACs,i.e.,hydrogenation of?N2into?N2H,?NH2into?NH3,is shown in Fig.2b.The first protonation step involves breaking the strong N≡N triple bond of the N2molecule,which can be uphill or downhill step determined by different active sites[21,50].For these 8 SACs,most of the first protonation steps are uphill,except for?N2(e)into?N2H on Mo/BeO.Previous studies show that 0.65 eV is the criteria for initial screening protonation step[50,51].The systems withΔGN2→N2H>0.65 eV are ruled out,including Mn/BeO,Co/BeO,and Rh/BeO,for the end-on adsorption configuration and Mn/BeO,Nb/BeO and Ru/BeO for the side-on adsorption configuration.

    In the last protonation step of NRR,the adsorption intermediate of?NH2is much more stable than?NH3because thesp3hybrid orbitals of NH3molecule are fully filled,whilesp3hybrid orbital is half-filled in NH2[52].This step would consume extra energy to facilitate protonation of?NH2.We rule out the systems withΔGN2H→N3H>0.65 eV and then only Ru/BeO system for end-on adsorption is left for further study.

    In order to assess the catalytic performance of Ru/BeO for the reduction of N2into NH3in detail,four typical mechanisms with all possible reaction intermediates are taken into consideration,i.e.,distal,alternating,mixed and enzymatic(Fig.S2 in Supporting information)[53].For end-on configuration,N2can be hydrogenated to NH3viathree different ways,distal,alternating and mixed mechanisms.For side-on configuration,N2is protonated by proton-electron pairs alternately and two NH3molecules are released in succession.

    Free energy diagrams of Ru/BeO monolayer are illustrated in Fig.3.The free energy change for first hydrogenation of N2is significantly reduced compared to previous studies,with a free energy uphill of 0.41 eV and 0.69 eV for end-on and side-on adsorption,respectively.Previous studies show that the first protonation steps on Ru-based catalysts,such as Ru(0001)surface,Ru1-N3 and Ru1-N4 consume 1.08,0.73 and 0.77 eV energy[54,55].For the subsequent elementary steps through distal pathway in Fig.3a,the intermediate of?NNH could be hydrogenated to?NNH2with slight large free energy of 0.24 eV.The first NH3will be released into surroundings and?N remains on Ru/BeO accompany by the free energy downhill by 1.39 eV.The remaining?N would be protonated in the subsequent steps to form?NH,?NH2and?NH3,with free energy changes of 0.27,?0.47 and 0.18 eV,respectively.And the potential determining step of distal mechanism is the fourth protonation elementary step(?N + H++ e?=?NH).Finally,the second NH3will be released from Ru/BeO with 2.08 eV energy demanding,while this process does not involve hydrogenation.The produced NH3would be dissolved to NH4+in solution releasing energy,which can promote?NH3desorption[20,22,54].

    As an alternating pathway,the hydrogenation of?NNH into?NNH2presents an even higher free energy,leading to a much negative limiting potential(?0.69 V)than the distal mechanism(?0.41 V)in Figs.3b and c.Limiting potential(UL)is the required potential to overcome the maximumΔGamong the six elementary reactions defined asUL=-ΔGmax/e[19].Occasionally,N2can be protonated by a mixed pathway that shifts from distal to alternating.It can be found that the potential determining step of mixed pathway in Fig.3c is the fourth protonation elementary step(?NHNH2+ H++ e?=?NH2NH2)and the onset potential is same as distal pathway.With respect to the enzymatic pathway,protonation also occurs alternatively to the two N of N2.As shown in Fig.3d,the potential determining step is the first hydrogenation step,with an uphill free energy of 0.69 eV,then the subsequent elementary steps are exothermic except for the last two steps.To the best of our knowledge,the limiting potential of Ru/BeO(?0.41 V)is comparable to other catalysis that have been reported,such as?0.20 V of B/g-C3N4,?0.31 V of B@g-CN,and ?0.33 V of Ru@g-C3N4[7,20,21].

    The photoconversion efficiency of Ru/BeO is very important for highly efficient photocatalytic NRR.The band gap of pure BeO monolayer in this work is 5.4 eV in PBE functional and 6.84 eV for HSE06 functional(Fig.S3 in Supporting information),which is corresponding to previous studies with 4.0 eV to 7.4 eV[39,56–59]and band gap decrease to 1.22 eV and 2.89 eV after Ru doped in BeO monolayer with PBE and HSE06,respectively.As shown in Fig.S4(Supporting information),the DOS and LDOS indicate that the Ru states are introduced once Ru atom substitution,leading to decrease the band gap.And the introduced peaks near the Fermi level(0 eV)with the energy ranges(?0.50,0)and(0.85,1.25)eV,are visualized by LDOS plotted in the Fig.S4b.Pure BeO monolayer leads to less adsorption in the visible light owing to its relatively large band gap.Compared to pure BeO monolayer,the adsorption coefficient in the visible light and infrared(IR)light can be enhanced by Ru/BeO monolayer.As shown in Fig.4a,the main adsorption peak of BeO monolayer is located at~200 nm,meaning that pure BeO adsorb most ultraviolet(UV)light and very limited visible light.After single Ru atom decoration,the adsorption coeffi-cient will be enhanced,while adsorption between visible light and infrared light can be greatly enhanced by at least 1 order of magnitude compared to pure BeO monolayer.Therefore,Ru/BeO monolayer with superior optical absorption property maximize utilization of solar energy to drive nitrogen reduction.

    As an excellent photocatalyst for NRR,the band edge positions of catalyst should match the N2/NH3potentials[20,60].Fig.4b displays that the conduction band minimum(CBM)lies above the N2/NH3potential and the valence band maximum(VBM)is lower than the N2/NH3potential.The photogenerated electrons on CBM can be transferred to N2for proton coupled electron process effectively,rather than recombine with the holes on VBM.Thus,the photoexcited electrons and holes would be effectively separated by Ru/BeO,leading to a higher photoconversion efficiency.These results indicate that Ru/BeO a promising photocatalyst for NRR with the merits of suitable visible light absorption and suitable band edge positions.

    In summary,based on spin-polarized DFT calculations and CHE model,we rationally designed an efficient photocatalyst Ru/BeO with high thermodynamic stability,high activity and high NRR selectivity.Our results show that Ru/BeO exposes a relatively low limiting potential of ?0.41 V for NRR.In addition,as a promising photocatalyst,Ru/BeO shows visible light adsorption and suitable band edge positions.This work is expected to expand the application of 2D BeO monolayer and motivate more research efforts in photocatalysts.

    Fig.3.Free energy diagrams for N2 reducing to NH3 on Ru/BeO via(a)distal,(b)alternating,(c)mixed and(d)enzymatic mechanisms under different applied potentials.Orange shadow represents the limiting rate step.

    Fig.4.(a)Optical adsorption spectra of pure BeO and Ru/BeO,which are illustrated by the blue and red lines,respectively.(b)Band edge position of Ru/BeO.EAVS and ENHE denote energy levels relative to absolute vacuum scale(AVS)and normal hydrogen electrode(NHE),respectively.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We acknowledge the financial support from the National Natural Science Foundation of China(NSFC,Nos.21773309,21776315),the Fundamental Research Funds for the Central Universities(Nos.19CX05001A,20CX05010A),Hubei University of Arts and Science(Nos.2020kypytd002,2020kypytd003)and Xiangyang Science and Technology Research and Development(No.2020YL09).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.077.

    国产伦人伦偷精品视频| 精品久久久久久电影网| 久久久精品94久久精品| 男人爽女人下面视频在线观看| 国产欧美日韩一区二区三区在线| 久久久久精品人妻al黑| 99香蕉大伊视频| 黄片播放在线免费| 亚洲精品一卡2卡三卡4卡5卡 | 国产一区二区三区综合在线观看| 制服诱惑二区| 亚洲情色 制服丝袜| 久热爱精品视频在线9| 国产精品久久久av美女十八| 精品免费久久久久久久清纯 | 久久天躁狠狠躁夜夜2o2o| 少妇人妻久久综合中文| 亚洲av成人一区二区三| 悠悠久久av| 久热这里只有精品99| 精品国产乱码久久久久久男人| 一进一出抽搐动态| 午夜免费鲁丝| 久久久久久免费高清国产稀缺| 男人添女人高潮全过程视频| 欧美日韩亚洲综合一区二区三区_| av福利片在线| 99国产精品99久久久久| 日本五十路高清| 五月开心婷婷网| 69精品国产乱码久久久| 中文字幕高清在线视频| 黑人巨大精品欧美一区二区蜜桃| 国产av精品麻豆| 日本wwww免费看| 少妇猛男粗大的猛烈进出视频| 国产高清视频在线播放一区 | 精品高清国产在线一区| 亚洲自偷自拍图片 自拍| 亚洲avbb在线观看| 久久久精品国产亚洲av高清涩受| 免费久久久久久久精品成人欧美视频| 中文字幕高清在线视频| 人妻久久中文字幕网| 日韩有码中文字幕| 这个男人来自地球电影免费观看| 两个人看的免费小视频| 91麻豆av在线| 国产成人欧美在线观看 | 搡老岳熟女国产| 久久亚洲精品不卡| 一区二区日韩欧美中文字幕| 日韩,欧美,国产一区二区三区| 俄罗斯特黄特色一大片| 日韩人妻精品一区2区三区| 亚洲熟女精品中文字幕| 操美女的视频在线观看| 国产高清videossex| 啦啦啦中文免费视频观看日本| 啦啦啦视频在线资源免费观看| 亚洲欧美激情在线| 高清视频免费观看一区二区| 中文欧美无线码| 精品熟女少妇八av免费久了| 日韩一卡2卡3卡4卡2021年| www.精华液| 日本撒尿小便嘘嘘汇集6| 精品第一国产精品| 大片免费播放器 马上看| 狂野欧美激情性bbbbbb| 91成人精品电影| 亚洲精品美女久久久久99蜜臀| 日韩大码丰满熟妇| 国产精品秋霞免费鲁丝片| 亚洲av电影在线观看一区二区三区| 成年人午夜在线观看视频| 亚洲成人免费av在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 一区二区三区精品91| 国产欧美日韩综合在线一区二区| 一进一出抽搐动态| 午夜久久久在线观看| 成人18禁高潮啪啪吃奶动态图| av电影中文网址| 国产精品1区2区在线观看. | 欧美成狂野欧美在线观看| 亚洲avbb在线观看| 老司机亚洲免费影院| 狠狠精品人妻久久久久久综合| 久久精品国产亚洲av香蕉五月 | 黄色视频在线播放观看不卡| www.自偷自拍.com| 久久毛片免费看一区二区三区| 嫩草影视91久久| 国产在视频线精品| 建设人人有责人人尽责人人享有的| 十八禁高潮呻吟视频| 男女无遮挡免费网站观看| 91精品三级在线观看| 久久久久国内视频| 一级毛片电影观看| 国产精品九九99| 久久九九热精品免费| av网站在线播放免费| 亚洲欧美一区二区三区久久| 国产高清视频在线播放一区 | 亚洲五月婷婷丁香| 亚洲熟女精品中文字幕| av天堂久久9| 两性午夜刺激爽爽歪歪视频在线观看 | 大码成人一级视频| 99国产精品99久久久久| 成年人午夜在线观看视频| 久久久久久久大尺度免费视频| 日本91视频免费播放| 亚洲成人国产一区在线观看| cao死你这个sao货| 久久久久视频综合| 日日夜夜操网爽| 水蜜桃什么品种好| 新久久久久国产一级毛片| 国产三级黄色录像| 91国产中文字幕| 一级毛片电影观看| 老司机亚洲免费影院| 精品人妻一区二区三区麻豆| 另类亚洲欧美激情| 成在线人永久免费视频| 日韩视频在线欧美| 亚洲 国产 在线| 国产精品99久久99久久久不卡| 99国产精品99久久久久| 亚洲五月色婷婷综合| 国产精品免费视频内射| xxxhd国产人妻xxx| 亚洲一区中文字幕在线| 美女视频免费永久观看网站| 午夜福利乱码中文字幕| 欧美97在线视频| 岛国毛片在线播放| 精品国产一区二区三区久久久樱花| 电影成人av| 亚洲国产av影院在线观看| 少妇精品久久久久久久| 在线观看免费视频网站a站| 好男人电影高清在线观看| 久久天躁狠狠躁夜夜2o2o| kizo精华| 丝袜在线中文字幕| 亚洲欧美一区二区三区久久| 自拍欧美九色日韩亚洲蝌蚪91| av超薄肉色丝袜交足视频| a级片在线免费高清观看视频| 少妇粗大呻吟视频| 欧美乱码精品一区二区三区| 大码成人一级视频| 最新的欧美精品一区二区| 欧美日本中文国产一区发布| 午夜免费成人在线视频| 国产精品久久久久久精品电影小说| 国产一区二区 视频在线| 国产极品粉嫩免费观看在线| 国产精品av久久久久免费| 人妻 亚洲 视频| 亚洲国产欧美日韩在线播放| netflix在线观看网站| 免费久久久久久久精品成人欧美视频| 久久精品亚洲av国产电影网| 国产亚洲欧美在线一区二区| 国产精品久久久av美女十八| 国产亚洲av高清不卡| 午夜福利视频精品| 亚洲综合色网址| 欧美成狂野欧美在线观看| 俄罗斯特黄特色一大片| 另类亚洲欧美激情| 老熟女久久久| 亚洲国产精品成人久久小说| 我的亚洲天堂| 操美女的视频在线观看| 亚洲一区二区三区欧美精品| 女人久久www免费人成看片| 国产一区有黄有色的免费视频| 亚洲中文字幕日韩| 9191精品国产免费久久| 日本猛色少妇xxxxx猛交久久| 国产一区有黄有色的免费视频| 在线 av 中文字幕| 99国产精品99久久久久| 国产精品欧美亚洲77777| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美xxⅹ黑人| 久久久久精品人妻al黑| 久久国产精品男人的天堂亚洲| 婷婷色av中文字幕| www日本在线高清视频| 精品国内亚洲2022精品成人 | 国产在视频线精品| 精品一区在线观看国产| 亚洲伊人久久精品综合| 丝袜人妻中文字幕| 国产av精品麻豆| 欧美黄色片欧美黄色片| 日本欧美视频一区| 亚洲精品国产区一区二| 岛国在线观看网站| 丁香六月欧美| 国产精品 欧美亚洲| 极品人妻少妇av视频| a在线观看视频网站| 亚洲九九香蕉| 国产一区二区在线观看av| 高清在线国产一区| 国产高清videossex| 在线av久久热| av福利片在线| 丝袜人妻中文字幕| 中文字幕人妻丝袜制服| 久久久久精品人妻al黑| 国产av一区二区精品久久| 精品人妻一区二区三区麻豆| 亚洲精品国产区一区二| 黄色视频在线播放观看不卡| 丰满少妇做爰视频| 国产99久久九九免费精品| 中文精品一卡2卡3卡4更新| 黄色片一级片一级黄色片| 在线观看免费日韩欧美大片| 在线看a的网站| 精品国产乱码久久久久久男人| 亚洲人成电影免费在线| 十八禁人妻一区二区| 国产成人精品久久二区二区91| 日韩人妻精品一区2区三区| 各种免费的搞黄视频| 一级毛片电影观看| 悠悠久久av| 女性生殖器流出的白浆| bbb黄色大片| 久久 成人 亚洲| 色婷婷久久久亚洲欧美| 波多野结衣av一区二区av| 国产伦人伦偷精品视频| 亚洲av男天堂| 中文字幕精品免费在线观看视频| 国产精品影院久久| 久久人妻福利社区极品人妻图片| av片东京热男人的天堂| 精品国产国语对白av| 男女午夜视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 两人在一起打扑克的视频| 免费一级毛片在线播放高清视频 | 免费在线观看日本一区| 狠狠精品人妻久久久久久综合| 91成年电影在线观看| 十八禁人妻一区二区| 女人爽到高潮嗷嗷叫在线视频| 欧美黄色片欧美黄色片| av一本久久久久| 精品人妻一区二区三区麻豆| 黄色片一级片一级黄色片| 一边摸一边做爽爽视频免费| 亚洲国产欧美一区二区综合| 欧美性长视频在线观看| 90打野战视频偷拍视频| 脱女人内裤的视频| 热99久久久久精品小说推荐| 国产亚洲午夜精品一区二区久久| 亚洲精品一区蜜桃| 黄色片一级片一级黄色片| 亚洲中文字幕日韩| 这个男人来自地球电影免费观看| 欧美日韩精品网址| 在线看a的网站| 99久久综合免费| 精品乱码久久久久久99久播| 男女国产视频网站| 亚洲精品久久成人aⅴ小说| 黄色片一级片一级黄色片| 一区二区三区激情视频| 麻豆av在线久日| 中文字幕精品免费在线观看视频| 99精国产麻豆久久婷婷| 精品高清国产在线一区| 国产精品九九99| 久久热在线av| 黄片小视频在线播放| 中文精品一卡2卡3卡4更新| 亚洲av成人不卡在线观看播放网 | av在线app专区| 欧美日韩视频精品一区| 激情视频va一区二区三区| av网站免费在线观看视频| 午夜福利影视在线免费观看| 亚洲av电影在线进入| 日本av手机在线免费观看| 国产精品国产av在线观看| 成年女人毛片免费观看观看9 | 人妻一区二区av| e午夜精品久久久久久久| 亚洲三区欧美一区| 欧美亚洲 丝袜 人妻 在线| 亚洲国产精品成人久久小说| 男女之事视频高清在线观看| 高清欧美精品videossex| 国产亚洲欧美在线一区二区| 国产成人免费无遮挡视频| 深夜精品福利| svipshipincom国产片| 国产xxxxx性猛交| 免费不卡黄色视频| 国产精品影院久久| 日本vs欧美在线观看视频| 午夜视频精品福利| 99香蕉大伊视频| 性色av一级| 日韩大码丰满熟妇| 国产精品国产三级国产专区5o| 欧美在线一区亚洲| 老司机在亚洲福利影院| 电影成人av| 老司机影院成人| 国产男女超爽视频在线观看| 窝窝影院91人妻| 欧美黄色片欧美黄色片| 人人澡人人妻人| 亚洲精品一二三| √禁漫天堂资源中文www| 国产xxxxx性猛交| 亚洲精品乱久久久久久| 国产精品久久久av美女十八| 精品久久蜜臀av无| 久久狼人影院| 夫妻午夜视频| 国产又色又爽无遮挡免| 国产日韩一区二区三区精品不卡| 欧美黄色片欧美黄色片| 亚洲欧美日韩高清在线视频 | 日本av免费视频播放| 亚洲欧美激情在线| 国产色视频综合| 麻豆乱淫一区二区| 91av网站免费观看| 男女国产视频网站| 久久人人97超碰香蕉20202| 黑丝袜美女国产一区| svipshipincom国产片| 老汉色∧v一级毛片| 天天添夜夜摸| 亚洲欧洲日产国产| 秋霞在线观看毛片| 免费高清在线观看日韩| 免费av中文字幕在线| 亚洲 国产 在线| 丝袜人妻中文字幕| 国产在视频线精品| 一区二区日韩欧美中文字幕| 欧美黑人欧美精品刺激| 久久天躁狠狠躁夜夜2o2o| 日日夜夜操网爽| 另类亚洲欧美激情| 免费不卡黄色视频| 999久久久精品免费观看国产| 日韩,欧美,国产一区二区三区| avwww免费| 精品一区二区三区四区五区乱码| 一级黄色大片毛片| 美女脱内裤让男人舔精品视频| 夫妻午夜视频| 伊人久久大香线蕉亚洲五| 亚洲欧美一区二区三区黑人| av一本久久久久| 午夜视频精品福利| cao死你这个sao货| 啦啦啦在线免费观看视频4| 亚洲第一av免费看| 日本av免费视频播放| 亚洲自偷自拍图片 自拍| 精品少妇黑人巨大在线播放| 少妇的丰满在线观看| 动漫黄色视频在线观看| 欧美日韩亚洲综合一区二区三区_| 亚洲精品国产色婷婷电影| 人人妻,人人澡人人爽秒播| 午夜福利在线观看吧| 少妇猛男粗大的猛烈进出视频| 成年动漫av网址| 精品国产一区二区久久| 欧美成人午夜精品| 香蕉丝袜av| 午夜91福利影院| 宅男免费午夜| svipshipincom国产片| 国产亚洲精品第一综合不卡| 色综合欧美亚洲国产小说| 久久精品熟女亚洲av麻豆精品| 夫妻午夜视频| 深夜精品福利| 国产成人a∨麻豆精品| 精品久久久久久久毛片微露脸 | 久久人人97超碰香蕉20202| 日韩制服骚丝袜av| 日本欧美视频一区| 伦理电影免费视频| 精品人妻熟女毛片av久久网站| 国产99久久九九免费精品| 性高湖久久久久久久久免费观看| 亚洲精品国产av成人精品| 亚洲七黄色美女视频| 97人妻天天添夜夜摸| 18在线观看网站| 在线观看www视频免费| 久久香蕉激情| 女人高潮潮喷娇喘18禁视频| 99热网站在线观看| 国产精品香港三级国产av潘金莲| 国产日韩一区二区三区精品不卡| 岛国毛片在线播放| 午夜福利影视在线免费观看| 电影成人av| 黄网站色视频无遮挡免费观看| 国产av又大| 亚洲 国产 在线| 两人在一起打扑克的视频| 国产又爽黄色视频| 成人影院久久| 精品人妻熟女毛片av久久网站| 少妇猛男粗大的猛烈进出视频| 俄罗斯特黄特色一大片| a 毛片基地| 丝袜人妻中文字幕| 亚洲国产成人一精品久久久| 国产97色在线日韩免费| 人妻 亚洲 视频| 欧美久久黑人一区二区| 女性生殖器流出的白浆| 热99国产精品久久久久久7| 老鸭窝网址在线观看| 日韩一区二区三区影片| 99久久国产精品久久久| 欧美在线黄色| 久久国产精品人妻蜜桃| 色94色欧美一区二区| 不卡av一区二区三区| 久久天躁狠狠躁夜夜2o2o| 另类精品久久| 日本wwww免费看| 天天影视国产精品| 亚洲欧洲精品一区二区精品久久久| 99国产精品免费福利视频| 亚洲国产欧美网| 亚洲av日韩在线播放| 黑人巨大精品欧美一区二区mp4| 成人黄色视频免费在线看| 国产在线一区二区三区精| 亚洲综合色网址| 18禁国产床啪视频网站| 中文字幕高清在线视频| 国产成人精品无人区| 侵犯人妻中文字幕一二三四区| 一区在线观看完整版| 女人爽到高潮嗷嗷叫在线视频| 国产亚洲欧美在线一区二区| 久久精品亚洲熟妇少妇任你| a在线观看视频网站| 999久久久国产精品视频| 国产成人欧美在线观看 | av在线老鸭窝| 精品一区在线观看国产| 在线观看免费午夜福利视频| 天天躁狠狠躁夜夜躁狠狠躁| 久久影院123| 视频区欧美日本亚洲| 免费日韩欧美在线观看| 国产精品偷伦视频观看了| 伊人久久大香线蕉亚洲五| 精品久久蜜臀av无| 一本一本久久a久久精品综合妖精| 亚洲中文日韩欧美视频| 纵有疾风起免费观看全集完整版| 黄网站色视频无遮挡免费观看| 三级毛片av免费| 午夜影院在线不卡| av一本久久久久| 大香蕉久久网| 免费日韩欧美在线观看| 香蕉国产在线看| 男女午夜视频在线观看| 成人影院久久| 免费高清在线观看日韩| 国产精品免费视频内射| 国产国语露脸激情在线看| 亚洲欧美色中文字幕在线| 青春草亚洲视频在线观看| 亚洲av日韩精品久久久久久密| 国产精品熟女久久久久浪| 国产精品成人在线| 91成人精品电影| 国产人伦9x9x在线观看| 免费高清在线观看日韩| 又紧又爽又黄一区二区| 精品一区二区三区四区五区乱码| 久久亚洲精品不卡| 91精品国产国语对白视频| 精品国产乱码久久久久久男人| 又紧又爽又黄一区二区| 精品久久久久久电影网| 久久久欧美国产精品| 中文字幕高清在线视频| 黑丝袜美女国产一区| 午夜日韩欧美国产| 捣出白浆h1v1| 免费观看人在逋| 色播在线永久视频| 国产在线免费精品| xxxhd国产人妻xxx| 欧美黑人欧美精品刺激| 久久综合国产亚洲精品| 欧美黑人欧美精品刺激| 亚洲精品久久午夜乱码| 日韩,欧美,国产一区二区三区| 丁香六月欧美| 国产免费现黄频在线看| 中文字幕高清在线视频| 黑丝袜美女国产一区| 国产成+人综合+亚洲专区| 91av网站免费观看| 老司机亚洲免费影院| 亚洲av欧美aⅴ国产| 少妇 在线观看| 日韩大码丰满熟妇| 国产无遮挡羞羞视频在线观看| 欧美日韩视频精品一区| 纯流量卡能插随身wifi吗| 亚洲第一青青草原| 久久影院123| 在线精品无人区一区二区三| 亚洲av片天天在线观看| 男女之事视频高清在线观看| 色婷婷久久久亚洲欧美| 丝袜人妻中文字幕| 91成人精品电影| 两个人看的免费小视频| 国产亚洲精品久久久久5区| 国产精品国产三级国产专区5o| 两人在一起打扑克的视频| 黄片小视频在线播放| 热re99久久国产66热| 成年美女黄网站色视频大全免费| 美女国产高潮福利片在线看| 永久免费av网站大全| 日本av免费视频播放| 99精品欧美一区二区三区四区| 黑人猛操日本美女一级片| 精品少妇黑人巨大在线播放| 亚洲国产欧美网| 亚洲七黄色美女视频| 97精品久久久久久久久久精品| 欧美日韩视频精品一区| 国产高清视频在线播放一区 | 欧美黄色淫秽网站| 国产精品国产三级国产专区5o| 久久久国产成人免费| 女人高潮潮喷娇喘18禁视频| av网站在线播放免费| 18禁国产床啪视频网站| 一级毛片女人18水好多| 一本一本久久a久久精品综合妖精| 国产成人啪精品午夜网站| 十八禁高潮呻吟视频| 亚洲精品国产一区二区精华液| 18禁国产床啪视频网站| 国产1区2区3区精品| 男女之事视频高清在线观看| 国产精品99久久99久久久不卡| 国产欧美日韩一区二区精品| 老熟女久久久| 99热网站在线观看| 黑人巨大精品欧美一区二区蜜桃| 青草久久国产| 亚洲 国产 在线| 国产男人的电影天堂91| 国产精品国产av在线观看| 久久 成人 亚洲| 久久人妻熟女aⅴ| 天堂俺去俺来也www色官网| bbb黄色大片| 啦啦啦免费观看视频1| 欧美大码av| 免费高清在线观看日韩| 九色亚洲精品在线播放| 精品国产乱码久久久久久小说| 丁香六月天网| 亚洲国产精品一区三区| 久久国产精品大桥未久av| 午夜激情av网站| 久久香蕉激情| 久久国产精品男人的天堂亚洲| 亚洲精品国产色婷婷电影| 国产三级黄色录像| 色婷婷久久久亚洲欧美| 国产精品偷伦视频观看了| 久久精品国产a三级三级三级| 欧美国产精品一级二级三级| 黄色视频不卡| 欧美激情久久久久久爽电影 | 亚洲情色 制服丝袜| 黄色视频,在线免费观看| 老熟妇乱子伦视频在线观看 | 国产成人av激情在线播放| 一个人免费在线观看的高清视频 | 亚洲国产毛片av蜜桃av| 国产精品 欧美亚洲| 国产一区二区三区综合在线观看|