• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Low-overpotential electrochemical ammonia synthesis using BiOCl-modified 2D titanium carbide MXene

    2022-03-14 09:29:28YuWngMunkhbyrBtmunkhHuiMoHuiLiBohuJiShuyoWuDlingLiuXimingSongYingSunTinyi
    Chinese Chemical Letters 2022年1期

    Yu Wng,Munkhbyr Btmunkh,Hui Mo,Hui Li,Bohu Ji,Shuyo Wu,Dling Liu,Ximing Song,Ying Sun,?,Tinyi M,?

    aKey Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province,College of Chemistry,Liaoning University,Institute of Clean Energy Chemistry,Shenyang 110036,China

    bCentre for Catalysis and Clean Energy,School of Environment and Science,Griffith University,Gold Coast,Queensland 4222,Australia

    cCentre for Translational Atomaterials,School of Science,Swinburne University of Technology,Hawthorn VIC 3122,Australia

    1These authors contributed equally to this work.

    ABSTRACT Electrochemical synthesis of ammonia has the advantages of low energy consumption and promising environmental protection,as compared to the traditional Haber-Bosch process.However,the commercial utilization of this novel system is limited by the low Faradaic efficiency,poor ammonia yield and high overpotential due to the strong N≡N bond and the dominant competing reaction of hydrogen evolution reaction(HER).Herein,a BiOCl-modified two-dimensional(2D)titanium carbide MXenes nanocomposite(BiOCl@Ti3C2Tx)is proposed as a promising electrocatalyst for ambient nitrogen(N2)reduction reaction with excellent catalytic performance and superior long-term stability at low overpotential.In 0.1 mol/L HCl,this catalyst attains a high Faradic efficiency of 11.98% and a NH3 yield of 4.06 μg h?1 cm?2 at?0.10 V(vs. RHE),benefiting from its strong interaction of Bi 6p band with the N 2p orbitals,combined with its large specific surface area and the facile electron transfer.

    Keywords:BiOCl Ti3C2Tx Electrocatalytic Ammonia N2 reduction reaction

    Ammonia(NH3)is an important industrial raw material,which has been widely used in agriculture,industry,energy storage and other fields[1–3].At present,approximately 160 million metric tons of NH3is produced by using the traditional Haber-Bosch process,which converts high purity N2and H2to NH3under high temperatures(400–600 °C)and high pressures(200–300 atm),leading to significant energy consumption and CO2emissions[4,5].Therefore,the energy crisis and man-made climate change warn us to explore more sustainable and economical techniques for NH3production.

    Electrochemical N2reduction reaction(NRR)is a promising alternative method that can potentially synthesize NH3under ambient conditions[6–8].However,the robust N≡N bond,the extremely weak N2adsorption and the dominant competing reaction of hydrogen evolution reaction(HER)lead to low Faradaic efficiency(FE),unsatisfied ammonia yield and high overpotential,which limit this novel system from its possible commercial utilization[9].Although substantial progress has been made in this cutting-edge research field,efficient electrocatalysts for NRR are still in demand[10–16].Bi-based materials,including metal Bi nanoparticles[17],Bi ultrathin nanosheets[18],bismuth oxide[19]and Bi4V2O11/CeO2hybrid[20],exhibit many promising features such as non-toxic,environment-friendly and unique electronic structure[21],endowing them with attractive electrochemical and photocatalytic N2reduction potential[22,23].Studies have shown that the excellent NRR performance of bismuth is attributed to its strong interaction of Bi 6p band with the N 2p orbitals,which facilitates the N2adsorption and activation[24,25].As an important bismuth-based halide,BiOCl has widely been used in photochemistry fields due to its remarkable electrical,optical and catalytic properties,as well as excellent stability[26],but it has been rarely used in electrocatalytic NRR partly due to the inconvenient electrons and protons transformation.Among diversified catalytic performance improvement strategies[27–29],multicomponent strategy is expected to be a simple and effective method,which can enhance the NRR performance of electrocatalysts through reasonable combination of diverse functional components.

    Fig.1.(a)XRD patterns of BiOCl@Ti3C2Tx and Ti3C2Tx.SEM images of(b)Ti3C2Tx and(c)BiOCl@Ti3C2Tx.(d)HRTEM image of BiOCl@Ti3C2Tx;(e)EDS elemental mapping images of BiOCl@Ti3C2Tx.

    In this communication,BiOCl-modified Ti3C2TxMXene(BiOCl@Ti3C2Tx)was synthesized as a highly efficient electrochemical nitrogen fixation materialvia in-situhydrothermal growth of BiOCl on the Ti3C2Tx(see Supporting information for preparation details).The as-obtained BiOCl@Ti3C2Txis superior in NRR activity to its two components under ambient conditions.Ti3C2Tx,as a new kind of two-dimensional(2D)materials,has been widely used in batteries[30],supercapacitors[31],solar cells[32]and other fields due to its excellent conductivity,stability and large specific surface area[33–36].As reported,Ti3C2Txalso has NRR activity,which could enhance the electron transfer of BiOCl and serve as a robust support to prevent structural changes during electrochemical processes.The NH3yield and Faradaic efficiency(FE)of BiOCl@Ti3C2Txat ?0.10 Vversusreversible hydrogen electrode(RHE)were 4.06 μg h?1cm?2and 11.98% in 0.1 mol/L HCl,respectively,which are significantly higher than those obtained by BiOCl(1.05 μg h?1cm?2and 1.88%)and Ti3C2Tx(2.26 μg h?1cm?2and 2.43%).Remarkably,this newly designed catalyst also showed good selectivity and electrochemical stability.

    The crystalline phase of the obtained BiOCl@Ti3C2Txwas studied using an X-ray diffraction(XRD).As shown in Fig.1a,the characteristic diffraction peak at 9.0° can be assigned to the(002)crystal plane of Ti3C2Tx[37],and the peaks appearing at 12.0°,25.9°,32.5°,33.4°,40.9°,46.6°,49.7°,54.1° and 58.6° are indexed to the(001),(101),(110),(102),(112),(200),(113),(211)and(212)planes of BiOCl(JCPDS No.06–0249)[38],respectively,indicating the successful preparation of BiOCl@Ti3C2Tx.

    Fig.2.(a)Survey scan,and(b–f)high-resolution XPS spectra of Ti 2p,C 1s,O 1s,Bi 4f and Cl 2p for BiOCl@Ti3C2Tx nanocomposites.

    A typical scanning electron microscopy(SEM)image(Fig.1b)shows the etched Ti3C2Txflakes with a distinct accordion shape and smooth layers separated mostly from each other,indicating the successful removal of Al layer from the Ti3AlC2(MAX)phase.After the hydrothermal reaction,the surface of the assynthesized BiOCl@Ti3C2Txbecomes rough due to the coating of BiOCl nanoparticles as shown in Fig.1c.The BiOCl nanoparticles,with the particle size of approximately 20 nm,uniformly deposited on the surface of the layered Ti3C2Tx.This layered structure enables sufficient infiltration of the electrolyte and better exposure of active sites to N2,and thus yielding a satisfactory electrocatalytic NRR activity.Moreover,the high-resolution transmission electron microscopy(HRTEM)image(Fig.1d)shows an interplanar spacing of 0.274 nm,indexed to the(110)plane of BiOCl.Furthermore,the energy dispersive X-ray spectroscopy(EDS)elemental mapping analysis of BiOCl@Ti3C2Txfurther confirms the uniform distribution of Bi,Ti,C,O and Cl elements throughout the catalyst(Fig.1e).The loading contents of Bi and Ti were 6.47 wt% and 21.78 wt%,respectively,as measured by inductively coupled plasma atomic emission spectrometry(ICP-AES).

    X-ray photoelectron spectroscopy(XPS)was employed to study the elemental composition and chemical state of the materials.All binding energies were calibrated against C 1s at 284.8 eV.The survey spectrum of BiOCl@Ti3C2Txcomposites suggest that the Ti,C,O,Bi and Cl elements exist in the composite(Fig.2a),which is in excellent agreement with the XRD and EDS mapping.The high-resolution Ti 2p spectrum of BiOCl@Ti3C2Tx(Fig.2b)could be fitted with three doublets(Ti 2p3/2–Ti 2p1/2)[39].The peaks located at 454.7 eV and 455.9 eV correspond to Ti 2p3/2binding energies of Ti–C and Ti(II)bond,respectively.The Ti 2p1/2of the BiOCl@Ti3C2Txlied in 460.6 eV and 461.5 eV are consistent with the bonds of Ti–C and Ti(II),respectively.While the peaks at 458.9 eV and 465.0 eV correspond to the Ti 2p3/2and Ti 2p1/2binding energies of the Ti–O bonds,which are due to the presence of abundant hydrophilic functionalities(–O and–OH)after etching by HF[40–42].In addition,Fig.2c shows the XPS spectrum of the C 1s region,where the peaks of 281.5,284.8,286.4 and 288.1 eV can be associated with the Ti–C,C–C,C–O and HO–C=O bonds,respectively[43–45].The three peaks at 529.9,530.9 and 532.6 eV in the O 1s region(Fig.2d)can be attributed to the Bi–O,Ti–O,and the oxygen containing components(H2O and–OH)adsorbed on the surface of BiOCl and Ti3C2,respectively[46,47].In Fig.2e,the peaks at 164.8 and 159.5 eV can be assigned to Bi 4f5/2and Bi 4f7/2,respectively,which can be attributed to Bi3+[43,48].In Fig.2f,two peaks at 199.7 and 198.1 eV belong to Cl 2p1/2and Cl 2p3/2,respectively,confirming the existence of Cl?[49,50].The SEM,EDS,TEM,ICP-AES and XPS results confirm that the layered 2D composite,BiOCl@Ti3C2Tx,was successfully prepared.

    Fig.3.(a)Time-dependent current density curves at various potentials in N2-saturated 0.1 mol/L HCl.(b)Comparison of the ammonia-sensitive selecting electrode and indophenol blue reagent-based colorimetric method for the quantitative analysis of ammonia yield.(c)NH3 yields and FEs of BiOCl@Ti3C2Tx/CC for the NRR at various potentials.(d)Amount of NH3 with different electrodes at ?0.10 V after 2 h electrolysis under ambient conditions.

    Electrocatalytic NRR experiments were conducted in a two-compartment electrochemical cell separated by a Nafion membrane(Fig.S2 in Supporting information).The catalysts,BiOCl@Ti3C2Tx,BiOCl,Ti3C2Tx,were coated on carbon cloth(CC)(1 cm × 1 cm)(BiOCl@Ti3C2Tx/CC,BiOCl/CC,Ti3C2Tx/CC)with a loading of 0.1 mg as the working electrode.The NRR tests were conducted in 0.1 mol/L HCl under ambient conditions.All potentials were reported on the RHE scale.The produced NH3were determined by the indophenol blue method[51]and ammonia-sensitive selecting electrode method[52].The possible by-products(N2H4)were tested by the method of Watt and Chrisp[53].Figs.S3,S4,and S6(Supporting information)display the calibration curves for the NH3concentrations.Fig.S7(Supporting information)shows the linear sweep voltammetry(LSV)curves for BiOCl@Ti3C2Tx/CC in Ar- and N2-saturated 0.1 mol/L HCl solution.It is clearly seen that the BiOCl@Ti3C2Tx/CC achieved a high current density in N2-saturated solution,indicating the NRR process on the electrode.A series of potentials from ?0.20 V to 0.00 V(vs.RHE)were applied to evaluate the NH3yields and FEs.Fig.3a shows the time-dependent current density curves of BiOCl@Ti3C2Tx/CC at different potentials in N2-saturated 0.1 mol/L HCl.The ultraviolet-visible(UV-vis)absorption spectra of various electrolytes(Fig.S8 in Supporting information)indicates that the NRR is produced at various potentials.In addition,the concentrations of the NH3were also determined by ammonia-sensitive selecting electrode method to confirm the reliability of colorimetric method.As shown in Fig.3b,the NH3yields are very close to those obtained by indophenol blue method,indicating that it is reliable to use the indophenol blue method for the quantitative analysis of the produced NH3.

    The NH3yields and FEs of the BiOCl@Ti3C2Tx/CC at various potentials are calculated and have been summarized in Fig.3c.As observed,the maximum values of NH3yield and FE were determined to be 4.06 μg h?1cm?2and 11.98% at ?0.10 V(vs.RHE),respectively.This NRR catalytic performance of the asprepared BiOCl@Ti3C2Txnanocomposite can even be comparable to the yields achieved by some metal-MXene hybrid nanocatalysts at higher overpotential(e.g.,Ru@MXene(NH3yield rate of 2.3 μmol h?1cm?2at ?0.4 V(vs.RHE)in 0.1 mol/L KOH electrolyte)[54],Mo2C/C(NH3yield rate of 11.3 μg h?1mg?1at ?0.3 V(vs.RHE)in 0.5 M Li2SO4electrolyte)[55]and Ti3C2Tx/FeOOH(NH3yield rate of 0.53 μg h?1cm?2at ?0.5 V(vs.RHE)in 0.5 mol/L Li2SO4electrolyte)[56]).In addition,it should be noted that this work realized the high efficiency ammonia production catalyzed by bismuth-based materials at a low potential of ?0.1 V for the first time.It can be observed that when the applied potential becomes more negative,the NH3yield and FE decrease owing to the competitive HER[57,58].Notably,the by-product N2H4was hardly detected(Fig.S9 in Supporting information),indicating that the BiOCl@Ti3C2Txpossessed excellent selectivity toward NH3production.We further quantified the amount of NH3produced on blank CC,BiOCl/CC,Ti3C2Tx/CC and BiOCl@Ti3C2Tx/CC to verify the activity of BiOCl@Ti3C2Tx.As shown in Fig.3d,the bare CC has necessitous electrocatalytic NRR activity,while the BiOCl/CC and Ti3C2Tx/CC are active for the NRR,producing 1.05 and 2.26 μg h?1cm?2of NH3,respectively.Indeed,the BiOCl@Ti3C2Tx/CC exhibited greatly enhanced electrocatalytic NRR activity producing 8.12 μg h?1cm?2of NH3,which is about 3.9 times higher than that of BiOCl/CC and 1.8 times greater than that of Ti3C2Tx/CC,suggesting that both BiOCl and Ti3C2Txwork synergistically to catalyze the N2fixation.

    The superior NRR activity of BiOCl@Ti3C2Txnanocomposites is attributed to the following points:(1)MXene as an ideal support owing to its large specific surface area can fully load BiOCl and avoid aggregation of BiOCl,thus exposing more active sites;(2)The strong interaction between the Bi 6p band of semiconducting BiOCl and the N 2p orbitals can effectively restrain the HER activity of Ti3C2Tx,and thereby achieving high FEs;(3)The double-layer capacitance measurement demonstrates that the BiOCl@Ti3C2Txpossesses a much larger capacitance and thus exposes more electrochemically active surface area(Fig.S10 in Supporting information).Finally,Ti3C2Txsubstrate has an excellent electrical conductivity favoring for rapid electron transport in the NRR process,resulting in a higher NH3yield rate.

    Fig.4.(a)UV-vis absorption spectra of the electrolytes stained with the indophenol indicator after NRR electrolysis using BiOCl@Ti3C2Tx/CC for 2 h under different conditions.(b)NH3 yields and FEs for BiOCl@Ti3C2Tx/CC with alternating 2 h cycles between Ar- and N2-saturated electrolytes.(c)Time-dependent current density curve for the BiOCl@Ti3C2Tx catalyst at ?0.10 V for 12 h.(d)Recycling stability tests on BiOCl@Ti3C2Tx/CC at ?0.10 V for 5 times.

    To confirm that the produced NH3was generatedviaNRR,we executed control experiments in an Ar- and N2-saturated solution at ?0.10 V for 2 h,as well as in N2-saturated solution at open circuit potential for 2 h,respectively.The UV-vis absorption spectra show that the NH3was produced only in the N2-saturated solution(Fig.4a).We also carried out 12 h cycling test with an interval of 2 h in N2- and Ar-saturated solution at ?0.10 V(Fig.4b).Fig.4b further confirms that the produced NH3primarily generated from the catalysis of N2.The durability and stability are also crucial indicator to estimate the performance of electrocatalysts.As shown in Fig.4c,the current density shows no obvious difference during 12 h catalysis at ?0.10 V.During cycling test over five times,both the NH3yield and FE show negligible change(Fig.4d).Both the compositions and BiOCl nature of the BiOCl@Ti3C2Txcould be well maintained after the long-term electrocatalysis reaction when comparing SEM,TEM(Fig.S11 in Supporting information)and XPS images(Fig.S12 in Supporting information)before and after the reaction,demonstrating the excellent electrochemical durability of the BiOCl@Ti3C2Txfor the NRR,which is another crucial factor for the enhancement of NRR performances.

    In conclusion,BiOCl-modified Ti3C2TxMXene is used as an efficient electrocatalyst for N2-to-NH3with a high FE at a low overpotential.In 0.1 mol/L HCl,the BiOCl@Ti3C2Txnanocomposite can achieve a NH3yield rate of 4.06 μg h?1cm?2with FEs of 11.98%at ?0.10 Vvs.RHE.Meanwhile,BiOCl@Ti3C2Txshows superior stability and high selectivity.The high performance of the obtained BiOCl@Ti3C2Txtoward NRR could be ascribed to the sufficient exposure of active catalytic sites of Bi and Ti,the inhibition of HER by Bi.Both BiOCl and Ti3C2Txsynergistically enhance the NRR performance.This study provides a new avenue for the development and design of Bi-based catalysts as advanced electrocatalysts for artificial N2reduction.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(No.52071171),the Liaoning Revitalization Talents Program - Pan Deng Scholars(No.XLYC1802005),the Liaoning BaiQianWan Talents Program(No.LNBQW2018B0048),Natural Science Fund of Liaoning Province for Excellent Young Scholars(No.2019-YQ-04),the Key Project of Scientific Research of the Education Department of Liaoning Province(No.LZD201902),the Young Scientific and Technological Talents Project of the Department of Education of Liaoning Province(Nos.LQN201903 and LQN202008),the Foundation for Young Scholars of Liaoning University(No.LDQN2019007).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.05.025.

    亚洲丝袜综合中文字幕| av在线观看视频网站免费| 999精品在线视频| 欧美性感艳星| 一本色道久久久久久精品综合| 大话2 男鬼变身卡| 纵有疾风起免费观看全集完整版| 在线天堂中文资源库| 午夜福利,免费看| 亚洲精华国产精华液的使用体验| 九九爱精品视频在线观看| 超碰97精品在线观看| 国产日韩一区二区三区精品不卡| 久久国产亚洲av麻豆专区| 人妻人人澡人人爽人人| 久久久久网色| 成人二区视频| 男人舔女人的私密视频| 国产深夜福利视频在线观看| 午夜福利视频在线观看免费| 在线观看免费视频网站a站| videosex国产| 国产永久视频网站| 久久精品国产自在天天线| 日韩中文字幕视频在线看片| 日本猛色少妇xxxxx猛交久久| 中文字幕av电影在线播放| 免费日韩欧美在线观看| 国产亚洲一区二区精品| 国产深夜福利视频在线观看| 免费人成在线观看视频色| 男人添女人高潮全过程视频| 亚洲三级黄色毛片| 午夜免费观看性视频| 90打野战视频偷拍视频| 男的添女的下面高潮视频| 国产国语露脸激情在线看| 制服诱惑二区| 亚洲综合色网址| 日本爱情动作片www.在线观看| 精品久久久精品久久久| 下体分泌物呈黄色| 九色亚洲精品在线播放| 精品99又大又爽又粗少妇毛片| 精品亚洲成a人片在线观看| 国产 精品1| 日本午夜av视频| 精品人妻偷拍中文字幕| 插逼视频在线观看| 女性生殖器流出的白浆| 高清视频免费观看一区二区| 另类亚洲欧美激情| 又黄又爽又刺激的免费视频.| 亚洲精品中文字幕在线视频| 久久人人爽人人片av| 国国产精品蜜臀av免费| 十分钟在线观看高清视频www| 亚洲欧美成人综合另类久久久| 91国产中文字幕| 日韩av不卡免费在线播放| 亚洲欧美一区二区三区黑人 | 亚洲精品456在线播放app| 最近的中文字幕免费完整| 久久久久网色| 在线 av 中文字幕| av电影中文网址| 大片免费播放器 马上看| 国产av国产精品国产| 久久99热这里只频精品6学生| 国产日韩一区二区三区精品不卡| 丰满乱子伦码专区| 精品午夜福利在线看| 男女边摸边吃奶| 国产有黄有色有爽视频| 亚洲av电影在线进入| 性高湖久久久久久久久免费观看| 欧美人与善性xxx| 熟女av电影| 国产精品人妻久久久久久| 精品一品国产午夜福利视频| 成人综合一区亚洲| 国产日韩欧美在线精品| 国产日韩欧美亚洲二区| 亚洲精品一区蜜桃| av线在线观看网站| 内地一区二区视频在线| 中文字幕制服av| 欧美日韩亚洲高清精品| 如何舔出高潮| 黄色 视频免费看| 亚洲精品中文字幕在线视频| 国产成人欧美| 在线亚洲精品国产二区图片欧美| 女人被躁到高潮嗷嗷叫费观| 欧美日韩亚洲高清精品| 三上悠亚av全集在线观看| 久久久久久久大尺度免费视频| 国产精品蜜桃在线观看| 欧美亚洲日本最大视频资源| 亚洲精品中文字幕在线视频| 飞空精品影院首页| 女人被躁到高潮嗷嗷叫费观| 国产爽快片一区二区三区| 国产欧美日韩一区二区三区在线| 久久久久久久国产电影| 久久人人97超碰香蕉20202| 九九爱精品视频在线观看| 亚洲伊人色综图| 又黄又爽又刺激的免费视频.| 天天影视国产精品| 天天影视国产精品| 午夜福利乱码中文字幕| 国产av一区二区精品久久| kizo精华| 不卡视频在线观看欧美| 久久精品人人爽人人爽视色| 免费高清在线观看日韩| 色网站视频免费| 永久网站在线| 天天操日日干夜夜撸| 丝袜人妻中文字幕| 国产一区二区三区av在线| 69精品国产乱码久久久| 免费播放大片免费观看视频在线观看| 精品一区二区三区四区五区乱码 | 一级片免费观看大全| 日产精品乱码卡一卡2卡三| 亚洲熟女精品中文字幕| 国产极品粉嫩免费观看在线| 精品久久久久久电影网| 国产精品人妻久久久影院| 国产精品三级大全| 搡老乐熟女国产| 91在线精品国自产拍蜜月| 国产免费视频播放在线视频| 欧美日韩国产mv在线观看视频| 亚洲av免费高清在线观看| 男人爽女人下面视频在线观看| 51国产日韩欧美| 丰满饥渴人妻一区二区三| 女人被躁到高潮嗷嗷叫费观| 精品亚洲乱码少妇综合久久| 日本欧美视频一区| 久久久精品免费免费高清| 久久久久久久久久成人| 国产成人精品福利久久| 欧美日韩一区二区视频在线观看视频在线| 亚洲一码二码三码区别大吗| 国产精品国产三级专区第一集| 少妇的丰满在线观看| 国产成人av激情在线播放| 天美传媒精品一区二区| 啦啦啦视频在线资源免费观看| 亚洲欧美清纯卡通| 日韩 亚洲 欧美在线| 999精品在线视频| 十八禁高潮呻吟视频| 久久狼人影院| 高清视频免费观看一区二区| 色94色欧美一区二区| 高清黄色对白视频在线免费看| 久久免费观看电影| av福利片在线| 日韩大片免费观看网站| 亚洲欧洲日产国产| 天堂8中文在线网| 亚洲高清免费不卡视频| 五月天丁香电影| 黄网站色视频无遮挡免费观看| 久久久久久人妻| 亚洲第一av免费看| kizo精华| 人人妻人人澡人人爽人人夜夜| 中文字幕制服av| 一个人免费看片子| 熟女av电影| 久久国产精品大桥未久av| 在线看a的网站| 日本与韩国留学比较| 波多野结衣一区麻豆| 26uuu在线亚洲综合色| 爱豆传媒免费全集在线观看| av天堂久久9| 一区二区三区四区激情视频| 久久国产亚洲av麻豆专区| 男人爽女人下面视频在线观看| 超碰97精品在线观看| av在线app专区| 97超碰精品成人国产| 精品酒店卫生间| 边亲边吃奶的免费视频| 亚洲美女黄色视频免费看| 亚洲av.av天堂| 91久久精品国产一区二区三区| 卡戴珊不雅视频在线播放| 成年人午夜在线观看视频| 建设人人有责人人尽责人人享有的| 欧美成人午夜免费资源| 一区二区日韩欧美中文字幕 | 亚洲精品久久久久久婷婷小说| 国产精品秋霞免费鲁丝片| 国国产精品蜜臀av免费| 美女内射精品一级片tv| 在线免费观看不下载黄p国产| 久久精品国产亚洲av天美| 80岁老熟妇乱子伦牲交| 亚洲国产日韩一区二区| 最近最新中文字幕大全免费视频 | 搡女人真爽免费视频火全软件| 国产亚洲欧美精品永久| av在线播放精品| 亚洲欧美中文字幕日韩二区| 久久久久久久国产电影| 午夜福利乱码中文字幕| 成人亚洲精品一区在线观看| 亚洲av欧美aⅴ国产| 最黄视频免费看| 欧美精品国产亚洲| 国产成人免费无遮挡视频| 国产精品嫩草影院av在线观看| 久热久热在线精品观看| 精品国产一区二区三区四区第35| 99国产精品免费福利视频| 天堂中文最新版在线下载| 中文字幕人妻熟女乱码| 男女国产视频网站| 人妻人人澡人人爽人人| 妹子高潮喷水视频| 午夜影院在线不卡| 精品酒店卫生间| 婷婷色麻豆天堂久久| 亚洲国产精品专区欧美| 黑人欧美特级aaaaaa片| 在现免费观看毛片| 中文字幕亚洲精品专区| 国产午夜精品一二区理论片| 免费av不卡在线播放| 国产极品天堂在线| 国产欧美另类精品又又久久亚洲欧美| 亚洲 欧美一区二区三区| 日韩 亚洲 欧美在线| 乱码一卡2卡4卡精品| 亚洲国产日韩一区二区| 亚洲精品自拍成人| 亚洲av.av天堂| 美女xxoo啪啪120秒动态图| 亚洲综合精品二区| 晚上一个人看的免费电影| 亚洲人成网站在线观看播放| 日本免费在线观看一区| 99香蕉大伊视频| 久久影院123| 亚洲四区av| 亚洲美女搞黄在线观看| 欧美+日韩+精品| 日韩av不卡免费在线播放| 国产男女内射视频| 最近的中文字幕免费完整| 免费人成在线观看视频色| 伦精品一区二区三区| 男人爽女人下面视频在线观看| 最近手机中文字幕大全| h视频一区二区三区| 成人免费观看视频高清| 黑人高潮一二区| 曰老女人黄片| 久久亚洲国产成人精品v| 91国产中文字幕| 久久韩国三级中文字幕| 巨乳人妻的诱惑在线观看| 日韩中字成人| av电影中文网址| 亚洲国产精品999| 欧美bdsm另类| 久久精品国产综合久久久 | 观看美女的网站| 五月玫瑰六月丁香| av国产精品久久久久影院| 97精品久久久久久久久久精品| 免费少妇av软件| 精品国产露脸久久av麻豆| 亚洲欧洲国产日韩| 91在线精品国自产拍蜜月| 久久久精品区二区三区| 午夜免费男女啪啪视频观看| 午夜福利网站1000一区二区三区| 久久久久久伊人网av| 少妇的逼好多水| 2021少妇久久久久久久久久久| 亚洲av在线观看美女高潮| 日韩,欧美,国产一区二区三区| 只有这里有精品99| av一本久久久久| 亚洲欧美一区二区三区国产| 欧美精品高潮呻吟av久久| 看十八女毛片水多多多| 婷婷色综合大香蕉| 欧美日韩视频高清一区二区三区二| 亚洲五月色婷婷综合| 人妻 亚洲 视频| 伊人亚洲综合成人网| 少妇的逼好多水| 国产片特级美女逼逼视频| tube8黄色片| 国产有黄有色有爽视频| 亚洲av男天堂| 午夜91福利影院| 亚洲精品一区蜜桃| 久久女婷五月综合色啪小说| 少妇人妻 视频| 亚洲欧美日韩卡通动漫| 中文字幕亚洲精品专区| 国产一区二区三区综合在线观看 | 在现免费观看毛片| 日本欧美视频一区| 成年美女黄网站色视频大全免费| 一本—道久久a久久精品蜜桃钙片| 9191精品国产免费久久| 高清毛片免费看| 人人妻人人澡人人爽人人夜夜| 日韩不卡一区二区三区视频在线| 日日摸夜夜添夜夜爱| 中文字幕亚洲精品专区| 五月开心婷婷网| 最新中文字幕久久久久| 国产成人a∨麻豆精品| 亚洲图色成人| 99精国产麻豆久久婷婷| 中国三级夫妇交换| 春色校园在线视频观看| 亚洲欧美色中文字幕在线| 狠狠婷婷综合久久久久久88av| 国产精品国产三级国产av玫瑰| 人妻人人澡人人爽人人| 久久久久久久亚洲中文字幕| 免费观看av网站的网址| 亚洲综合色网址| 午夜激情av网站| 国产精品人妻久久久久久| 国产黄频视频在线观看| 亚洲精品久久午夜乱码| 久热久热在线精品观看| 伦理电影大哥的女人| 亚洲国产精品专区欧美| 夜夜骑夜夜射夜夜干| 国产免费又黄又爽又色| 天天操日日干夜夜撸| 黑人猛操日本美女一级片| 日韩一区二区三区影片| 亚洲,欧美,日韩| 看非洲黑人一级黄片| 热re99久久国产66热| 97在线人人人人妻| 免费女性裸体啪啪无遮挡网站| 精品久久蜜臀av无| 国产精品久久久久久精品电影小说| 精品人妻在线不人妻| 亚洲精品自拍成人| 黑人欧美特级aaaaaa片| 国产无遮挡羞羞视频在线观看| 在线天堂中文资源库| 精品一区二区免费观看| 夜夜骑夜夜射夜夜干| 成年女人在线观看亚洲视频| 这个男人来自地球电影免费观看 | 国产在线视频一区二区| 草草在线视频免费看| 大香蕉97超碰在线| 久久毛片免费看一区二区三区| 国产精品无大码| 少妇猛男粗大的猛烈进出视频| 91成人精品电影| 男的添女的下面高潮视频| 亚洲av电影在线观看一区二区三区| 丝袜在线中文字幕| 亚洲成人av在线免费| 中文精品一卡2卡3卡4更新| 51国产日韩欧美| 99国产精品免费福利视频| 日本wwww免费看| 老司机影院成人| 国产伦理片在线播放av一区| 国产欧美日韩综合在线一区二区| av电影中文网址| 午夜视频国产福利| 欧美日韩视频精品一区| 好男人视频免费观看在线| 国产又爽黄色视频| 蜜臀久久99精品久久宅男| 亚洲 欧美一区二区三区| 国产亚洲av片在线观看秒播厂| a级毛片在线看网站| 一级毛片我不卡| 精品一品国产午夜福利视频| 亚洲一区二区三区欧美精品| 啦啦啦中文免费视频观看日本| 亚洲精品久久成人aⅴ小说| 91国产中文字幕| 丝袜美足系列| 秋霞伦理黄片| 免费观看a级毛片全部| 亚洲欧美清纯卡通| 亚洲人成网站在线观看播放| 少妇被粗大猛烈的视频| 性色avwww在线观看| 久久精品aⅴ一区二区三区四区 | 尾随美女入室| 精品国产一区二区久久| 美女国产高潮福利片在线看| a级片在线免费高清观看视频| 国产欧美日韩综合在线一区二区| 2021少妇久久久久久久久久久| 另类亚洲欧美激情| 一区二区av电影网| 欧美精品亚洲一区二区| 久久久久国产网址| 啦啦啦在线观看免费高清www| a级毛色黄片| 亚洲成色77777| 国国产精品蜜臀av免费| 中文字幕亚洲精品专区| 最近最新中文字幕大全免费视频 | 国产 精品1| 91精品三级在线观看| 亚洲av.av天堂| 99热全是精品| 99精国产麻豆久久婷婷| 国产视频首页在线观看| 久久精品国产亚洲av天美| av网站免费在线观看视频| 亚洲,一卡二卡三卡| 一级爰片在线观看| 91aial.com中文字幕在线观看| 日韩免费高清中文字幕av| 日韩成人伦理影院| 成人国产av品久久久| www日本在线高清视频| 人人妻人人爽人人添夜夜欢视频| 国产一区二区在线观看av| 亚洲精品成人av观看孕妇| 欧美最新免费一区二区三区| 欧美少妇被猛烈插入视频| 天天躁夜夜躁狠狠躁躁| 天天躁夜夜躁狠狠久久av| 丝袜美足系列| 亚洲欧美成人精品一区二区| 国产一区二区在线观看av| 亚洲五月色婷婷综合| 99视频精品全部免费 在线| 成人18禁高潮啪啪吃奶动态图| 涩涩av久久男人的天堂| 只有这里有精品99| 欧美人与性动交α欧美软件 | 亚洲欧洲精品一区二区精品久久久 | 99九九在线精品视频| 日韩成人伦理影院| 国产欧美另类精品又又久久亚洲欧美| 99热这里只有是精品在线观看| 欧美日韩综合久久久久久| 国产视频首页在线观看| 新久久久久国产一级毛片| 国产精品无大码| 国产片特级美女逼逼视频| 久久精品人人爽人人爽视色| 狂野欧美激情性xxxx在线观看| 国产亚洲精品第一综合不卡 | 侵犯人妻中文字幕一二三四区| 最近中文字幕2019免费版| 日本午夜av视频| 国产片内射在线| 亚洲精品一区蜜桃| 亚洲欧美精品自产自拍| 亚洲内射少妇av| 亚洲国产精品国产精品| 国产黄频视频在线观看| 久久久久网色| 亚洲人成77777在线视频| 国产综合精华液| 在线观看免费视频网站a站| 色婷婷av一区二区三区视频| 三级国产精品片| 成人毛片60女人毛片免费| 美女内射精品一级片tv| 人人妻人人爽人人添夜夜欢视频| 久久人人爽人人爽人人片va| 国产深夜福利视频在线观看| 国产精品成人在线| 9热在线视频观看99| 国产av精品麻豆| 亚洲色图综合在线观看| 蜜桃在线观看..| 久久久国产一区二区| 日日啪夜夜爽| 欧美日韩精品成人综合77777| 侵犯人妻中文字幕一二三四区| 狠狠婷婷综合久久久久久88av| 国产1区2区3区精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成人亚洲欧美一区二区av| 天美传媒精品一区二区| 考比视频在线观看| 国产一区亚洲一区在线观看| av线在线观看网站| av免费观看日本| 黄网站色视频无遮挡免费观看| 欧美精品一区二区大全| 一级毛片我不卡| 国产白丝娇喘喷水9色精品| 视频中文字幕在线观看| 免费看不卡的av| 2018国产大陆天天弄谢| 免费黄频网站在线观看国产| 少妇人妻 视频| 免费看av在线观看网站| 1024视频免费在线观看| 热99国产精品久久久久久7| 最近中文字幕2019免费版| 少妇猛男粗大的猛烈进出视频| 99国产精品免费福利视频| 久久久精品94久久精品| 男人添女人高潮全过程视频| 18禁裸乳无遮挡动漫免费视频| 男人舔女人的私密视频| 如日韩欧美国产精品一区二区三区| 日韩 亚洲 欧美在线| 日本黄大片高清| 国产片特级美女逼逼视频| 亚洲国产精品一区二区三区在线| 国产精品嫩草影院av在线观看| 九九在线视频观看精品| 一二三四中文在线观看免费高清| 99re6热这里在线精品视频| 久久久久人妻精品一区果冻| 夜夜爽夜夜爽视频| 黑人高潮一二区| 精品亚洲成国产av| 国产成人91sexporn| 国产爽快片一区二区三区| 五月伊人婷婷丁香| 性色av一级| 欧美亚洲 丝袜 人妻 在线| 狂野欧美激情性bbbbbb| 交换朋友夫妻互换小说| 久久久久网色| 亚洲欧美一区二区三区黑人 | videossex国产| 亚洲中文av在线| 日日摸夜夜添夜夜爱| 日本黄色日本黄色录像| 9色porny在线观看| 欧美激情 高清一区二区三区| 国产激情久久老熟女| h视频一区二区三区| 亚洲精品色激情综合| 伊人久久国产一区二区| 日本wwww免费看| 国产欧美日韩一区二区三区在线| 黄片无遮挡物在线观看| 人妻系列 视频| 久久久亚洲精品成人影院| 曰老女人黄片| 天天操日日干夜夜撸| 日本欧美国产在线视频| 九九在线视频观看精品| 亚洲精品国产av成人精品| 久久这里只有精品19| 韩国精品一区二区三区 | 国产精品久久久久久久久免| 成人手机av| 日韩一区二区三区影片| 丝袜人妻中文字幕| 欧美成人午夜精品| 1024视频免费在线观看| 狂野欧美激情性bbbbbb| 亚洲精品自拍成人| 99热全是精品| 日产精品乱码卡一卡2卡三| 一边摸一边做爽爽视频免费| 91午夜精品亚洲一区二区三区| 亚洲国产精品成人久久小说| 22中文网久久字幕| a级毛片黄视频| 高清黄色对白视频在线免费看| 老司机亚洲免费影院| 国产福利在线免费观看视频| 亚洲av免费高清在线观看| 永久网站在线| 久久久久精品性色| 国产精品 国内视频| 国产 精品1| av在线观看视频网站免费| 三级国产精品片| 一区二区三区精品91| 亚洲国产欧美日韩在线播放| 国产精品成人在线| 超碰97精品在线观看| 日本午夜av视频| 久久久久久久大尺度免费视频| 69精品国产乱码久久久| 乱人伦中国视频| 日韩大片免费观看网站| 丝袜喷水一区| 国产男女内射视频| 日韩欧美一区视频在线观看| 狂野欧美激情性xxxx在线观看| 久久亚洲国产成人精品v| 色视频在线一区二区三区| 亚洲久久久国产精品| 亚洲精品av麻豆狂野| 国产高清不卡午夜福利| 一本久久精品| 最近最新中文字幕大全免费视频 | 欧美3d第一页| 久久精品久久久久久噜噜老黄| 新久久久久国产一级毛片|