• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nitrogen-doped Co3O4 nanowires enable high-efficiency electrochemical oxidation of 5-hydroxymethylfurfural

    2022-03-14 09:29:24MengxioSunYueWngChunsenSunYnQiJiChengYumeiSongLixueZhng
    Chinese Chemical Letters 2022年1期

    Mengxio Sun,Yue Wng,Chunsen Sun,Yn Qi,?,Ji Cheng,Yumei Song,Lixue Zhng,?

    aCollege of Chemistry and Chemical Engineering,State Key Laboratory of Bio-fibers and Eco-textiles,Qingdao University,Qingdao 266071,China

    bGuangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals,Institute of Analysis,Guangdong Academy of Sciences,Guangzhou 510070,China

    ABSTRACT Developing highly efficient and cost-effective catalysts for electrochemically oxidizing biomass-derived 5-hydroxymethylfurfural(HMF)into value-added 2,5-furandicarboxylic acid(FDCA)is of great importance.Herein,we report a controllable nitrogen doping strategy to significantly improve the catalytic activity of Co3O4 nanowires for highly selective electro-oxidation of HMF into FDCA.The nitrogen doping leads to the generation of defects including nitrogen dopants and oxygen vacancies in Co3O4 nanowires,which is conducive to the formation of catalytically active sites.As a result,the electro-oxidation potential for HMF is only 1.38 V(vs.RHE)when the current density reaches 50 mA/cm2.More importantly,the conversion rate of HMF is as high as 99.5%,and the yield of FDCA is up to 96.4%.

    Keywords:Electrochemical oxidation HMF FDCA Co3O4 Nitrogen doping

    Biomass is a kind of abundant carbon neutral renewable resource,which can be used to produce bio-energy and biological materials[1,2].Thus,substitution of petroleum-based chemicals with biomass and its derivatives will play a key role in sustaining the growth of the chemical industry since the large-scale consumption of fossil fuel leads to global energy shortages and climate deterioration[3].As a biomass derivative,5-hydroxymethylfurfural(HMF)is an important platform chemical,since HMF can be further converted into high-value-added versatile chemicals[4,5].In particular,2,5-furandicarboxylic acid(FDCA),which can be obtained by the selective oxidation of HMF,is an important monomer to produce polymeric materials[6–8].However,the kinetics of selective oxidation of alcohol groups of HMF to carboxylic acids is slow,thus the oxidation reaction of HMF usually occurs under high temperature and pressure to speed up the conversion[9,10].

    In recent years,electrochemical catalysis becomes a favorable approach for the selective conversion of organic compounds,which is completely driven by electrochemical potential and does not require harsh oxidation conditions.Since the electrocatalytic synthesis of FDCA from HMF was firstly reported by Grabowski and colleagues in 1991[11],the selective electrochemical oxidation of HMF to FDCA has attracted considerable attentions.Interestingly,the HMF oxidation reaction can be regarded as a substitute for the oxygen evolution reaction(OER)on the anode in the water electrolysis process.While realizing the production of high valueadded FDCA,it also realizes the production of green hydrogen at low voltage.To reduce the overpotential during HMF oxidation,developing high-performance electro-catalysts for HMF oxidation is highly desired.Li and colleagues demonstrated the selective from HMF to FDCA on a bimetallic Pd-Au catalyst[12].Kim and colleagues investigated the catalytic performance of Pd and Au toward the selective oxidation of ethanol and aldehyde of HMF[13].To replace the noble metal catalysts,transition metal-based electrocatalysts for HMF oxidation have been explored[14–22].Sun and colleagues reported the coupling of HMF oxidation and H2evolution in alkaline medium by using a variety of low-cost cobaltnickel composites such as Ni2P,Co-P and Ni3S2[23–25].Recently,spinel Co3O4has been developed as non-noble metal electrocatalyst for HMF oxidation.For instance,Zhang and colleagues reported that Co3O4nanowiresin situgrown on nickel foam showed a reasonable performance for electro-oxidation of HMF[26].Compared with the well-reported environmental materials such as MnO2[27,28],Co3O4possesses a more variable Co valence and wellestablished fabrication strategies[29],and thus may hold a more promising potential application in HMF electrocatalysis.

    Fig.1.(a)XRD pattern of Co3O4/NF and N-Co3O4/NF-2 with the corresponding standard patterns of Co3O4 and Ni.(b,c)SEM images of N-Co3O4/NF-2 at different magnifications.(d)TEM and(e)HRTEM images of N-Co3O4,the inset of Fig.1e is SAED pattern of N-Co3O4.(f)EDS elemental mapping images of N-Co3O4.

    Although composition and nanostructure control are widely used to develop electrocatalysts for HMF oxidation,to enhance the HMF oxidation performance of electrocatalystsviaelectronic structure modulation through defect engineering strategy is rarely reported.Herein,we report a nitrogen-doping strategy to enhance the HMF electro-oxidation performance of Co3O4nanoarray electrocatalyst.It is found that after low-temperature ammonia treatment of Co3O4nanowire arrays on nickel foam(Co3O4/NF),nitrogen-doped Co3O4/NF(N-Co3O4/NF)can be easily obtained.Compared with pristine Co3O4/NF,N-Co3O4/NF samples exhibit lower HMF oxidation overpotentials.When the current density reaches 50 mA/cm2,the electro-oxidation potential of HMF is only 1.38 V(vs.RHE).The conversion rate of HMF is up to 99.5%,and the yield of FDCA is stable at around 96.4%.These results indicate that nitrogen doping can effectively improve the HMF electrooxidation performance of Co3O4,which should be attributed to the effective regulation of the electronic structure of Co3O4by nitrogen doping and the formed oxygen vacancies.

    The N-Co3O4/NF catalysts were fabricated by a facile process as illustrated in Scheme S1(Supporting information).The Co3O4nanowire arrays were firstly grown onto NF by a simple hydrothermal reaction and a subsequent pyrolysis[30].Then,Co3O4/NF was converted into N-Co3O4/NF at certain temperatures under NH3atmosphere,and the N-Co3O4/NF samples obtained at 150,250,350 and 450°C were denoted as N-Co3O4/NF-1,N-Co3O4/NF-2,NCo3O4/NF-3 and N-Co3O4/NF-4,respectively.The X-ray diffraction(XRD)patterns of N-Co3O4/NF-2 present diffraction peaks at 31.2°,36.8°,59.3° and 65.2°(Fig.1a),which can be assigned to the(220),(311),(511)and(440)lattice planes of Co3O4(JCPDS No.42-1467),respectively.This result indicates that nitrogen doped Co3O4largely maintains the crystalline structure of Co3O4after ammonia treatment at 250 °C.Interestingly,the diffraction peaks of N-Co3O4samples shift negatively with increasing the nitridation temperature,and no obvious phase change can be observed until the temperature reached 350°C(Fig.S1 in Supporting information),indicating a partial substitution of O atoms by N atoms during the low temperature nitrogen doping process[31].For NCo3O4/NF-3,the occurrence of impurity phase is distinct,and the peaks located at 36.4°,42.3° and 61.4° belong to the(111),(200)and(220)planes of CoO(JCPDS No.48-1719),implying that part of Co3O4was reduced to CoO by ammonia.Moreover,the diffraction peaks of Co3O4crystal disappears when the nitridation temperature reached 450 °C,conjecturing that Co3O4is reduced to metallic Co.Note that there are no clear diffraction peaks for metallic Co can be distinguished due to the interference by strong Ni signals(Fig.S1)[32].However,the high-resolution transmission electron microscopy(HRTEM)image and selected area electron diffraction(SAED)results verify the formation of metallic Co in the NCo3O4/NF-4 products(Fig.S2 in Supporting information).

    Scanning electron microscopy(SEM)images present that the prepared N-Co3O4nanowires grow vertically and uniformly on NF surface(Figs.1b and c),which maintains the initial morphology of Co3O4nanowire array structure(Fig.S3 in Supporting information).As shown in Fig.S4(Supporting information),a sideview SEM image displays that the NiO-Co3O4nanoneedle array is uniformly aligned on the Ni foam substrate and the thickness of these nanoneedle is around 3–4 μm.With increasing the temperature of ammonia treatment,the Co3O4nanowire structure gradually collapsed(Fig.S5 in Supporting information).TEM image of N-Co3O4/NF-2 is shown in Fig.1d,which further evident that N-Co3O4is composed of nanoparticles aligned to form nanowire structure.HRTEM image presents two sets of lattices spacing with distances of 0.201 nm and 0.243 nm(Fig.1e),belonging to the(400)and(311)facets of Co3O4,respectively.The inset image of Fig.1e is the SAED pattern of N-Co3O4,which also confirms the polycrystalline structure and shows the(311)crystal faces of Co3O4.Furthermore,the energy dispersive spectrometer(EDS)elemental mapping images show that Co,O and N elements are uniformly distributed in the nanowire(Fig.1f),confirming the successful doping of N element.

    To further investigate the effect of nitrogen doping into Co3O4,X-ray photoelectron spectroscopy(XPS)tests were performed(Fig.2).The survey spectra confirm the existence of Co,N and O elements in N-Co3O4/NF-2(Fig.2a).The peak at approximately 397.8 eV corresponds to Co-N bond formed between Co and N[31,33],which further confirm the successful doping of N element(Fig.2b).The peaks at 406.7 eV and 399.2 eV in N 1s region are assigned to NO3?species and the surface chemisorbed N2,respectively.In the Co 2p region,the peaks at 794.5 and 779.4 eV belong to the Co3+species of N-Co3O4/NF-2,and the peaks at 796.4 and 781.1 eV and the two satellites peaks at 803 and 787 eV correspond to the Co2+species of N-Co3O4/NF-2(Fig.2c)[33,34].It is found that the mole ratio of Co2+/Co3+in N-Co3O4becomes larger than that of pristine Co3O4,which agrees well with the previous report[31].Besides,the Co 2p peaks of N-Co3O4/NF shift negatively with increasing the nitridation temperature(Fig.S6 in Supporting information).It is deduced that the partial replacement of lattice O by N leads to the increase of electron density around the Co species[31].In Fig.2d,the O 1s spectrum can be fitted to three different oxygen species:O1(529.6 eV),O2(531.4 eV)and O3(532.5 eV)are assigned to the lattice oxygen in Co?O,surface chemisorbed oxygen,and unavoidable surface water molecules,respectively[35].As observed,the relative intensity of O1 decreases and the intensity of O2 is significantly enhanced after the nitrogen doping,indicating that the N dopants can lead to the formation of surface oxygen vacancies.The formation of oxygen vacancies will induce the reduction of Co valence state(lower Co3+/Co2+ratio in Co3O4),which can intermediate the easier construction of CoOOH active sites when applying a positive potential[36,37].With increasing the ammonia treatment temperature,the O2/O1 ratio increases gradually(Fig.S7 in Supporting information),and noticeably the signal strength of the Co-N bond also gradually increased(Fig.S8 in Supporting information),indicating that more N atoms are successfully doped into the lattice of Co3O4.

    Fig.2.(a)XPS survey spectra of Co3O4/NF and N-Co3O4/NF-2.XPS spectra of(b)N 1s and(c)Co 2p regions.XPS spectra of Co3O4/NF and N-Co3O4/NF-2 in the(d)O 1s region.

    Fig.3.(a)LSV curves of N-Co3O4/NF-2 in 1.0 mol/L KOH with or without 50 mmol/L HMF.(b)LSV curves of Co3O4/NF and N-Co3O4/NF samples in 1.0 mol/L KOH with 50 mmol/L HMF.(c)Current density of Co3O4/NF and N-Co3O4/NF samples 1.4 V vs.RHE in 1.0 mol/L KOH with 50 mmol/L HMF.(d)Nyquist plots of Co3O4/NF and N-Co3O4/NF-2 in 1.0 mol/L KOH.

    As reported,OER competes with the electrocatalytic oxidation of HMF to FDCA under alkaline condition.OER and HMF oxidation electrocatalytic capability of the prepared N-Co3O4/NF samples was evaluated in 1.0 mol/L KOH solution.As shown in Fig.3a,the linear sweep voltammetry(LSV)curve of N-Co3O4/NF-2 in 1.0 mol/L KOH solution shows an onset potential of about 1.51 Vvs.RHE to drive OER.Meanwhile,after adding 50 mmol/L HMF into 1.0 mol/L KOH solution,N-Co3O4/NF-2 only requires an onset potential of about 1.26 Vvs.RHE to drive an oxidation reaction,which implies that N-Co3O4/NF-2 is able to preferably catalyze the oxidation of HMF at lower potentials.As shown in Fig.S9(Supporting information),the onset potential of NF toward HMF oxidation is about 1.53 V,which is about 270 mV higher than that of N-Co3O4/NF-2.This phenomenon shows that the high catalytic performance of N-Co3O4/NF-2 on oxidizing HMF mainly comes from N-Co3O4.All the N-Co3O4/NF samples show better HMF oxidation catalytic activities than pristine Co3O4(Fig.3b),revealing that nitrogen doping effectively improves the HMF oxidation performance of Co3O4.Furthermore,compared with other N-Co3O4/NF samples,it is evident that N-Co3O4/NF-2 possesses the lowest onset potential and the most significant current signal toward the oxidation of HMF(Figs.3b and c).When the anodic potential is set at 1.4 Vvs.RHE,the current density for N-Co3O4/NF-2 is 55 mA/cm2,which is obviously larger than Co3O4/NF(18 mA/cm2)and other N-Co3O4/NF samples.

    It has been demonstrated that the doping of nitrogen into the lattice of Co3O4can lead to the formation of many surface oxygen vacancies and the optimization of the electronic structure of Co[33].Especially,the existence of oxygen vacancy will intermediate the easier reconstruction of Co-OOH active sites in N-Co3O4/NF and improve the electrical conductivity of Co3O4[36],which effectively accelerates the HMF oxidation.Moreover,electrochemical impedance spectroscopy(EIS)data show that N-Co3O4/NF-2 electrode possesses a much smaller charge transfer resistance(17Ω)than that of Co3O4/NF(50Ω)(Fig.3d),indicating that the nitrogen doping endows Co3O4with a more desirable electron transfer kinetics.In addition,the double-layer capacitance(Cdl)was calculated.As shown in Figs.S10a–f(Supporting information),theCdlvalue of N-Co3O4/NF-2 is 73.7 mF/cm2,which is larger than those of Co3O4/NF(12.9 mF/cm2),N-Co3O4/NF-1(14.3 mF/cm2),N-Co3O4/NF-3(17.1 mF/cm2)andN-Co3O4/NF-3(61.4 mF/cm2),indicating that N-Co3O4/NF-2 also has much more active sites than other samples.The above-mentioned changes brought about by N doping to Co3O4realize the improvement of its electro-catalytic performance toward HMF oxidation.

    As shown in Fig.4a,the oxidation of HMF firstly forms 5-hydroxymethyl-2-furancarboxylicacid(HMFCA)or2,5-diformylfuran(DFF).Subsequently,HMFCA and DFF are oxidized consecutively to convert to 5-formyl-2-furancarboxylic acid(FFCA)and finally to FDCA[8,38–40].To qualitatively and quantitatively investigate the catalytic performance of N-Co3O4/NF-2 toward the oxidation of HMF,a 5 h electrolysis of HMF oxidation was performed with a N-Co3O4/NF-2 electrode in 1.0 mol/L KOH containing 10 mmol/L HMF at 1.423 Vvs.RHE,and the products were then tested by high performance liquid chromatography(HPLC).Fig.S11(Supporting information)show the standard curves of HMF and FDCA obtained on the basis of the relationship between retention time and response peak area with an ultraviolet detector.To monitor the HMF oxidation process,the electrolyte samples were collected periodically and then analyzed by HPLC[38,39].With increasing the electrolysis time,the concentration of HMF decreased obviously,and the concentration of FDCA increased significantly(Fig.S12 in Supporting information).The electrolyte containing HMF changes from yellow to colorless after potentiostatic electrolysis(Fig.S13 in Supporting information),indicating the conversion of HMF.Fig.4b shows the curve between HMF and product concentration changes with the increasing amount of charge.At the end of electrolysis,a HMF conversion rate of 99.5%,a FDCA yield of 96.4% and a Faradaic efficiency of 97.3% are obtained with the aid of N-Co3O4/NF-2,and the electro-catalytic performance is very comparable with the recently reported electro-catalysts(Table S1 in Supporting information),suggesting that N-Co3O4/NF-2 is a highly active and selective electro-catalyst for the oxidation of HMF to FDCA.It is worth mentioning that HMFCA appeared as the major intermediate and DFF was almost not detected during the total reaction period,indicating the more favorable oxidation of the aldehyde group of HMF in our system.To assess the electrochemical durability of N-Co3O4/NF-2,four successive HMF electrolysis cycles were conducted at 1.423 Vvs.RHE,and the HMF conversion rate,FDCA yield and Faradaic efficiency remains almost unchanged,indicating an excellent durability(Fig.4c).

    Fig.4.(a)Two possible pathways for HMF oxidation to FDCA.(b)Conversion rate and products yield of HMF oxidation with a N-Co3O4/NF-2 electrode in 1.0 mol/L KOH containing 10 mmol/L HMF at an applied potential of 1.423 V vs. RHE.(c)HMF conversion rate,FDCA yield and Faradaic efficiency(FE)for four cyclic tests.

    Fig.5.(a)SEM and(b)HRTEM images of N-Co3O4/NF-2 after four successive HMF electrolysis.XPS spectra of N-Co3O4/NF-2 in the(c)Co 2p and(d)O 1s regions.

    The structural stability is also an important issue for electrocatalysts.SEM,TEM and HRTEM results conclude that N-Co3O4/NF-2 still preserves its nanowire array morphology and crystalline structure after the anodic electrolysis(Figs.5a and b,Fig.S14 in Supporting information),affirming the superior stability of NCo3O4/NF-2 during HMF oxidation.XPS data show that,after the long-term anodic electrolysis,the ratio of Co2+/Co3+became smaller,and the O1 band decreased meanwhile the O2 band increased(Figs.5c and d).These results imply the formation of the active species CoOOH during electrolysis[3,41].The XPS spectrum in N 1s region shows that the intensity of Co-N bond decreases but still remains(Fig.S15 in Supporting information),suggesting the good stability of N-Co3O4/NF-2 during anodic electrolysis.

    In summary,a controllable nitrogen doping strategy has been demonstrated to significantly improve the catalytic activity of Co3O4nanowires toward the selective oxidation of HMF into FDCA.Through a low temperature treatment in ammonia,N-Co3O4/NF samples can be facilely prepared.N dopants can induce the formation of oxygen vacancies and together modulate the electronic structure of Co element and improve the conductivity of Co3O4.The resulting defect-engineered N-Co3O4/NF-2 exhibits superior HMF oxidation catalytic activity.A HMF conversion rate of 99.5%,a FDCA yield of 96.4% and a Faradaic efficiency of 97.3% can be obtained at a potential of 1.423 Vvs.RHE.N-Co3O4/NF-2 also presents superior catalytic durability and structural stability during HMF oxidation.This work provides a way to develop highperformance electro-catalysts toward HMF conversion through defect engineering.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(Nos.22075159 and 21775078),and Youth Innovation Team Project of Shandong Provincial Education Department(No.2019KJC023).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.05.009.

    欧美xxxx性猛交bbbb| 在线播放无遮挡| 欧美区成人在线视频| 亚洲乱码一区二区免费版| 美女国产视频在线观看| 国产高清有码在线观看视频| 一级黄片播放器| 免费观看精品视频网站| 夜夜看夜夜爽夜夜摸| 亚洲真实伦在线观看| 国产成人福利小说| 国产成人aa在线观看| 99久久人妻综合| 欧美激情国产日韩精品一区| 婷婷色麻豆天堂久久 | av专区在线播放| 插逼视频在线观看| 草草在线视频免费看| 免费观看人在逋| 在线免费观看不下载黄p国产| 国产成人a区在线观看| 国产精品1区2区在线观看.| 美女大奶头视频| 我要看日韩黄色一级片| 免费在线观看成人毛片| a级一级毛片免费在线观看| av在线蜜桃| 国产私拍福利视频在线观看| 日韩高清综合在线| 午夜精品一区二区三区免费看| 欧美最新免费一区二区三区| 草草在线视频免费看| 日日摸夜夜添夜夜爱| 成人鲁丝片一二三区免费| 日韩欧美在线乱码| 亚洲真实伦在线观看| 淫秽高清视频在线观看| 麻豆av噜噜一区二区三区| 赤兔流量卡办理| 91久久精品电影网| 91久久精品国产一区二区三区| 亚洲国产色片| 成人午夜精彩视频在线观看| 久久精品人妻少妇| 久久综合国产亚洲精品| 晚上一个人看的免费电影| 18+在线观看网站| 日本免费一区二区三区高清不卡| 国产高清国产精品国产三级 | 2021天堂中文幕一二区在线观| 欧美一区二区国产精品久久精品| 青春草国产在线视频| 欧美变态另类bdsm刘玥| 亚洲自拍偷在线| 深爱激情五月婷婷| 久久草成人影院| 国产伦一二天堂av在线观看| 黄片wwwwww| av在线播放精品| 国产精品伦人一区二区| 女人久久www免费人成看片 | 精品久久久久久久人妻蜜臀av| ponron亚洲| 国产黄a三级三级三级人| 男人和女人高潮做爰伦理| 国产在线一区二区三区精 | 国产乱人视频| 在线观看av片永久免费下载| 汤姆久久久久久久影院中文字幕 | 日韩成人伦理影院| 少妇熟女aⅴ在线视频| 欧美日韩综合久久久久久| 成人毛片a级毛片在线播放| 22中文网久久字幕| 麻豆久久精品国产亚洲av| 亚洲精品久久久久久婷婷小说 | 免费看美女性在线毛片视频| 毛片一级片免费看久久久久| 亚洲国产色片| 成人鲁丝片一二三区免费| 级片在线观看| 免费观看精品视频网站| 国产伦一二天堂av在线观看| 国产午夜福利久久久久久| 国产乱人视频| 成人三级黄色视频| 午夜a级毛片| 国产成人福利小说| 欧美一区二区亚洲| av视频在线观看入口| 国产亚洲av嫩草精品影院| 三级国产精品片| 干丝袜人妻中文字幕| 桃色一区二区三区在线观看| 内地一区二区视频在线| 免费av不卡在线播放| 菩萨蛮人人尽说江南好唐韦庄 | 两性午夜刺激爽爽歪歪视频在线观看| 亚洲怡红院男人天堂| 一区二区三区乱码不卡18| 亚洲精品一区蜜桃| ponron亚洲| 亚洲最大成人av| 国产精品国产三级国产专区5o | 春色校园在线视频观看| 天堂av国产一区二区熟女人妻| 天天躁夜夜躁狠狠久久av| 色综合站精品国产| 日韩亚洲欧美综合| 麻豆乱淫一区二区| 国产在线一区二区三区精 | 大又大粗又爽又黄少妇毛片口| 麻豆久久精品国产亚洲av| 国产亚洲午夜精品一区二区久久 | 女人十人毛片免费观看3o分钟| 日日干狠狠操夜夜爽| 亚洲国产欧美人成| 91在线精品国自产拍蜜月| 日韩高清综合在线| 简卡轻食公司| 国产在线一区二区三区精 | 青春草亚洲视频在线观看| 激情 狠狠 欧美| av.在线天堂| 熟女电影av网| 国产三级中文精品| 精品一区二区免费观看| 久久综合国产亚洲精品| 免费黄色在线免费观看| 成人美女网站在线观看视频| 精品久久久久久久人妻蜜臀av| 国产免费男女视频| 国产一级毛片七仙女欲春2| 人妻夜夜爽99麻豆av| 看非洲黑人一级黄片| 3wmmmm亚洲av在线观看| 色综合亚洲欧美另类图片| 国产高清视频在线观看网站| 日韩三级伦理在线观看| 99国产精品一区二区蜜桃av| 秋霞在线观看毛片| 国产精品麻豆人妻色哟哟久久 | 免费看美女性在线毛片视频| 成人无遮挡网站| 国产真实乱freesex| 国产单亲对白刺激| 欧美变态另类bdsm刘玥| 天堂中文最新版在线下载 | 国产精品一及| 一个人免费在线观看电影| 少妇熟女欧美另类| 99热全是精品| 国产综合懂色| 精品久久久久久久人妻蜜臀av| 国产色婷婷99| 亚洲成色77777| 亚洲欧美精品自产自拍| 精品国产一区二区三区久久久樱花 | 国产色爽女视频免费观看| 国产在视频线精品| 我要搜黄色片| av国产免费在线观看| 人妻夜夜爽99麻豆av| 欧美日本视频| 亚洲av成人精品一区久久| 国产69精品久久久久777片| 中国国产av一级| 国产麻豆成人av免费视频| 在线免费观看的www视频| 国产精品福利在线免费观看| 永久免费av网站大全| 国产精品国产高清国产av| av在线老鸭窝| 成年av动漫网址| a级毛色黄片| 国产单亲对白刺激| 国产又色又爽无遮挡免| av免费观看日本| 男人的好看免费观看在线视频| 青春草视频在线免费观看| 国产午夜精品久久久久久一区二区三区| 男女视频在线观看网站免费| 波多野结衣巨乳人妻| eeuss影院久久| 99久国产av精品国产电影| 欧美高清成人免费视频www| 少妇丰满av| 日韩亚洲欧美综合| 亚洲经典国产精华液单| 舔av片在线| 免费黄网站久久成人精品| 精品一区二区三区人妻视频| 欧美zozozo另类| 亚洲人成网站高清观看| 久久99精品国语久久久| 99久久精品国产国产毛片| 日日摸夜夜添夜夜添av毛片| 97超视频在线观看视频| 18禁动态无遮挡网站| 久久精品91蜜桃| 听说在线观看完整版免费高清| 精品久久久久久成人av| 成人毛片60女人毛片免费| 免费看美女性在线毛片视频| 联通29元200g的流量卡| 亚洲怡红院男人天堂| 日韩 亚洲 欧美在线| 黄色一级大片看看| 国产高清国产精品国产三级 | 91aial.com中文字幕在线观看| 97热精品久久久久久| 日韩一区二区视频免费看| av免费观看日本| 日韩亚洲欧美综合| .国产精品久久| 亚洲精品国产成人久久av| 亚洲图色成人| 国产真实伦视频高清在线观看| 日日干狠狠操夜夜爽| 99热全是精品| 国产女主播在线喷水免费视频网站 | 校园人妻丝袜中文字幕| 成人午夜精彩视频在线观看| 亚洲av免费在线观看| 美女高潮的动态| 最近中文字幕2019免费版| 久久久久久大精品| 久久久精品大字幕| 美女大奶头视频| 国产在视频线精品| 久久精品熟女亚洲av麻豆精品 | 三级国产精品片| 久久久精品大字幕| 网址你懂的国产日韩在线| 国产乱人视频| 亚洲一级一片aⅴ在线观看| 69av精品久久久久久| 国产中年淑女户外野战色| 少妇的逼水好多| 久久精品久久久久久噜噜老黄 | 亚洲乱码一区二区免费版| 春色校园在线视频观看| 国语自产精品视频在线第100页| 97在线视频观看| 在线播放国产精品三级| 国产 一区精品| 国产老妇伦熟女老妇高清| 伊人久久精品亚洲午夜| 嫩草影院精品99| 国产又黄又爽又无遮挡在线| 国产一区二区在线观看日韩| 建设人人有责人人尽责人人享有的 | 亚洲美女视频黄频| 啦啦啦啦在线视频资源| 夜夜看夜夜爽夜夜摸| 九九热线精品视视频播放| 女人被狂操c到高潮| 高清视频免费观看一区二区 | av在线蜜桃| 国产 一区精品| 久久99热这里只频精品6学生 | 黄色一级大片看看| 国产精品国产三级国产av玫瑰| 男人的好看免费观看在线视频| 十八禁国产超污无遮挡网站| 男的添女的下面高潮视频| 有码 亚洲区| 久久精品夜色国产| 国产伦一二天堂av在线观看| 精品久久久久久电影网 | 最近中文字幕2019免费版| 日日撸夜夜添| 成人av在线播放网站| 麻豆一二三区av精品| 日日啪夜夜撸| 欧美成人a在线观看| 尤物成人国产欧美一区二区三区| 91久久精品电影网| 91在线精品国自产拍蜜月| 亚洲国产精品久久男人天堂| 精华霜和精华液先用哪个| 三级毛片av免费| 夜夜看夜夜爽夜夜摸| 日韩av在线大香蕉| 九草在线视频观看| av在线播放精品| 国产精品不卡视频一区二区| 亚洲18禁久久av| 免费黄网站久久成人精品| 黄片无遮挡物在线观看| 狂野欧美白嫩少妇大欣赏| 欧美三级亚洲精品| 春色校园在线视频观看| 中文亚洲av片在线观看爽| 一级毛片久久久久久久久女| 国产精品国产三级国产专区5o | 爱豆传媒免费全集在线观看| 六月丁香七月| 99久久人妻综合| 伦精品一区二区三区| 男人舔奶头视频| av在线天堂中文字幕| 真实男女啪啪啪动态图| 99热网站在线观看| 99久久成人亚洲精品观看| 欧美日韩精品成人综合77777| 狂野欧美白嫩少妇大欣赏| 亚洲av日韩在线播放| 18禁裸乳无遮挡免费网站照片| 欧美不卡视频在线免费观看| 狠狠狠狠99中文字幕| 国产午夜精品论理片| 久久久精品94久久精品| 亚洲av中文字字幕乱码综合| 麻豆国产97在线/欧美| 十八禁国产超污无遮挡网站| 亚洲一级一片aⅴ在线观看| 久久精品国产亚洲av天美| 美女大奶头视频| 建设人人有责人人尽责人人享有的 | 国产av不卡久久| av黄色大香蕉| 我的女老师完整版在线观看| 国产大屁股一区二区在线视频| 搡女人真爽免费视频火全软件| 欧美3d第一页| 深夜a级毛片| 韩国av在线不卡| 国产爱豆传媒在线观看| 乱系列少妇在线播放| 麻豆久久精品国产亚洲av| 国产精华一区二区三区| 亚洲中文字幕日韩| 2021少妇久久久久久久久久久| 小说图片视频综合网站| 午夜免费激情av| 国产高清不卡午夜福利| 插阴视频在线观看视频| 中文亚洲av片在线观看爽| 亚洲精品影视一区二区三区av| 两性午夜刺激爽爽歪歪视频在线观看| 岛国在线免费视频观看| 精品少妇黑人巨大在线播放 | 最近中文字幕2019免费版| 六月丁香七月| 精品国产一区二区三区久久久樱花 | 亚洲精品一区蜜桃| 亚洲av男天堂| 国产精品麻豆人妻色哟哟久久 | 久久久色成人| 成人毛片a级毛片在线播放| 日韩亚洲欧美综合| 国产精品综合久久久久久久免费| 国产精品美女特级片免费视频播放器| 日韩av不卡免费在线播放| 国产精品熟女久久久久浪| 全区人妻精品视频| 2021少妇久久久久久久久久久| 夜夜看夜夜爽夜夜摸| 午夜免费激情av| 熟女电影av网| 老司机影院成人| 成年女人看的毛片在线观看| 午夜精品在线福利| 在线天堂最新版资源| 18禁裸乳无遮挡免费网站照片| 日日干狠狠操夜夜爽| 日韩,欧美,国产一区二区三区 | 亚洲成人av在线免费| 天天躁日日操中文字幕| 三级男女做爰猛烈吃奶摸视频| 久久午夜福利片| 国产精品一区二区在线观看99 | 久久99热这里只频精品6学生 | 天天一区二区日本电影三级| 国产精品国产三级专区第一集| 亚洲欧美日韩卡通动漫| 老师上课跳d突然被开到最大视频| av.在线天堂| 国产精品三级大全| 一卡2卡三卡四卡精品乱码亚洲| 中文亚洲av片在线观看爽| 激情 狠狠 欧美| 国产综合懂色| 成人三级黄色视频| 亚洲国产精品成人久久小说| 国产毛片a区久久久久| 又粗又硬又长又爽又黄的视频| 成年av动漫网址| 建设人人有责人人尽责人人享有的 | 亚洲av.av天堂| 国产真实乱freesex| 网址你懂的国产日韩在线| 中文字幕熟女人妻在线| 又爽又黄无遮挡网站| 永久免费av网站大全| 性插视频无遮挡在线免费观看| 在线播放无遮挡| 99久久中文字幕三级久久日本| 韩国高清视频一区二区三区| 精品酒店卫生间| 亚洲电影在线观看av| 岛国在线免费视频观看| 欧美变态另类bdsm刘玥| 一边亲一边摸免费视频| av在线老鸭窝| 国产私拍福利视频在线观看| 国产精品久久久久久久久免| 91久久精品电影网| 日日摸夜夜添夜夜爱| h日本视频在线播放| 欧美成人一区二区免费高清观看| 免费观看在线日韩| 精品人妻熟女av久视频| 自拍偷自拍亚洲精品老妇| 欧美丝袜亚洲另类| 婷婷色综合大香蕉| 亚洲人与动物交配视频| 国产av码专区亚洲av| 国产高清有码在线观看视频| 18+在线观看网站| 麻豆国产97在线/欧美| 国产又黄又爽又无遮挡在线| 在线观看一区二区三区| 国产精品美女特级片免费视频播放器| 91久久精品电影网| 亚洲一区高清亚洲精品| 国产精品av视频在线免费观看| 老女人水多毛片| 亚洲国产欧洲综合997久久,| 免费av观看视频| 精品免费久久久久久久清纯| av福利片在线观看| 国产淫片久久久久久久久| 亚洲精品自拍成人| 18禁动态无遮挡网站| 免费av毛片视频| 黄色欧美视频在线观看| 综合色av麻豆| 国产精品一区二区三区四区免费观看| 禁无遮挡网站| 波多野结衣高清无吗| 久久草成人影院| 精品久久久久久电影网 | 高清日韩中文字幕在线| 看片在线看免费视频| 最近视频中文字幕2019在线8| 日韩,欧美,国产一区二区三区 | 日韩av不卡免费在线播放| 韩国高清视频一区二区三区| 亚洲美女视频黄频| 青春草视频在线免费观看| 久久久精品欧美日韩精品| 亚洲国产精品合色在线| 亚洲精品国产av成人精品| 午夜福利高清视频| 男人和女人高潮做爰伦理| 国产美女午夜福利| 99热这里只有是精品50| 97人妻精品一区二区三区麻豆| 亚洲精品国产av成人精品| 精品少妇黑人巨大在线播放 | 亚洲av免费高清在线观看| av女优亚洲男人天堂| 黄色一级大片看看| 欧美xxxx黑人xx丫x性爽| 九九在线视频观看精品| 午夜激情福利司机影院| 男女下面进入的视频免费午夜| 久久人妻av系列| 丰满乱子伦码专区| 成年版毛片免费区| 麻豆成人午夜福利视频| 国产精品无大码| 尤物成人国产欧美一区二区三区| 亚洲国产欧美人成| 黄色一级大片看看| 1024手机看黄色片| 深夜a级毛片| 日韩欧美国产在线观看| 91久久精品国产一区二区三区| 黄色配什么色好看| 国产亚洲av嫩草精品影院| 波多野结衣高清无吗| 99热这里只有精品一区| 亚洲国产欧洲综合997久久,| 伦精品一区二区三区| 一区二区三区免费毛片| 91午夜精品亚洲一区二区三区| 特大巨黑吊av在线直播| 中文精品一卡2卡3卡4更新| 日韩欧美在线乱码| 精品久久久久久久末码| 男女啪啪激烈高潮av片| 免费黄网站久久成人精品| 久久人人爽人人爽人人片va| 国产免费男女视频| 国产亚洲av嫩草精品影院| 蜜臀久久99精品久久宅男| 久久精品国产亚洲av天美| 国产黄a三级三级三级人| 不卡视频在线观看欧美| 亚洲四区av| 欧美日本亚洲视频在线播放| 亚洲国产精品国产精品| 久久久精品94久久精品| 国语自产精品视频在线第100页| 麻豆成人午夜福利视频| 日韩中字成人| 大又大粗又爽又黄少妇毛片口| 天美传媒精品一区二区| 全区人妻精品视频| 啦啦啦啦在线视频资源| 爱豆传媒免费全集在线观看| 欧美人与善性xxx| 午夜老司机福利剧场| 亚洲精品日韩在线中文字幕| 别揉我奶头 嗯啊视频| 国产精品日韩av在线免费观看| 国产精品国产高清国产av| 国产老妇伦熟女老妇高清| 日本色播在线视频| 亚洲三级黄色毛片| 久久6这里有精品| 两个人的视频大全免费| 午夜精品国产一区二区电影 | 久久久久久九九精品二区国产| 亚洲av不卡在线观看| 亚洲18禁久久av| 伊人久久精品亚洲午夜| 99在线视频只有这里精品首页| 五月伊人婷婷丁香| 国产淫语在线视频| 欧美zozozo另类| 欧美一区二区精品小视频在线| 如何舔出高潮| 精品久久国产蜜桃| 国产精品1区2区在线观看.| 少妇人妻精品综合一区二区| 亚洲伊人久久精品综合 | 亚洲av福利一区| 国产精品乱码一区二三区的特点| 国产淫片久久久久久久久| 欧美bdsm另类| 午夜视频国产福利| 国模一区二区三区四区视频| 免费看a级黄色片| 十八禁国产超污无遮挡网站| 午夜亚洲福利在线播放| 亚洲av成人精品一区久久| 少妇裸体淫交视频免费看高清| 国产极品精品免费视频能看的| 久久草成人影院| 国产av不卡久久| 成年版毛片免费区| 国产淫片久久久久久久久| 2022亚洲国产成人精品| 久久久国产成人精品二区| 婷婷色综合大香蕉| 嘟嘟电影网在线观看| 日韩中字成人| 国产在线一区二区三区精 | 最近中文字幕高清免费大全6| 一个人看视频在线观看www免费| 亚洲欧洲日产国产| 可以在线观看毛片的网站| 国产精品国产三级国产av玫瑰| 国产成人a区在线观看| 九色成人免费人妻av| 97超碰精品成人国产| 免费观看性生交大片5| 一个人看的www免费观看视频| 18禁裸乳无遮挡免费网站照片| 国产伦一二天堂av在线观看| 夜夜看夜夜爽夜夜摸| 在现免费观看毛片| 国产乱人视频| 久久精品久久久久久久性| 日本午夜av视频| 中文字幕人妻熟人妻熟丝袜美| 97超视频在线观看视频| 欧美潮喷喷水| 我要搜黄色片| 在线观看66精品国产| 在线免费十八禁| 人人妻人人澡欧美一区二区| 亚洲欧美精品综合久久99| 我的女老师完整版在线观看| 秋霞伦理黄片| 青青草视频在线视频观看| 国产精品.久久久| 一本一本综合久久| 久久欧美精品欧美久久欧美| 欧美成人精品欧美一级黄| 国产精品久久久久久精品电影| 亚洲丝袜综合中文字幕| 99九九线精品视频在线观看视频| 三级经典国产精品| 国产片特级美女逼逼视频| 人人妻人人澡欧美一区二区| 亚洲图色成人| 亚洲欧洲日产国产| 国产精品乱码一区二三区的特点| 18禁裸乳无遮挡免费网站照片| 午夜福利高清视频| 国产一级毛片在线| 国产精品一及| 18+在线观看网站| 丝袜美腿在线中文| 免费观看在线日韩| 国产乱来视频区| 亚洲欧洲国产日韩| 国产成人精品一,二区| 男女国产视频网站| 岛国毛片在线播放|