• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tuning photoresponse of graphene-black phosphorus heterostructure by electrostatic gating and photo-induced doping

    2022-03-14 09:29:14YnpnLiuMinYnJunpnLuYinLiuHonwiLiuErwnZnWiFuJunyonWnZnlinHuJunYinGokiSijiWnJiboYiAjynVinuKinPinLo
    Chinese Chemical Letters 2022年1期

    Ynpn Liu,Min Yn,Junpn Lu,Yin Liu,Honwi Liu,Erwn Zn,Wi Fu,Junyon Wn,Znlin Hu,Jun Yin,Goki E,Siji Wn,Jibo Yi,Ajyn Vinu,Kin Pin Lo,?

    aKey Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education,State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

    bDepartment of Applied Physics,The Hong Kong Polytechnic University,Hong Kong,China

    cSchool of Physics,Southeast University,Nanjing 211189,China

    dCollege of Jincheng,Nanjing University of Aeronautics and Astronautics,Nanjing 211156,China

    eSchool of Physics and Technology,Nanjing Normal University,Nanjing 210023,China

    fDepartment of Chemistry,National University of Singapore,Singapore 117543,Singapore

    gInstitute of Materials Research and Engineering,Agency for Science,Technology and Research(A?STAR),Innovis 138634,Singapore

    hGlobal Innovative Centre for Advanced Nanomaterials,College of Engineering,Science and Environment,The University of Newcastle,Newcastle NSW 2308,Australia

    1These authors contributed equally to this work.

    ABSTRACT Metal-semiconductor diodes constructed from two-dimensional(2D)van der Waals heterostructures show excellent gate electrostatics and a large built-in electric field at the tunnel junction,which can be exploited to make highly sensitive photodetector.Here we demonstrate a metal-semiconductor photodiode constructed by the monolayer graphene(Gr)on a few-layer black phosphorus(BP).Due to the presence of a built-in potential barrier(~0.09 ± 0.03 eV)at the Gr-BP interface,the photoresponsivity of the Gr-BP device is enhanced by a factor of 672%,and the external quantum efficiency(EQE)increases to 648% from 84% of the bare BP.Electrostatic gating allows the BP channel to be switched between p-type and n-type conduction.We further demonstrate that excitation laser power can be used to control the current polarity of the Gr-BP device due to photon-induced doping.The versatility of the Gr-BP junctions in terms of electrostatic bias-induced or light-induced switching of current polarity is potentially useful for making dynamically reconfigurable digital circuits.

    Keywords:Black phosphorous Graphene Heterostructure Gate-tunable Photodetector Photoinverter

    Black phosphorus(BP)has attracted strong interests beyond graphene due to its high carrier mobility and layer-dependent bandgap(~0.3 eV for bulk and~2.0 eV for monolayer)[1-3].Fewlayer BP has been considered as an excellent platform for phototransistors due to light-driven thermoelectric,photobolometric and photovoltaic processes[4].Previously,few-layer BP photodetectors have been demonstrated to exhibit fast and wide-spectrum responses with a photo-responsivity up to 4.8 mA/W[3,5].The shortcomings of using few-layer BP as a photodetector include the unintended p-doping of BP,which reduces the photocarrier mobility through electron-electron scattering[4].Moreover,the small bandgap of few-layer BP results in a high dark current[4,6,7].To improve the photoconductive response,the barrier height at the BP-metal interface needs to be tuned by doping BP and shifting its Fermi level[4].For instance,chemical doping and other surface modifications(photoresponsivity of 2.56 A/W after 8.0 nm MoO3coating and 1.88 A/W after 8.0 nm Cs2CO3doping,respectively)have been applied to enhance the photoresponsivity,although chemical modifications are typically disadvantaged by their chemical instability[8,9].Alternatively,electrostatic doping and photoinduced doping,which are continuously tunable,non-destructive and implementable in ambient atmosphere,may be more suitable to tune both the polarity and magnitude of the photocurrent in 2D materials[10,11].Theoretical simulation predicts that the electrical and optical properties of ultrathin BP can be effectively tuned by electrostatic doping.Arising from the puckered honeycomb structure of BP,its band edges are mainly contributed by localized P 3pzorbitals,which have a strong response to the external perpendicular electric field[12-14].

    Recently,van der Waals(vdW)heterostructures based on 2D materials have been used to fabricate optoelectronic devices owing to the abrupt tunneling junction and strong photon-matter interactions[15-19].A ladder-type band structure in such heterojunction can be exploited to separate photo-excited electrons and holes(e-h)pairs,thereby reducing the recombination probability.Moreover,due to the absence of Fermi pinning effect that is universally observed at the traditional metal-semiconductor interface[1,3,13],the weak screening effect[12]and the ultrathin nature of 2D heterostructures allow the reversible modulation of band alignmentviaapplying a perpendicular electric field,which opens a new avenue to tune the optoelectronic properties of 2D heterostructures[20-26].

    Herein,we studied the photoresponsivity of a bipolar phototransistor using a vdW-stacked monolayer graphene(Gr)on a fewlayer BP flake.The photoresponsivity of the Gr-BP phototransistor is improved by a factor of 672% and its corresponding EQE is increased from 84% to 648% compared to that of a device using a bare BP.In addition,both photoresponsivity and the polarities of photocurrent of the Gr-BP heterojunction could be tuned by electrostatic gating.We further demonstrate that n- or p-type dominated transport in the device can be manipulated by laser power through photo-induced doping,which is unreachable for neither the bare BP device nor heterostructure with all Gr above BP flake in the previous reports[2,3,6,8,10,14].Our results suggest that Gr-BP heterostructure shows great potentials as a platform for broadband photodetectors,photoinverters and reversing commutators[6,11,19,21,25].

    The exfoliations of graphene and black phosphorus were carried out in a glovebox filled with argon gas(O2<0.5 ppm and H2O<0.5 ppm).Typically,thin BP flakes were directly mechanically exfoliated onto Si/SiO2(300 nm oxide layer)substrate from bulk BP crystal(HQ graphene)using blue “magic” tape.After that,the desired rectangle shape(length>30 μm,thickness~5–20 nm BP flakes were located under optical microscopy for further stacking.Monolayer graphene was exfoliated onto PDMS films and then partially transferred onto BP flake with a dry transfer methodviaa home-built transfer platform in an argon glovebox.The Gr-BP stacks were then annealing at 180 °C in the glovebox for 30 min to remove possible air bubbles and form good contact.After these processes,the Gr-BP heterostructure was spin-coated with a PMMA layer both as a protective layer and a photoresist layer for electrode fabrications.In this work,Cr/Au(2 nm/60 nm)was chosen as metal electrodes,respectively.

    The Gr-BP heterostructure(Fig.1a)was fabricated on a silicon wafer(with 300 nm SiO2).Monolayer Gr and few-layer BP flake were precisely stacked together using a dry-transfer method(see Experimental section in Supporting information)[11,25].To avoid oxidization of BP,all the exfoliation and transfer processes were conducted in a glovebox filled with argon gas.Fig.1b shows the atomic force microscopy(AFM)image of a completed Gr-BP device.From the topography,the BP flake is smooth,and the thicknesses of BP and Gr were determined to be~8.0 nm and~0.5 nm,respectively(see Fig.S1 Supporting information for height profile).To investigate the interfacial quality and charge transfer of Gr-BP heterostructure,spatially resolved Raman was employed[2].As shown in Fig.1c,the G peak(the high-frequencyE2gphonon atΓpoint)redshifts from 1580 cm?1to 1572 cm?1and the frequency of 2D peak(second-order Raman scattering by two optical phonons)blueshifts from 2677 cm?1to 2688 cm?1,a clear indication that graphene is n-doped by underlying BP flake[2,27].Fig.1d displays the integrated intensity of Ag1peak of few-layer BP flake after measurement.The Ag1signal is uniform throughout the entire BP flake,and its Ag1/Ag2intensity ratio>0.9 is typical for a pristine BP flake[28].It is worth noting that phosphorene oxides and suboxides(bandgap~4.6 eV from PBE method)typically give an Ag1/Ag2ratio<0.6(Fig.S2 in Supporting information),thus we can conclude that these oxides are absent in our studies[14,29].

    Fig.2a shows the schematic illustration of the Gr-BP device.For comparison,bare BP device with similar thickness was also tested.As shown in Fig.2a,the electrode attached with Gr was chosen as drain throughout the whole measurements unless otherwise specified.Fig.2b shows the plot of photo-induced current density(Iph)versusbias(Vds)of bare BP and Gr-BP devices under global irradiation(532 nm,1 mW/mm2).It is seen that Gr-BP devices show higher outputIphover aVdsrange from ?0.05 V to+0.05 V and fast on-off photoresponse(Vds=+0.05 V,Fig.2c).To assess the performance of our device,photoresponsivity(R)and external quantum efficiency(EQE),the figures of merit of photodetector devices,are calculated according to the following equations[3,8]:

    whereIphis the photocurrent induced by incident light,Pstands for the light intensity,Sis the effective area under illumination,λis the wavelength of the incident light,h,canderepresent the Plank constant,the velocity of light and the charge of the electron,respectively.Based on Eq.1,the photoresponsivity of Gr-BP heterojunction is significantly enhanced(~672%)over the bare BP device,increasing from 3.6 × 102mA/W to 2.8 × 103mA/W and the corresponding EQE increases dramatically up to 648% from 84%,which are higher than previously reported metrics of BP-based photodetectors(Table S1 in Supporting information)[3,8].

    In order to investigate if the Gr-BP interface contributes to enhanced photoresponse by charge separation or built-in potential,a scanning photocurrent microscope(SPCM)equipped with a focused laser beam was used to identify individual contribution(sketched in Fig.2d).Fig.2e shows theJ-V(whereJrepresents current density)curves with the laser-focused at five regions(as marked in the right insert).All five regions show photo-response but with different magnitudes(Fig.S4 in Supporting information).A weak rectifying behavior was observed with photocurrent increasing atVds>0 V but decreasing atVds<0 V,revealing the existence of a small potential barrier that modulates the polarity of current flow.Among the five regions,the Gr-BP junction shows the highest photocurrent of 3.4 × 105mA/cm2(Jdark~1.96 × 105mA/cm2,Vds=+0.05 V),thus it is responsible for the dramatic differences in photocurrent between bare BP and Gr-BP devices(as exhibited in Figs.2b and c).Notably,the output of the Gr-BP device presents photovoltaic characteristic.Fig.2f shows the short-circuit current(Isc)and open-circuit voltage(Voc)acquired under light illumination with a power of~1.2 mW.Among them,the Gr-BP heterojunction shows the highest photocurrent,especially at its edge region,might be due to energy band depletion at the edge that generates potential at the edge and contributes to the output current(Figs.S4 and S5 in Supporting information).The existence ofVoc(?0.013 V)andIsc(0.6 μA)proves that the photoresponse behavior of the Gr-BP device is dominated by the photovoltaic effect rather than thermal driven processes[4].

    Fig.1.Schematic drawing and characterizations of Gr-BP heterostructure device.(a)Schematic diagram of Gr-BP heterostructure.Exfoliated graphene and BP flakes are partially overlapped in order to study the origin of photoresponsive enhancement.(b)AFM image of Gr-BP device.The graphene flake is marked in a white dashed line,while BP is enclosed in a green dash line.The white spots in graphene-covered region represent air-trapped bubbles/wrinkles.The scale bar is 5 μm.(c)Corresponding Raman spectra from three selected regions marked in(b)for comparison.For visualization,the signal of Gr(on BP flake)is enlarged by a factor of 10 to cancel the intensity loss from varied interference phenomena.The bottom BP and Gr symbols represent the intrinsic signals of BP(pink region)and Gr(purple region),respectively.For clarification,the peak at~520 cm?1 origins from the underlying silicon substrate.(d)Raman spatial mappings of representative Ag1 of black phosphorus.

    To determine the band alignment between Gr and BP,ultraviolet photoelectron spectroscopy secondary electron cut-off energies of bare BP flake,bare graphene films,and Gr-BP heterostructure(Fig.2g).Accordingly,their work functions are measured to beФBP=4.47 eV,ФGr=4.50 eV andФGr-BP=4.37 eV(see Experimental section in Supporting information for calculation details),respectively,which are in good agreement with the previous reports[30-32].Based on the above values,we can conclude that graphene is n-doped(~0.13 eV),and BP flake becomes highlypdoped withEF~0.02 eV above the valence band maximum(EVBM).With this information,the energy band diagrams are constructed as shown in Fig.2h.For Gr-BP device,due to the initial p-doping of BP(possibly originating from impurities and defect,Figs.S6 and S7 in Supporting information for XPS and STM data),downward band bending occurs at the interface to create a built-in potential(Фbi)proportional toФGr-EVBM(~0.09 ± 0.03 eV).Due to the built-in potential,Gr-BP heterojunction shows a rectifying behavior(Fig.2i).Upon photo-excitation,e-hpairs are generated in BP;after exciton dissociation,electrons are injected into a more conductive graphene layer,while the Schottky barrier at the interface blocks hole transport to graphene[32-34].

    Next,the photoresponse of Gr-BP heterojunction is electrostatically modulated using a back gate.Fig.3a shows theIds-Vgdata of the Gr-BP device with and without~1.4 mW laser illumination(Vds=+0.1 mV).In the dark,the Gr-BP device shows ambipolar and hole-dominant characteristics with hole mobility~1320 cm?2V ?1 s ?1 and electron mobility~745 cm?2V ?1 s?1.These values are two times larger than those of the bare BP device with the similar thickness(see Fig.S9 in Supporting information for bare BP device).Upon photo-irradiation,the photocurrent monotonically decreases withVgranging from ?50 V to around +27.5 V;this is followed by a sharp decline,and then the photocurrent becomes negative whenVg>~36.3 V.Fig.3b shows the gatetunability of outputI-Vcharacteristics from the same device(see the dark and illuminated current comparison in Fig.S10 in Supporting information).Fig.3c shows that the polarities of photocurrents(Iph,hereVds=+0.05 V)are opposite at negative and positive gate regimes;there is a higher current at negative gate voltage compared to positive gate voltage,which allows the types and heights of Schottky barrier across the Gr-BP junction to be determined.WhenVg<0(Fig.3d),the accumulation of holes at BP increases the downward band bending.Therefore,the wider depletion region(W)and larger potential barrier height(Фbi)prevent the tunneling or thermal injection of holes from BP into graphene.In this regime,the photocurrent increases monotonically with the magnitude of the negative gate voltage.In contrast,a positive gate voltage(0

    Fig.2.Photoresponse behavior and Gr-BP heterostructure.(a)Sketches of G-BP heterostructure under global illuminations.For the Gr-BP device,single-layer graphene was used as a source electrode.(b) Iph-Vds characteristics of bare BP and Gr-BP device under global laser irradiation with the same laser intensity.(c)Photoresponse behavior comparison between bare BP and Gr-BP devices.(d)Schematic diagram of Gr-BP heterostructure.(e) J-V curves of Gr-BP device with laser focusing on different regions.Inset shows the optical image of the device marked with different color spots for clarification.(f) VOC and ISC of the Gr-BP device with various parts exposed to laser illumination.(g)UPS data of bare Gr,bare BP and Gr-BP heterostructure.(h)Thermal equilibrium energy band alignment of the separated integral parts with Vds=0 V.(i)Power-dependent photoelectric behavior of Gr-BP heterostructure.

    We performed density functional theory(DFT)calculation to investigate gate-modulated electronic properties of Gr-BP heterostructure to gain more insight.The interlayer distance between graphene and bi-layer BP(Fig.3g)is calculated to be 3.45 ?A.This vdW gap confirms the weak nature of the interfacial interaction,in good agreement with previous studies[35-37].Fig.3h shows the electronic band structure of Gr-BP heterostructure,from which it is clear that both the projected band structures of graphene and BP maintain the characteristics of the isolated counterparts upon their contact.The VBM of BP is close to the Fermi level of graphene and a p-type semiconductor/metal Schottky barrier is present.Due to the weak screening effect of BP and Gr,the contact barrier at the BP-Gr interface can be surmounted effectively by applying an external perpendicular electric field(Eext)[35].By considering Gr as the metal contact and few-layer BP as the semiconductor channel,the Schottky barrier height(SBH)could be estimated following Schottky-Mott rule,Eg=qФp+qФn,whereФpandФnrepresent the barriers against the hole and electron flow between Gr and BP,respectively[38].Fig.3i depicts the evolution of the contact barriers as a function of the applied electric field strength(see Fig.S11 in Supporting information for the evolution of band structure as a function ofEext).Subjected to a negative electric field(Eext<0 V),the Dirac cone of graphene shifts towards the VB of the BP,rendering the contact ohmic.In contrast,for increasing positiveVg,the Dirac cone gradually moves towards the CB of BP.When the electric field is larger than 2 eV/nm,the contact barrierФpbecomes smaller thanФn,turning the contact into n-type.These theoretical findings agree well with our experimental observation.We would like to point out that the layer-dependent bandstructure of BP,initial p-doping level and the approximation of exchange-correlation functionals render it highly challenging to calculate the exact barrier height,but the trend of the charge transfer and barrier variation with applied electric field is valid and consistent with the experimental observation.

    In Gr-BN[34],BP-ZnO[39]and BP-TiOx[40]system,a tunable photo-induced electron transfer has been reported at the interface.Spatial segregation of holes and electrons occurs at different layers,which rearranges the band alignment between two components.Similarly,we found that the Gr-BP heterostructure is capable of showing photo-induced electron transfer.Since absorbents and moisture easily contaminate graphene,all measurements were conducted in a vacuum cell,and thermal annealing was carried out to remove any impurities.Figs.4a and b illustrate the origins of the photo-doping induced inversion.In the dark state(Fig.4a),when BP is positively biased,the direction of the current is from BP to graphene.Upon laser illumination(Fig.4b),electrons are photo-excited from donor-like defects in BP to the conduction band;some of these electrons compensate the holes in BP,while excess electrons created by higher laser photoexcitation migrate to graphene and gives rise to a reverse current.In addition,this migration lifts theEFof graphene while lowering theEFof BP,as a result,band realignment occurs.A direct proof of the photoinduced doping effect is the shifting of Dirac point of graphene in Gr-BP FET device(all graphene placed on top of BP flake,Fig.S13 in Supporting information)upon illumination,where the charge neutral point of graphene shifts to higher negative gate voltage(Δ~6 × 1011cm?2),illustrating graphene becoming n-doped and the occurrence of photo-induced charge transfer.Fig.4c shows the power-dependentJ-Tcurves of Gr-BP heterojunction(edge region)underVds=?0.01 V.In the dark,a current flow from BP to Gr with the value of 9.0 × 104mA/cm2is initially observed when the BP side is positively biased;this current gradually decreases with increasing laser irradiation power and becomes closed at 2.0 mW laser exposure.Most interestingly,the direction of photocurrent reverses at higher laser power(P≥2.0 mW).When the laser moves into the center region of Gr-BP heterostructure,~3.0 mW laser power or larger is required to invert the current flow direction(see Fig.S14 in Supporting information forJ-Tcurves)[41].Moreover,this trend could be extended to a larger negative bias.For instance,underVds=?0.05 V,an excitation laser with a power larger than~12 mW(Fig.4d)is required to reverse the polarity of current flow.The ability to control the polarity of the current by adjusting the power of the laser is a unique feature of the Gr/BP junction,which is not shared by monolayer graphene or BP flake(Fig.S13d).For bare BP,although the photocurrent is proportional to the intensity of irradiation due to thermal driven effects,the polarity of current remains the same with the initial current flow for all laser intensity range.

    Fig.3.Gate-dependent photoelectric behavior of Gr-BP heterostructure.(a) R(Vg)data in Gr-BP device with and without light illuminations. Vds=+0.1 mV.Inserted is the plot of conductance vs gate curve of Gr-BP device in dark.FET mobility is given by where L and W are the length and width of the channel,respectively. C denotes the capacitance.(b) Ids-Vds curves measured in the dark and under light illuminations at various gate voltages.(c)Plots of Voc and Iph as a function of gate voltages.for Iph, Vds=+0.05 V.(d-f)Band alignment of BP and Gr under different gate voltages.(g,h)Lattice and electronic band structure of Gr-BP heterostructure.(i)Evolution of the band edges as a function of the electric field with respect to the Dirac point of graphene.

    There are several reasons why the Gr/BP interface is unique in terms of its gate tunability.The small band gap(~0.3 eV)and absence of interfacial pinning effect allow multilayer BP to be switched readily between the hole and electron-dominated transport under a moderate electric field,thus giving rise to ambipolar transport.In accordance with nonlinear Thomas-Fermi theory[12,13],the electrostatic screening behavior of multilayer BP(thickness ≤10 nm)is intermediate,thereby allowing the electric field from the back gate penetrating BP multilayer to influence the properties of graphene in Gr-BP heterostructure.In addition to maintain similar response time(Fig.S15 in Supporting information),the encapsulation of BP flake by the graphene layer not only overcomes the air instability of BP but also increases the photoresponsivity of BPviathe formation of a Schottky barrier[42].

    We have demonstrated that Gr-BP heterostructures can be used as photodetectors and photoinverters.Comparing with bare BP device,the photoresponsivity increases to 672%(R~2.8 × 103mA/W)due to the presence of a Schottky barrier at the interface of ptype BP and graphene.The height of the Schottky barrier can be modulated by either electrostatic doping or photo-induced doping,allowing the initial p-type conducting channel to be converted to n-type.The highly tunable nature of the Gr-BP interface suggests its potential application in future optoelectronic and logic applications.

    Fig.4.Photo-inverter behavior of Gr-BP heterostructure.(a)Band alignment of BP and Gr device with a negative source-drain bias in dark.The current flow is from BP to graphene.(b)Band re-alignment of BP and Gr heterostructure due to photo-induced doping effect.Under intense light irradiation,a reverse current flow occurs from graphene to BP.(c)Photogenerated current of Gr-BP device under different laser power density at Vds=?0.01 V.(d)Photogenerated currents of Gr-BP device with Vds=?0.05 V under 3,6 and 12 mW laser exposure.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors wish to acknowledge the financial support provided by the Fundamental Research Funds for the Central Universities(Nos.NS2020008,NC2018001,NJ2020003,NZ2020001),the Program for Innovative Talents and Entrepreneur in Jiangsu,Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(Nos.MCMS-I-0419G02,MCMS-I-0421K01),National Key Research and Development Program of China(No.2019YFA0705400),and Australian Research Council Future Fellowship(No.FT160100205),DECRA Fellowship(No.DE200101622).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.079.

    性欧美人与动物交配| 三级国产精品欧美在线观看 | 亚洲成人久久爱视频| 中文在线观看免费www的网站| xxxwww97欧美| 男人和女人高潮做爰伦理| 麻豆成人午夜福利视频| 国产97色在线日韩免费| 国产伦一二天堂av在线观看| 日本与韩国留学比较| 亚洲精品国产精品久久久不卡| 亚洲无线在线观看| 国产成人aa在线观看| 久久人妻av系列| 99热这里只有是精品50| 老汉色∧v一级毛片| 香蕉av资源在线| 色播亚洲综合网| 一本一本综合久久| 一级毛片精品| av福利片在线观看| 午夜a级毛片| 黄频高清免费视频| 亚洲第一欧美日韩一区二区三区| 少妇熟女aⅴ在线视频| 波多野结衣高清无吗| av欧美777| 少妇裸体淫交视频免费看高清| 三级毛片av免费| 久久久精品大字幕| 日韩欧美 国产精品| 亚洲av美国av| 精品欧美国产一区二区三| 久久人妻av系列| 午夜两性在线视频| 长腿黑丝高跟| 国产欧美日韩一区二区精品| 国产精品野战在线观看| 亚洲精品在线观看二区| or卡值多少钱| 久久草成人影院| 搡老熟女国产l中国老女人| 国产乱人视频| 亚洲九九香蕉| 色综合欧美亚洲国产小说| 亚洲中文日韩欧美视频| 日韩欧美国产一区二区入口| 国内毛片毛片毛片毛片毛片| 成年女人毛片免费观看观看9| 国产熟女xx| 亚洲精品在线观看二区| 岛国在线免费视频观看| 欧美极品一区二区三区四区| 在线观看66精品国产| 国产精品久久久久久精品电影| 亚洲精华国产精华精| 亚洲男人的天堂狠狠| 又黄又爽又免费观看的视频| 人人妻,人人澡人人爽秒播| 国产精品九九99| 午夜免费激情av| 两个人看的免费小视频| 精品电影一区二区在线| 亚洲av日韩精品久久久久久密| 99精品久久久久人妻精品| 中文字幕久久专区| 人人妻,人人澡人人爽秒播| 嫩草影院精品99| 在线免费观看不下载黄p国产 | 欧美日韩乱码在线| 高清在线国产一区| 麻豆久久精品国产亚洲av| 中文字幕人妻丝袜一区二区| 小说图片视频综合网站| av欧美777| 日本 欧美在线| 又爽又黄无遮挡网站| 99久久99久久久精品蜜桃| 午夜免费成人在线视频| 国产成人精品久久二区二区91| 国产单亲对白刺激| 天天一区二区日本电影三级| 国产免费av片在线观看野外av| 免费搜索国产男女视频| 久久久久久久久免费视频了| 91字幕亚洲| 成年女人永久免费观看视频| 久久久国产成人精品二区| 国产免费男女视频| 人人妻,人人澡人人爽秒播| 国内毛片毛片毛片毛片毛片| 伦理电影免费视频| 国产高清视频在线播放一区| 一个人免费在线观看的高清视频| 欧美黄色淫秽网站| 在线a可以看的网站| 日韩欧美一区二区三区在线观看| 可以在线观看的亚洲视频| 免费一级毛片在线播放高清视频| 美女大奶头视频| 亚洲欧美一区二区三区黑人| 男女那种视频在线观看| 99国产极品粉嫩在线观看| 叶爱在线成人免费视频播放| 免费在线观看成人毛片| 国产av麻豆久久久久久久| 亚洲中文字幕一区二区三区有码在线看 | av国产免费在线观看| 欧美在线一区亚洲| av黄色大香蕉| 18禁观看日本| 啪啪无遮挡十八禁网站| 国内久久婷婷六月综合欲色啪| 黑人巨大精品欧美一区二区mp4| 国产精品免费一区二区三区在线| 在线免费观看不下载黄p国产 | 男插女下体视频免费在线播放| 两个人看的免费小视频| 午夜福利高清视频| av视频在线观看入口| 法律面前人人平等表现在哪些方面| 成人国产综合亚洲| 天堂动漫精品| 女警被强在线播放| 欧美激情久久久久久爽电影| 亚洲精品美女久久久久99蜜臀| 日韩有码中文字幕| 日韩精品中文字幕看吧| 国产高清视频在线观看网站| 成年免费大片在线观看| 国内精品一区二区在线观看| 美女黄网站色视频| 亚洲国产色片| 老司机深夜福利视频在线观看| 国产高清激情床上av| 久久性视频一级片| 国产伦在线观看视频一区| 99re在线观看精品视频| 欧美成狂野欧美在线观看| 日日摸夜夜添夜夜添小说| 女人高潮潮喷娇喘18禁视频| 一本久久中文字幕| 国产精品亚洲美女久久久| 热99在线观看视频| 欧美色视频一区免费| 一区二区三区国产精品乱码| 国产免费av片在线观看野外av| 最近在线观看免费完整版| netflix在线观看网站| 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利视频1000在线观看| 一个人看视频在线观看www免费 | 国产精华一区二区三区| 搡老熟女国产l中国老女人| 一区福利在线观看| 久99久视频精品免费| 99久久99久久久精品蜜桃| 在线观看一区二区三区| 欧美日韩一级在线毛片| 成人高潮视频无遮挡免费网站| 国产私拍福利视频在线观看| bbb黄色大片| 欧美精品啪啪一区二区三区| 99在线人妻在线中文字幕| 最新在线观看一区二区三区| 国产精品亚洲一级av第二区| 舔av片在线| 欧美极品一区二区三区四区| 男人舔奶头视频| 亚洲七黄色美女视频| 日韩欧美国产在线观看| 国产男靠女视频免费网站| 亚洲国产精品成人综合色| 久久人妻av系列| 日韩欧美国产一区二区入口| 桃红色精品国产亚洲av| 免费看光身美女| 久久精品国产清高在天天线| xxxwww97欧美| 色哟哟哟哟哟哟| av在线天堂中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 精品一区二区三区视频在线观看免费| 国产伦人伦偷精品视频| 精品国产乱子伦一区二区三区| 午夜福利在线在线| 男人的好看免费观看在线视频| 精品久久久久久久人妻蜜臀av| 亚洲国产精品sss在线观看| www.www免费av| 真人做人爱边吃奶动态| 国产主播在线观看一区二区| 国产成人aa在线观看| 成人高潮视频无遮挡免费网站| 深夜精品福利| 欧美另类亚洲清纯唯美| av天堂在线播放| 亚洲国产欧美一区二区综合| 99久久99久久久精品蜜桃| 国产免费av片在线观看野外av| 亚洲人与动物交配视频| 日本成人三级电影网站| 免费大片18禁| 婷婷丁香在线五月| 婷婷亚洲欧美| 99国产精品一区二区三区| 色尼玛亚洲综合影院| 国产激情偷乱视频一区二区| 午夜福利在线观看免费完整高清在 | 精品不卡国产一区二区三区| 欧美在线黄色| 女人高潮潮喷娇喘18禁视频| 欧美午夜高清在线| 免费大片18禁| 久久久国产成人精品二区| 精品不卡国产一区二区三区| 两个人视频免费观看高清| 亚洲av成人精品一区久久| 亚洲美女黄片视频| 在线观看日韩欧美| 日韩中文字幕欧美一区二区| 欧美zozozo另类| 可以在线观看毛片的网站| 男人舔女人下体高潮全视频| av片东京热男人的天堂| 亚洲精品在线美女| 国产成人精品无人区| 99热精品在线国产| 97超视频在线观看视频| 国产久久久一区二区三区| 欧美又色又爽又黄视频| 亚洲精品久久国产高清桃花| 成人永久免费在线观看视频| 久久久久久大精品| 亚洲av成人精品一区久久| www日本黄色视频网| 99在线视频只有这里精品首页| 国产毛片a区久久久久| 九色成人免费人妻av| 成人亚洲精品av一区二区| 亚洲成人久久性| 欧美黑人巨大hd| 日韩欧美在线乱码| 国产一区二区在线av高清观看| 欧美极品一区二区三区四区| 亚洲自拍偷在线| 香蕉国产在线看| 在线十欧美十亚洲十日本专区| 久久香蕉国产精品| 欧美国产日韩亚洲一区| 97人妻精品一区二区三区麻豆| 欧美色视频一区免费| 国产黄片美女视频| 九九热线精品视视频播放| 国产综合懂色| 国产不卡一卡二| 狂野欧美白嫩少妇大欣赏| 婷婷精品国产亚洲av| 久久中文字幕一级| 人人妻人人看人人澡| 欧美黄色片欧美黄色片| 一卡2卡三卡四卡精品乱码亚洲| 伊人久久大香线蕉亚洲五| 午夜福利在线观看吧| 特级一级黄色大片| 成在线人永久免费视频| 99久久精品一区二区三区| 1024香蕉在线观看| 在线播放国产精品三级| 97人妻精品一区二区三区麻豆| 国产麻豆成人av免费视频| 麻豆成人av在线观看| 制服丝袜大香蕉在线| 精品国产乱子伦一区二区三区| 久久精品aⅴ一区二区三区四区| 国产视频内射| 又粗又爽又猛毛片免费看| 日韩高清综合在线| 一级黄色大片毛片| 国产精品久久久久久人妻精品电影| 亚洲中文日韩欧美视频| 亚洲中文av在线| 欧美大码av| 最新中文字幕久久久久 | 老汉色∧v一级毛片| 亚洲国产欧美一区二区综合| 老熟妇乱子伦视频在线观看| 亚洲欧美日韩卡通动漫| 熟妇人妻久久中文字幕3abv| 亚洲九九香蕉| 香蕉久久夜色| 叶爱在线成人免费视频播放| 韩国av一区二区三区四区| 九色成人免费人妻av| 国产aⅴ精品一区二区三区波| 色噜噜av男人的天堂激情| 国产亚洲欧美98| 亚洲专区中文字幕在线| 麻豆成人午夜福利视频| 两个人的视频大全免费| 欧美乱妇无乱码| 国产黄片美女视频| 亚洲国产欧美一区二区综合| 超碰成人久久| 日韩欧美免费精品| 久久久久免费精品人妻一区二区| 天天添夜夜摸| 久久久久免费精品人妻一区二区| 黄色视频,在线免费观看| 国产av麻豆久久久久久久| 欧美黑人欧美精品刺激| 亚洲精品乱码久久久v下载方式 | 亚洲七黄色美女视频| 在线观看舔阴道视频| 久久久久久国产a免费观看| 九色国产91popny在线| 亚洲美女视频黄频| 亚洲男人的天堂狠狠| 一级a爱片免费观看的视频| 亚洲成a人片在线一区二区| 国产高清视频在线播放一区| 在线观看免费午夜福利视频| 国产高清视频在线播放一区| 欧美日韩福利视频一区二区| 12—13女人毛片做爰片一| 久久性视频一级片| 欧美日韩黄片免| 日本一二三区视频观看| 国产精品99久久99久久久不卡| 午夜亚洲福利在线播放| 又黄又粗又硬又大视频| 18禁美女被吸乳视频| 国内精品久久久久精免费| av中文乱码字幕在线| 偷拍熟女少妇极品色| 一进一出抽搐动态| 亚洲人成网站高清观看| 日韩精品青青久久久久久| 夜夜爽天天搞| av黄色大香蕉| 日韩精品青青久久久久久| 中亚洲国语对白在线视频| 99久久成人亚洲精品观看| 麻豆成人av在线观看| 黄色视频,在线免费观看| 在线国产一区二区在线| 欧美性猛交╳xxx乱大交人| 亚洲 欧美一区二区三区| 亚洲成人中文字幕在线播放| 制服丝袜大香蕉在线| 亚洲欧美精品综合久久99| 99国产精品一区二区三区| 变态另类丝袜制服| 日本三级黄在线观看| 黄色 视频免费看| 国产精品精品国产色婷婷| 黄色丝袜av网址大全| 国内精品一区二区在线观看| 国产av在哪里看| 国产淫片久久久久久久久 | 观看免费一级毛片| 亚洲精品美女久久久久99蜜臀| 99热这里只有是精品50| 亚洲熟妇熟女久久| 中文字幕av在线有码专区| 琪琪午夜伦伦电影理论片6080| 脱女人内裤的视频| 午夜福利免费观看在线| 亚洲无线观看免费| 91在线精品国自产拍蜜月 | 国产精品香港三级国产av潘金莲| 国产久久久一区二区三区| 热99在线观看视频| 中文在线观看免费www的网站| 久久精品国产清高在天天线| 欧美一级a爱片免费观看看| 五月玫瑰六月丁香| 亚洲av中文字字幕乱码综合| 欧美性猛交黑人性爽| 一级毛片高清免费大全| 亚洲九九香蕉| 亚洲五月天丁香| 小说图片视频综合网站| 成年人黄色毛片网站| 成人特级黄色片久久久久久久| 男女视频在线观看网站免费| 精品福利观看| 性色avwww在线观看| 夜夜看夜夜爽夜夜摸| 毛片女人毛片| 日韩人妻高清精品专区| xxxwww97欧美| 美女午夜性视频免费| 国产v大片淫在线免费观看| 成人三级黄色视频| 亚洲男人的天堂狠狠| 九九久久精品国产亚洲av麻豆 | av国产免费在线观看| 亚洲av电影不卡..在线观看| 精品国产美女av久久久久小说| 亚洲欧洲精品一区二区精品久久久| 久久99热这里只有精品18| 亚洲精品乱码久久久v下载方式 | 久久久国产成人免费| 国内少妇人妻偷人精品xxx网站 | 他把我摸到了高潮在线观看| 国产高清三级在线| 女生性感内裤真人,穿戴方法视频| 少妇的逼水好多| 舔av片在线| 熟妇人妻久久中文字幕3abv| 久久亚洲真实| 国产99白浆流出| 1024手机看黄色片| 午夜免费成人在线视频| 成熟少妇高潮喷水视频| 国产免费av片在线观看野外av| 久久午夜综合久久蜜桃| 19禁男女啪啪无遮挡网站| 午夜日韩欧美国产| 国产伦人伦偷精品视频| 亚洲专区国产一区二区| 嫁个100分男人电影在线观看| 国内精品美女久久久久久| 精品一区二区三区视频在线 | 听说在线观看完整版免费高清| 亚洲中文日韩欧美视频| 变态另类丝袜制服| 久久久久久久久免费视频了| 色综合站精品国产| 国产熟女xx| 久久精品影院6| www.精华液| 美女黄网站色视频| 一级毛片高清免费大全| 51午夜福利影视在线观看| 亚洲午夜精品一区,二区,三区| 在线观看午夜福利视频| 久久久久久人人人人人| 又爽又黄无遮挡网站| av欧美777| 久久国产精品人妻蜜桃| 麻豆国产97在线/欧美| 日韩欧美在线乱码| 欧美在线一区亚洲| 欧美日韩黄片免| 精品无人区乱码1区二区| 91av网一区二区| 成人18禁在线播放| 国内少妇人妻偷人精品xxx网站 | 久久婷婷人人爽人人干人人爱| 两个人看的免费小视频| 淫秽高清视频在线观看| 免费看光身美女| 亚洲精品久久国产高清桃花| 亚洲专区中文字幕在线| 国产v大片淫在线免费观看| 色综合亚洲欧美另类图片| 国内精品久久久久精免费| or卡值多少钱| 网址你懂的国产日韩在线| 两性夫妻黄色片| 神马国产精品三级电影在线观看| 99久久综合精品五月天人人| 美女黄网站色视频| 国产亚洲精品综合一区在线观看| 啪啪无遮挡十八禁网站| 免费在线观看影片大全网站| 首页视频小说图片口味搜索| 91麻豆精品激情在线观看国产| 99精品在免费线老司机午夜| 黄频高清免费视频| 一区二区三区激情视频| 黄色片一级片一级黄色片| 亚洲成人中文字幕在线播放| 日本一本二区三区精品| 国产精品精品国产色婷婷| 免费无遮挡裸体视频| 香蕉国产在线看| 精品人妻1区二区| www.精华液| 亚洲av成人av| 一个人看视频在线观看www免费 | 日韩大尺度精品在线看网址| 精品国产乱码久久久久久男人| 免费av不卡在线播放| 一级作爱视频免费观看| 亚洲成人中文字幕在线播放| 亚洲在线自拍视频| 日韩欧美免费精品| 亚洲熟女毛片儿| 中文字幕精品亚洲无线码一区| 亚洲国产精品999在线| 精品久久久久久久久久久久久| 女生性感内裤真人,穿戴方法视频| 一个人看视频在线观看www免费 | 高潮久久久久久久久久久不卡| 舔av片在线| 亚洲精品一卡2卡三卡4卡5卡| 一级作爱视频免费观看| 国产一区在线观看成人免费| 亚洲欧美日韩高清在线视频| 偷拍熟女少妇极品色| 亚洲专区国产一区二区| 午夜激情欧美在线| 男女做爰动态图高潮gif福利片| 99精品在免费线老司机午夜| 最近最新中文字幕大全免费视频| 麻豆久久精品国产亚洲av| 首页视频小说图片口味搜索| 99热只有精品国产| 欧美乱色亚洲激情| 国产成人影院久久av| 好男人电影高清在线观看| 欧美一级毛片孕妇| 老汉色av国产亚洲站长工具| 亚洲专区字幕在线| 久久九九热精品免费| 婷婷精品国产亚洲av在线| 国产精品永久免费网站| 精品久久久久久久毛片微露脸| 黄色日韩在线| 中文字幕精品亚洲无线码一区| 日本 av在线| 看片在线看免费视频| 夜夜爽天天搞| www.自偷自拍.com| 精品久久久久久久久久久久久| 午夜福利免费观看在线| 变态另类成人亚洲欧美熟女| 久久这里只有精品19| 日韩欧美一区二区三区在线观看| 在线国产一区二区在线| 又大又爽又粗| 国产99白浆流出| 国产美女午夜福利| 亚洲精品一区av在线观看| 91麻豆av在线| 午夜免费观看网址| 免费观看精品视频网站| 成人特级av手机在线观看| 国产午夜精品论理片| 欧美在线一区亚洲| 国产亚洲精品久久久久久毛片| 国产亚洲av嫩草精品影院| 国产99白浆流出| 在线观看日韩欧美| 又粗又爽又猛毛片免费看| 亚洲人与动物交配视频| 亚洲专区中文字幕在线| 三级毛片av免费| 亚洲真实伦在线观看| 99久久精品国产亚洲精品| 久久国产乱子伦精品免费另类| e午夜精品久久久久久久| 日韩欧美精品v在线| 亚洲第一欧美日韩一区二区三区| 国产真人三级小视频在线观看| 精品日产1卡2卡| 九九久久精品国产亚洲av麻豆 | 亚洲中文字幕一区二区三区有码在线看 | 黄色丝袜av网址大全| 深夜精品福利| 啦啦啦韩国在线观看视频| 国产精品日韩av在线免费观看| 亚洲国产欧美网| 亚洲欧美日韩卡通动漫| 大型黄色视频在线免费观看| 国产高清videossex| 国内毛片毛片毛片毛片毛片| 老汉色∧v一级毛片| 亚洲avbb在线观看| 淫秽高清视频在线观看| 亚洲国产高清在线一区二区三| 久久草成人影院| 亚洲精品国产精品久久久不卡| 亚洲精品一卡2卡三卡4卡5卡| 97超级碰碰碰精品色视频在线观看| 国产91精品成人一区二区三区| 国产伦在线观看视频一区| 1024手机看黄色片| 久久这里只有精品中国| 国产熟女xx| 欧美乱妇无乱码| 最新中文字幕久久久久 | 国产av不卡久久| 网址你懂的国产日韩在线| 在线看三级毛片| www.999成人在线观看| www日本在线高清视频| 99久久国产精品久久久| 国产精品免费一区二区三区在线| 国产亚洲精品久久久com| 国产成人系列免费观看| 国产伦精品一区二区三区四那| 在线观看午夜福利视频| 丁香欧美五月| 人人妻人人看人人澡| 给我免费播放毛片高清在线观看| 一a级毛片在线观看| 成人精品一区二区免费| 男人的好看免费观看在线视频| 欧美在线黄色| 亚洲av片天天在线观看| 香蕉国产在线看| 国产精品av视频在线免费观看| 国产伦在线观看视频一区| 成人性生交大片免费视频hd| 久久精品国产亚洲av香蕉五月| 一本综合久久免费| 久9热在线精品视频| 欧美午夜高清在线| 岛国在线观看网站| aaaaa片日本免费| 亚洲精品美女久久av网站|