• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tuning photoresponse of graphene-black phosphorus heterostructure by electrostatic gating and photo-induced doping

    2022-03-14 09:29:14YnpnLiuMinYnJunpnLuYinLiuHonwiLiuErwnZnWiFuJunyonWnZnlinHuJunYinGokiSijiWnJiboYiAjynVinuKinPinLo
    Chinese Chemical Letters 2022年1期

    Ynpn Liu,Min Yn,Junpn Lu,Yin Liu,Honwi Liu,Erwn Zn,Wi Fu,Junyon Wn,Znlin Hu,Jun Yin,Goki E,Siji Wn,Jibo Yi,Ajyn Vinu,Kin Pin Lo,?

    aKey Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education,State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

    bDepartment of Applied Physics,The Hong Kong Polytechnic University,Hong Kong,China

    cSchool of Physics,Southeast University,Nanjing 211189,China

    dCollege of Jincheng,Nanjing University of Aeronautics and Astronautics,Nanjing 211156,China

    eSchool of Physics and Technology,Nanjing Normal University,Nanjing 210023,China

    fDepartment of Chemistry,National University of Singapore,Singapore 117543,Singapore

    gInstitute of Materials Research and Engineering,Agency for Science,Technology and Research(A?STAR),Innovis 138634,Singapore

    hGlobal Innovative Centre for Advanced Nanomaterials,College of Engineering,Science and Environment,The University of Newcastle,Newcastle NSW 2308,Australia

    1These authors contributed equally to this work.

    ABSTRACT Metal-semiconductor diodes constructed from two-dimensional(2D)van der Waals heterostructures show excellent gate electrostatics and a large built-in electric field at the tunnel junction,which can be exploited to make highly sensitive photodetector.Here we demonstrate a metal-semiconductor photodiode constructed by the monolayer graphene(Gr)on a few-layer black phosphorus(BP).Due to the presence of a built-in potential barrier(~0.09 ± 0.03 eV)at the Gr-BP interface,the photoresponsivity of the Gr-BP device is enhanced by a factor of 672%,and the external quantum efficiency(EQE)increases to 648% from 84% of the bare BP.Electrostatic gating allows the BP channel to be switched between p-type and n-type conduction.We further demonstrate that excitation laser power can be used to control the current polarity of the Gr-BP device due to photon-induced doping.The versatility of the Gr-BP junctions in terms of electrostatic bias-induced or light-induced switching of current polarity is potentially useful for making dynamically reconfigurable digital circuits.

    Keywords:Black phosphorous Graphene Heterostructure Gate-tunable Photodetector Photoinverter

    Black phosphorus(BP)has attracted strong interests beyond graphene due to its high carrier mobility and layer-dependent bandgap(~0.3 eV for bulk and~2.0 eV for monolayer)[1-3].Fewlayer BP has been considered as an excellent platform for phototransistors due to light-driven thermoelectric,photobolometric and photovoltaic processes[4].Previously,few-layer BP photodetectors have been demonstrated to exhibit fast and wide-spectrum responses with a photo-responsivity up to 4.8 mA/W[3,5].The shortcomings of using few-layer BP as a photodetector include the unintended p-doping of BP,which reduces the photocarrier mobility through electron-electron scattering[4].Moreover,the small bandgap of few-layer BP results in a high dark current[4,6,7].To improve the photoconductive response,the barrier height at the BP-metal interface needs to be tuned by doping BP and shifting its Fermi level[4].For instance,chemical doping and other surface modifications(photoresponsivity of 2.56 A/W after 8.0 nm MoO3coating and 1.88 A/W after 8.0 nm Cs2CO3doping,respectively)have been applied to enhance the photoresponsivity,although chemical modifications are typically disadvantaged by their chemical instability[8,9].Alternatively,electrostatic doping and photoinduced doping,which are continuously tunable,non-destructive and implementable in ambient atmosphere,may be more suitable to tune both the polarity and magnitude of the photocurrent in 2D materials[10,11].Theoretical simulation predicts that the electrical and optical properties of ultrathin BP can be effectively tuned by electrostatic doping.Arising from the puckered honeycomb structure of BP,its band edges are mainly contributed by localized P 3pzorbitals,which have a strong response to the external perpendicular electric field[12-14].

    Recently,van der Waals(vdW)heterostructures based on 2D materials have been used to fabricate optoelectronic devices owing to the abrupt tunneling junction and strong photon-matter interactions[15-19].A ladder-type band structure in such heterojunction can be exploited to separate photo-excited electrons and holes(e-h)pairs,thereby reducing the recombination probability.Moreover,due to the absence of Fermi pinning effect that is universally observed at the traditional metal-semiconductor interface[1,3,13],the weak screening effect[12]and the ultrathin nature of 2D heterostructures allow the reversible modulation of band alignmentviaapplying a perpendicular electric field,which opens a new avenue to tune the optoelectronic properties of 2D heterostructures[20-26].

    Herein,we studied the photoresponsivity of a bipolar phototransistor using a vdW-stacked monolayer graphene(Gr)on a fewlayer BP flake.The photoresponsivity of the Gr-BP phototransistor is improved by a factor of 672% and its corresponding EQE is increased from 84% to 648% compared to that of a device using a bare BP.In addition,both photoresponsivity and the polarities of photocurrent of the Gr-BP heterojunction could be tuned by electrostatic gating.We further demonstrate that n- or p-type dominated transport in the device can be manipulated by laser power through photo-induced doping,which is unreachable for neither the bare BP device nor heterostructure with all Gr above BP flake in the previous reports[2,3,6,8,10,14].Our results suggest that Gr-BP heterostructure shows great potentials as a platform for broadband photodetectors,photoinverters and reversing commutators[6,11,19,21,25].

    The exfoliations of graphene and black phosphorus were carried out in a glovebox filled with argon gas(O2<0.5 ppm and H2O<0.5 ppm).Typically,thin BP flakes were directly mechanically exfoliated onto Si/SiO2(300 nm oxide layer)substrate from bulk BP crystal(HQ graphene)using blue “magic” tape.After that,the desired rectangle shape(length>30 μm,thickness~5–20 nm BP flakes were located under optical microscopy for further stacking.Monolayer graphene was exfoliated onto PDMS films and then partially transferred onto BP flake with a dry transfer methodviaa home-built transfer platform in an argon glovebox.The Gr-BP stacks were then annealing at 180 °C in the glovebox for 30 min to remove possible air bubbles and form good contact.After these processes,the Gr-BP heterostructure was spin-coated with a PMMA layer both as a protective layer and a photoresist layer for electrode fabrications.In this work,Cr/Au(2 nm/60 nm)was chosen as metal electrodes,respectively.

    The Gr-BP heterostructure(Fig.1a)was fabricated on a silicon wafer(with 300 nm SiO2).Monolayer Gr and few-layer BP flake were precisely stacked together using a dry-transfer method(see Experimental section in Supporting information)[11,25].To avoid oxidization of BP,all the exfoliation and transfer processes were conducted in a glovebox filled with argon gas.Fig.1b shows the atomic force microscopy(AFM)image of a completed Gr-BP device.From the topography,the BP flake is smooth,and the thicknesses of BP and Gr were determined to be~8.0 nm and~0.5 nm,respectively(see Fig.S1 Supporting information for height profile).To investigate the interfacial quality and charge transfer of Gr-BP heterostructure,spatially resolved Raman was employed[2].As shown in Fig.1c,the G peak(the high-frequencyE2gphonon atΓpoint)redshifts from 1580 cm?1to 1572 cm?1and the frequency of 2D peak(second-order Raman scattering by two optical phonons)blueshifts from 2677 cm?1to 2688 cm?1,a clear indication that graphene is n-doped by underlying BP flake[2,27].Fig.1d displays the integrated intensity of Ag1peak of few-layer BP flake after measurement.The Ag1signal is uniform throughout the entire BP flake,and its Ag1/Ag2intensity ratio>0.9 is typical for a pristine BP flake[28].It is worth noting that phosphorene oxides and suboxides(bandgap~4.6 eV from PBE method)typically give an Ag1/Ag2ratio<0.6(Fig.S2 in Supporting information),thus we can conclude that these oxides are absent in our studies[14,29].

    Fig.2a shows the schematic illustration of the Gr-BP device.For comparison,bare BP device with similar thickness was also tested.As shown in Fig.2a,the electrode attached with Gr was chosen as drain throughout the whole measurements unless otherwise specified.Fig.2b shows the plot of photo-induced current density(Iph)versusbias(Vds)of bare BP and Gr-BP devices under global irradiation(532 nm,1 mW/mm2).It is seen that Gr-BP devices show higher outputIphover aVdsrange from ?0.05 V to+0.05 V and fast on-off photoresponse(Vds=+0.05 V,Fig.2c).To assess the performance of our device,photoresponsivity(R)and external quantum efficiency(EQE),the figures of merit of photodetector devices,are calculated according to the following equations[3,8]:

    whereIphis the photocurrent induced by incident light,Pstands for the light intensity,Sis the effective area under illumination,λis the wavelength of the incident light,h,canderepresent the Plank constant,the velocity of light and the charge of the electron,respectively.Based on Eq.1,the photoresponsivity of Gr-BP heterojunction is significantly enhanced(~672%)over the bare BP device,increasing from 3.6 × 102mA/W to 2.8 × 103mA/W and the corresponding EQE increases dramatically up to 648% from 84%,which are higher than previously reported metrics of BP-based photodetectors(Table S1 in Supporting information)[3,8].

    In order to investigate if the Gr-BP interface contributes to enhanced photoresponse by charge separation or built-in potential,a scanning photocurrent microscope(SPCM)equipped with a focused laser beam was used to identify individual contribution(sketched in Fig.2d).Fig.2e shows theJ-V(whereJrepresents current density)curves with the laser-focused at five regions(as marked in the right insert).All five regions show photo-response but with different magnitudes(Fig.S4 in Supporting information).A weak rectifying behavior was observed with photocurrent increasing atVds>0 V but decreasing atVds<0 V,revealing the existence of a small potential barrier that modulates the polarity of current flow.Among the five regions,the Gr-BP junction shows the highest photocurrent of 3.4 × 105mA/cm2(Jdark~1.96 × 105mA/cm2,Vds=+0.05 V),thus it is responsible for the dramatic differences in photocurrent between bare BP and Gr-BP devices(as exhibited in Figs.2b and c).Notably,the output of the Gr-BP device presents photovoltaic characteristic.Fig.2f shows the short-circuit current(Isc)and open-circuit voltage(Voc)acquired under light illumination with a power of~1.2 mW.Among them,the Gr-BP heterojunction shows the highest photocurrent,especially at its edge region,might be due to energy band depletion at the edge that generates potential at the edge and contributes to the output current(Figs.S4 and S5 in Supporting information).The existence ofVoc(?0.013 V)andIsc(0.6 μA)proves that the photoresponse behavior of the Gr-BP device is dominated by the photovoltaic effect rather than thermal driven processes[4].

    Fig.1.Schematic drawing and characterizations of Gr-BP heterostructure device.(a)Schematic diagram of Gr-BP heterostructure.Exfoliated graphene and BP flakes are partially overlapped in order to study the origin of photoresponsive enhancement.(b)AFM image of Gr-BP device.The graphene flake is marked in a white dashed line,while BP is enclosed in a green dash line.The white spots in graphene-covered region represent air-trapped bubbles/wrinkles.The scale bar is 5 μm.(c)Corresponding Raman spectra from three selected regions marked in(b)for comparison.For visualization,the signal of Gr(on BP flake)is enlarged by a factor of 10 to cancel the intensity loss from varied interference phenomena.The bottom BP and Gr symbols represent the intrinsic signals of BP(pink region)and Gr(purple region),respectively.For clarification,the peak at~520 cm?1 origins from the underlying silicon substrate.(d)Raman spatial mappings of representative Ag1 of black phosphorus.

    To determine the band alignment between Gr and BP,ultraviolet photoelectron spectroscopy secondary electron cut-off energies of bare BP flake,bare graphene films,and Gr-BP heterostructure(Fig.2g).Accordingly,their work functions are measured to beФBP=4.47 eV,ФGr=4.50 eV andФGr-BP=4.37 eV(see Experimental section in Supporting information for calculation details),respectively,which are in good agreement with the previous reports[30-32].Based on the above values,we can conclude that graphene is n-doped(~0.13 eV),and BP flake becomes highlypdoped withEF~0.02 eV above the valence band maximum(EVBM).With this information,the energy band diagrams are constructed as shown in Fig.2h.For Gr-BP device,due to the initial p-doping of BP(possibly originating from impurities and defect,Figs.S6 and S7 in Supporting information for XPS and STM data),downward band bending occurs at the interface to create a built-in potential(Фbi)proportional toФGr-EVBM(~0.09 ± 0.03 eV).Due to the built-in potential,Gr-BP heterojunction shows a rectifying behavior(Fig.2i).Upon photo-excitation,e-hpairs are generated in BP;after exciton dissociation,electrons are injected into a more conductive graphene layer,while the Schottky barrier at the interface blocks hole transport to graphene[32-34].

    Next,the photoresponse of Gr-BP heterojunction is electrostatically modulated using a back gate.Fig.3a shows theIds-Vgdata of the Gr-BP device with and without~1.4 mW laser illumination(Vds=+0.1 mV).In the dark,the Gr-BP device shows ambipolar and hole-dominant characteristics with hole mobility~1320 cm?2V ?1 s ?1 and electron mobility~745 cm?2V ?1 s?1.These values are two times larger than those of the bare BP device with the similar thickness(see Fig.S9 in Supporting information for bare BP device).Upon photo-irradiation,the photocurrent monotonically decreases withVgranging from ?50 V to around +27.5 V;this is followed by a sharp decline,and then the photocurrent becomes negative whenVg>~36.3 V.Fig.3b shows the gatetunability of outputI-Vcharacteristics from the same device(see the dark and illuminated current comparison in Fig.S10 in Supporting information).Fig.3c shows that the polarities of photocurrents(Iph,hereVds=+0.05 V)are opposite at negative and positive gate regimes;there is a higher current at negative gate voltage compared to positive gate voltage,which allows the types and heights of Schottky barrier across the Gr-BP junction to be determined.WhenVg<0(Fig.3d),the accumulation of holes at BP increases the downward band bending.Therefore,the wider depletion region(W)and larger potential barrier height(Фbi)prevent the tunneling or thermal injection of holes from BP into graphene.In this regime,the photocurrent increases monotonically with the magnitude of the negative gate voltage.In contrast,a positive gate voltage(0

    Fig.2.Photoresponse behavior and Gr-BP heterostructure.(a)Sketches of G-BP heterostructure under global illuminations.For the Gr-BP device,single-layer graphene was used as a source electrode.(b) Iph-Vds characteristics of bare BP and Gr-BP device under global laser irradiation with the same laser intensity.(c)Photoresponse behavior comparison between bare BP and Gr-BP devices.(d)Schematic diagram of Gr-BP heterostructure.(e) J-V curves of Gr-BP device with laser focusing on different regions.Inset shows the optical image of the device marked with different color spots for clarification.(f) VOC and ISC of the Gr-BP device with various parts exposed to laser illumination.(g)UPS data of bare Gr,bare BP and Gr-BP heterostructure.(h)Thermal equilibrium energy band alignment of the separated integral parts with Vds=0 V.(i)Power-dependent photoelectric behavior of Gr-BP heterostructure.

    We performed density functional theory(DFT)calculation to investigate gate-modulated electronic properties of Gr-BP heterostructure to gain more insight.The interlayer distance between graphene and bi-layer BP(Fig.3g)is calculated to be 3.45 ?A.This vdW gap confirms the weak nature of the interfacial interaction,in good agreement with previous studies[35-37].Fig.3h shows the electronic band structure of Gr-BP heterostructure,from which it is clear that both the projected band structures of graphene and BP maintain the characteristics of the isolated counterparts upon their contact.The VBM of BP is close to the Fermi level of graphene and a p-type semiconductor/metal Schottky barrier is present.Due to the weak screening effect of BP and Gr,the contact barrier at the BP-Gr interface can be surmounted effectively by applying an external perpendicular electric field(Eext)[35].By considering Gr as the metal contact and few-layer BP as the semiconductor channel,the Schottky barrier height(SBH)could be estimated following Schottky-Mott rule,Eg=qФp+qФn,whereФpandФnrepresent the barriers against the hole and electron flow between Gr and BP,respectively[38].Fig.3i depicts the evolution of the contact barriers as a function of the applied electric field strength(see Fig.S11 in Supporting information for the evolution of band structure as a function ofEext).Subjected to a negative electric field(Eext<0 V),the Dirac cone of graphene shifts towards the VB of the BP,rendering the contact ohmic.In contrast,for increasing positiveVg,the Dirac cone gradually moves towards the CB of BP.When the electric field is larger than 2 eV/nm,the contact barrierФpbecomes smaller thanФn,turning the contact into n-type.These theoretical findings agree well with our experimental observation.We would like to point out that the layer-dependent bandstructure of BP,initial p-doping level and the approximation of exchange-correlation functionals render it highly challenging to calculate the exact barrier height,but the trend of the charge transfer and barrier variation with applied electric field is valid and consistent with the experimental observation.

    In Gr-BN[34],BP-ZnO[39]and BP-TiOx[40]system,a tunable photo-induced electron transfer has been reported at the interface.Spatial segregation of holes and electrons occurs at different layers,which rearranges the band alignment between two components.Similarly,we found that the Gr-BP heterostructure is capable of showing photo-induced electron transfer.Since absorbents and moisture easily contaminate graphene,all measurements were conducted in a vacuum cell,and thermal annealing was carried out to remove any impurities.Figs.4a and b illustrate the origins of the photo-doping induced inversion.In the dark state(Fig.4a),when BP is positively biased,the direction of the current is from BP to graphene.Upon laser illumination(Fig.4b),electrons are photo-excited from donor-like defects in BP to the conduction band;some of these electrons compensate the holes in BP,while excess electrons created by higher laser photoexcitation migrate to graphene and gives rise to a reverse current.In addition,this migration lifts theEFof graphene while lowering theEFof BP,as a result,band realignment occurs.A direct proof of the photoinduced doping effect is the shifting of Dirac point of graphene in Gr-BP FET device(all graphene placed on top of BP flake,Fig.S13 in Supporting information)upon illumination,where the charge neutral point of graphene shifts to higher negative gate voltage(Δ~6 × 1011cm?2),illustrating graphene becoming n-doped and the occurrence of photo-induced charge transfer.Fig.4c shows the power-dependentJ-Tcurves of Gr-BP heterojunction(edge region)underVds=?0.01 V.In the dark,a current flow from BP to Gr with the value of 9.0 × 104mA/cm2is initially observed when the BP side is positively biased;this current gradually decreases with increasing laser irradiation power and becomes closed at 2.0 mW laser exposure.Most interestingly,the direction of photocurrent reverses at higher laser power(P≥2.0 mW).When the laser moves into the center region of Gr-BP heterostructure,~3.0 mW laser power or larger is required to invert the current flow direction(see Fig.S14 in Supporting information forJ-Tcurves)[41].Moreover,this trend could be extended to a larger negative bias.For instance,underVds=?0.05 V,an excitation laser with a power larger than~12 mW(Fig.4d)is required to reverse the polarity of current flow.The ability to control the polarity of the current by adjusting the power of the laser is a unique feature of the Gr/BP junction,which is not shared by monolayer graphene or BP flake(Fig.S13d).For bare BP,although the photocurrent is proportional to the intensity of irradiation due to thermal driven effects,the polarity of current remains the same with the initial current flow for all laser intensity range.

    Fig.3.Gate-dependent photoelectric behavior of Gr-BP heterostructure.(a) R(Vg)data in Gr-BP device with and without light illuminations. Vds=+0.1 mV.Inserted is the plot of conductance vs gate curve of Gr-BP device in dark.FET mobility is given by where L and W are the length and width of the channel,respectively. C denotes the capacitance.(b) Ids-Vds curves measured in the dark and under light illuminations at various gate voltages.(c)Plots of Voc and Iph as a function of gate voltages.for Iph, Vds=+0.05 V.(d-f)Band alignment of BP and Gr under different gate voltages.(g,h)Lattice and electronic band structure of Gr-BP heterostructure.(i)Evolution of the band edges as a function of the electric field with respect to the Dirac point of graphene.

    There are several reasons why the Gr/BP interface is unique in terms of its gate tunability.The small band gap(~0.3 eV)and absence of interfacial pinning effect allow multilayer BP to be switched readily between the hole and electron-dominated transport under a moderate electric field,thus giving rise to ambipolar transport.In accordance with nonlinear Thomas-Fermi theory[12,13],the electrostatic screening behavior of multilayer BP(thickness ≤10 nm)is intermediate,thereby allowing the electric field from the back gate penetrating BP multilayer to influence the properties of graphene in Gr-BP heterostructure.In addition to maintain similar response time(Fig.S15 in Supporting information),the encapsulation of BP flake by the graphene layer not only overcomes the air instability of BP but also increases the photoresponsivity of BPviathe formation of a Schottky barrier[42].

    We have demonstrated that Gr-BP heterostructures can be used as photodetectors and photoinverters.Comparing with bare BP device,the photoresponsivity increases to 672%(R~2.8 × 103mA/W)due to the presence of a Schottky barrier at the interface of ptype BP and graphene.The height of the Schottky barrier can be modulated by either electrostatic doping or photo-induced doping,allowing the initial p-type conducting channel to be converted to n-type.The highly tunable nature of the Gr-BP interface suggests its potential application in future optoelectronic and logic applications.

    Fig.4.Photo-inverter behavior of Gr-BP heterostructure.(a)Band alignment of BP and Gr device with a negative source-drain bias in dark.The current flow is from BP to graphene.(b)Band re-alignment of BP and Gr heterostructure due to photo-induced doping effect.Under intense light irradiation,a reverse current flow occurs from graphene to BP.(c)Photogenerated current of Gr-BP device under different laser power density at Vds=?0.01 V.(d)Photogenerated currents of Gr-BP device with Vds=?0.05 V under 3,6 and 12 mW laser exposure.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors wish to acknowledge the financial support provided by the Fundamental Research Funds for the Central Universities(Nos.NS2020008,NC2018001,NJ2020003,NZ2020001),the Program for Innovative Talents and Entrepreneur in Jiangsu,Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(Nos.MCMS-I-0419G02,MCMS-I-0421K01),National Key Research and Development Program of China(No.2019YFA0705400),and Australian Research Council Future Fellowship(No.FT160100205),DECRA Fellowship(No.DE200101622).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.079.

    av女优亚洲男人天堂| 久久久国产一区二区| 日韩人妻高清精品专区| 熟女电影av网| 亚洲欧美日韩东京热| 内射极品少妇av片p| 国产亚洲精品av在线| 中文字幕久久专区| 成年免费大片在线观看| 日本黄色片子视频| 国产精品国产三级国产av玫瑰| 国产综合懂色| 成人特级av手机在线观看| 久久久久国产网址| 三级国产精品片| 超碰av人人做人人爽久久| 美女脱内裤让男人舔精品视频| 青春草国产在线视频| 日本av手机在线免费观看| 国产又色又爽无遮挡免| 伊人久久国产一区二区| 亚洲国产高清在线一区二区三| 久久精品国产亚洲av天美| 久久精品久久精品一区二区三区| 日韩中字成人| 在线天堂最新版资源| 久久久欧美国产精品| 亚洲av一区综合| 国产黄片美女视频| 亚洲人成网站高清观看| 熟女人妻精品中文字幕| 免费观看性生交大片5| 草草在线视频免费看| av福利片在线观看| 成人欧美大片| 成人av在线播放网站| av女优亚洲男人天堂| 亚洲国产精品成人久久小说| 久久精品夜色国产| 国产中年淑女户外野战色| 乱系列少妇在线播放| 国产在视频线精品| 国产精品久久视频播放| 国产精品久久久久久精品电影小说 | 啦啦啦啦在线视频资源| 午夜亚洲福利在线播放| 舔av片在线| 国产亚洲最大av| 哪个播放器可以免费观看大片| 在线观看av片永久免费下载| 亚洲精品亚洲一区二区| 2022亚洲国产成人精品| 午夜精品一区二区三区免费看| 乱系列少妇在线播放| or卡值多少钱| 亚洲av成人精品一二三区| 日本-黄色视频高清免费观看| 亚洲精品一二三| 极品少妇高潮喷水抽搐| 简卡轻食公司| 久久久精品欧美日韩精品| 亚洲av中文av极速乱| 国产伦在线观看视频一区| 国产精品国产三级国产专区5o| 国内揄拍国产精品人妻在线| 亚洲av二区三区四区| 日韩电影二区| 久久精品久久久久久久性| 欧美性猛交╳xxx乱大交人| 亚洲美女视频黄频| 国产一级毛片七仙女欲春2| 亚洲在久久综合| 亚洲精品国产av蜜桃| 男人和女人高潮做爰伦理| 国国产精品蜜臀av免费| 精品人妻视频免费看| 色网站视频免费| 国产伦精品一区二区三区四那| 99热6这里只有精品| 久久久久精品久久久久真实原创| 国产精品人妻久久久久久| 麻豆精品久久久久久蜜桃| 国产亚洲精品久久久com| 欧美激情在线99| 精品一区在线观看国产| 最近中文字幕高清免费大全6| 青青草视频在线视频观看| 亚洲aⅴ乱码一区二区在线播放| 国语对白做爰xxxⅹ性视频网站| 99热这里只有是精品在线观看| 免费看日本二区| 中文字幕制服av| 十八禁国产超污无遮挡网站| 国产精品99久久久久久久久| 色尼玛亚洲综合影院| 免费观看的影片在线观看| 乱人视频在线观看| 精品一区二区免费观看| 成人国产麻豆网| 午夜日本视频在线| 久久久久久九九精品二区国产| 精品酒店卫生间| 亚洲最大成人av| 亚洲av免费在线观看| 国产成人91sexporn| 免费观看a级毛片全部| 国产av在哪里看| 人妻夜夜爽99麻豆av| 身体一侧抽搐| 最近中文字幕2019免费版| 伊人久久精品亚洲午夜| 亚洲欧美日韩东京热| 成人高潮视频无遮挡免费网站| 日日摸夜夜添夜夜添av毛片| 中国美白少妇内射xxxbb| 国产亚洲精品av在线| 国产精品人妻久久久久久| 美女被艹到高潮喷水动态| 欧美潮喷喷水| 联通29元200g的流量卡| 日韩在线高清观看一区二区三区| 一级毛片aaaaaa免费看小| 日日啪夜夜爽| 亚洲av不卡在线观看| 最近2019中文字幕mv第一页| 国内精品宾馆在线| 婷婷色综合www| 国产精品久久视频播放| 亚洲欧美日韩卡通动漫| 日韩成人av中文字幕在线观看| 亚洲国产欧美在线一区| 有码 亚洲区| 一区二区三区乱码不卡18| 狂野欧美白嫩少妇大欣赏| 免费少妇av软件| 国产欧美日韩精品一区二区| 特级一级黄色大片| 三级经典国产精品| 国产极品天堂在线| 黑人高潮一二区| 激情五月婷婷亚洲| 七月丁香在线播放| 欧美日韩综合久久久久久| 欧美日韩一区二区视频在线观看视频在线 | 丝袜美腿在线中文| 最近手机中文字幕大全| 天堂俺去俺来也www色官网 | 18+在线观看网站| 又黄又爽又刺激的免费视频.| 精品人妻一区二区三区麻豆| 亚洲图色成人| 老女人水多毛片| 午夜久久久久精精品| 亚洲不卡免费看| 99热这里只有精品一区| 中文字幕制服av| 日本三级黄在线观看| 国产69精品久久久久777片| 国产视频内射| 精品人妻熟女av久视频| 国产成人aa在线观看| 国产中年淑女户外野战色| 午夜爱爱视频在线播放| 99热6这里只有精品| 美女高潮的动态| 久久精品国产亚洲av天美| 免费观看精品视频网站| 成人午夜精彩视频在线观看| 日韩电影二区| 午夜免费男女啪啪视频观看| 国产伦在线观看视频一区| 国产毛片a区久久久久| 老司机影院毛片| 你懂的网址亚洲精品在线观看| 亚洲成人av在线免费| 成年女人看的毛片在线观看| 国产精品一区二区性色av| 亚洲精品,欧美精品| 国产不卡一卡二| 我的女老师完整版在线观看| 久久人人爽人人爽人人片va| 男女边吃奶边做爰视频| 91久久精品国产一区二区三区| 夫妻午夜视频| 丰满乱子伦码专区| 久久久精品欧美日韩精品| 69人妻影院| 精品久久久久久久末码| 毛片女人毛片| 久久精品夜色国产| 国产视频内射| 日韩一区二区视频免费看| 99re6热这里在线精品视频| 亚洲精品日韩在线中文字幕| 精品久久久久久久久av| 最近的中文字幕免费完整| 日韩视频在线欧美| 欧美区成人在线视频| 亚洲伊人久久精品综合| 青春草亚洲视频在线观看| 亚洲四区av| 亚洲人成网站在线播| 亚洲,欧美,日韩| 天堂影院成人在线观看| 能在线免费观看的黄片| 51国产日韩欧美| 建设人人有责人人尽责人人享有的 | 精品一区二区免费观看| 久久久久久九九精品二区国产| 中文字幕av成人在线电影| 街头女战士在线观看网站| 久久久久精品久久久久真实原创| 草草在线视频免费看| 色综合亚洲欧美另类图片| 一级毛片 在线播放| 高清av免费在线| 色哟哟·www| 国产综合精华液| 亚洲欧美日韩卡通动漫| 啦啦啦中文免费视频观看日本| 日日干狠狠操夜夜爽| 一区二区三区乱码不卡18| 人妻少妇偷人精品九色| 国产精品一区www在线观看| 三级国产精品片| 成人鲁丝片一二三区免费| 晚上一个人看的免费电影| 欧美3d第一页| 蜜桃久久精品国产亚洲av| 老师上课跳d突然被开到最大视频| 亚洲精品乱码久久久v下载方式| 国产成人a区在线观看| 精品久久久久久久人妻蜜臀av| 亚洲欧美日韩东京热| 亚洲电影在线观看av| 欧美日韩一区二区视频在线观看视频在线 | 有码 亚洲区| 综合色丁香网| 久久草成人影院| av在线亚洲专区| av在线观看视频网站免费| 欧美性感艳星| 人妻系列 视频| 中文资源天堂在线| 男女啪啪激烈高潮av片| 久久久久久国产a免费观看| 简卡轻食公司| 成人午夜精彩视频在线观看| 中文天堂在线官网| 日韩不卡一区二区三区视频在线| 亚洲av成人精品一二三区| 又粗又硬又长又爽又黄的视频| 91在线精品国自产拍蜜月| 国产v大片淫在线免费观看| 青春草视频在线免费观看| 1000部很黄的大片| 国产黄a三级三级三级人| 在现免费观看毛片| 国产免费又黄又爽又色| 国产永久视频网站| 热99在线观看视频| xxx大片免费视频| 最近视频中文字幕2019在线8| 在线观看美女被高潮喷水网站| 男女视频在线观看网站免费| 亚洲精品成人av观看孕妇| av线在线观看网站| 日韩电影二区| h日本视频在线播放| 日韩av不卡免费在线播放| 男人舔女人下体高潮全视频| 搡女人真爽免费视频火全软件| 久久久久久伊人网av| 男女边吃奶边做爰视频| 久久精品久久精品一区二区三区| 五月天丁香电影| 精品99又大又爽又粗少妇毛片| 国产免费又黄又爽又色| 国产精品不卡视频一区二区| 亚洲色图av天堂| 午夜福利高清视频| 国产精品av视频在线免费观看| 97在线视频观看| 激情五月婷婷亚洲| 欧美性猛交╳xxx乱大交人| 舔av片在线| 午夜福利视频精品| 99热全是精品| 国产亚洲av片在线观看秒播厂 | 久久久久久久久久成人| 久久久久久久久久人人人人人人| 深夜a级毛片| 嫩草影院精品99| 亚洲四区av| 国产久久久一区二区三区| 国产在线男女| 午夜福利在线观看免费完整高清在| 少妇丰满av| 一夜夜www| 国产精品嫩草影院av在线观看| 晚上一个人看的免费电影| 97超碰精品成人国产| 老司机影院毛片| 黄片wwwwww| 一级二级三级毛片免费看| 午夜爱爱视频在线播放| 国产在视频线在精品| 肉色欧美久久久久久久蜜桃 | 国产成人精品婷婷| 秋霞在线观看毛片| 日本爱情动作片www.在线观看| 国产精品嫩草影院av在线观看| 99热这里只有是精品50| 男女啪啪激烈高潮av片| 啦啦啦中文免费视频观看日本| 亚洲人成网站在线播| 啦啦啦韩国在线观看视频| 在线天堂最新版资源| 欧美日韩精品成人综合77777| 噜噜噜噜噜久久久久久91| 高清欧美精品videossex| 极品少妇高潮喷水抽搐| 一个人看的www免费观看视频| 97超视频在线观看视频| a级毛色黄片| 久久久久免费精品人妻一区二区| 五月伊人婷婷丁香| 国产老妇伦熟女老妇高清| 国产伦一二天堂av在线观看| 亚洲av.av天堂| 国产麻豆成人av免费视频| 免费av观看视频| 国产一区二区在线观看日韩| 午夜免费激情av| 九九爱精品视频在线观看| 亚洲人成网站高清观看| 国产男女超爽视频在线观看| 男人舔女人下体高潮全视频| 亚洲欧美日韩卡通动漫| 国产片特级美女逼逼视频| 亚洲高清免费不卡视频| 亚洲色图av天堂| 91精品伊人久久大香线蕉| 全区人妻精品视频| 亚洲va在线va天堂va国产| 丰满少妇做爰视频| 熟女人妻精品中文字幕| 又黄又爽又刺激的免费视频.| 夜夜看夜夜爽夜夜摸| 色综合亚洲欧美另类图片| 视频中文字幕在线观看| 亚洲人与动物交配视频| 99久久精品一区二区三区| 1000部很黄的大片| 国产精品人妻久久久影院| 亚洲欧美清纯卡通| 可以在线观看毛片的网站| 亚洲欧美日韩无卡精品| 欧美另类一区| 三级毛片av免费| 大又大粗又爽又黄少妇毛片口| 你懂的网址亚洲精品在线观看| 亚洲国产精品专区欧美| 欧美日韩国产mv在线观看视频 | 国产熟女欧美一区二区| 99久久精品热视频| 日韩av在线大香蕉| 九九爱精品视频在线观看| 国产成人freesex在线| 日韩人妻高清精品专区| 一级毛片 在线播放| 亚洲精品国产av成人精品| 在线观看人妻少妇| 亚洲第一区二区三区不卡| 亚洲美女视频黄频| 欧美xxxx黑人xx丫x性爽| 欧美高清性xxxxhd video| 精品不卡国产一区二区三区| 一级a做视频免费观看| 中文字幕制服av| 人妻夜夜爽99麻豆av| 国产黄色小视频在线观看| 免费人成在线观看视频色| 自拍偷自拍亚洲精品老妇| 五月天丁香电影| 少妇高潮的动态图| 在线免费观看的www视频| 少妇熟女欧美另类| 国产精品一区二区在线观看99 | 在线免费观看不下载黄p国产| 国产午夜精品一二区理论片| 1000部很黄的大片| 亚洲精品色激情综合| 亚洲精品日本国产第一区| 亚洲丝袜综合中文字幕| 久久99蜜桃精品久久| 欧美成人a在线观看| 久久久久久久久久久丰满| 一个人看视频在线观看www免费| 欧美bdsm另类| 欧美成人一区二区免费高清观看| 精品久久久久久成人av| 一级毛片黄色毛片免费观看视频| 亚洲18禁久久av| av女优亚洲男人天堂| 18+在线观看网站| 亚洲国产精品sss在线观看| 国产av国产精品国产| 国产久久久一区二区三区| 国内精品美女久久久久久| 色哟哟·www| 嘟嘟电影网在线观看| 欧美不卡视频在线免费观看| 日韩三级伦理在线观看| 亚洲人与动物交配视频| 日韩,欧美,国产一区二区三区| 亚洲国产精品sss在线观看| 97热精品久久久久久| 成人欧美大片| 91aial.com中文字幕在线观看| 啦啦啦中文免费视频观看日本| 日韩欧美国产在线观看| 亚洲第一区二区三区不卡| 2018国产大陆天天弄谢| 免费在线观看成人毛片| 国产午夜精品论理片| av国产免费在线观看| 最近手机中文字幕大全| 欧美高清成人免费视频www| eeuss影院久久| 亚洲精品影视一区二区三区av| 国产色婷婷99| 国产三级在线视频| 国精品久久久久久国模美| av在线老鸭窝| 边亲边吃奶的免费视频| 久久6这里有精品| 免费观看精品视频网站| 国产精品福利在线免费观看| videossex国产| 卡戴珊不雅视频在线播放| 成年av动漫网址| 欧美xxⅹ黑人| 国产综合精华液| 最近最新中文字幕大全电影3| 午夜福利网站1000一区二区三区| 亚洲av成人av| 精品99又大又爽又粗少妇毛片| 精品人妻偷拍中文字幕| 日韩欧美精品免费久久| 国产伦在线观看视频一区| 亚洲av福利一区| 久久久久久久久久久丰满| 黄片无遮挡物在线观看| 最近手机中文字幕大全| 精品少妇黑人巨大在线播放| 高清av免费在线| 国产乱人偷精品视频| 黄片wwwwww| 免费看日本二区| 精品国产一区二区三区久久久樱花 | 亚洲精品日韩在线中文字幕| 亚洲高清免费不卡视频| 亚洲最大成人中文| 最近视频中文字幕2019在线8| 嫩草影院入口| 成人二区视频| 国产成人精品久久久久久| 乱人视频在线观看| 观看免费一级毛片| 国产真实伦视频高清在线观看| 高清欧美精品videossex| 欧美激情国产日韩精品一区| 高清日韩中文字幕在线| 麻豆精品久久久久久蜜桃| 国产熟女欧美一区二区| 国产综合精华液| 欧美一级a爱片免费观看看| 国产一区二区在线观看日韩| 一本一本综合久久| www.av在线官网国产| 久久人人爽人人爽人人片va| 欧美极品一区二区三区四区| 在线观看av片永久免费下载| 午夜福利在线观看吧| 女人久久www免费人成看片| 国产精品精品国产色婷婷| av在线老鸭窝| av国产免费在线观看| 亚洲人与动物交配视频| 大陆偷拍与自拍| 一个人免费在线观看电影| 美女被艹到高潮喷水动态| 精品一区二区免费观看| 色视频www国产| av在线蜜桃| 天天躁日日操中文字幕| 看黄色毛片网站| 日韩欧美三级三区| 亚洲av在线观看美女高潮| av播播在线观看一区| 大香蕉97超碰在线| 欧美最新免费一区二区三区| 嫩草影院精品99| 亚洲av成人精品一区久久| 欧美bdsm另类| 天堂俺去俺来也www色官网 | av免费观看日本| 免费黄色在线免费观看| 亚洲av日韩在线播放| 午夜福利视频精品| 看黄色毛片网站| xxx大片免费视频| 亚洲图色成人| 日本午夜av视频| 狂野欧美白嫩少妇大欣赏| 99视频精品全部免费 在线| 久久6这里有精品| 麻豆成人av视频| 亚洲精品国产成人久久av| 国产免费又黄又爽又色| www.色视频.com| 中文字幕制服av| 亚洲欧美精品专区久久| 免费黄色在线免费观看| 成人毛片60女人毛片免费| 丰满少妇做爰视频| 白带黄色成豆腐渣| 超碰av人人做人人爽久久| 亚洲性久久影院| 免费观看性生交大片5| 少妇高潮的动态图| 欧美激情在线99| 亚洲色图av天堂| 欧美日韩国产mv在线观看视频 | 亚洲精品456在线播放app| 国产黄频视频在线观看| 三级毛片av免费| 国产黄色免费在线视频| 人妻系列 视频| 国产av在哪里看| 亚洲欧美中文字幕日韩二区| 日韩一本色道免费dvd| 国产精品国产三级国产专区5o| 国产精品无大码| 女人被狂操c到高潮| 日韩精品青青久久久久久| 男人和女人高潮做爰伦理| 你懂的网址亚洲精品在线观看| 久久久久九九精品影院| 成人毛片60女人毛片免费| 乱系列少妇在线播放| 午夜日本视频在线| 久久久久性生活片| 国产三级在线视频| 女人被狂操c到高潮| 亚洲精品成人久久久久久| 熟妇人妻不卡中文字幕| 久久精品久久久久久噜噜老黄| 国产单亲对白刺激| 亚洲精品日韩av片在线观看| 欧美3d第一页| 深夜a级毛片| 晚上一个人看的免费电影| 免费观看a级毛片全部| 亚洲精品中文字幕在线视频 | 国产毛片a区久久久久| 最近中文字幕高清免费大全6| 亚洲欧美日韩东京热| 一夜夜www| 99久久九九国产精品国产免费| 卡戴珊不雅视频在线播放| 国产成人精品福利久久| 亚洲欧美日韩卡通动漫| www.av在线官网国产| 日韩av在线大香蕉| 黄色一级大片看看| 色播亚洲综合网| .国产精品久久| av国产久精品久网站免费入址| 国产精品一区二区在线观看99 | 亚洲精品第二区| 婷婷色麻豆天堂久久| 99热6这里只有精品| 国产黄色免费在线视频| 一级黄片播放器| 婷婷色麻豆天堂久久| 一级黄片播放器| 中文欧美无线码| 久久草成人影院| 亚洲成人精品中文字幕电影| 三级国产精品片| 亚洲自拍偷在线| 天堂av国产一区二区熟女人妻| 黑人高潮一二区| av在线老鸭窝| 亚洲国产欧美在线一区| 成人美女网站在线观看视频| 高清日韩中文字幕在线| 极品少妇高潮喷水抽搐| av免费在线看不卡| 国产成人a区在线观看| 欧美精品国产亚洲| 欧美97在线视频| 男女边吃奶边做爰视频| 赤兔流量卡办理| 国产亚洲最大av| 亚洲国产日韩欧美精品在线观看| 成人漫画全彩无遮挡| 人妻一区二区av| 免费看美女性在线毛片视频| 亚洲欧美日韩东京热| 天天躁日日操中文字幕| 在线天堂最新版资源| 久久久色成人|