• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tuning photoresponse of graphene-black phosphorus heterostructure by electrostatic gating and photo-induced doping

    2022-03-14 09:29:14YnpnLiuMinYnJunpnLuYinLiuHonwiLiuErwnZnWiFuJunyonWnZnlinHuJunYinGokiSijiWnJiboYiAjynVinuKinPinLo
    Chinese Chemical Letters 2022年1期

    Ynpn Liu,Min Yn,Junpn Lu,Yin Liu,Honwi Liu,Erwn Zn,Wi Fu,Junyon Wn,Znlin Hu,Jun Yin,Goki E,Siji Wn,Jibo Yi,Ajyn Vinu,Kin Pin Lo,?

    aKey Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education,State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

    bDepartment of Applied Physics,The Hong Kong Polytechnic University,Hong Kong,China

    cSchool of Physics,Southeast University,Nanjing 211189,China

    dCollege of Jincheng,Nanjing University of Aeronautics and Astronautics,Nanjing 211156,China

    eSchool of Physics and Technology,Nanjing Normal University,Nanjing 210023,China

    fDepartment of Chemistry,National University of Singapore,Singapore 117543,Singapore

    gInstitute of Materials Research and Engineering,Agency for Science,Technology and Research(A?STAR),Innovis 138634,Singapore

    hGlobal Innovative Centre for Advanced Nanomaterials,College of Engineering,Science and Environment,The University of Newcastle,Newcastle NSW 2308,Australia

    1These authors contributed equally to this work.

    ABSTRACT Metal-semiconductor diodes constructed from two-dimensional(2D)van der Waals heterostructures show excellent gate electrostatics and a large built-in electric field at the tunnel junction,which can be exploited to make highly sensitive photodetector.Here we demonstrate a metal-semiconductor photodiode constructed by the monolayer graphene(Gr)on a few-layer black phosphorus(BP).Due to the presence of a built-in potential barrier(~0.09 ± 0.03 eV)at the Gr-BP interface,the photoresponsivity of the Gr-BP device is enhanced by a factor of 672%,and the external quantum efficiency(EQE)increases to 648% from 84% of the bare BP.Electrostatic gating allows the BP channel to be switched between p-type and n-type conduction.We further demonstrate that excitation laser power can be used to control the current polarity of the Gr-BP device due to photon-induced doping.The versatility of the Gr-BP junctions in terms of electrostatic bias-induced or light-induced switching of current polarity is potentially useful for making dynamically reconfigurable digital circuits.

    Keywords:Black phosphorous Graphene Heterostructure Gate-tunable Photodetector Photoinverter

    Black phosphorus(BP)has attracted strong interests beyond graphene due to its high carrier mobility and layer-dependent bandgap(~0.3 eV for bulk and~2.0 eV for monolayer)[1-3].Fewlayer BP has been considered as an excellent platform for phototransistors due to light-driven thermoelectric,photobolometric and photovoltaic processes[4].Previously,few-layer BP photodetectors have been demonstrated to exhibit fast and wide-spectrum responses with a photo-responsivity up to 4.8 mA/W[3,5].The shortcomings of using few-layer BP as a photodetector include the unintended p-doping of BP,which reduces the photocarrier mobility through electron-electron scattering[4].Moreover,the small bandgap of few-layer BP results in a high dark current[4,6,7].To improve the photoconductive response,the barrier height at the BP-metal interface needs to be tuned by doping BP and shifting its Fermi level[4].For instance,chemical doping and other surface modifications(photoresponsivity of 2.56 A/W after 8.0 nm MoO3coating and 1.88 A/W after 8.0 nm Cs2CO3doping,respectively)have been applied to enhance the photoresponsivity,although chemical modifications are typically disadvantaged by their chemical instability[8,9].Alternatively,electrostatic doping and photoinduced doping,which are continuously tunable,non-destructive and implementable in ambient atmosphere,may be more suitable to tune both the polarity and magnitude of the photocurrent in 2D materials[10,11].Theoretical simulation predicts that the electrical and optical properties of ultrathin BP can be effectively tuned by electrostatic doping.Arising from the puckered honeycomb structure of BP,its band edges are mainly contributed by localized P 3pzorbitals,which have a strong response to the external perpendicular electric field[12-14].

    Recently,van der Waals(vdW)heterostructures based on 2D materials have been used to fabricate optoelectronic devices owing to the abrupt tunneling junction and strong photon-matter interactions[15-19].A ladder-type band structure in such heterojunction can be exploited to separate photo-excited electrons and holes(e-h)pairs,thereby reducing the recombination probability.Moreover,due to the absence of Fermi pinning effect that is universally observed at the traditional metal-semiconductor interface[1,3,13],the weak screening effect[12]and the ultrathin nature of 2D heterostructures allow the reversible modulation of band alignmentviaapplying a perpendicular electric field,which opens a new avenue to tune the optoelectronic properties of 2D heterostructures[20-26].

    Herein,we studied the photoresponsivity of a bipolar phototransistor using a vdW-stacked monolayer graphene(Gr)on a fewlayer BP flake.The photoresponsivity of the Gr-BP phototransistor is improved by a factor of 672% and its corresponding EQE is increased from 84% to 648% compared to that of a device using a bare BP.In addition,both photoresponsivity and the polarities of photocurrent of the Gr-BP heterojunction could be tuned by electrostatic gating.We further demonstrate that n- or p-type dominated transport in the device can be manipulated by laser power through photo-induced doping,which is unreachable for neither the bare BP device nor heterostructure with all Gr above BP flake in the previous reports[2,3,6,8,10,14].Our results suggest that Gr-BP heterostructure shows great potentials as a platform for broadband photodetectors,photoinverters and reversing commutators[6,11,19,21,25].

    The exfoliations of graphene and black phosphorus were carried out in a glovebox filled with argon gas(O2<0.5 ppm and H2O<0.5 ppm).Typically,thin BP flakes were directly mechanically exfoliated onto Si/SiO2(300 nm oxide layer)substrate from bulk BP crystal(HQ graphene)using blue “magic” tape.After that,the desired rectangle shape(length>30 μm,thickness~5–20 nm BP flakes were located under optical microscopy for further stacking.Monolayer graphene was exfoliated onto PDMS films and then partially transferred onto BP flake with a dry transfer methodviaa home-built transfer platform in an argon glovebox.The Gr-BP stacks were then annealing at 180 °C in the glovebox for 30 min to remove possible air bubbles and form good contact.After these processes,the Gr-BP heterostructure was spin-coated with a PMMA layer both as a protective layer and a photoresist layer for electrode fabrications.In this work,Cr/Au(2 nm/60 nm)was chosen as metal electrodes,respectively.

    The Gr-BP heterostructure(Fig.1a)was fabricated on a silicon wafer(with 300 nm SiO2).Monolayer Gr and few-layer BP flake were precisely stacked together using a dry-transfer method(see Experimental section in Supporting information)[11,25].To avoid oxidization of BP,all the exfoliation and transfer processes were conducted in a glovebox filled with argon gas.Fig.1b shows the atomic force microscopy(AFM)image of a completed Gr-BP device.From the topography,the BP flake is smooth,and the thicknesses of BP and Gr were determined to be~8.0 nm and~0.5 nm,respectively(see Fig.S1 Supporting information for height profile).To investigate the interfacial quality and charge transfer of Gr-BP heterostructure,spatially resolved Raman was employed[2].As shown in Fig.1c,the G peak(the high-frequencyE2gphonon atΓpoint)redshifts from 1580 cm?1to 1572 cm?1and the frequency of 2D peak(second-order Raman scattering by two optical phonons)blueshifts from 2677 cm?1to 2688 cm?1,a clear indication that graphene is n-doped by underlying BP flake[2,27].Fig.1d displays the integrated intensity of Ag1peak of few-layer BP flake after measurement.The Ag1signal is uniform throughout the entire BP flake,and its Ag1/Ag2intensity ratio>0.9 is typical for a pristine BP flake[28].It is worth noting that phosphorene oxides and suboxides(bandgap~4.6 eV from PBE method)typically give an Ag1/Ag2ratio<0.6(Fig.S2 in Supporting information),thus we can conclude that these oxides are absent in our studies[14,29].

    Fig.2a shows the schematic illustration of the Gr-BP device.For comparison,bare BP device with similar thickness was also tested.As shown in Fig.2a,the electrode attached with Gr was chosen as drain throughout the whole measurements unless otherwise specified.Fig.2b shows the plot of photo-induced current density(Iph)versusbias(Vds)of bare BP and Gr-BP devices under global irradiation(532 nm,1 mW/mm2).It is seen that Gr-BP devices show higher outputIphover aVdsrange from ?0.05 V to+0.05 V and fast on-off photoresponse(Vds=+0.05 V,Fig.2c).To assess the performance of our device,photoresponsivity(R)and external quantum efficiency(EQE),the figures of merit of photodetector devices,are calculated according to the following equations[3,8]:

    whereIphis the photocurrent induced by incident light,Pstands for the light intensity,Sis the effective area under illumination,λis the wavelength of the incident light,h,canderepresent the Plank constant,the velocity of light and the charge of the electron,respectively.Based on Eq.1,the photoresponsivity of Gr-BP heterojunction is significantly enhanced(~672%)over the bare BP device,increasing from 3.6 × 102mA/W to 2.8 × 103mA/W and the corresponding EQE increases dramatically up to 648% from 84%,which are higher than previously reported metrics of BP-based photodetectors(Table S1 in Supporting information)[3,8].

    In order to investigate if the Gr-BP interface contributes to enhanced photoresponse by charge separation or built-in potential,a scanning photocurrent microscope(SPCM)equipped with a focused laser beam was used to identify individual contribution(sketched in Fig.2d).Fig.2e shows theJ-V(whereJrepresents current density)curves with the laser-focused at five regions(as marked in the right insert).All five regions show photo-response but with different magnitudes(Fig.S4 in Supporting information).A weak rectifying behavior was observed with photocurrent increasing atVds>0 V but decreasing atVds<0 V,revealing the existence of a small potential barrier that modulates the polarity of current flow.Among the five regions,the Gr-BP junction shows the highest photocurrent of 3.4 × 105mA/cm2(Jdark~1.96 × 105mA/cm2,Vds=+0.05 V),thus it is responsible for the dramatic differences in photocurrent between bare BP and Gr-BP devices(as exhibited in Figs.2b and c).Notably,the output of the Gr-BP device presents photovoltaic characteristic.Fig.2f shows the short-circuit current(Isc)and open-circuit voltage(Voc)acquired under light illumination with a power of~1.2 mW.Among them,the Gr-BP heterojunction shows the highest photocurrent,especially at its edge region,might be due to energy band depletion at the edge that generates potential at the edge and contributes to the output current(Figs.S4 and S5 in Supporting information).The existence ofVoc(?0.013 V)andIsc(0.6 μA)proves that the photoresponse behavior of the Gr-BP device is dominated by the photovoltaic effect rather than thermal driven processes[4].

    Fig.1.Schematic drawing and characterizations of Gr-BP heterostructure device.(a)Schematic diagram of Gr-BP heterostructure.Exfoliated graphene and BP flakes are partially overlapped in order to study the origin of photoresponsive enhancement.(b)AFM image of Gr-BP device.The graphene flake is marked in a white dashed line,while BP is enclosed in a green dash line.The white spots in graphene-covered region represent air-trapped bubbles/wrinkles.The scale bar is 5 μm.(c)Corresponding Raman spectra from three selected regions marked in(b)for comparison.For visualization,the signal of Gr(on BP flake)is enlarged by a factor of 10 to cancel the intensity loss from varied interference phenomena.The bottom BP and Gr symbols represent the intrinsic signals of BP(pink region)and Gr(purple region),respectively.For clarification,the peak at~520 cm?1 origins from the underlying silicon substrate.(d)Raman spatial mappings of representative Ag1 of black phosphorus.

    To determine the band alignment between Gr and BP,ultraviolet photoelectron spectroscopy secondary electron cut-off energies of bare BP flake,bare graphene films,and Gr-BP heterostructure(Fig.2g).Accordingly,their work functions are measured to beФBP=4.47 eV,ФGr=4.50 eV andФGr-BP=4.37 eV(see Experimental section in Supporting information for calculation details),respectively,which are in good agreement with the previous reports[30-32].Based on the above values,we can conclude that graphene is n-doped(~0.13 eV),and BP flake becomes highlypdoped withEF~0.02 eV above the valence band maximum(EVBM).With this information,the energy band diagrams are constructed as shown in Fig.2h.For Gr-BP device,due to the initial p-doping of BP(possibly originating from impurities and defect,Figs.S6 and S7 in Supporting information for XPS and STM data),downward band bending occurs at the interface to create a built-in potential(Фbi)proportional toФGr-EVBM(~0.09 ± 0.03 eV).Due to the built-in potential,Gr-BP heterojunction shows a rectifying behavior(Fig.2i).Upon photo-excitation,e-hpairs are generated in BP;after exciton dissociation,electrons are injected into a more conductive graphene layer,while the Schottky barrier at the interface blocks hole transport to graphene[32-34].

    Next,the photoresponse of Gr-BP heterojunction is electrostatically modulated using a back gate.Fig.3a shows theIds-Vgdata of the Gr-BP device with and without~1.4 mW laser illumination(Vds=+0.1 mV).In the dark,the Gr-BP device shows ambipolar and hole-dominant characteristics with hole mobility~1320 cm?2V ?1 s ?1 and electron mobility~745 cm?2V ?1 s?1.These values are two times larger than those of the bare BP device with the similar thickness(see Fig.S9 in Supporting information for bare BP device).Upon photo-irradiation,the photocurrent monotonically decreases withVgranging from ?50 V to around +27.5 V;this is followed by a sharp decline,and then the photocurrent becomes negative whenVg>~36.3 V.Fig.3b shows the gatetunability of outputI-Vcharacteristics from the same device(see the dark and illuminated current comparison in Fig.S10 in Supporting information).Fig.3c shows that the polarities of photocurrents(Iph,hereVds=+0.05 V)are opposite at negative and positive gate regimes;there is a higher current at negative gate voltage compared to positive gate voltage,which allows the types and heights of Schottky barrier across the Gr-BP junction to be determined.WhenVg<0(Fig.3d),the accumulation of holes at BP increases the downward band bending.Therefore,the wider depletion region(W)and larger potential barrier height(Фbi)prevent the tunneling or thermal injection of holes from BP into graphene.In this regime,the photocurrent increases monotonically with the magnitude of the negative gate voltage.In contrast,a positive gate voltage(0

    Fig.2.Photoresponse behavior and Gr-BP heterostructure.(a)Sketches of G-BP heterostructure under global illuminations.For the Gr-BP device,single-layer graphene was used as a source electrode.(b) Iph-Vds characteristics of bare BP and Gr-BP device under global laser irradiation with the same laser intensity.(c)Photoresponse behavior comparison between bare BP and Gr-BP devices.(d)Schematic diagram of Gr-BP heterostructure.(e) J-V curves of Gr-BP device with laser focusing on different regions.Inset shows the optical image of the device marked with different color spots for clarification.(f) VOC and ISC of the Gr-BP device with various parts exposed to laser illumination.(g)UPS data of bare Gr,bare BP and Gr-BP heterostructure.(h)Thermal equilibrium energy band alignment of the separated integral parts with Vds=0 V.(i)Power-dependent photoelectric behavior of Gr-BP heterostructure.

    We performed density functional theory(DFT)calculation to investigate gate-modulated electronic properties of Gr-BP heterostructure to gain more insight.The interlayer distance between graphene and bi-layer BP(Fig.3g)is calculated to be 3.45 ?A.This vdW gap confirms the weak nature of the interfacial interaction,in good agreement with previous studies[35-37].Fig.3h shows the electronic band structure of Gr-BP heterostructure,from which it is clear that both the projected band structures of graphene and BP maintain the characteristics of the isolated counterparts upon their contact.The VBM of BP is close to the Fermi level of graphene and a p-type semiconductor/metal Schottky barrier is present.Due to the weak screening effect of BP and Gr,the contact barrier at the BP-Gr interface can be surmounted effectively by applying an external perpendicular electric field(Eext)[35].By considering Gr as the metal contact and few-layer BP as the semiconductor channel,the Schottky barrier height(SBH)could be estimated following Schottky-Mott rule,Eg=qФp+qФn,whereФpandФnrepresent the barriers against the hole and electron flow between Gr and BP,respectively[38].Fig.3i depicts the evolution of the contact barriers as a function of the applied electric field strength(see Fig.S11 in Supporting information for the evolution of band structure as a function ofEext).Subjected to a negative electric field(Eext<0 V),the Dirac cone of graphene shifts towards the VB of the BP,rendering the contact ohmic.In contrast,for increasing positiveVg,the Dirac cone gradually moves towards the CB of BP.When the electric field is larger than 2 eV/nm,the contact barrierФpbecomes smaller thanФn,turning the contact into n-type.These theoretical findings agree well with our experimental observation.We would like to point out that the layer-dependent bandstructure of BP,initial p-doping level and the approximation of exchange-correlation functionals render it highly challenging to calculate the exact barrier height,but the trend of the charge transfer and barrier variation with applied electric field is valid and consistent with the experimental observation.

    In Gr-BN[34],BP-ZnO[39]and BP-TiOx[40]system,a tunable photo-induced electron transfer has been reported at the interface.Spatial segregation of holes and electrons occurs at different layers,which rearranges the band alignment between two components.Similarly,we found that the Gr-BP heterostructure is capable of showing photo-induced electron transfer.Since absorbents and moisture easily contaminate graphene,all measurements were conducted in a vacuum cell,and thermal annealing was carried out to remove any impurities.Figs.4a and b illustrate the origins of the photo-doping induced inversion.In the dark state(Fig.4a),when BP is positively biased,the direction of the current is from BP to graphene.Upon laser illumination(Fig.4b),electrons are photo-excited from donor-like defects in BP to the conduction band;some of these electrons compensate the holes in BP,while excess electrons created by higher laser photoexcitation migrate to graphene and gives rise to a reverse current.In addition,this migration lifts theEFof graphene while lowering theEFof BP,as a result,band realignment occurs.A direct proof of the photoinduced doping effect is the shifting of Dirac point of graphene in Gr-BP FET device(all graphene placed on top of BP flake,Fig.S13 in Supporting information)upon illumination,where the charge neutral point of graphene shifts to higher negative gate voltage(Δ~6 × 1011cm?2),illustrating graphene becoming n-doped and the occurrence of photo-induced charge transfer.Fig.4c shows the power-dependentJ-Tcurves of Gr-BP heterojunction(edge region)underVds=?0.01 V.In the dark,a current flow from BP to Gr with the value of 9.0 × 104mA/cm2is initially observed when the BP side is positively biased;this current gradually decreases with increasing laser irradiation power and becomes closed at 2.0 mW laser exposure.Most interestingly,the direction of photocurrent reverses at higher laser power(P≥2.0 mW).When the laser moves into the center region of Gr-BP heterostructure,~3.0 mW laser power or larger is required to invert the current flow direction(see Fig.S14 in Supporting information forJ-Tcurves)[41].Moreover,this trend could be extended to a larger negative bias.For instance,underVds=?0.05 V,an excitation laser with a power larger than~12 mW(Fig.4d)is required to reverse the polarity of current flow.The ability to control the polarity of the current by adjusting the power of the laser is a unique feature of the Gr/BP junction,which is not shared by monolayer graphene or BP flake(Fig.S13d).For bare BP,although the photocurrent is proportional to the intensity of irradiation due to thermal driven effects,the polarity of current remains the same with the initial current flow for all laser intensity range.

    Fig.3.Gate-dependent photoelectric behavior of Gr-BP heterostructure.(a) R(Vg)data in Gr-BP device with and without light illuminations. Vds=+0.1 mV.Inserted is the plot of conductance vs gate curve of Gr-BP device in dark.FET mobility is given by where L and W are the length and width of the channel,respectively. C denotes the capacitance.(b) Ids-Vds curves measured in the dark and under light illuminations at various gate voltages.(c)Plots of Voc and Iph as a function of gate voltages.for Iph, Vds=+0.05 V.(d-f)Band alignment of BP and Gr under different gate voltages.(g,h)Lattice and electronic band structure of Gr-BP heterostructure.(i)Evolution of the band edges as a function of the electric field with respect to the Dirac point of graphene.

    There are several reasons why the Gr/BP interface is unique in terms of its gate tunability.The small band gap(~0.3 eV)and absence of interfacial pinning effect allow multilayer BP to be switched readily between the hole and electron-dominated transport under a moderate electric field,thus giving rise to ambipolar transport.In accordance with nonlinear Thomas-Fermi theory[12,13],the electrostatic screening behavior of multilayer BP(thickness ≤10 nm)is intermediate,thereby allowing the electric field from the back gate penetrating BP multilayer to influence the properties of graphene in Gr-BP heterostructure.In addition to maintain similar response time(Fig.S15 in Supporting information),the encapsulation of BP flake by the graphene layer not only overcomes the air instability of BP but also increases the photoresponsivity of BPviathe formation of a Schottky barrier[42].

    We have demonstrated that Gr-BP heterostructures can be used as photodetectors and photoinverters.Comparing with bare BP device,the photoresponsivity increases to 672%(R~2.8 × 103mA/W)due to the presence of a Schottky barrier at the interface of ptype BP and graphene.The height of the Schottky barrier can be modulated by either electrostatic doping or photo-induced doping,allowing the initial p-type conducting channel to be converted to n-type.The highly tunable nature of the Gr-BP interface suggests its potential application in future optoelectronic and logic applications.

    Fig.4.Photo-inverter behavior of Gr-BP heterostructure.(a)Band alignment of BP and Gr device with a negative source-drain bias in dark.The current flow is from BP to graphene.(b)Band re-alignment of BP and Gr heterostructure due to photo-induced doping effect.Under intense light irradiation,a reverse current flow occurs from graphene to BP.(c)Photogenerated current of Gr-BP device under different laser power density at Vds=?0.01 V.(d)Photogenerated currents of Gr-BP device with Vds=?0.05 V under 3,6 and 12 mW laser exposure.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors wish to acknowledge the financial support provided by the Fundamental Research Funds for the Central Universities(Nos.NS2020008,NC2018001,NJ2020003,NZ2020001),the Program for Innovative Talents and Entrepreneur in Jiangsu,Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(Nos.MCMS-I-0419G02,MCMS-I-0421K01),National Key Research and Development Program of China(No.2019YFA0705400),and Australian Research Council Future Fellowship(No.FT160100205),DECRA Fellowship(No.DE200101622).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.079.

    日本猛色少妇xxxxx猛交久久| 亚洲不卡免费看| 韩国av在线不卡| 麻豆精品久久久久久蜜桃| 日韩一区二区三区影片| 人妻少妇偷人精品九色| 婷婷色综合www| 99久久综合免费| 能在线免费看毛片的网站| 色视频在线一区二区三区| 91久久精品国产一区二区成人| 人人澡人人妻人| 在线观看美女被高潮喷水网站| 一边亲一边摸免费视频| 日韩一本色道免费dvd| 亚洲精品乱码久久久久久按摩| 亚洲精品aⅴ在线观看| kizo精华| 亚洲精品一二三| 国产探花极品一区二区| 亚洲人成网站在线观看播放| av视频免费观看在线观看| 欧美老熟妇乱子伦牲交| 亚洲,欧美,日韩| 伊人久久精品亚洲午夜| 久久久久久久久久久免费av| 国产成人精品福利久久| 国产精品久久久久久久电影| 成人毛片60女人毛片免费| 亚洲天堂av无毛| 99热网站在线观看| 亚洲美女视频黄频| 美女国产视频在线观看| 大片电影免费在线观看免费| 丰满迷人的少妇在线观看| 日本av手机在线免费观看| 美女中出高潮动态图| 曰老女人黄片| 三级国产精品片| 成人无遮挡网站| 少妇人妻精品综合一区二区| 国产无遮挡羞羞视频在线观看| 十八禁高潮呻吟视频| 久久精品国产a三级三级三级| 欧美一级a爱片免费观看看| 五月开心婷婷网| 亚洲av国产av综合av卡| 视频区图区小说| 极品人妻少妇av视频| 亚洲av男天堂| 国产片内射在线| 日本猛色少妇xxxxx猛交久久| 黄色怎么调成土黄色| 少妇猛男粗大的猛烈进出视频| 99久久综合免费| 免费大片18禁| 久久久久视频综合| 交换朋友夫妻互换小说| 最近中文字幕2019免费版| 成年人免费黄色播放视频| 久久久欧美国产精品| 亚洲av不卡在线观看| 国产高清国产精品国产三级| 国产精品成人在线| 精品国产一区二区三区久久久樱花| 毛片一级片免费看久久久久| 26uuu在线亚洲综合色| 女人久久www免费人成看片| 超碰97精品在线观看| 国产男女内射视频| 黄片无遮挡物在线观看| 国产成人一区二区在线| 久久久a久久爽久久v久久| 99热全是精品| 精品一区二区三卡| 精品久久久噜噜| 国产午夜精品一二区理论片| 日本黄色日本黄色录像| 国产成人精品在线电影| 汤姆久久久久久久影院中文字幕| 亚洲伊人久久精品综合| 一级a做视频免费观看| 欧美另类一区| 9色porny在线观看| 少妇猛男粗大的猛烈进出视频| 久久韩国三级中文字幕| 国模一区二区三区四区视频| 下体分泌物呈黄色| 999精品在线视频| 久久久a久久爽久久v久久| 亚洲久久久国产精品| 制服丝袜香蕉在线| 日本色播在线视频| 久久热精品热| 亚洲国产av新网站| 精品一区在线观看国产| 9色porny在线观看| 嫩草影院入口| 曰老女人黄片| 国产无遮挡羞羞视频在线观看| 亚洲国产精品国产精品| 成人综合一区亚洲| av在线app专区| 久久久精品94久久精品| 26uuu在线亚洲综合色| 国产老妇伦熟女老妇高清| 中文字幕免费在线视频6| 日本91视频免费播放| 午夜福利视频在线观看免费| 晚上一个人看的免费电影| 国产亚洲精品久久久com| 久久人人爽人人片av| 欧美最新免费一区二区三区| 十八禁网站网址无遮挡| 亚洲国产欧美日韩在线播放| 国内精品宾馆在线| 婷婷色综合www| 亚洲精品日本国产第一区| 水蜜桃什么品种好| 婷婷色综合www| 欧美丝袜亚洲另类| 九色成人免费人妻av| 国产成人精品婷婷| 男女啪啪激烈高潮av片| 亚洲人成网站在线观看播放| 免费看光身美女| 国产高清不卡午夜福利| 午夜福利在线观看免费完整高清在| 久久av网站| 在线天堂最新版资源| 少妇高潮的动态图| 欧美xxⅹ黑人| 亚洲第一区二区三区不卡| 国产免费一级a男人的天堂| 国产高清三级在线| 水蜜桃什么品种好| 午夜福利影视在线免费观看| av国产久精品久网站免费入址| 国产在视频线精品| 男女边吃奶边做爰视频| 亚洲精品自拍成人| 色94色欧美一区二区| 国产精品不卡视频一区二区| 国产成人一区二区在线| 麻豆成人av视频| 人体艺术视频欧美日本| 日韩av在线免费看完整版不卡| 久久久久久久久久久久大奶| 日本午夜av视频| 国产精品免费大片| 免费观看无遮挡的男女| 91精品伊人久久大香线蕉| 99久久综合免费| 日韩 亚洲 欧美在线| 国产免费一区二区三区四区乱码| 在现免费观看毛片| 亚洲五月色婷婷综合| 母亲3免费完整高清在线观看 | 高清毛片免费看| 国产欧美日韩一区二区三区在线 | 亚洲精品乱久久久久久| 国产av一区二区精品久久| av视频免费观看在线观看| 免费av不卡在线播放| 日本免费在线观看一区| 日本与韩国留学比较| 国产欧美日韩综合在线一区二区| 午夜福利网站1000一区二区三区| 欧美最新免费一区二区三区| 久久99蜜桃精品久久| 成人国产av品久久久| 中文字幕精品免费在线观看视频 | 日韩制服骚丝袜av| 久久久久视频综合| 啦啦啦视频在线资源免费观看| 麻豆乱淫一区二区| 视频区图区小说| 爱豆传媒免费全集在线观看| 男男h啪啪无遮挡| 亚洲精品第二区| 久久狼人影院| 五月开心婷婷网| 这个男人来自地球电影免费观看 | 男男h啪啪无遮挡| 欧美少妇被猛烈插入视频| 一级毛片电影观看| 91精品国产国语对白视频| 免费观看的影片在线观看| 亚洲久久久国产精品| 制服丝袜香蕉在线| 视频区图区小说| 校园人妻丝袜中文字幕| 麻豆精品久久久久久蜜桃| 成人午夜精彩视频在线观看| 黄色配什么色好看| 最新中文字幕久久久久| 黄色视频在线播放观看不卡| 性高湖久久久久久久久免费观看| 国产成人精品婷婷| 内地一区二区视频在线| 婷婷色麻豆天堂久久| 国产av国产精品国产| 日本91视频免费播放| 久久人妻熟女aⅴ| 搡老乐熟女国产| 亚洲不卡免费看| 人成视频在线观看免费观看| 免费观看性生交大片5| av黄色大香蕉| 91国产中文字幕| 丰满少妇做爰视频| 久久这里有精品视频免费| 中文欧美无线码| 一本久久精品| 不卡视频在线观看欧美| 777米奇影视久久| 久久99热6这里只有精品| 国产精品一区二区在线观看99| xxx大片免费视频| 天堂俺去俺来也www色官网| 人人妻人人澡人人爽人人夜夜| 一级片'在线观看视频| 国产精品久久久久久精品古装| 老司机影院毛片| 激情五月婷婷亚洲| 乱码一卡2卡4卡精品| 只有这里有精品99| a级毛片黄视频| 精品人妻熟女毛片av久久网站| 少妇人妻久久综合中文| 国产成人aa在线观看| 欧美激情极品国产一区二区三区 | 一级毛片我不卡| 考比视频在线观看| 久久久久视频综合| 自线自在国产av| 大香蕉久久网| 久久久久久久久久人人人人人人| 男人操女人黄网站| 亚洲,一卡二卡三卡| 人妻系列 视频| 成年女人在线观看亚洲视频| a级毛片在线看网站| 一边亲一边摸免费视频| 亚洲人与动物交配视频| 日韩在线高清观看一区二区三区| 这个男人来自地球电影免费观看 | 国产精品久久久久成人av| 久久久久久人妻| 99国产精品免费福利视频| 在线观看免费日韩欧美大片 | 亚洲精品久久成人aⅴ小说 | 九色成人免费人妻av| 久久国内精品自在自线图片| av在线老鸭窝| 国产女主播在线喷水免费视频网站| 日韩大片免费观看网站| 日韩亚洲欧美综合| 两个人免费观看高清视频| 91久久精品电影网| 亚洲av电影在线观看一区二区三区| 99久久精品国产国产毛片| 国产亚洲一区二区精品| 纯流量卡能插随身wifi吗| 丝瓜视频免费看黄片| 看十八女毛片水多多多| 日韩制服骚丝袜av| 日韩欧美精品免费久久| 国产色爽女视频免费观看| 一级毛片黄色毛片免费观看视频| 十分钟在线观看高清视频www| av不卡在线播放| 亚洲三级黄色毛片| 母亲3免费完整高清在线观看 | 中文字幕人妻熟人妻熟丝袜美| 精品国产一区二区三区久久久樱花| 亚洲一级一片aⅴ在线观看| 免费观看的影片在线观看| 国产色婷婷99| 亚洲一区二区三区欧美精品| 亚洲四区av| 成年人免费黄色播放视频| 国产国拍精品亚洲av在线观看| 自线自在国产av| 最新的欧美精品一区二区| 亚洲国产最新在线播放| 伦精品一区二区三区| 七月丁香在线播放| 国产一级毛片在线| 亚洲精品日韩在线中文字幕| 日韩亚洲欧美综合| 国产av码专区亚洲av| 免费大片18禁| 免费看不卡的av| av免费在线看不卡| 丝瓜视频免费看黄片| 久久99精品国语久久久| 久久国内精品自在自线图片| 亚洲av二区三区四区| 日韩强制内射视频| 精品人妻在线不人妻| av免费在线看不卡| 99久久人妻综合| 91aial.com中文字幕在线观看| 亚洲国产色片| 欧美日韩一区二区视频在线观看视频在线| 国产黄片视频在线免费观看| a级片在线免费高清观看视频| 黑人高潮一二区| 欧美 日韩 精品 国产| 亚洲精品视频女| 精品少妇内射三级| 中文字幕久久专区| 日本色播在线视频| 国产69精品久久久久777片| 人成视频在线观看免费观看| 在现免费观看毛片| 狠狠婷婷综合久久久久久88av| 国产av国产精品国产| 在线播放无遮挡| 中文精品一卡2卡3卡4更新| 久久久久精品性色| 久久99热这里只频精品6学生| 两个人免费观看高清视频| 97超视频在线观看视频| 成年av动漫网址| 国产精品成人在线| 午夜激情福利司机影院| 午夜福利网站1000一区二区三区| 热99国产精品久久久久久7| 国产精品一区二区在线观看99| 日韩成人av中文字幕在线观看| 日韩一区二区视频免费看| 七月丁香在线播放| 国产在线一区二区三区精| 69精品国产乱码久久久| 三级国产精品片| 久久久久久久久久久久大奶| 亚洲欧美中文字幕日韩二区| 日本黄大片高清| 好男人视频免费观看在线| 一个人看视频在线观看www免费| 色婷婷av一区二区三区视频| 成年av动漫网址| 中文欧美无线码| 亚洲欧美一区二区三区国产| 满18在线观看网站| 亚洲国产最新在线播放| 欧美最新免费一区二区三区| 高清不卡的av网站| 在线精品无人区一区二区三| 青春草亚洲视频在线观看| 久久狼人影院| 自拍欧美九色日韩亚洲蝌蚪91| 麻豆精品久久久久久蜜桃| 日本黄色日本黄色录像| 久久久久视频综合| 国产乱来视频区| 亚洲,欧美,日韩| 人人妻人人澡人人看| 最近手机中文字幕大全| 日日摸夜夜添夜夜添av毛片| 日韩不卡一区二区三区视频在线| 国产精品一区www在线观看| 国产不卡av网站在线观看| 国产 一区精品| 午夜91福利影院| 日韩精品免费视频一区二区三区 | 亚洲丝袜综合中文字幕| 亚洲天堂av无毛| 午夜老司机福利剧场| 99re6热这里在线精品视频| 久久免费观看电影| a级毛片免费高清观看在线播放| 国产无遮挡羞羞视频在线观看| 国产男女超爽视频在线观看| 一边亲一边摸免费视频| 亚洲av综合色区一区| 黑丝袜美女国产一区| 欧美少妇被猛烈插入视频| 成年av动漫网址| 欧美精品一区二区大全| 亚洲情色 制服丝袜| 伊人久久国产一区二区| 欧美精品一区二区大全| 久久97久久精品| 男人添女人高潮全过程视频| 久久精品国产自在天天线| 99久久精品国产国产毛片| 91精品一卡2卡3卡4卡| 亚洲国产精品专区欧美| 97在线人人人人妻| 精品一区二区免费观看| 十八禁高潮呻吟视频| 亚洲美女视频黄频| 久久久久久久久久久丰满| 3wmmmm亚洲av在线观看| 中文字幕制服av| 哪个播放器可以免费观看大片| 国产69精品久久久久777片| 久久99精品国语久久久| 国产69精品久久久久777片| av在线观看视频网站免费| 欧美xxxx性猛交bbbb| 午夜福利网站1000一区二区三区| 丝袜脚勾引网站| 亚洲精品aⅴ在线观看| 久久久久网色| 久久热精品热| 亚洲五月色婷婷综合| 这个男人来自地球电影免费观看 | av女优亚洲男人天堂| 秋霞伦理黄片| 一级,二级,三级黄色视频| 99九九线精品视频在线观看视频| 如何舔出高潮| 人妻夜夜爽99麻豆av| 黄色怎么调成土黄色| 国产爽快片一区二区三区| 美女大奶头黄色视频| 丝袜美足系列| 亚洲无线观看免费| 自拍欧美九色日韩亚洲蝌蚪91| 香蕉精品网在线| 亚洲激情五月婷婷啪啪| 春色校园在线视频观看| 人妻一区二区av| 777米奇影视久久| 国产在线一区二区三区精| 99久久精品国产国产毛片| 少妇的逼水好多| 国产一区二区在线观看av| 一级黄片播放器| 国产高清不卡午夜福利| 久久午夜综合久久蜜桃| 久久久久久久亚洲中文字幕| 国产 一区精品| 97精品久久久久久久久久精品| 成人毛片a级毛片在线播放| 老司机亚洲免费影院| 国产成人精品福利久久| 青春草亚洲视频在线观看| 日韩视频在线欧美| 欧美激情极品国产一区二区三区 | 日韩大片免费观看网站| 51国产日韩欧美| 国产熟女欧美一区二区| 亚洲色图综合在线观看| 国产av一区二区精品久久| 一本色道久久久久久精品综合| 国产高清三级在线| 多毛熟女@视频| 尾随美女入室| 精品少妇内射三级| 寂寞人妻少妇视频99o| 亚洲国产精品成人久久小说| 日产精品乱码卡一卡2卡三| 美女视频免费永久观看网站| 午夜av观看不卡| 少妇 在线观看| 伦精品一区二区三区| 一级爰片在线观看| 观看av在线不卡| 免费黄色在线免费观看| 男女啪啪激烈高潮av片| 国产av码专区亚洲av| 久久午夜综合久久蜜桃| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品日韩av片在线观看| 51国产日韩欧美| 国产免费福利视频在线观看| 美女内射精品一级片tv| 看免费成人av毛片| 国产高清国产精品国产三级| 国产色婷婷99| 亚洲综合色惰| 三上悠亚av全集在线观看| 国产精品成人在线| 51国产日韩欧美| 国产女主播在线喷水免费视频网站| 99九九在线精品视频| 久久鲁丝午夜福利片| av天堂久久9| 久久久久久久亚洲中文字幕| 亚洲国产精品专区欧美| 国产欧美日韩一区二区三区在线 | 国模一区二区三区四区视频| 成年人免费黄色播放视频| 亚洲情色 制服丝袜| 日韩在线高清观看一区二区三区| 国产视频首页在线观看| 亚洲中文av在线| 日本欧美国产在线视频| 久久99精品国语久久久| 亚洲av在线观看美女高潮| 国产成人精品婷婷| 在线精品无人区一区二区三| av电影中文网址| 91午夜精品亚洲一区二区三区| 久热久热在线精品观看| 桃花免费在线播放| 少妇被粗大的猛进出69影院 | 一本久久精品| 婷婷色麻豆天堂久久| 18禁观看日本| xxx大片免费视频| 日韩成人伦理影院| 热re99久久国产66热| 我的老师免费观看完整版| 在线观看www视频免费| 精品久久久久久电影网| 考比视频在线观看| 卡戴珊不雅视频在线播放| 满18在线观看网站| 999精品在线视频| 成人国语在线视频| 18+在线观看网站| 亚洲精品av麻豆狂野| 日本-黄色视频高清免费观看| 51国产日韩欧美| 国产欧美日韩综合在线一区二区| 亚洲欧美色中文字幕在线| 亚洲欧洲精品一区二区精品久久久 | 亚洲欧美日韩另类电影网站| 亚洲欧洲国产日韩| 亚洲精品久久成人aⅴ小说 | 久久这里有精品视频免费| 亚洲精品久久午夜乱码| 永久网站在线| 另类精品久久| 各种免费的搞黄视频| 蜜桃在线观看..| 精品少妇内射三级| 91午夜精品亚洲一区二区三区| 狠狠精品人妻久久久久久综合| 国产男人的电影天堂91| 人人妻人人爽人人添夜夜欢视频| 亚洲精品国产av成人精品| 蜜臀久久99精品久久宅男| 高清在线视频一区二区三区| 一级毛片电影观看| 亚洲成色77777| 精品人妻熟女av久视频| 亚洲精品日韩av片在线观看| 黄色欧美视频在线观看| 久久97久久精品| 人成视频在线观看免费观看| 午夜精品国产一区二区电影| 精品久久国产蜜桃| 看十八女毛片水多多多| 51国产日韩欧美| 亚洲美女视频黄频| 欧美变态另类bdsm刘玥| av国产久精品久网站免费入址| 亚洲精品视频女| 日日啪夜夜爽| 成人漫画全彩无遮挡| 人体艺术视频欧美日本| 久久久精品区二区三区| 97超视频在线观看视频| 国产探花极品一区二区| 成年人午夜在线观看视频| 欧美日韩精品成人综合77777| 国产淫语在线视频| av国产精品久久久久影院| 欧美xxⅹ黑人| 特大巨黑吊av在线直播| 色哟哟·www| 日韩熟女老妇一区二区性免费视频| 国产成人aa在线观看| 精品国产一区二区久久| 国产淫语在线视频| 91精品伊人久久大香线蕉| 日韩av在线免费看完整版不卡| 久久精品国产鲁丝片午夜精品| 在线观看国产h片| 国产高清不卡午夜福利| 国产亚洲一区二区精品| 亚洲国产欧美在线一区| 欧美激情极品国产一区二区三区 | 久热这里只有精品99| 国产成人免费无遮挡视频| 男女啪啪激烈高潮av片| 国产日韩欧美亚洲二区| 欧美日韩视频高清一区二区三区二| 日本-黄色视频高清免费观看| 如何舔出高潮| 国产亚洲午夜精品一区二区久久| 成人亚洲精品一区在线观看| 久久久久国产精品人妻一区二区| 99热网站在线观看| 麻豆成人av视频| 国产老妇伦熟女老妇高清| 国产国语露脸激情在线看| 国产av一区二区精品久久| 一级毛片我不卡| 亚洲熟女精品中文字幕| 秋霞伦理黄片| 亚洲国产最新在线播放| 国产精品一国产av| 男人添女人高潮全过程视频| 热re99久久国产66热| 在线观看免费日韩欧美大片 | 青青草视频在线视频观看| 国产免费一级a男人的天堂| 内地一区二区视频在线| 亚洲av电影在线观看一区二区三区| 午夜福利在线观看免费完整高清在| 久热久热在线精品观看| 男女高潮啪啪啪动态图| 99国产综合亚洲精品| 美女视频免费永久观看网站| √禁漫天堂资源中文www| 九九在线视频观看精品| 国产精品久久久久久精品古装|