• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanism of water oxidation catalyzed by vitamin B12:Redox non-innocent nature of corrin ligand and crucial role of phosphate

    2022-03-14 09:29:10YingYingLiRongZhenLiao
    Chinese Chemical Letters 2022年1期

    Ying-Ying Li,Rong-Zhen Liao

    Key Laboratory of Material Chemistry for Energy Conversion and Storage,Ministry of Education,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica,Hubei Key Laboratory of Materials Chemistry and Service Failure,School of Chemistry and Chemical Engineering,Huazhong University of Science and Technology,Wuhan 430074,China

    ABSTRACT Vitamin B12(macrocyclic cobalamin)has been recently reported to be capable of electrochemically catalyzing water oxidation in a neutral phosphate buffer solution.In this work,density functional calculations were employed to elucidate the water oxidation mechanism catalyzed by vitamin B12.The calculations showed that the catalytic cycle starts from the L?-CoII-OH2 complex 1.A proton-coupled electron transfer process then leads to the formation of a L?-CoIII-OH complex 2,followed by another protoncoupled electron transfer event to afford a corrin ligand radical cation intermediate 3(L?-CoIII-O?).The redox non-innocent nature of the corrin ligand plays an essential role in the oxidation process.3 is capable of triggering the O-O bond formation via a water nucleophilic attack mechanism,in which a hydrophosphate dianion functions as a base to accept a proton from the water nucleophile.A dioxygen molecule is released after the oxidation of the CoIII-OOH intermediate.The rate-determining step was calculated to be the O-O bond formation with a total barrier of 16.5 kcal/mol.While the use of water molecules as the proton acceptor was found to be less feasible for the O-O bond formation,with a barrier of 31.2 kcal/mol,further highlighting the crucial of phosphate in water oxidation.

    Keywords:Water oxidation DFT calculations Mechanism Vitamin B12 Cobalt

    Nowadays,the energy crisis is one of the urgent issues faced by us.Sunlight-driven water splitting in artificial photosystem provides a promising strategy for sustainable and clean hydrogen fuel production[1–5].Water oxidation is a half and crucial step in water splitting,consisting of releasing four protons and four electrons and dissociating the molecular dioxygen.During the last few decades,extraordinary efforts have been devoted to this challenging reaction[6–12].Ru-based water oxidation catalysts(WOCs)are most studied among homogeneous water oxidation communities[13–25].However,considering the cost,low toxicity and availability,first-row transition metal-based complexes are believed to be better candidates for WOCs.Even though significant progress has been made in this field[24–32],the ultimate goal of application in artificial photosystem still needs more efficient,stable and robust WOCs.To achieve this goal,a thorough mechanistic understanding by combing experiments and computation is essential.Quantum chemical calculations are playing more and more critical roles in this area[33–35].

    The commercially available vitamin B12has been reported to be an environmentally friendly catalyst for chemical reactions,such as dehalogenation,CO2electrochemical reduction,hydrogenation of double bonds[36–39].Because of the nontoxic and rich redox chemical property,vitamin B12has attracted more and more attention in the catalytic community.Recently,Verpoort and coworkers reported that vitamin B12could function as a homogeneous WOC electrochemically in pH 7.0 phosphate buffer(NaPi)solution with an overpotential of 0.58 V[40].UV-vis,ESI-MS and FTIR experiments suggested that the catalyst remains its molecular structure up to 11 h[40].The onset potential was observed at 1.2 Vvs.Ag/AgCl,together with a more significant current density of water oxidation at around 1.5 Vvs.Ag/AgCl.The linear relationship between the catalytic current and the catalyst concentration was also established,indicating a unimolecular mechanism.Furthermore,the increase of the concentration of NaPi leads to the linear growth of the current density in the working conditions,which suggested that phosphate ions may play an essential role in water oxidation[40].

    Fig.1.Optimized structures of 1.Distances are shown in ?A in red.Mulliken spin densities on selected atoms are shown in black.The multiplicity is shown in superscript.Hydrogen atoms of methyl are not shown for clarity.

    In the present work,DFT calculations were used to investigate the mechanism of water oxidation catalyzed by vitamin B12and address the role of phosphate ion in this chemical process.The methods used here are to a large extent similar to those in our previous water oxidation studies[33,41,42],and the details are shown in Supporting information.To construct the whole energy diagram,a reference potential of 1.72 Vvs.SHE(corresponding to 1.5 Vvs.Ag/AgCl)was used.

    We first investigated the penta-coordinated complex 1(CoIIIOH2,Fig.1).The corrin ring has four nitrogen atoms coordinating with the cobalt center in the equatorial positions.An imidazole nitrogen atom is interacting with the metal center in the axial direction.The axial water molecule does not coordinate with the metal,instead interacts with the complexviatwo hydrogen bonds with the amide group of the ligand(Fig.1).These two hydrogen bond distances are 2.03 and 1.90 ?A,respectively.1 prefers to be a triplet,while the singlet lies at +5.5 kcal/mol relative to the triplet.As shown in Fig.1 and Fig.S2(Supporting information),the spin density in 1 is partially delocalized on the ligand(total spin density of 0.91).Even though the formal oxidation state of the metal is CoIII,the electronic structure of 1(L?-CoII)would be better described as a low-spin CoIIcenter(SCo=1/2)interacting with a corrin ligand radical cation(SL=1/2).The coordination of water to cobalt to form a hexa-coordinated complex 1’(Fig.S3 in Supporting information)is 3.6 kcal/mol higher in energy.

    The oxidation of 1 to form 2(formally CoIV-OH,Fig.S4 in Supporting information)is coupled with the release of one proton from the water ligand,since the pKaof 2pt(the protonated form of 2,Fig.S2)was calculated to be -5.9.2 is a doublet with the quartet state lying at +16.3 kcal/mol.The redox potential was calculated to be 0.99 V.Taking 1.72 V as a reference,this step is exergonic by 16.8 kcal/mol(Fig.2).The spin delocalization on the ligand(spin density of 1.25)in 2 indicates that its electronic structure(L?-CoIIIOH)can be described as a low-spin CoIII(SCo=0)with a ligand radical cation(SL=1/2)(Fig.S2).The Co-O1 bond is 1.88 ?A in 2.

    Next,a proton-coupled electron transfer(PCET)process of 2 leads to the generation of 3(formally CoV=O,Fig.S3)with a redox potential of 1.69 V.The calculated value is fully consistent with the experimental observation of 1.72 V[40].The pKaof 3pt(the protonated form of 3)was calculated to be 1.8(Fig.S2,3pt).The Mulliken spin population analysis(1.0 on the corrin and 1.0 on O1)suggested that the electronic structure of 3(L?-CoIII-O?)can be interpreted as a low-spin CoIII(SCo=0)interacting with an oxyl radical(SO=1/2)as well as a ligand radical(SL=1/2)ferromagnetically,which is reminiscent of previously reported,cobalt hangmancorroles WOC[43,44].3 is a triplet,while the broken-symmetry singlet is slightly higher in energy,locating at +0.8 kcal/mol above.The Co-O1 distance in 3 is 1.81 ?A which is somewhat shorter than that in 2.

    The formally CoV=O species has been widely proposed to trigger the O-O bond formation for cobalt-based WOCs[34,44–47].Here,two possible mechanistic scenarios for the O-O bond formation were explored.First,a water molecule performs the nucleophilic attack on the oxyl moiety of 3 to form the O-O bond,during which one proton is transferred from the attacking water molecule to phosphate ion,either HPO42?or H2PO4?in working conditions(vide infra).The use of phosphate as a base has been suggested by the experiment and other metal-based water oxidation processes[34,46–50].Second,water molecules in the aqueous solution could also function as a proton acceptor.

    The transition state(TS1)for the water nucleophilic attack(WNA)pathway with the HPO42?behaving as a proton acceptor is shown in Fig.2.TS1 prefers to be a broken-symmetry singlet,and a spin crossing from the triplet to the broken-symmetry singlet is required to prompt the O-O bond formation.In TS1,the atomic spin density on the oxyl radical is 0.49α,while the ligand has the opposite spin density of 0.53β,which provides the most efficient electronic state for the O-O bond formation.(Fig.2)During the OO bond formation,the attacking water molecule provides a pair of electrons to form the O-O bond[33,51].Theα-electron from the nucleophilic water molecule transfers to the ligand,while the proton is transferred to the phosphate.This can be considered an uncommon PCET process in which proton and electron are delivered to different acceptors.Theβ-electron left could easily combine with the oxyl radial to afford the O-O bond,which is similar to our previous work on the iron WOC[41].TS1 was confirmed to have only one imaginary frequency of 1237.2icm?1,which corresponds to the O-O bond formation and proton transfer from water to phosphate.At TS1,the nascent O1-O2 bond distance is 1.96 ?A.TS1 has a barrier of +16.5 kcal/mol above the 3.The triplet state lies at +9.5 kcal/mol relative to the broken-symmetry singlet.Downhill from TS1,the singlet intermediate Int1 with a hydroperoxide coordinated to CoIII(Fig.S4)is generated.In Int1,the O1-O2 bond length is 1.45 ?A,and the Co-O1 distance increases from 1.81 ?A in 3 to 1.83 ?A in Int1.Int1 lies at +4.6 kcal/mol relative to 3.When H2PO4?was used as the proton acceptor,the barrier was calculated to be 17.9 kcal/mol(TS1’,Fig.2),which is 1.4 kcal/mol higher than the HPO42?assisted pathway.The NBO calculations were carried out for the transition states,and the NBO charge for HPO42?moiety in TS1 is ?1.75,while in TS1’the charge is calculated to be ?0.84 for H2PO4?moiety(Table S2 in Supporting information).This explains the favorability for the former pathway for WNA.In TS1’,the O1-O2 distance is 0.03 ?A shorter than that in TS1.In the working condition(pH 7.0,0.1 mol/L NaPi),the concertation of H2PO4?and HPO42?are 0.062 mol/L and 0.038 mol/L,respectively.In any case,the HPO42?assisted pathway is preferred.

    Alternatively,the transition state(TS1’’)with water molecules featuring as the proton acceptor is shown in Fig.2.In this configuration,three more water molecules were added to solvate the generated hydronium explicitly[41,52,53].TS1’’was confirmed as a real transition state with only one imaginary frequency of 610.7icm?1.TS1’’prefers to be a broken-symmetry singlet,in which the oxyl radical and the corrin ligand have opposite spin populations(0.44 on the oxyl,while -0.44 on the ligand).The crucial O1-O2 distance is 1.89 ?A at TS1’’.The Co- O1 length increases to 1.86 ?A from 1.81 ?A in 3.The O2-H1 and O4-H1 distances are 1.02 ?A and 1.58 ?A,respectively.The barrier for this pathway was calculated to be 31.2 kcal/mol,which is much higher than the phosphate pathway(Fig.2).The triplet TS1’’was calculated to be 8.5 kcal/mol higher than the broken singlet.This WNA process also generated the hydro-peroxide intermediate Int1,which joins the previous pathway.

    Fig.2.Gibbs energy profile for water oxidation at the B3LYP-D3 level.Optimized TS1(top right),TS1’and TS1’’(bottom left)in broken singlet are also shown.The imaginary frequencies of TS1,TS1’and TS1’’were 1237.2 i cm?1,1164.0 i cm?1 and 610.7 i cm?1,respectively.Some of the unimportant atoms are not shown for clarity.Distances are shown in ?A in red.Mulliken spin densities on selected atoms are shown in black.

    From Int1,a PECT process leads to the formation of Int2(Fig.S6 in Supporting information)with a redox potential of only 0.13 V.This demonstrated that this oxidation process is quite facile,with an exergonicity of 36.7 kcal/mol(Fig.2).Int2 is a quartet state,while the doublet state is 3.0 kcal/mol higher.In Int2,the triplet dioxygen is already generated since the spin densities on O1 and O2 are 0.95 and 0.99,respectively.Meanwhile,the O2dissociates from the cobalt center with the calculated Co-O1 distance of 3.26 ?A.Furthermore,during the oxidation process,one electron is transferred from the hydro-peroxide moiety to the Co center with the formation of a low spin CoII,whose spin density is 0.99(Fig.S4).The release of O2from Int2 is followed by the binding of a water molecule to form the doublet intermediate Int3(Fig.S4),with the quartet 12.1 kcal/mol higher in energy.This ligand exchange process is exergonic by 4.0 kcal/mol(Fig.2).Finally,the last oneelectron oxidation process from Int3 regenerates 1,with a calculated redox potential of 0.32 V.It should be mentioned that the ligand is involved in this oxidation process,as the spin is partially delocalized on the ligand in 1(L?-CoII).

    From Fig.2,it can be seen that the O-O bond formation is the rate-determining step with a calculated total barrier of 16.5 kcal/mol at the B3LYP-D3 level.It should be mentioned that the use of different applied potentials may change the total barrier.When using a reference potential lower than 1.69 V(oxidation potential of 2 to 3),the total barrier will increase somewhat as the formation of 3 becomes endergonic.For example,when a reference potential of 1.4 V was used to set up the energy diagram,the total barrier increases to 23.2 kcal/mol(Table S1 in Supporting information).If the reference potential is higher than 1.69 V,the total barrier does not change as the formation of 3 is exergonic.3 is the resting state for the O-O bond formation and its electronic structure is L?-CoIII-O?.Therefore,the catalytic activity of water oxidation is assisted by the redox non-innocent corrin ligand,which avoids the access of the high-valent metal center.The use of non-innocent ligands has been disclosed in other metal-based WOCs,a beneficial strategy in the catalytic water oxidation process[11,41,48,54].Furthermore,single-point calculations were performed using the MN15 and MN15L functionals[55,56].The calculated redox potentials and total barriers are summarized in Table 1.For the first oxidation process,the MN15 gives a relatively higher redox potential value than B3LYP-D3 and MN15L.Importantly,all functionals give similar results for the O-O bond formation.When HPO42?was used to accept the proton,the barrier is 14.7 kcal/mol lower than water receiving the proton at the B3LYP-D3 level.Thebarrier differences at the MN15 and MN15L levels are 16.9 kcal/mol and 18.9 kcal/mol,respectively.This demonstrated that HPO42?is a better base for the O-O bond formation in the water oxidation process.

    Table 1 Comparison of redox potentials and total barriers at different levels.a

    To conclude,we provide insights into the mechanism of water oxidation catalyzed by commercially available cobalamin(vitamin B12)through density functional calculations.The suggested catalytic cycle is summarized in Scheme 1,and the corresponding energy diagram is shown in Fig.2.The starting point of the catalytic cycle is the formal CoIII-OH2complex 1.Two sequential PCET processes result in the formation of a formal CoV=O intermediate 3,which can be described as L?-CoIII-O?.The redox non-innocent character of the corrin ligand in the water oxidation was illuminated.3 initiates the O-O bond formationviaWNA with the production of a hydro-peroxide intermediate.Importantly,HPO42?in the phosphate buffer was suggested to be the proton acceptor during the O-O bond formation.This step was suggested to be ratedetermining with a total barrier of 16.5 kcal/mol.The alternative pathway with water accepting the proton during the O-O bond formation was calculated to be kinetically unfavorable since the barrier is 14.7 kcal/mol higher.The triplet dioxygen molecule dissociated from the cobalt center spontaneously after one PCET process from the CoIIIhydro-peroxide intermediate.Finally,the second water molecule enters after the release of O2,followed by another one-electron oxidation process to regenerate 1.

    Scheme 1.Suggested water oxidation mechanism.Inset:The electron flow during the O-O bond formation is described.

    Declaration of competing interest

    All authors declare that no conflict of interest exists.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(No.21873031)and the National Key R&D Program of China(No.2018YFA0903500).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.028.

    精品午夜福利在线看| 国产精品熟女久久久久浪| 国产亚洲91精品色在线| 精品一区二区免费观看| 日韩精品有码人妻一区| 国产精品无大码| 国产黄频视频在线观看| av国产免费在线观看| 日韩av在线免费看完整版不卡| 欧美xxⅹ黑人| 寂寞人妻少妇视频99o| 欧美日韩综合久久久久久| av.在线天堂| 免费观看a级毛片全部| 男女国产视频网站| 国产美女午夜福利| 大又大粗又爽又黄少妇毛片口| 成人亚洲精品一区在线观看 | 日本av手机在线免费观看| 国产 精品1| 老师上课跳d突然被开到最大视频| 国产在线视频一区二区| 国产极品天堂在线| 久久久久人妻精品一区果冻| a 毛片基地| 尤物成人国产欧美一区二区三区| 精品国产一区二区三区久久久樱花 | 搡女人真爽免费视频火全软件| 青青草视频在线视频观看| 在线免费十八禁| 欧美成人精品欧美一级黄| av国产久精品久网站免费入址| 亚洲av日韩在线播放| 久久热精品热| 亚洲欧美精品专区久久| 精品久久久久久久久亚洲| 麻豆精品久久久久久蜜桃| 一本久久精品| 亚洲欧美一区二区三区国产| 99久久人妻综合| 亚洲久久久国产精品| 色网站视频免费| 亚洲精品乱码久久久久久按摩| 成人黄色视频免费在线看| 亚洲伊人久久精品综合| 午夜激情久久久久久久| 欧美国产精品一级二级三级 | 国产又色又爽无遮挡免| 亚洲人与动物交配视频| 超碰av人人做人人爽久久| 最新中文字幕久久久久| 欧美区成人在线视频| 美女中出高潮动态图| 亚洲欧美日韩另类电影网站 | 欧美日韩国产mv在线观看视频 | 久久久久久久国产电影| 中文乱码字字幕精品一区二区三区| 久久久久网色| 特大巨黑吊av在线直播| 午夜免费观看性视频| 熟女电影av网| 国产精品人妻久久久影院| 我要看黄色一级片免费的| 国产 一区 欧美 日韩| 99精国产麻豆久久婷婷| 久久久久视频综合| 99热6这里只有精品| 午夜视频国产福利| 国产一区二区三区av在线| 一级毛片久久久久久久久女| 男人狂女人下面高潮的视频| .国产精品久久| 九九久久精品国产亚洲av麻豆| 一二三四中文在线观看免费高清| 中文字幕人妻熟人妻熟丝袜美| 最近中文字幕2019免费版| 亚洲欧洲国产日韩| 中文字幕精品免费在线观看视频 | 成人特级av手机在线观看| 熟女人妻精品中文字幕| 中文资源天堂在线| 国产精品av视频在线免费观看| 91精品国产国语对白视频| 内地一区二区视频在线| 99精国产麻豆久久婷婷| 欧美国产精品一级二级三级 | 熟女av电影| 免费高清在线观看视频在线观看| 啦啦啦视频在线资源免费观看| 熟妇人妻不卡中文字幕| 免费观看在线日韩| av一本久久久久| 人妻系列 视频| 欧美老熟妇乱子伦牲交| 亚洲欧美精品专区久久| 嫩草影院新地址| 午夜精品国产一区二区电影| 欧美三级亚洲精品| 精品一区在线观看国产| 国产69精品久久久久777片| 国产伦在线观看视频一区| 久久国产乱子免费精品| 一级片'在线观看视频| 久久久久久久久大av| 少妇精品久久久久久久| 亚洲不卡免费看| 中文字幕免费在线视频6| 国产色婷婷99| 伦精品一区二区三区| 大陆偷拍与自拍| 日韩伦理黄色片| 国产视频首页在线观看| 王馨瑶露胸无遮挡在线观看| 狂野欧美白嫩少妇大欣赏| 国产欧美日韩一区二区三区在线 | 99九九线精品视频在线观看视频| 最近手机中文字幕大全| 成人二区视频| a级一级毛片免费在线观看| 99精国产麻豆久久婷婷| av一本久久久久| 超碰97精品在线观看| 成人高潮视频无遮挡免费网站| 久久久久精品久久久久真实原创| 精品一区二区三区视频在线| 亚洲国产精品999| 亚洲熟女精品中文字幕| 能在线免费看毛片的网站| 夜夜爽夜夜爽视频| 久久久亚洲精品成人影院| 久久久精品94久久精品| 精品99又大又爽又粗少妇毛片| av福利片在线观看| 有码 亚洲区| 日韩一区二区三区影片| 少妇高潮的动态图| 少妇人妻 视频| 国产亚洲91精品色在线| 青青草视频在线视频观看| 美女内射精品一级片tv| 国产美女午夜福利| 中文字幕人妻熟人妻熟丝袜美| 亚洲三级黄色毛片| 大香蕉久久网| 国产成人精品久久久久久| 男的添女的下面高潮视频| 久久久久久伊人网av| 国产综合精华液| 亚洲精品日本国产第一区| 一个人免费看片子| 在线播放无遮挡| 人妻夜夜爽99麻豆av| 精品久久久久久电影网| 国产精品一区二区在线不卡| 亚洲精品日本国产第一区| 亚洲图色成人| 欧美+日韩+精品| 国产乱人视频| 在线观看三级黄色| 一本久久精品| 又爽又黄a免费视频| 亚洲经典国产精华液单| 欧美亚洲 丝袜 人妻 在线| av又黄又爽大尺度在线免费看| 国产成人aa在线观看| 免费看光身美女| 久久久久久久久大av| 国产 精品1| 免费看光身美女| 丰满人妻一区二区三区视频av| 亚洲人与动物交配视频| 99精国产麻豆久久婷婷| 国产精品一区二区在线不卡| 丝袜喷水一区| 亚洲精品亚洲一区二区| 啦啦啦在线观看免费高清www| 少妇人妻精品综合一区二区| 色综合色国产| 激情五月婷婷亚洲| 极品少妇高潮喷水抽搐| 亚洲精品亚洲一区二区| 午夜福利影视在线免费观看| 亚洲欧美日韩东京热| 国产精品一及| 亚洲av综合色区一区| 老司机影院毛片| 国产亚洲午夜精品一区二区久久| 极品教师在线视频| 91午夜精品亚洲一区二区三区| 搡老乐熟女国产| 久久久久久久久久久丰满| 边亲边吃奶的免费视频| av在线播放精品| 成人美女网站在线观看视频| 精品国产三级普通话版| 人妻系列 视频| 亚洲成人av在线免费| 亚洲欧洲日产国产| 国产 一区 欧美 日韩| 国产亚洲5aaaaa淫片| av卡一久久| 精品视频人人做人人爽| 一区二区av电影网| 少妇熟女欧美另类| 国产免费一级a男人的天堂| 人人妻人人添人人爽欧美一区卜 | 91午夜精品亚洲一区二区三区| 久久国产亚洲av麻豆专区| 成人综合一区亚洲| 欧美精品一区二区免费开放| 在线 av 中文字幕| 国产男女超爽视频在线观看| 男女国产视频网站| 国产大屁股一区二区在线视频| 午夜日本视频在线| 大香蕉97超碰在线| 女人久久www免费人成看片| 大片电影免费在线观看免费| 成年av动漫网址| 国产女主播在线喷水免费视频网站| 少妇裸体淫交视频免费看高清| 又黄又爽又刺激的免费视频.| 只有这里有精品99| 一本一本综合久久| 亚洲中文av在线| 精品久久国产蜜桃| 久久久a久久爽久久v久久| 日产精品乱码卡一卡2卡三| 国模一区二区三区四区视频| 男女无遮挡免费网站观看| 99国产精品免费福利视频| 久久精品国产鲁丝片午夜精品| 精品少妇黑人巨大在线播放| 亚洲欧美精品专区久久| 亚洲欧美日韩卡通动漫| 亚洲精品国产av蜜桃| 久久鲁丝午夜福利片| av在线观看视频网站免费| 久久久精品94久久精品| 最近2019中文字幕mv第一页| 秋霞伦理黄片| 午夜福利在线观看免费完整高清在| 各种免费的搞黄视频| 我要看黄色一级片免费的| 国产日韩欧美在线精品| 寂寞人妻少妇视频99o| 国产精品三级大全| 国产 精品1| 国产精品人妻久久久久久| 国产精品福利在线免费观看| 日本爱情动作片www.在线观看| 亚洲国产成人一精品久久久| 国产欧美亚洲国产| 一区二区av电影网| 一本久久精品| 国产高清三级在线| 亚洲最大成人中文| 成人黄色视频免费在线看| 国产黄频视频在线观看| 欧美少妇被猛烈插入视频| 国产人妻一区二区三区在| 久久精品熟女亚洲av麻豆精品| 亚洲一区二区三区欧美精品| 国产成人精品婷婷| 亚洲国产色片| 国产淫语在线视频| 久久精品人妻少妇| 噜噜噜噜噜久久久久久91| 美女高潮的动态| 久久鲁丝午夜福利片| 日韩精品有码人妻一区| 最后的刺客免费高清国语| av在线app专区| 免费观看av网站的网址| 欧美精品国产亚洲| a 毛片基地| 国产精品不卡视频一区二区| 精品人妻视频免费看| 亚洲色图综合在线观看| 国产久久久一区二区三区| 全区人妻精品视频| 大码成人一级视频| 久久久久精品性色| 18+在线观看网站| 亚洲欧洲国产日韩| 久久久久久久国产电影| 观看av在线不卡| 青青草视频在线视频观看| 亚洲av成人精品一区久久| 日韩不卡一区二区三区视频在线| 女的被弄到高潮叫床怎么办| 免费人妻精品一区二区三区视频| 亚洲精品第二区| 欧美三级亚洲精品| 大片免费播放器 马上看| 精品少妇黑人巨大在线播放| 超碰av人人做人人爽久久| 人妻 亚洲 视频| 国产精品人妻久久久影院| 丝瓜视频免费看黄片| av播播在线观看一区| a 毛片基地| 成年美女黄网站色视频大全免费 | 亚洲美女黄色视频免费看| 久久久久网色| 成人毛片60女人毛片免费| 亚洲婷婷狠狠爱综合网| 波野结衣二区三区在线| 毛片一级片免费看久久久久| 看十八女毛片水多多多| 一二三四中文在线观看免费高清| 日韩国内少妇激情av| 丰满乱子伦码专区| 国产又色又爽无遮挡免| 狂野欧美激情性xxxx在线观看| 欧美97在线视频| 99久久中文字幕三级久久日本| 亚洲美女搞黄在线观看| 99热国产这里只有精品6| 天堂俺去俺来也www色官网| 国内少妇人妻偷人精品xxx网站| 最后的刺客免费高清国语| 国产午夜精品一二区理论片| 久久国产乱子免费精品| 欧美日韩视频高清一区二区三区二| 国产有黄有色有爽视频| 免费久久久久久久精品成人欧美视频 | 人妻 亚洲 视频| 26uuu在线亚洲综合色| 亚洲国产精品成人久久小说| 欧美老熟妇乱子伦牲交| 搡女人真爽免费视频火全软件| 免费观看性生交大片5| 欧美极品一区二区三区四区| 亚洲精品一二三| 欧美日韩视频精品一区| 嫩草影院新地址| 国产亚洲av片在线观看秒播厂| 色网站视频免费| 亚洲精品国产色婷婷电影| 国产久久久一区二区三区| 日韩欧美 国产精品| 一二三四中文在线观看免费高清| 国产免费又黄又爽又色| 亚洲欧美日韩无卡精品| 婷婷色综合www| 久久久久久久久久成人| 又大又黄又爽视频免费| 成年人午夜在线观看视频| 久久久久久久久久成人| 日韩大片免费观看网站| 亚洲欧美一区二区三区国产| 小蜜桃在线观看免费完整版高清| 纵有疾风起免费观看全集完整版| 日本av手机在线免费观看| av在线app专区| 男女边摸边吃奶| av国产久精品久网站免费入址| 精品一区二区三卡| 亚洲精品日韩在线中文字幕| 校园人妻丝袜中文字幕| 欧美日韩亚洲高清精品| 插逼视频在线观看| 日韩强制内射视频| 久久精品国产亚洲av天美| 纵有疾风起免费观看全集完整版| 色视频在线一区二区三区| 久久精品国产鲁丝片午夜精品| 国产免费一级a男人的天堂| 少妇裸体淫交视频免费看高清| 国产在线一区二区三区精| 国内少妇人妻偷人精品xxx网站| 啦啦啦中文免费视频观看日本| 成人美女网站在线观看视频| 一区二区三区精品91| 国产成人a∨麻豆精品| 成人午夜精彩视频在线观看| 精品人妻视频免费看| 99久国产av精品国产电影| 99re6热这里在线精品视频| 在线观看三级黄色| 亚洲不卡免费看| 一区二区三区精品91| 国产精品久久久久成人av| 久久鲁丝午夜福利片| 欧美另类一区| 国产中年淑女户外野战色| 免费看日本二区| 伊人久久精品亚洲午夜| 97超视频在线观看视频| 蜜桃亚洲精品一区二区三区| 大陆偷拍与自拍| xxx大片免费视频| 欧美3d第一页| 老司机影院毛片| 又大又黄又爽视频免费| 国产欧美另类精品又又久久亚洲欧美| 国产无遮挡羞羞视频在线观看| 99久久精品一区二区三区| 日韩中字成人| 亚洲精品国产av成人精品| 女性生殖器流出的白浆| 欧美性感艳星| 精品视频人人做人人爽| 亚洲一级一片aⅴ在线观看| 久久久久久久久久久丰满| 只有这里有精品99| 亚洲国产精品成人久久小说| 亚洲第一区二区三区不卡| 插阴视频在线观看视频| 亚洲色图av天堂| 91久久精品国产一区二区三区| 亚洲国产毛片av蜜桃av| 黄片wwwwww| a 毛片基地| .国产精品久久| 在线观看国产h片| 国产 一区 欧美 日韩| 国产极品天堂在线| 亚洲欧美清纯卡通| 国产精品一区二区在线观看99| 搡老乐熟女国产| 成年女人在线观看亚洲视频| 日日啪夜夜撸| 亚洲精品日本国产第一区| 女人久久www免费人成看片| 国产精品一区二区在线不卡| 99热这里只有精品一区| 大香蕉久久网| 观看美女的网站| 亚洲欧美成人精品一区二区| 亚洲精品色激情综合| 最近的中文字幕免费完整| 国产成人精品久久久久久| 精品久久久久久久末码| 伊人久久精品亚洲午夜| 丰满乱子伦码专区| 亚洲av不卡在线观看| 中文欧美无线码| 一区二区三区精品91| 美女cb高潮喷水在线观看| 国产精品.久久久| 国产精品爽爽va在线观看网站| 欧美变态另类bdsm刘玥| 亚洲国产精品专区欧美| 最近的中文字幕免费完整| 我的老师免费观看完整版| 天美传媒精品一区二区| 尾随美女入室| 久久热精品热| 91精品国产国语对白视频| 久久亚洲国产成人精品v| 久久影院123| 国产欧美日韩精品一区二区| 日韩伦理黄色片| 蜜桃久久精品国产亚洲av| 26uuu在线亚洲综合色| 欧美成人精品欧美一级黄| av播播在线观看一区| 国产精品一二三区在线看| 亚洲真实伦在线观看| 久久99热6这里只有精品| 亚洲欧美精品自产自拍| 久久人人爽av亚洲精品天堂 | 菩萨蛮人人尽说江南好唐韦庄| 在线免费十八禁| 欧美精品一区二区大全| 国产淫片久久久久久久久| 成人免费观看视频高清| 久久国产亚洲av麻豆专区| 五月开心婷婷网| 美女福利国产在线 | 久久人人爽人人爽人人片va| 中文字幕免费在线视频6| 午夜福利在线在线| 日韩 亚洲 欧美在线| 男的添女的下面高潮视频| 97精品久久久久久久久久精品| 寂寞人妻少妇视频99o| 国内精品宾馆在线| 成人高潮视频无遮挡免费网站| 国精品久久久久久国模美| 久久久久久久久久成人| a级毛片免费高清观看在线播放| av在线老鸭窝| 免费不卡的大黄色大毛片视频在线观看| 中文字幕制服av| 日本色播在线视频| 精品一区二区三区视频在线| 高清午夜精品一区二区三区| 国产免费视频播放在线视频| 视频中文字幕在线观看| 新久久久久国产一级毛片| 久久精品久久久久久噜噜老黄| 亚洲精品456在线播放app| 日韩av在线免费看完整版不卡| 啦啦啦视频在线资源免费观看| 国产成人精品福利久久| 国产av国产精品国产| 国产成人freesex在线| 国产综合精华液| 亚洲国产精品999| 少妇的逼好多水| 国产又色又爽无遮挡免| 成人影院久久| 国产在线男女| 成人特级av手机在线观看| 国产成人午夜福利电影在线观看| 国产精品免费大片| 秋霞伦理黄片| 日本猛色少妇xxxxx猛交久久| 精品一区二区三卡| 观看av在线不卡| 蜜桃久久精品国产亚洲av| 成人黄色视频免费在线看| 建设人人有责人人尽责人人享有的 | 久久久久久九九精品二区国产| 中文乱码字字幕精品一区二区三区| 久久热精品热| 国产成人aa在线观看| 免费高清在线观看视频在线观看| 啦啦啦啦在线视频资源| 亚洲成人中文字幕在线播放| 美女视频免费永久观看网站| 99热国产这里只有精品6| av在线app专区| 国产亚洲91精品色在线| 成人午夜精彩视频在线观看| 激情 狠狠 欧美| 麻豆成人av视频| 青青草视频在线视频观看| 在线精品无人区一区二区三 | 在线天堂最新版资源| av女优亚洲男人天堂| 国产乱人视频| 51国产日韩欧美| 久久99精品国语久久久| 纯流量卡能插随身wifi吗| 最黄视频免费看| 极品少妇高潮喷水抽搐| 一级片'在线观看视频| 免费看不卡的av| 久久人人爽av亚洲精品天堂 | 高清不卡的av网站| 免费av不卡在线播放| 亚洲精品日本国产第一区| 亚洲av国产av综合av卡| 久久久久久久大尺度免费视频| 3wmmmm亚洲av在线观看| 国产大屁股一区二区在线视频| 麻豆国产97在线/欧美| 国产午夜精品一二区理论片| 丰满乱子伦码专区| 久久久久国产网址| 99久久综合免费| 寂寞人妻少妇视频99o| 女性被躁到高潮视频| 午夜福利在线在线| a级毛色黄片| 国产精品偷伦视频观看了| 麻豆乱淫一区二区| 成人黄色视频免费在线看| 精品人妻一区二区三区麻豆| 777米奇影视久久| 小蜜桃在线观看免费完整版高清| 免费大片18禁| www.av在线官网国产| 好男人视频免费观看在线| 制服丝袜香蕉在线| 亚洲精品第二区| 日本午夜av视频| 亚洲国产毛片av蜜桃av| 伦理电影免费视频| 国产欧美亚洲国产| 性色avwww在线观看| 男女边摸边吃奶| 国产v大片淫在线免费观看| 丰满人妻一区二区三区视频av| 赤兔流量卡办理| 综合色丁香网| 女性生殖器流出的白浆| 久久久色成人| 亚洲精品,欧美精品| 蜜桃久久精品国产亚洲av| 各种免费的搞黄视频| 美女中出高潮动态图| 欧美性感艳星| 成人亚洲欧美一区二区av| 日本一二三区视频观看| 日韩一本色道免费dvd| 成人二区视频| 色婷婷av一区二区三区视频| 夜夜爽夜夜爽视频| 人人妻人人添人人爽欧美一区卜 | 免费av中文字幕在线| 亚洲性久久影院| 亚洲高清免费不卡视频| 亚洲精品aⅴ在线观看| 嘟嘟电影网在线观看| 一级毛片 在线播放| 免费看不卡的av| 高清不卡的av网站| 亚洲第一区二区三区不卡| 亚洲精品成人av观看孕妇| 久久久久精品久久久久真实原创| 美女中出高潮动态图| 狂野欧美激情性xxxx在线观看| 欧美激情极品国产一区二区三区 | 一区二区三区乱码不卡18| 男女啪啪激烈高潮av片| 中文字幕亚洲精品专区| 又粗又硬又长又爽又黄的视频| 另类亚洲欧美激情| 少妇猛男粗大的猛烈进出视频| 成年美女黄网站色视频大全免费 |