• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermodynamics-guided two-way interlocking DNA cascade system for universal multiplexed mutation detection

    2022-03-14 09:28:56WeiZhngLiqunLiuYngweiLioWnShuXiofengTngKejunDongZhihoMingXinjinXioHongoWng
    Chinese Chemical Letters 2022年1期

    Wei Zhng,Liqun Liu,Yngwei Lio,Wn Shu,Xiofeng Tng,Kejun Dong,Zhiho Ming,Xinjin Xio,,?,Hongo Wng

    aDepartment of Obstetrics and Gynecology,Union Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430022,China

    bInstitute of Reproductive Health,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430030,China

    ABSTRACT Detection of point mutations in driver genes is of great significance for the early diagnosis,treatment,and prognostic evaluation of cancer.However,current detection methods do not offer versatility,specificity,and rapid performance simultaneously.Thus,multiple mutation detection processes are necessary,which results in long processing times and high costs.In this study,we developed a thermodynamics-guided two-way interlocking DNA cascade system for universal multiplexed mutation detection(TTI-CS).This strategy is based on the DNA probe,which changes the thermodynamic balance of the DNA cascade by the designed bubble structure,thereby achieving a good distinction between mutant and wild-type DNA.The designed method greatly shortens the detection time through two-way intrusion.In addition,this method only changes two inexpensive trigger and bridge sequences,which replace the specific and expensive nucleic acid probes used in analyses based on traditional DNA probe methods,thereby enabling multiple detections.We performed the detection of synthetic single-stranded DNA for the five mutation points and successfully detected in endometrial cancer specimens.The detection limit of this method is 0.1%,which better meets the needs of clinical low-abundance multiple mutation detection.Overall,TTI-CS is currently one of the best methods for detecting multiple mutation detections.

    Keywords:Nucleic acid probes DNA cascade system Universality Low-abundance Multiple mutation detection

    With the development of genomics,increasing clinical evidence is showing that cancer and genetic diseases are closely related to DNA point mutations[1,2].Therefore,the detection of point mutations in driver genes is of great significance for the early diagnosis,treatment,and prognosis evaluation of cancer[3–5].However,the abundance of human mutant DNA is generally low[6,7].Researchers have developed many methods for detecting lowabundance point mutations.The principle of the traditional detection method is that there is a thermodynamic difference between wild and mutant strands caused by a single mutant base,and then polymerase chain reaction(PCR)technology is used to distinguish between the two types of strands[8],such as droplet digital PCR[9],allele-specific blocker PCR[10,11]and co-amplification at lower denaturation temperature-PCR(COLD-PCR)[12,13].However,the length of PCR amplicons is usually in the range of 100–200 bp,and the thermodynamic difference caused by a single mutant base is small;therefore,these methods are not highly sensitive.Moreover,these traditional detection methods cannot distinguish between target amplicons and non-specific products[14].In recent years,researchers have developed next-generation sequencing(NGS)-based methods,such as Sanger sequencing,pyrosequencing,and single-molecule real-time(SMRT)sequencing,which have greatly reduced the sequencing detection limit to approximately 0.02%[15–18].However,the equipment required by these methods is very expensive,thus increasing the cost of detection.

    In view of the limitations of traditional detection and NGS methods,an increasing number of researchers are turning to post-PCR detection methods,such as DNA probes[19],molecular beacons[20],and toehold exchange probes[21].Among them,DNA probes are widely used because of their strong specificity and high sensitivity.The working principle of the preliminary DNA probe is based on thermodynamic changes caused by a mismatch between the DNA probe and wild-type DNA[22].Moreover,the practicality of enzymes provides additional tools for improving the identification ability of DNA probe-based post-PCR detection methods.By coupling the thermodynamic discrimination of the DNA probe with enzymatic signal amplification technology,the detection limit is greatly improved,and the method is simple,fast and cheap.Combination methods based on flap endonuclease[23],endonuclease IV[24]and lambda exonuclease[25]have been established,and the detection limit of such methods can reach 0.01%.The enzymelinked DNA probe method requires the design of specific probes for each mutation site.This necessitates the synthesis of multiple probes,thereby increasing the cost of detection.Moreover,the constant adjustment of the probe sequence during the optimization process greatly increases the difficulty and cost of optimization.

    Fig.1.Schematic illustration of the working principle of TTI-CS.

    Most cancers are caused by multiple mutations[26].Therefore,the establishment of a multiplexed mutation detection method is of great significance for the diagnosis of cancer.Although there have been several methods for multiplexed mutation detection,such as a double-stranded DNA catalyzed strand displacement(dsCSD)system[27],High Resolution Melting(HRM)[28],and NGS method[15–18],they all have some limitations:the dsCSD system is low sensitivity and time-consuming;HRM is not robust;NGS is complicated and time-consuming.Due to these shortcomings,the above method has been greatly restricted in the application of multiple mutation detection.Therefore,there is an urgent need for the development of a universal,rapid,and low detection limit method for application to clinical genetic testing.

    In this study,we developed a thermodynamics-guided interlocking two-way DNA cascade system for universal multiplexed mutation detection(TTI-CS)based on thermodynamic offset.This principle is illustrated in Fig.1.The detection system has five DNA strands,probes labeled with fluorophores(FAM)and quenchers(BHQ),namely trigger,bridge,target,and blocker strands.Regions a and c of a trigger strand combine with a bridge strand to form a stable trigger/bridge complex.However,zone b in the middle of the trigger strand does not match the bridge strand,so a special bubble structure is formed in the trigger/bridge complex.Region b and parts of regions a and c of the trigger strand are also matched with a probe to form a stable trigger/probe complex.The stability of the trigger/bridge complex is greater than that of the trigger/probe complex.This leads to numerous trigger/bridge complexes and a very small amount of trigger/probe complexes at the initial stage of the system reaction process(room temperature,37 °C).However,when a target strand is added to the system,it binds bidirectionally to a trigger/bridge complex through the toehold zone(region d),to form a stable target/bridge/target complex.Moreover,the dissociated trigger strand combines with a free probe in the system,and numerous trigger/probe complexes are also formed.The enzyme then recognizes and binds to the trigger/probe complex to digest the probe.The two labeled fragments dissociate from the trigger strand,tearing apart the fluorophorequencher(FAM-BHQ1)pair and releasing the fluorescent signal.In general,the reaction process of the system is divided into four reactions(reactions 1–4):

    Reaction 4 is an enzymatic cyclic reaction.The trigger freed from a trigger/probe complex continues to combine with a probe strand in the system until all the free probes in the system are cleaved.Therefore,the system can generate a strong fluorescent signal.Reactions 2 and 3 are thermodynamically balanced and stable to achieve linkage,which is key to the working principle of the system.If the influence of the bubble structure is not considered,theoretically,the free energy change(ΔG)is greater than zero for reactions 2 and 3.Therefore,reactions 2 and 3 process does not occur under normal conditions.For linkage to occur in these reactions,ΔGmust be less than zero,which cannot be achieved by adjusting the number of trigger/bridge base pairing.With these facts in mind,we designed a bubble structure on the trigger/bridge complex,which greatly reduces the thermodynamic stability of the trigger/bridge complex.Thus,this bubble structure also greatly reduces the ΔGvalue of the entire reaction,enabling linkage in reactions 2 and 3.When target strands bind to a trigger/bridge complex,the formed trigger/target/bridge/target complex is extremely unstable,and the trigger dissociates.Owing to the existence of single-base mutations in mutant and wild strands,there is a significant difference in the thermodynamics.Thus,we designed the bridge strand to completely match the mutant-type(MT)and mismatch the wild-type(WT),so that the ΔGvalues of reactions 2 and 3 were much smaller for the former than for the latter strand.For the MT,it is easier to combine the trigger/bridge complex to achieve linkage in reactions 2 and 3;hence,it can be distinguished from the WT.Notably,to increase the distinguishing effect of the system on the two types of strands,we added a blocker strand that exactly matched the WT.Thus,by adjusting the length of the blocker sequence,we designed an MT process(reactions 2 and 3)with a ΔG that was significantly less than zero,and a WT process where ΔGwas slightly less or greater than zero.For the MT,the linkage reaction process was as follows(reactions 5 and 6):

    For the WT,the above-mentioned linkage reaction process is difficult to occur.Therefore,when designing the trigger,bridge,and blocker sequences,we needed to determine whether the designed sequence was appropriate,according to the predicted ΔGvalues of the MT and WT reaction processes.In general,the system flexibly adjusts the thermodynamic balance of the reaction through the bubble structure,and a clear distinction between the MT and WT is achieved.It is also important to note that this system uses a strand migration reaction comprising two-way invasion of the target strand,which greatly accelerates the reaction speed and reduces detection time.In addition to adjusting the ΔGvalue of the reaction,the bubble structure also retains part of the sequence,creating a sequence that is unrelated to the target strand.Fig.1 illustrates that the bubble sequence on the trigger strand and the bases on both sides of the bubble is completely unrelated to the target sequence.Therefore,when the sequence of the target strand changes,only the trigger and bridge sequences need to be changed accordingly.This can be achieved at a low cost and short process time.

    We proceeded to verify the feasibility of the designed detection system.Thus,taking the PTEN R130Q(G >A)mutation as the modeling target,we designed and synthesized mutant strand(MT-1);wild strand(WT-1);double-labeled(5′FAM and 3′BHQ1)fluorescent probes containing a purine/pyrimidine(AP)position in the middle of the strand(AP probe);and a series of a bridge,trigger,and blocker sequences(Table S1 in Supporting information).First,based on the ratio rates of MT-1 and WT-1 reaction determined by different trigger/bridge combinations,we chose the bridge-2/trigger-2 combination with the best effect,indicating that the sequence length of the bubble structure is 4 nt(Fig.2a).We then further optimized the reaction conditions,including bridge,blocker sequences and concentration(Fig.S2 in the Supporting information).Subsequently,we used this method under the optimized conditions to measure the fluorescence curves of PTEN R130Q.As shown in Fig.2b,the ratio of the rate of MT-1 and WT-1 was approximately 45.As mentioned earlier,TTI-CS adopts a two-way intrusion strand migration rapid reaction process,so that MT-1 and WT-1 can be distinguished within 60 min.Another highlight is that it is applicable to other enzyme-linked signal amplification strategies.Thus,we next used lambda exonuclease instead of endonuclease IV,while maintaining the other conditions constant(Fig.S3 in Supporting information).The gel electrophoresis experiment proved the occurrence of the above reaction process(Fig.S4 in Supporting information).Subsequently,we built a theoretical calculation model,to predict the best bridge,trigger,and blocker sequences by calculating ΔGduring the entire reaction process of WT and MT,respectively(Supporting information).

    As mentioned above,the most prominent advantage of this system is that for all the DNA point mutations,the probe can remain unchanged,which greatly facilitates multiplexed mutation detection and reduces the cost of detection.We also verified the unique versatility of the system through numerous experimental data.First,we chose BRCA1/c.2082C>T,EGFR L858R as modeling mutation sites and synthesized the corresponding MT,WT,bridge,trigger and blocker strands.Next,through theoretical calculation model and optimization of reaction conditions,we selected the best response sequence(Fig.S5 in Supporting information).Finally,under optimized conditions,we used endonuclease IV to measure the fluorescence curves of BRCA1/c.2082C>T and EGFR L858R.The ratio of the rise rates of the fluorescence signals of MT-2 and WT-2 for BRCA1/c.2082C>T was 9.2(Fig.2c),while that of MT-3 and WT-3 for EGFR L858R was approximately 8.5(Fig.2d).We also used lambda exonuclease to measure the fluorescence curves of BRCA1/c.2082C>T and EGFR L858R.The ratio of the rise rates of BRCA1/c.2082C>T was approximately 6.5,while that of EGFRL858R was 7(Figs.S6a and b in Supporting information).The above experimental data fully prove that in multiple detections,compared to other detection methods,TTI-CS has the advantages of simplicity,speed,and efficiency.

    Overall,we demonstrated the universality and discrimination ability of TTI-CS.We next evaluated the performance of this method in the detection of low-abundance mutations.Thus,taking PTEN R130Q,BRCA1/c.2082C>T,EGFR L858R,PTEN rs1473918395 and PTEN rs943020113 as the target mutations,we used the synthetic WT of each mutation point to dilute the MT,and prepared a series of mixed samples with a mutation abundance in the range of 100%–0.1%.We then used this system to measure the fluorescence curves of all the mixed samples at three mutation points.With the aid of endonuclease IV(Figs.3a–c and Figs.S7a-b in Supporting information),the detection limit of these three mutation points all reached 0.1%,and all of them were completed in less than 1.5 h.With the assistance of lambda exonuclease(Figs.3d–f),the detection limit of these three mutation points also reached 0.1%.This shows that TTI-CS method displays good low-abundance mutation detection performance,fast and stable.Moreover,compared with time-consuming NGS and dsCSD system methods,the detection time of TTI-CS is greatly shortened to 1.5 h in Fig.3,and the most important thing is that the universality is well reflected by 5 mutation sites detected(Fig.3 and Fig.S7 in Supporting information).Notably,TTI-CS based on bidirectional replacement requires the combination of two target strands on a bridge to form a trigger/target/bridge/target complex structure.Therefore,the detection limit of the TTI-CS is affected to a certain extent.In addition,in the detection of low-abundance mutations,the probability of two target strands binding to one bridge is greatly reduced,thereby affecting the detection limit of this method.However,this problem can be eliminated by increasing the concentration of the test target strand by various methods including PCR amplification technology,target strand enrichment technology,to improve the TTI-CS detection limit.

    Notably,it was necessary to explore the feasibility of the TTICS in clinical samples.The workflow is illustrated in Fig.4a:First,we chose PTEN R130Q as the targeting mutation and removed the frozen cancer and normal endometrial tissue from liquid nitrogen.We then designed and synthesized the primers(FP and RP).Next,we extracted genomic DNA from the above-mentioned tissue and amplified the target DNA(WT-1-L and MT-1-L)by PCR.We then detected the PCR products by Sanger sequencing.The results revealed(Fig.S8 in Supporting information)that the mutation abundance of PTEN R130Q in a normal sample was 0%,while in a cancer sample was 50%.We proceeded by diluting the mutant DNA with genomic wild-type DNA to prepare a series of mixed DNA samples with a mutation abundance in the range of 50%–0.1%.We then used two-step(conventional and asymmetric)PCR and further processed the PCR product to obtain the target single strand.Finally,we detected the target single strand using TTI-CS.With the assistance of endonuclease IV,the TTI-CS detection limit was 0.1%,and was completed within 1.5 h(Fig.4b),while with the aid of lambda exonuclease,the TTI-CS detection limit was 0.1%(Fig.4c).In addition,to verify the accuracy of our test results,we used Sanger sequencing to detect the test target single strands(Fig.S9 in Supporting information).The detection results of TTI-CS are clearly consistent with the sanger sequencing results.

    Fig.2.(a)Optimization of the bubble length of bridge/trigger complex.(b-d)With the help of endonuclease IV,the fluorescence curves of PTEN R130Q,BRCA1/c.2082C>T,and EGFR L858R mutation points.

    Fig.3.(a-c)With the help of endonuclease IV,the fluorescence curves for low abundance detection of PTEN R130Q,BRCA1/c.2082C>T,and EGFR L858R mutation points.(d-f)With the help of lambda exonuclease,the fluorescence curves for low abundance detection of PTEN R130Q,BRCA1/c.2082C>T,and EGFR L858R.

    In summary,we changed the thermodynamic balance and characteristics of the containment sequence by employing a bubble structure and used the principle of two-way invasion strand migration reaction to increase the reaction rate and constructed TTICS for low-abundance mutation detection.Using TTI-CS,we performed five-plex detection on three DNA point mutations of PTEN R130Q,BRCA1/c.2082C>T,EGFR L858R,PTEN rs1473918395 and PTEN rs943020113.The probe remained unchanged during the entire detection process and only the bridge and trigger sequences were replaced.This demonstrates the universality and low cost of the designed TTI-CS method.Our system displayed a detection limit of 0.1% in synthetic samples.TTI-CS was also successfully applied to the detection of endometrial cancer tissue samples,and the obtained PTEN R130Q detection limit was 0.1%.This proves the clinical applicability of the method.Overall,TTI-CS has the advantages of good versatility,high sensitivity,good stability and rapidity,and low cost.

    Fig.4.(a)Workflow of clinical sample detection.(b)With the help of endonuclease IV,the fluorescence curve for low abundance detection of PTEN R130Q.(c)With the help of lambda exonuclease,the fluorescence curve for low abundance detection of PTEN R130Q.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the Science and Technology Innovation Project of Hubei Province(No.2019ACA138),the National Natural Science Foundation of China(Nos.81871732 and 81974409).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.067.

    69av精品久久久久久| 午夜福利在线观看吧| 亚洲四区av| 久久国产乱子免费精品| 亚洲电影在线观看av| 色av中文字幕| 成年女人毛片免费观看观看9| 国产视频内射| av在线蜜桃| 国产麻豆成人av免费视频| 草草在线视频免费看| 国产成人aa在线观看| 丰满乱子伦码专区| 日日摸夜夜添夜夜添小说| 免费看光身美女| 女同久久另类99精品国产91| 国产精品久久久久久久久免| 中国美白少妇内射xxxbb| 国产精品一及| 99久久精品热视频| 国产不卡一卡二| 成人鲁丝片一二三区免费| 国产麻豆成人av免费视频| 哪里可以看免费的av片| 色综合婷婷激情| 亚洲成av人片在线播放无| 国产女主播在线喷水免费视频网站 | 三级男女做爰猛烈吃奶摸视频| 亚洲精品在线观看二区| 99久久九九国产精品国产免费| 欧美成人一区二区免费高清观看| 精品一区二区三区av网在线观看| 老司机午夜福利在线观看视频| 亚洲图色成人| 日韩欧美精品v在线| 男人舔女人下体高潮全视频| 久久亚洲精品不卡| 国产成人a区在线观看| 最新在线观看一区二区三区| 久久精品人妻少妇| 国产精品一区二区三区四区久久| 日本与韩国留学比较| 成人鲁丝片一二三区免费| 老司机午夜福利在线观看视频| 中出人妻视频一区二区| 成人欧美大片| 免费不卡的大黄色大毛片视频在线观看 | av国产免费在线观看| 久久久久久伊人网av| 日韩强制内射视频| netflix在线观看网站| 91午夜精品亚洲一区二区三区 | 99久久精品国产国产毛片| 久久精品国产亚洲av天美| 日日干狠狠操夜夜爽| 成年免费大片在线观看| 欧美色欧美亚洲另类二区| 国产精品1区2区在线观看.| 色在线成人网| 十八禁网站免费在线| 春色校园在线视频观看| 国产美女午夜福利| 久久久久久久精品吃奶| 午夜福利欧美成人| 一本精品99久久精品77| av黄色大香蕉| 99热6这里只有精品| 99久久无色码亚洲精品果冻| 少妇的逼好多水| 深夜a级毛片| 亚洲电影在线观看av| 国产伦一二天堂av在线观看| 真实男女啪啪啪动态图| 欧美丝袜亚洲另类 | 搞女人的毛片| 国内精品久久久久精免费| 91精品国产九色| 男人的好看免费观看在线视频| 99九九线精品视频在线观看视频| 免费不卡的大黄色大毛片视频在线观看 | 国产伦人伦偷精品视频| 国产国拍精品亚洲av在线观看| 国产男靠女视频免费网站| 三级男女做爰猛烈吃奶摸视频| 真人做人爱边吃奶动态| 欧美国产日韩亚洲一区| 能在线免费观看的黄片| 亚洲aⅴ乱码一区二区在线播放| 最新中文字幕久久久久| 日本熟妇午夜| 尤物成人国产欧美一区二区三区| 舔av片在线| 国产av在哪里看| 精品久久久噜噜| 免费看日本二区| 亚洲四区av| 最近中文字幕高清免费大全6 | 99riav亚洲国产免费| 我要看日韩黄色一级片| 88av欧美| 在线观看一区二区三区| 亚洲 国产 在线| h日本视频在线播放| 联通29元200g的流量卡| 国产久久久一区二区三区| 一级黄片播放器| 禁无遮挡网站| 69av精品久久久久久| 欧美一区二区国产精品久久精品| 丰满的人妻完整版| 亚洲乱码一区二区免费版| 亚洲国产高清在线一区二区三| 欧美绝顶高潮抽搐喷水| 亚洲av成人精品一区久久| 国产69精品久久久久777片| 成年人黄色毛片网站| 女人十人毛片免费观看3o分钟| 女生性感内裤真人,穿戴方法视频| 黄色女人牲交| 亚洲欧美日韩无卡精品| 99久久久亚洲精品蜜臀av| 成人国产综合亚洲| 在线观看舔阴道视频| 久久久久久久亚洲中文字幕| 婷婷丁香在线五月| 少妇人妻精品综合一区二区 | 99热这里只有是精品50| 欧美高清性xxxxhd video| 久久99热6这里只有精品| 可以在线观看的亚洲视频| 久久九九热精品免费| 日韩欧美精品免费久久| 在线观看午夜福利视频| 欧美成人一区二区免费高清观看| 男女视频在线观看网站免费| 欧美成人性av电影在线观看| 最近视频中文字幕2019在线8| 天堂√8在线中文| 欧美黑人欧美精品刺激| 欧美黑人欧美精品刺激| 波多野结衣高清作品| 99热只有精品国产| 国产精品免费一区二区三区在线| 亚洲精品成人久久久久久| 免费看a级黄色片| 最好的美女福利视频网| 亚洲真实伦在线观看| av天堂在线播放| 嫩草影视91久久| 日韩人妻高清精品专区| 国产女主播在线喷水免费视频网站 | 午夜亚洲福利在线播放| 国产伦人伦偷精品视频| 嫩草影院新地址| 国产伦人伦偷精品视频| 日日干狠狠操夜夜爽| 女人十人毛片免费观看3o分钟| 欧美在线一区亚洲| 少妇猛男粗大的猛烈进出视频 | 日本撒尿小便嘘嘘汇集6| bbb黄色大片| 国产精品嫩草影院av在线观看 | 久久久久久久亚洲中文字幕| 日日夜夜操网爽| 午夜视频国产福利| 国内久久婷婷六月综合欲色啪| 欧美成人性av电影在线观看| 欧美最新免费一区二区三区| 在线播放国产精品三级| 午夜福利成人在线免费观看| 亚洲国产精品合色在线| 亚洲人成网站在线播放欧美日韩| 免费在线观看影片大全网站| 国产一区二区三区av在线 | 伦精品一区二区三区| 免费在线观看影片大全网站| 久久人人爽人人爽人人片va| 桃红色精品国产亚洲av| 欧美高清性xxxxhd video| 内射极品少妇av片p| 国产三级在线视频| 成人特级av手机在线观看| 国产亚洲精品久久久com| 天堂影院成人在线观看| 亚洲欧美日韩东京热| 国产av在哪里看| 久久久久久久午夜电影| 亚洲五月天丁香| 亚洲va在线va天堂va国产| 国产综合懂色| 欧美激情国产日韩精品一区| 日日啪夜夜撸| 乱人视频在线观看| 麻豆成人午夜福利视频| 久久久久久久久久久丰满 | 麻豆久久精品国产亚洲av| 久久精品国产自在天天线| 国产一区二区三区av在线 | 美女免费视频网站| 最近中文字幕高清免费大全6 | 久久久久国产精品人妻aⅴ院| 国内精品美女久久久久久| 亚洲精品日韩av片在线观看| 一个人免费在线观看电影| 日韩亚洲欧美综合| 欧洲精品卡2卡3卡4卡5卡区| 国产av一区在线观看免费| 久久人妻av系列| 亚洲av五月六月丁香网| 国产高潮美女av| 日韩欧美一区二区三区在线观看| 男女之事视频高清在线观看| 欧美色视频一区免费| 精品久久久久久成人av| 精品久久久久久久人妻蜜臀av| 白带黄色成豆腐渣| 欧美激情久久久久久爽电影| 国产精品1区2区在线观看.| 九九久久精品国产亚洲av麻豆| 在线观看美女被高潮喷水网站| 最近在线观看免费完整版| 99精品久久久久人妻精品| 人妻丰满熟妇av一区二区三区| 亚洲av中文字字幕乱码综合| 黄色一级大片看看| 国产女主播在线喷水免费视频网站 | 高清毛片免费观看视频网站| 午夜福利成人在线免费观看| 赤兔流量卡办理| 午夜日韩欧美国产| 色哟哟哟哟哟哟| 波多野结衣高清无吗| 哪里可以看免费的av片| 精品无人区乱码1区二区| 老司机福利观看| 日韩欧美在线乱码| 成人高潮视频无遮挡免费网站| 国产一区二区三区视频了| 亚洲专区中文字幕在线| 久久精品国产亚洲av香蕉五月| 在线观看美女被高潮喷水网站| 能在线免费观看的黄片| 老师上课跳d突然被开到最大视频| 亚洲国产精品合色在线| 在线观看av片永久免费下载| 国产精品国产三级国产av玫瑰| 亚洲精华国产精华精| 蜜桃亚洲精品一区二区三区| 久久久久久久久中文| 成年女人看的毛片在线观看| 热99在线观看视频| 男女之事视频高清在线观看| 精品99又大又爽又粗少妇毛片 | 日本撒尿小便嘘嘘汇集6| 女同久久另类99精品国产91| 久久久久久久精品吃奶| 尾随美女入室| 天堂√8在线中文| 中出人妻视频一区二区| 波多野结衣高清无吗| 俺也久久电影网| 欧美激情国产日韩精品一区| a级毛片a级免费在线| 亚洲人成网站在线播| 91午夜精品亚洲一区二区三区 | 日韩精品青青久久久久久| 最后的刺客免费高清国语| 国产精品99久久久久久久久| 色综合站精品国产| 午夜精品一区二区三区免费看| 午夜福利欧美成人| 一级av片app| 成人av一区二区三区在线看| 美女cb高潮喷水在线观看| 欧美日韩瑟瑟在线播放| 99九九线精品视频在线观看视频| 成人精品一区二区免费| 国产精品免费一区二区三区在线| 欧美国产日韩亚洲一区| 男女下面进入的视频免费午夜| 无人区码免费观看不卡| 国产精品一区二区性色av| 国产精品久久久久久av不卡| 国内精品一区二区在线观看| 99九九线精品视频在线观看视频| 人人妻人人看人人澡| 国产精品,欧美在线| 如何舔出高潮| 亚洲国产精品sss在线观看| 麻豆成人午夜福利视频| 成人特级黄色片久久久久久久| 91在线精品国自产拍蜜月| 小蜜桃在线观看免费完整版高清| 成人特级黄色片久久久久久久| 黄色视频,在线免费观看| 午夜久久久久精精品| 美女大奶头视频| 国产中年淑女户外野战色| 亚洲中文字幕日韩| 久久午夜福利片| 老司机深夜福利视频在线观看| 变态另类丝袜制服| 成人综合一区亚洲| 亚洲精品色激情综合| 99热这里只有精品一区| 深夜a级毛片| 美女 人体艺术 gogo| 欧美三级亚洲精品| 美女cb高潮喷水在线观看| 看十八女毛片水多多多| 久久6这里有精品| 国产精品人妻久久久久久| 国产男人的电影天堂91| 久久久久久久亚洲中文字幕| 在线免费观看的www视频| 亚洲美女搞黄在线观看 | 欧美一区二区亚洲| 看黄色毛片网站| 精品午夜福利在线看| 亚洲不卡免费看| 亚洲专区中文字幕在线| 可以在线观看的亚洲视频| 亚洲第一区二区三区不卡| 一区二区三区免费毛片| 亚洲精品一卡2卡三卡4卡5卡| 18禁在线播放成人免费| 美女被艹到高潮喷水动态| 国产91精品成人一区二区三区| 亚洲av电影不卡..在线观看| 少妇丰满av| 蜜桃亚洲精品一区二区三区| av国产免费在线观看| 欧美丝袜亚洲另类 | 性欧美人与动物交配| 久久欧美精品欧美久久欧美| 少妇人妻精品综合一区二区 | 国产精品电影一区二区三区| 天堂√8在线中文| 日本一本二区三区精品| 亚洲18禁久久av| 在线播放国产精品三级| 久久精品国产清高在天天线| 日韩欧美国产在线观看| 久久中文看片网| 日本在线视频免费播放| 色综合亚洲欧美另类图片| 人妻久久中文字幕网| 亚洲成人精品中文字幕电影| 啦啦啦啦在线视频资源| 国产 一区精品| 欧美丝袜亚洲另类 | 免费黄网站久久成人精品| 日韩欧美精品v在线| 久久99热6这里只有精品| 久久久午夜欧美精品| 51国产日韩欧美| 国产精品一区二区性色av| 99久久精品国产国产毛片| 熟女电影av网| 男插女下体视频免费在线播放| 在线观看免费视频日本深夜| 18禁裸乳无遮挡免费网站照片| .国产精品久久| 天天躁日日操中文字幕| 免费av不卡在线播放| 免费人成视频x8x8入口观看| 成年版毛片免费区| 97热精品久久久久久| 国产黄片美女视频| 日韩欧美精品免费久久| 小说图片视频综合网站| 99久久精品国产国产毛片| 一区二区三区激情视频| 亚洲最大成人手机在线| av.在线天堂| 桃红色精品国产亚洲av| 人妻夜夜爽99麻豆av| 真人一进一出gif抽搐免费| 亚洲国产高清在线一区二区三| 午夜老司机福利剧场| 三级男女做爰猛烈吃奶摸视频| 国产精品久久视频播放| 欧美最新免费一区二区三区| 日韩高清综合在线| av.在线天堂| 久久九九热精品免费| 不卡一级毛片| 午夜爱爱视频在线播放| 日韩欧美国产一区二区入口| 麻豆av噜噜一区二区三区| 亚洲自拍偷在线| 久久精品国产99精品国产亚洲性色| 亚洲欧美日韩无卡精品| 校园春色视频在线观看| 男女做爰动态图高潮gif福利片| 99热这里只有精品一区| 高清日韩中文字幕在线| 99热这里只有精品一区| 欧美+亚洲+日韩+国产| 真人一进一出gif抽搐免费| 麻豆久久精品国产亚洲av| 国内精品宾馆在线| 亚洲专区中文字幕在线| 国产精华一区二区三区| 伦理电影大哥的女人| 听说在线观看完整版免费高清| 免费在线观看日本一区| 亚洲av.av天堂| 最新在线观看一区二区三区| eeuss影院久久| 精品久久久久久成人av| 色吧在线观看| 国产探花在线观看一区二区| or卡值多少钱| 成人高潮视频无遮挡免费网站| 丝袜美腿在线中文| 中文亚洲av片在线观看爽| 国产亚洲精品久久久com| 三级国产精品欧美在线观看| 国产成人aa在线观看| 人人妻,人人澡人人爽秒播| 欧美丝袜亚洲另类 | 中文字幕人妻熟人妻熟丝袜美| 99热网站在线观看| 99热精品在线国产| 欧美性猛交╳xxx乱大交人| 内射极品少妇av片p| 欧美在线一区亚洲| 日韩中文字幕欧美一区二区| 日韩亚洲欧美综合| 日日啪夜夜撸| 免费看av在线观看网站| 在线观看一区二区三区| 国产又黄又爽又无遮挡在线| 欧美精品国产亚洲| 亚洲欧美日韩高清在线视频| 欧美日韩中文字幕国产精品一区二区三区| 亚洲性久久影院| 狠狠狠狠99中文字幕| 国产乱人伦免费视频| 日韩欧美精品免费久久| 亚洲第一区二区三区不卡| 国产人妻一区二区三区在| 又粗又爽又猛毛片免费看| 久久久久性生活片| 婷婷精品国产亚洲av在线| 男人狂女人下面高潮的视频| 九九久久精品国产亚洲av麻豆| 欧洲精品卡2卡3卡4卡5卡区| 国产私拍福利视频在线观看| 真实男女啪啪啪动态图| 国产国拍精品亚洲av在线观看| 国产伦精品一区二区三区四那| 琪琪午夜伦伦电影理论片6080| 国产午夜精品论理片| 欧美激情在线99| 久久香蕉精品热| 好男人在线观看高清免费视频| 成人毛片a级毛片在线播放| 美女 人体艺术 gogo| 精品久久久久久,| 亚洲人成网站在线播| 亚洲综合色惰| 99热这里只有是精品50| 国产一区二区在线av高清观看| 男女做爰动态图高潮gif福利片| 亚洲人成网站高清观看| 嫩草影院精品99| 亚洲最大成人中文| 美女cb高潮喷水在线观看| 中文字幕av成人在线电影| 成人二区视频| 国产91精品成人一区二区三区| 窝窝影院91人妻| 听说在线观看完整版免费高清| 亚洲欧美日韩东京热| 国产成人影院久久av| 日韩欧美 国产精品| 韩国av在线不卡| 国产午夜精品久久久久久一区二区三区 | 欧美成人性av电影在线观看| 亚洲国产高清在线一区二区三| 欧美xxxx性猛交bbbb| 色在线成人网| 一本精品99久久精品77| 久久久久久久午夜电影| 国产精品一区二区三区四区免费观看 | 国产亚洲av嫩草精品影院| 欧美三级亚洲精品| aaaaa片日本免费| 3wmmmm亚洲av在线观看| 精品久久久噜噜| 欧美性感艳星| 一级黄色大片毛片| 无人区码免费观看不卡| 一区福利在线观看| 国产精品电影一区二区三区| 嫩草影院精品99| h日本视频在线播放| 麻豆成人午夜福利视频| 亚洲精品成人久久久久久| 真实男女啪啪啪动态图| 国产精品精品国产色婷婷| 看十八女毛片水多多多| 能在线免费观看的黄片| 18禁黄网站禁片免费观看直播| 一本精品99久久精品77| 久久久精品欧美日韩精品| 亚洲经典国产精华液单| 日本 欧美在线| 国产黄片美女视频| 国产亚洲精品久久久com| av中文乱码字幕在线| 亚洲精品乱码久久久v下载方式| 国产男人的电影天堂91| 一个人看视频在线观看www免费| 色精品久久人妻99蜜桃| 欧美日韩综合久久久久久 | 国产亚洲精品综合一区在线观看| 99国产精品一区二区蜜桃av| 伊人久久精品亚洲午夜| 岛国在线免费视频观看| 日本黄色视频三级网站网址| 97超级碰碰碰精品色视频在线观看| 国产伦精品一区二区三区视频9| 99精品在免费线老司机午夜| 两个人视频免费观看高清| 亚洲中文字幕一区二区三区有码在线看| 97超级碰碰碰精品色视频在线观看| 久久99热这里只有精品18| 国产欧美日韩精品一区二区| 91在线精品国自产拍蜜月| 国产一级毛片七仙女欲春2| 久久99热6这里只有精品| 久久久久久伊人网av| 午夜日韩欧美国产| 欧美黑人巨大hd| 悠悠久久av| 亚洲av不卡在线观看| 哪里可以看免费的av片| 黄色配什么色好看| 真人一进一出gif抽搐免费| 日本色播在线视频| 中文字幕久久专区| 女人十人毛片免费观看3o分钟| 免费在线观看影片大全网站| 人妻久久中文字幕网| 变态另类丝袜制服| 亚洲av五月六月丁香网| 18禁黄网站禁片午夜丰满| 久久精品夜夜夜夜夜久久蜜豆| 联通29元200g的流量卡| av视频在线观看入口| 成人av一区二区三区在线看| 精品99又大又爽又粗少妇毛片 | 亚洲欧美日韩东京热| 最近在线观看免费完整版| 欧美日韩精品成人综合77777| 免费在线观看日本一区| 亚洲aⅴ乱码一区二区在线播放| 91久久精品电影网| 国产v大片淫在线免费观看| 天堂√8在线中文| 国产精品一区二区三区四区免费观看 | 一级黄片播放器| 一进一出好大好爽视频| 国产午夜精品论理片| 给我免费播放毛片高清在线观看| 国产午夜精品久久久久久一区二区三区 | 欧美丝袜亚洲另类 | 亚洲国产日韩欧美精品在线观看| 桃红色精品国产亚洲av| 深夜a级毛片| 大又大粗又爽又黄少妇毛片口| 丝袜美腿在线中文| 欧美+亚洲+日韩+国产| 又爽又黄a免费视频| 欧美一区二区亚洲| 日本黄大片高清| 欧美日韩亚洲国产一区二区在线观看| 少妇的逼好多水| 亚洲经典国产精华液单| 国产日本99.免费观看| 国产精品一及| 熟妇人妻久久中文字幕3abv| 午夜精品在线福利| 在线观看一区二区三区| 午夜免费男女啪啪视频观看 | 99久久成人亚洲精品观看| 俄罗斯特黄特色一大片| 午夜福利在线观看免费完整高清在 | 麻豆国产97在线/欧美| 国产精品1区2区在线观看.| 国产视频内射| 十八禁网站免费在线| 黄色配什么色好看| 午夜激情欧美在线| 99热只有精品国产| 少妇熟女aⅴ在线视频| 成人av在线播放网站| 色综合亚洲欧美另类图片| 亚洲,欧美,日韩| 亚洲欧美日韩高清专用| 久久这里只有精品中国| 久久久久免费精品人妻一区二区| 亚洲最大成人手机在线| 最新中文字幕久久久久| 国产亚洲精品综合一区在线观看| 给我免费播放毛片高清在线观看| 色噜噜av男人的天堂激情| 免费av观看视频| 国产精华一区二区三区| 少妇丰满av| 韩国av一区二区三区四区| 久久久色成人|