• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Aqueous-phase synthesis of upconversion metal-organic frameworks for ATP-responsive in situ imaging and targeted combinational cancer therapy

    2022-03-14 09:28:46LinYngShuidongZhuZhimeiHeXingliLiJingningChenSiBiJunJieZhu
    Chinese Chemical Letters 2022年1期

    Lin Yng,Shuidong Zhu,Zhimei He,Xingli Li,Jingning Chen,Si Bi,Jun-Jie Zhu,?

    aState Key Laboratory of Analytical Chemistry for Life Science,School of Chemistry and Chemical Engineering,School of Life Sciences,Nanjing University,Nanjing 210023,China

    bCollege of Chemistry and Chemical Engineering,Qingdao University,Qingdao 266071,China

    ABSTRACT Herein,the nanoscaled ATP-responsive upconversion metal-organic frameworks(UCMOFs)are aqueousphase synthesized for co-delivery of therapeutic protein cytochrome c(Cyt c)and chemodrugs doxorubicin(DOX),achieving targeted combinational therapy of human cervical cancer.The UCMOFs are rationally fabricated by growing ZIF-90 on mesoporous silica-coated upconversion nanoparticles(UCNPs),in which the ZIF-90 layer attenuates the upconversion luminescence(UCL)and the rigid frameworks increase the stability of encapsulated proteins.Once the UCMOF@DOX/Cyt c are internalized into HeLa cells via specific recognition of sgc8 aptamers,the intracellular ATP triggers the dissolution of ZIF-90 into Zn2+,which facilitates not only the release of Cyt c and DOX but also the restoration of UCL for real-time monitoring of drug release.It has been demonstrated that the therapeutic efficacy is greatly improved by the combination of caspase-mediated apoptosis activated by Cyt c(protein therapeutics),DNA fragmentation induced by DOX(chemotherapy),and Zn2+-promoted generation of reactive oxygen species(ROS)(oxidative stress).Overall,our proposed multifunctional UCMOFs provide an effective platform for targeted combinational cancer therapy and in situ imaging,which hold great promise in biomedical and clinical applications.

    Keywords:Upconversion nanoparticles Metal-organic frameworks ATP response In situ imaging Targeted combinational therapy

    Combinational cancer therapy,in which two or more agents are used to inhibit tumor growth,has drawn tremendous attention in recent years due to its enhanced therapeutic efficacy for cancer cells[1].Chemotherapy is one of the principal modalities in clinical cancer treatments,which however often suffers from the systematic toxicity due to the uptake of drugs by the reticuloendothelial system[2].Notably,protein therapeutics with high specificity,great activity and low toxicity has become an attractive approach for cancer therapy[3,4].Nevertheless,the protein curative efficacy is usually hampered by the poor cell membrane permeability and inhospitable denaturation conditions.Thus,the development of desirable nanovehicles that enable the effective codelivery of chemodrugs and therapeutic proteins for combinational therapy and preserve the biological activity of proteins is in an urgent need.

    Recently,various nanocarriers have been established for drug delivery applications[5,6].However,these nanoplatforms are often challenged by poor stability,nonspecific leakage of drugs during transportation,aggregation and denaturation of protein agents,and so on[7].Alternatively,metal-organic frameworks(MOFs)have emerged as a powerful kind of porous materials for multi-drugs transport[8,9].The drug molecules are confined in the pores of MOFs,which thus significantly increases the encapsulation stability[10-12].In particular,zeolitic imidazolate frameworks(ZIFs)have become the most widely explored MOFs for biomedical applications,which can be synthesized under biologically compatible conditions and readily respond to various cellular microenviroment(e.g.ATP and acidic condition)[13,14].

    Fig.1.Schematics of ATP-responsive UCMOFs for in situ imaging and targeted combinational cancer therapy.

    Moreover,the development of multifunctional nanoplatforms by integrating multimodal therapy within situimaging is of particular interest for tracking the location of nanocarriers and monitoring the release of drugs in cancer therapy with high spatiotemporal resolution.Upconversion nanoparticles(UCNPs),a kind of optical nanotransducers which can convert near-infrared(NIR)light to UV and/or visible light,have been versatilely applied in bioassay and bioimaging,drug delivery systems,and photodynamic therapy due to their deep tissue penetration,low background autofluorescence,high resistance to photobleaching and narrow emission bandwidths[15,16].Currently,the upconversion metal-organic frameworks(UCMOFs)have attracted the interest of researchers in NIR luminescence imaging and cancer treatment[17,18].However,the encapsulation of protein molecules into UCMOFs for protein therapeutics is still limited by the rigid synthesis conditions of UCMOFs,such as high temperature or organic solvents,which can influence the structure and bioactivity of proteins.Thus,the aqueous-phase preparation of UCMOFs is essential to develop the multifunctional nanocarriers for biomolecules delivery.

    Herein,an aqueous-phase synthesis approach has been developed to fabricate UCMOFs for the cytosolic co-delivery of therapeutic protein and chemodrugs,achieving targeted combinational therapy of cervical cancer and real-time monitoring of drug release(Fig.1).Due to the overlapping absorption of organic links 2-imidazolate carboxaldehyde(ICA)of ZIF-90 with UCL emission,the luminescence of UCNPs are effectively quenched by the MOF shell.In this study,a model protein drug Cyt c and small-molecule chemotherapeutic agent DOX are co-encapsulated in ZIF-90 shellviaade novoapproach for combinational therapy.To endow the nanovehicles with targeting capability,the sgc8 aptamers are assembled on the surface of UCMOFs,which can specifically recognize the overexpressed protein tyrosine kinase 7 of cervical cancer cells[19].After internalized into the target cells(e.g.HeLa cells)viareceptor-mediated endocytosis,the UCMOFs are degraded by ATP in the cytosol[9],resulting in the restoration of UCL to monitor the release of the encapsulated drugs(Cyt c and DOX)and metal ions(Zn2+).Here,Cyt c can initiate the mitochondrial apoptosis pathway and result in the programmed cell deathviacaspase-mediated apoptosis[20],while DOX is able to induce the DNA fragmentation in nucleus and inhibit tumor growth[21].In addition,the Zn2+-mediated generation of reactive oxygen species(ROS)can cause the oxidative damage to the cancer cells and further improve the therapeutic efficacy.

    The prepared UCMOFs are first characterized.In this study,a modified thermal decomposition method was used to prepare the oleic acid(OA)coated core-shell-shell UCNP NaYF4:Yb,Er@NaYF4:Yb,Tm@NaYF4(OA-UCNP)[22].The TEM images show that the size of NaYF4:Yb,Er core is 16 ± 2 nm(Fig.2A),which increases to 23 ± 2 nm when coated with the inner shell NaYF4:Yb,Tm(Fig.2B),and then up to 29 ± 3 nm in length after coated with the outer shell NaYF4(Fig.2C).The high-resolution TEM(HRTEM)demonstrates that thed-spacing between the two adjacent lattice planes is 0.52 nm,attributing to the(100)plane ofβ-phase UCNPs(inset of Fig.2C).To promote the growth of ZIF-90 on UCNPs in aqueous phase,a mesoporous silica coating strategy was adopted to convert the hydrophobic OA-UCNP into hydrophilic UCNP@SiO2.Fig.2D shows that UCNP@SiO2with the silica shell thickness of~9 nm can be well mono-dispersed in water.Small-angle X-ray diffraction result confirms that UCNP@SiO2has the standard MCM-41 structure attributed to mesopores of SiO2layer(Fig.S1 in Supporting information).

    Subsequently,ZIF-90 with good hydrophilicity is self-assembled on UCNP@SiO2to form the core-shell UCMOFs[14].Fig.2E shows the uniform and spherical core-shell UCMOF nanostructures with the MOF shell thickness of 14 ± 3 nm.It should be noted that the MOF shell thickness of UCMOFs can be well controlled by changing the ratio of the MOF precursors to UCNP@SiO2.The MOF shell thickness of UCMOFs can be controlled from~9 nm to~28 nm by changing the ratio of the MOF precursors to UCNP@SiO2from 1:1 to 3:1(Fig.S2 in Supporting information).In addition,the crystal structure of UCMOFs is corresponding to the pure hexagonal phase of NaYF4and ZIF-90(Fig.2I).

    Fig.2.TEM images of(A)NaYF4:Yb,Er,(B)NaYF4:Yb,Er@NaYF4:Yb,Tm,(C)NaYF4:Yb,Er@NaYF4:Yb,Tm@NaYF4 in cyclohexane(inset of C:the HRTEM image of UCNPs),(D)UCNP@SiO2,(E)UCNP@SiO2@ZIF-90(UCMOFs),(F)UCMOF@DOX/Cyt c,(G)sgc8-tethered UCMOF@DOX/Cyt c in water,and(H)in 5 mmol/L ATP.Insets of E-H:Highmagnification TEM images of corresponding nanocomposites.(I)PXRD of UCNP@SiO2,ZIF-90,UCMOFs and UCMOF@DOX/Cyt c.(J)UCL emission spectra of NaYF4:Yb,Er,NaYF4:Yb,Er@NaYF4:Yb,Tm and NaYF4:Yb,Er@NaYF4:Yb,Tm@NaYF4,and UV-vis absorption spectra of ICA and ZIF-90.Inset of J:Enlarged UCL emission spectra of NaYF4:Yb,Er and NaYF4:Yb,Er@NaYF4:Yb,Tm.(K)UCL emission spectra of UCMOFs treated with different concentrations of ATP.(L)High-angle annular dark-field scanning TEM(HAADFSTEM)and element mapping images of UCMOF@DOX/Cyt c.Scale bars in A-H:100 nm.Scale bars in L and insets of C and E-H:10 nm.

    Herein,Cyt c and DOX are co-encapsulated into UCMOFsviaade novoapproach,in which MOFs are grown in the presence of proteins and the proteins are embedded in MOFs with small pores,rather than located in large pores[11,12,14].The TEM image exhibits the uniform and mono-dispersed morphology of the resultant UCMOF@DOX/Cyt c with the size of 67 ± 6 nm(Fig.2F),and the composition is verified by elemental mapping images(Fig.2L).As expected,the elements Y and Si are distributed in the UCNP@SiO2core,while the element Zn are mainly present in ZIF-90 shell and S represented Cyt c are homogenously distributed in the whole nanostructures,suggesting the successful encapsulation of Cyt c into UCMOFs.The presence of Cyt c in UCMOFs is further characterized by FT-IR(Fig.S3 in Supporting information).Further,the polyvinylpyrrolidone-surface-adsorbent exchange confirms that Cyt c are mostly embedded in the ZIF-90 shell,rather than just adsorbed onto the surface of ZIF-90(Fig.S4 in Supporting information).The encapsulation efficiency of Cyt c in ZIF-90 shell is calculated to be~60 mg/g by thermogravimetric analysis(TGA)(Fig.S5A in Supporting information).In addition,the powder Xray diffraction(PXRD)pattern shows that the crystalline structure of UCMOF@DOX/Cyt c agrees well with UCMOFs,indicating the little influence of incorporated therapeutic agents on ZIF-90(Fig.2I).Meanwhile,the maximum DOX loading capacity in UCMOFs is calculated to be 356 mg/g by monitoring the UV-vis change of DOX at 490 nm before and after encapsulation in supernatant(Fig.S6 in Supporting information).After tethering sgc8 aptamers on ZIF-90viaelectrostatic adsorption,no significant morphology change is observed(Fig.2G),and the increased hydrodynamic diameter verifies the formation of sgc8-tethered UCMOFs(Fig.S7A in Supporting information).In addition,the zeta potential turns to the negative potential(?13.3 mV)after attaching aptamers due to the negative charge of nucleic acids(Fig.S7B in Supporting information).The simultaneous loading of DOX and Cyt c and attachment of sgc8 aptamers on UCMOFs are further confirmed by UV-vis spectra(Fig.S7C in Supporting information).The coating density of sgc8 aptamers on UCMOFs is calculated to be 3.6 nmol/mg(Fig.S8 in Supporting information).Benefiting from the conjugation with aptamers,the UCMOFs can be well dispersed in not only saline solution but also cell culture medium even after 24 h of incubation(Fig.S9 in Supporting information),indicating the good stability of the fabricated sgc8-tethered UCMOFs in physiological environment.

    By virtue of the competitive coordination between Zn2+and ATP,the ZIF-90 shell can be disintegrated in the presence of ATP,resulting in the simultaneous release of Cyt c and DOX.A quite complete disintegration of ZIF-90 shell is observed after treated with 5 mmol/L ATP(Fig.2H).The release profiles of Cyt c and DOX in response to different concentrations of ATP display an increased release rate with increasing the concentration of ATP(Figs.S5B and S6C in Supporting information).When the UCMOF@DOX/Cyt c are incubated with 0.4 mmol/L ATP(extracellular level of ATP),a slow release rate of Cyt c(25%)and DOX(10%)is observed even after 24 h.In contrast,after incubated with 5 mmol/L ATP for 0.5 h,the release rates of Cyt c and DOX are~30%,which reach to more than 60% at 4 h.Thus,the decomposition of ZIF-90 is dependent on the concentration of ATP.In addition,when the nanocomposites are incubated with cell culture medium,nearly no release of Cyt c and DOX is observed(Fig.S10 in Supporting information).These results indicate that the fabricated UCMOFs can remain intact in extracellular environment(the concentration of ATP is below 0.4 mmol/L)to preclude drug release,while the intracellular environment(the concentration of ATP is 1—10 mmol/L)can facilitate the effective release of drugs,which thus can avoid the drug leakage during the transportation and reduce the side effect to normal tissues.

    Due to the overlap of ICA absorption spectrum with the UCL emission band centered at 345,360,455 and 475 nm,which are assigned to the1I6→3F4,1D2→3H6,1D2→3F4and1G4→3H6transitions of Tm3+respectively,up to 60% of the emission bands can be effectively quenched by the ZIF-90 shell(Figs.2J and K).As increasing the ATP concentration from 0.2 mmol/L to 5 mmol/L,the emission intensity of UCMOFs is increased accordingly due to the decomposition of ZIF-90 shell(Fig.2K).Therefore,the switchable UCL can be applied to monitor the decomposition of ZIF-90 and the release of therapeutic agents.

    Fig.3.(A)CLSM images of HeLa cells incubated with sgc8-tethered UCMOF@DOX for different time durations.Scale bar:25 μm.(B)CLSM images of HeLa cells incubated with free Cyt c and sgc8-tethered UCMOF@Cyt c(Cyt c labeled with FITC)for 6 h.Scale bar:50 μm.(C)CLSM images of HeLa cells incubated with UCMOF@DOX/Cyt c for 6 h.Scale bar:50 μm.

    To determine the protection provided by UCMOFs for protein,the enzymatic activity of Cyt c is investigated upon encapsulation into and release from the UCMOFs,as well as exposure to proteolytic agents and elevated temperature(Fig.S11 in Supporting information).Firstly,the peroxidase activity of free Cyt c is examined and considered as 100% by a standard method,in which ABTS is used as the substrate[10].Compared with free Cyt c,the encapsulated Cyt c in ZIF-90 shows a slightly increased activity(115%),owing to the interaction between Zn2+in the ZIF-90 and the embedded Cyt c[10].Upon treated with 5 mmol/L ATP,the activity of Cyt c released from UCMOFs remains 98%,suggesting that the encapsulation of ZIF-90 has little effect on the activity of Cyt c.After exposure to an elevated temperature of 90 °C for 150 min,the Cyt c encapsulated in ZIF-90 maintains 95% of its original activity,while free Cyt c is deactivated with only 65% of activity reserved.This phenomenon demonstrates that the structural confinement within ZIF-90 can protect the protein conformation of Cyt c[23].In addition,after incubated with protease for 2 h,the ZIF-90 encapsulated Cyt c retains 91% of activity,which is decreased to 24% for free Cyt c.Thus,ZIF-90 can size-exclude the protease and prevent the proteolytic agents from contacting the embedded proteins.Consequently,UCMOFs can protect the protein drugs from the denaturation conditions and enhance the protein therapeutic efficacy.

    The targeting ability of aptamers is investigated by incubating HeLa cells with sgc8-tethered UCMOFs for 6 h.The confocal laser scanning microscopy(CLSM)images show that the HeLa cells reveal a brighter UCL than that of the normal L02 cells(Fig.S12A in Supporting information).Further,HeLa cells are pre-treated with free sgc8 to block PTK7 receptors or treated with random DNAtethered UCMOFs,which result in significantly reduced UCL signals as expected.Moreover,the internalization pathway is examined by colocalized characterization at subcellular level in a single HeLa cell.The spatial separation of UCL from endo/lysosome green fluorescence demonstrates that the UCMOFs are able to escape from endo/lysosome into cytosol after 6 h of incubation,where the drugs are released triggered by ATP(Fig.S12B in Supporting information).

    The release of DOX from UCMOFs is investigated by incubating the sgc8-tethered UCMOF@DOX with HeLa cells for different time periods(Fig.3A).The fluorescence of DOX shows a time-course enhancement,which is finally detected in nucleus,demonstrating the efficient delivery and intracellular release of DOX.The flow cytometric quantification also reveals the time-dependence of DOX uptake in HeLa cells(Fig.S13 in Supporting information).In addition,the HeLa cells show a weak UCL signal after incubation for 1 h,due to the insufficient cellular uptake and luminescence quenching by ZIF-90.When the reaction time reaches 6 h,a strong UCL signal is observed since more and more UCMOFs are internalized into cells with time,and the UCL is recovered owing to the ATPinduced decomposition of ZIF-90.Thus,the enhanced UCL can be used to monitor the release of drugs.

    The delivery of therapeutic protein Cyt c is investigated by labeling Cyt c with FITC and encapsulating FITC-Cyt c into UCMOFs(Fig.3B).The UCMOF@Cyt c-treated HeLa cells reveal a brighter FITC fluorescence than the free Cyt c-treated ones,indicating the efficient delivery of Cyt c by UCMOFs.The co-release of therapeutic agents from UCMOFs is also imaged by CLSM(Fig.3C).After incubation for 6 h,FITC-Cyt c and DOX are observed in the cytosol and the nucleus respectively,further confirming the co-delivery and ATP-responsive release of multi-drugsviaUCMOFs in cancer cells.

    It is known that Zn2+ions can induce the apoptosis through the generation of intracellular destructive ROSviaa p53 pathway[19].The dissociation of ZIF-90 shell into Zn2+ions is confirmed by Zn2+fluorescent probe,zinquin ethyl ester(Fig.S14 in Supporting information).Compared with the non-treated HeLa cells(control),the UCMOFs-treated HeLa cells reveal an enhanced blue fluorescence,which is similar to that of Zn(NO3)2-treated HeLa cells,suggesting the increased Zn2+concentration due to the dissociation of ZIF-90 shell.In addition,the ability of UCMOFs to generate ROS in HeLa cells is monitored by a fluorescent probe,2,7-dichlorofluorescein-diacetate(DCFH-DA),which can be deacetylated by cellular esterase and further oxidized by ROS to emit bright green fluorescence.Compared to UCNP@SiO2,UCMOFstreated HeLa cells reveal stronger green fluorescence of ROS specific probe(Fig.4A).It has been confirmed that the ligands of ZIF-90(ICA)cannot lead to the generation of ROS(Fig.S15 in Supporting information).Thus,intracellular ROS is induced by Zn2+.

    To investigate Cyt c-induced apoptosis pathway,the intracellular Cyt c and active caspase 3 are examined by Western blotting(Fig.4B).The UCMOF@Cyt c-treated HeLa cells display a higher intensity of Cyt c immuno-detected protein band than the DMEMtreated cells or the free Cyt c-treated cells,which indicates the efficient protein deliveryviathe fabricated UCMOFs.In addition,the ratio of active caspase 3 to caspase 3 is increased with the increasing intracellular Cyt c,suggesting that Cyt c can induce the programmed cell death by activating the caspase-mediated apoptotic pathway.

    Finally,the combinational therapy efficacy of sgc8-tethered UCMOF@DOX/Cyt c against HeLa cells is studied by MTT method.The nanovehicles with different formulations demonstrate a dose dependent cytotoxicity(Fig.4C).The UCMOFs show a slight therapeutic performance with the cell viability more than 75%,which is only induced by the Zn2+-mediated ROS production.When the UCMOFs encapsulate Cyt c or DOX,more than 70% cell growth inhibition is obtained at the administration concentration of 90 μg/mL,indicating the therapeutic efficacy of Cyt c or DOX in protein therapeutics or chemotherapy,respectively.In contrast,the free Cyt c shows a negligible cytotoxicity owing to its poor membrane permeability(Fig.S16 in Supporting information),which is consistent with the result of Western blot analysis.Notably,UCMOF@DOX/Cyt c exhibits more than 80% growth inhibition for HeLa cells at a lower administration concentration(50 μg/mL),indicating the promoted therapeutic performance of the combinational therapy.

    Fig.4.(A)CLSM images of ROS in HeLa cells treated with UCNP@SiO2 and UCMOFs,respectively.Scale bar:50 μm.(B)Western blot analysis of expression of Cyt c and active caspase 3 in HeLa cells treated with(I)cell culture medium DMEM(control),(II)free Cyt c,and(III)sgc8-tethered UCMOF@Cyt c.??P < 0.01 vs. free Cyt c(Twotailed Student’s t-test).Inset of B:Corresponding Western blotting images.(C)Cell viabilities and(D)flow cytometric analysis of HeLa cells treated with(I)cell culture medium DMEM(control),(II)sgc8-tethered UCMOFs,(III)sgc8-tethered UCMOF@Cyt c,(IV)sgc8-tethered UCMOF@DOX,and(V)sgc8-tethered UCMOF@DOX/Cyt c.Error bars represent the standard deviations from three independent measurements.

    The combinational treatment efficacy of the fabricated UCMOF@DOX/Cyt c is further investigated by flow cytometry(Fig.4D).Compared to the cell culture medium-treated HeLa cells,the total apoptotic ratio of UCMOFs-treated cells increases to 3%,demonstrating the cytotoxicity of ROS produced by Zn2+.The apoptosis is increased by 7.9% or 57.5% for Cyt c or DOXencapsulated UCMOFs respectively,indicating that the drug-loaded UCMOFs can induce tumor cells into more severe apoptosis than the UCMOFs alone.As expected,the UCMOF@DOX/Cyt c acquires the highest apoptotic ratio of 77.5%,which is consistent with the results of MTT assays.These results are also verified by live/dead cell staining assays(Fig.S17 in Supporting information).

    In summary,the ATP-responsive UCMOFs have been aqueousphase synthesized for simultaneous transport of Cyt c(protein therapeutics),DOX(chemotherapy)and Zn2+(generation of ROS for oxidative stress),achieving targeted combinational therapy of cervical cancerviaspecific recognition of aptamers.The UCL of UCMOFs can be effectively quenched by ZIF-90 shell and restored in response to intracellular ATP,which thus facilitates the realtime monitoring the release of therapeutic agents.Overall,as a robust and versatile multi-drugs delivery nanostructure,the fabricated stimuli-responsive UCMOFs open a new avenue for the development of nanoplatforms for targeted combinational cancer therapy along within situUCL imaging,which holds great promise in biomedical and clinical applications.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We appreciate the support from the National Natural Science Foundation of China(Nos.21834004 and 22076087),the Special Funds of the Taishan Scholar Program of Shandong Province(No.tsqn20161028),the Natural Science Outstanding Youth Fund of Shandong Province(No.ZR2020JQ08),the Youth Innovation Technology Program of Shandong Province(No.2019KJC029),and the Program B for Outstanding PhD Candidate of Nanjing University(No.201902B069).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.07.007.

    av卡一久久| 99久久九九国产精品国产免费| 亚洲成人久久爱视频| 大码成人一级视频| 成人毛片a级毛片在线播放| 国产成人精品一,二区| 舔av片在线| 中文欧美无线码| 女人久久www免费人成看片| 麻豆乱淫一区二区| 亚洲国产欧美在线一区| 身体一侧抽搐| 成人午夜精彩视频在线观看| 日韩亚洲欧美综合| 中文精品一卡2卡3卡4更新| 一个人看的www免费观看视频| 国产老妇伦熟女老妇高清| 国产真实伦视频高清在线观看| 国产成人午夜福利电影在线观看| 精品一区二区三区视频在线| 欧美精品国产亚洲| 大陆偷拍与自拍| 久热久热在线精品观看| 国产黄a三级三级三级人| 亚洲色图av天堂| 99热这里只有精品一区| 一级二级三级毛片免费看| 国产精品国产三级专区第一集| 另类亚洲欧美激情| 下体分泌物呈黄色| 一级毛片 在线播放| 18+在线观看网站| 王馨瑶露胸无遮挡在线观看| 国产高清有码在线观看视频| 国产黄a三级三级三级人| 人体艺术视频欧美日本| 久久久a久久爽久久v久久| 午夜福利视频1000在线观看| 亚洲av男天堂| 一级毛片黄色毛片免费观看视频| 性色avwww在线观看| 亚洲精品自拍成人| 新久久久久国产一级毛片| 日本爱情动作片www.在线观看| 免费观看av网站的网址| 亚洲av不卡在线观看| 超碰av人人做人人爽久久| 亚洲精品自拍成人| 国产一区有黄有色的免费视频| 色播亚洲综合网| 男女下面进入的视频免费午夜| 日韩成人伦理影院| 国产精品久久久久久精品电影小说 | 日日摸夜夜添夜夜添av毛片| 精品久久久精品久久久| 久久精品国产自在天天线| 国产91av在线免费观看| 综合色丁香网| 精品午夜福利在线看| 国产精品成人在线| 熟女av电影| 亚洲精品一区蜜桃| 国语对白做爰xxxⅹ性视频网站| 一级a做视频免费观看| 少妇人妻一区二区三区视频| 波野结衣二区三区在线| 小蜜桃在线观看免费完整版高清| 亚洲国产成人一精品久久久| 亚洲精品国产av成人精品| 国产男女内射视频| 美女主播在线视频| 我的老师免费观看完整版| 日韩国内少妇激情av| 国产一区有黄有色的免费视频| 国产亚洲一区二区精品| 亚洲va在线va天堂va国产| 久久综合国产亚洲精品| 久久精品久久久久久噜噜老黄| 免费在线观看成人毛片| 老司机影院成人| 97精品久久久久久久久久精品| 蜜桃亚洲精品一区二区三区| 成人毛片60女人毛片免费| 亚洲人成网站高清观看| 国产精品一二三区在线看| 嫩草影院入口| 国产黄a三级三级三级人| 欧美日韩视频精品一区| 国产免费福利视频在线观看| 成人午夜精彩视频在线观看| 亚洲成人一二三区av| 亚洲色图综合在线观看| 爱豆传媒免费全集在线观看| 日产精品乱码卡一卡2卡三| 色网站视频免费| 国产精品国产av在线观看| 美女视频免费永久观看网站| videossex国产| 国产精品三级大全| 国产黄色免费在线视频| 亚洲成人一二三区av| 能在线免费看毛片的网站| 大话2 男鬼变身卡| 亚洲精华国产精华液的使用体验| 狂野欧美激情性bbbbbb| 亚洲欧美日韩卡通动漫| 国产欧美另类精品又又久久亚洲欧美| 午夜福利高清视频| 在线a可以看的网站| 午夜免费男女啪啪视频观看| 丝瓜视频免费看黄片| 国产免费又黄又爽又色| 亚洲精品乱码久久久v下载方式| 97热精品久久久久久| 亚洲av福利一区| 男女边摸边吃奶| 欧美最新免费一区二区三区| 欧美潮喷喷水| 日韩一区二区视频免费看| 国模一区二区三区四区视频| 久久久久久久午夜电影| 国产真实伦视频高清在线观看| 欧美xxⅹ黑人| 成人亚洲精品一区在线观看 | 午夜免费鲁丝| 中文精品一卡2卡3卡4更新| 精品久久久久久电影网| 成人黄色视频免费在线看| 中文天堂在线官网| 欧美区成人在线视频| kizo精华| 国产伦精品一区二区三区四那| 久久久a久久爽久久v久久| 亚洲精品国产av蜜桃| 国产精品伦人一区二区| 一本一本综合久久| 免费观看无遮挡的男女| 美女xxoo啪啪120秒动态图| 日本猛色少妇xxxxx猛交久久| 99久久精品热视频| 国产一区二区三区av在线| 日本黄大片高清| 日韩成人伦理影院| 国产精品人妻久久久久久| 色5月婷婷丁香| 大又大粗又爽又黄少妇毛片口| 欧美高清性xxxxhd video| 久久99热6这里只有精品| 大香蕉97超碰在线| 欧美激情在线99| 日韩强制内射视频| 精品一区二区免费观看| 少妇人妻一区二区三区视频| 日日啪夜夜撸| av.在线天堂| 国产黄片美女视频| 欧美老熟妇乱子伦牲交| 成年av动漫网址| 日韩一区二区三区影片| 最近2019中文字幕mv第一页| 国模一区二区三区四区视频| 青春草亚洲视频在线观看| 激情五月婷婷亚洲| 有码 亚洲区| 爱豆传媒免费全集在线观看| 国产真实伦视频高清在线观看| 中文天堂在线官网| 亚洲欧美精品自产自拍| av天堂中文字幕网| 国产毛片在线视频| 欧美高清成人免费视频www| 黄色欧美视频在线观看| 国产 一区 欧美 日韩| 精品亚洲乱码少妇综合久久| 色视频www国产| 亚洲欧美清纯卡通| 日日摸夜夜添夜夜爱| 偷拍熟女少妇极品色| 久久影院123| 草草在线视频免费看| av网站免费在线观看视频| 国产有黄有色有爽视频| 久久女婷五月综合色啪小说 | 在线a可以看的网站| 人人妻人人爽人人添夜夜欢视频 | 亚洲,欧美,日韩| 日韩成人伦理影院| 午夜视频国产福利| 国产探花在线观看一区二区| 国产高清三级在线| 欧美高清性xxxxhd video| 亚洲图色成人| 国产欧美日韩精品一区二区| 国产伦在线观看视频一区| 久久亚洲国产成人精品v| 午夜视频国产福利| 中文字幕久久专区| 观看免费一级毛片| 欧美潮喷喷水| 夜夜爽夜夜爽视频| 亚洲av欧美aⅴ国产| 国产精品无大码| 精品久久国产蜜桃| 国产高清有码在线观看视频| 亚洲精品日本国产第一区| 日本三级黄在线观看| 91狼人影院| 久久久亚洲精品成人影院| 国产精品人妻久久久影院| 天天躁日日操中文字幕| 亚洲精品中文字幕在线视频 | 亚洲成人精品中文字幕电影| 日本wwww免费看| 亚洲精品成人久久久久久| 视频区图区小说| 国产成人免费观看mmmm| 少妇裸体淫交视频免费看高清| 亚洲成人久久爱视频| 一级爰片在线观看| 九九在线视频观看精品| 五月伊人婷婷丁香| 久久综合国产亚洲精品| 日韩一区二区三区影片| 成人欧美大片| 两个人的视频大全免费| 亚洲精品色激情综合| 美女内射精品一级片tv| 国产爽快片一区二区三区| 国产精品99久久久久久久久| 国产精品福利在线免费观看| 欧美国产精品一级二级三级 | 亚洲精品日韩av片在线观看| 午夜免费鲁丝| 成人二区视频| 伊人久久精品亚洲午夜| 欧美日韩精品成人综合77777| 一本一本综合久久| 国产欧美亚洲国产| 欧美国产精品一级二级三级 | 麻豆精品久久久久久蜜桃| 九九在线视频观看精品| 国产综合精华液| 国产成人a区在线观看| av免费观看日本| 亚洲国产色片| 国产黄片美女视频| 成人漫画全彩无遮挡| 国产高清三级在线| 精品国产乱码久久久久久小说| 中文乱码字字幕精品一区二区三区| 免费大片黄手机在线观看| 精品久久国产蜜桃| 中文字幕人妻熟人妻熟丝袜美| 国产精品成人在线| 男人和女人高潮做爰伦理| 成人高潮视频无遮挡免费网站| 九色成人免费人妻av| 亚洲久久久久久中文字幕| 国产乱人视频| 春色校园在线视频观看| 大香蕉久久网| 国产高清国产精品国产三级 | 国产精品久久久久久久电影| 女人十人毛片免费观看3o分钟| 精品久久久久久久人妻蜜臀av| 免费av毛片视频| 成年免费大片在线观看| 两个人的视频大全免费| 成人无遮挡网站| 中国美白少妇内射xxxbb| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品456在线播放app| 中文天堂在线官网| 欧美日韩国产mv在线观看视频 | 国产精品无大码| 老司机影院成人| 亚洲av二区三区四区| 欧美性猛交╳xxx乱大交人| 午夜精品一区二区三区免费看| 91aial.com中文字幕在线观看| 校园人妻丝袜中文字幕| av女优亚洲男人天堂| 中文精品一卡2卡3卡4更新| 亚洲国产精品成人久久小说| 国产伦在线观看视频一区| 五月伊人婷婷丁香| 国产免费一区二区三区四区乱码| 免费人成在线观看视频色| 免费观看a级毛片全部| 欧美性感艳星| videos熟女内射| 欧美亚洲 丝袜 人妻 在线| 国产精品爽爽va在线观看网站| 女人被狂操c到高潮| 亚洲欧美日韩东京热| 亚洲激情五月婷婷啪啪| 国产精品精品国产色婷婷| 狠狠精品人妻久久久久久综合| 夫妻性生交免费视频一级片| 精品国产乱码久久久久久小说| 国产av国产精品国产| 国产免费又黄又爽又色| 午夜福利高清视频| 深爱激情五月婷婷| av黄色大香蕉| 蜜臀久久99精品久久宅男| 舔av片在线| 欧美成人午夜免费资源| 欧美区成人在线视频| 日日啪夜夜撸| 日韩不卡一区二区三区视频在线| 亚洲精品国产色婷婷电影| 啦啦啦中文免费视频观看日本| 五月玫瑰六月丁香| 高清欧美精品videossex| 另类亚洲欧美激情| 91久久精品电影网| 2018国产大陆天天弄谢| 久久精品国产亚洲网站| 国产在线男女| 精品久久久久久久久亚洲| 男插女下体视频免费在线播放| 久久精品熟女亚洲av麻豆精品| 自拍偷自拍亚洲精品老妇| 天美传媒精品一区二区| 免费黄网站久久成人精品| 九九在线视频观看精品| 国产亚洲午夜精品一区二区久久 | 搞女人的毛片| 国内揄拍国产精品人妻在线| 99久久精品国产国产毛片| 波多野结衣巨乳人妻| 久久99蜜桃精品久久| 91久久精品国产一区二区成人| 久久久久久久久久久丰满| 国产免费福利视频在线观看| 精品一区在线观看国产| 狠狠精品人妻久久久久久综合| av天堂中文字幕网| 国产国拍精品亚洲av在线观看| 久久人人爽人人片av| av福利片在线观看| 性插视频无遮挡在线免费观看| 欧美激情国产日韩精品一区| 超碰av人人做人人爽久久| 精品久久久久久久人妻蜜臀av| 大码成人一级视频| 在线观看一区二区三区激情| 亚洲av男天堂| 精品99又大又爽又粗少妇毛片| 国产极品天堂在线| 久久久久性生活片| 欧美亚洲 丝袜 人妻 在线| 国产精品99久久99久久久不卡 | 精品久久久精品久久久| 99精国产麻豆久久婷婷| 18禁裸乳无遮挡免费网站照片| 亚洲最大成人中文| 校园人妻丝袜中文字幕| 十八禁网站网址无遮挡 | 日韩三级伦理在线观看| 一级爰片在线观看| 777米奇影视久久| 男女那种视频在线观看| 丰满人妻一区二区三区视频av| 97在线人人人人妻| 搡女人真爽免费视频火全软件| 亚洲国产成人一精品久久久| 日韩伦理黄色片| 美女视频免费永久观看网站| 精华霜和精华液先用哪个| 热re99久久精品国产66热6| 午夜日本视频在线| 三级国产精品片| 亚洲精品久久久久久婷婷小说| 国产精品99久久99久久久不卡 | 狂野欧美白嫩少妇大欣赏| av网站免费在线观看视频| 在线免费十八禁| 边亲边吃奶的免费视频| 国产精品一区www在线观看| 一级毛片黄色毛片免费观看视频| 大香蕉97超碰在线| 纵有疾风起免费观看全集完整版| 亚洲国产精品成人久久小说| 国产乱人视频| 日韩一区二区三区影片| 欧美日韩在线观看h| 韩国高清视频一区二区三区| 91aial.com中文字幕在线观看| 欧美丝袜亚洲另类| 国产黄色免费在线视频| 99热这里只有是精品在线观看| 神马国产精品三级电影在线观看| 国产乱来视频区| 只有这里有精品99| 91精品国产九色| 美女主播在线视频| 国产久久久一区二区三区| 一区二区av电影网| 国产亚洲av片在线观看秒播厂| 日韩大片免费观看网站| 亚洲在线观看片| xxx大片免费视频| 日韩视频在线欧美| 久久精品综合一区二区三区| 国产成人午夜福利电影在线观看| 美女xxoo啪啪120秒动态图| 麻豆成人av视频| 日韩成人av中文字幕在线观看| 不卡视频在线观看欧美| 性插视频无遮挡在线免费观看| 夫妻性生交免费视频一级片| 大香蕉97超碰在线| 精品人妻偷拍中文字幕| 一级黄片播放器| 国产精品偷伦视频观看了| 又爽又黄无遮挡网站| 亚洲自拍偷在线| 啦啦啦啦在线视频资源| 日韩中字成人| 日本三级黄在线观看| 七月丁香在线播放| 国产成人精品一,二区| 精品午夜福利在线看| 欧美一级a爱片免费观看看| 大片电影免费在线观看免费| 免费看不卡的av| 一级毛片久久久久久久久女| 亚洲国产日韩一区二区| 97热精品久久久久久| 国产精品久久久久久久电影| 简卡轻食公司| 只有这里有精品99| 精品99又大又爽又粗少妇毛片| 菩萨蛮人人尽说江南好唐韦庄| 高清在线视频一区二区三区| 国产男人的电影天堂91| 欧美变态另类bdsm刘玥| 久久久久久久精品精品| 波野结衣二区三区在线| 在线 av 中文字幕| 一区二区三区精品91| 欧美 日韩 精品 国产| 免费播放大片免费观看视频在线观看| 最近最新中文字幕大全电影3| 黑人高潮一二区| 日韩视频在线欧美| 亚洲av电影在线观看一区二区三区 | 欧美三级亚洲精品| 久久久色成人| 久久久久久九九精品二区国产| 韩国av在线不卡| 97人妻精品一区二区三区麻豆| 一级片'在线观看视频| 大香蕉97超碰在线| 日本熟妇午夜| 国产精品爽爽va在线观看网站| 真实男女啪啪啪动态图| 婷婷色综合大香蕉| 韩国av在线不卡| 国产亚洲5aaaaa淫片| 99热6这里只有精品| 欧美日韩一区二区视频在线观看视频在线 | 少妇被粗大猛烈的视频| 久久99热6这里只有精品| 午夜福利高清视频| 老司机影院成人| 一级毛片黄色毛片免费观看视频| 91精品伊人久久大香线蕉| 内射极品少妇av片p| 国产精品女同一区二区软件| 国产伦精品一区二区三区四那| 中文精品一卡2卡3卡4更新| 免费黄频网站在线观看国产| 国产成人免费观看mmmm| 99久久人妻综合| 精品国产乱码久久久久久小说| 亚洲精品影视一区二区三区av| 欧美激情久久久久久爽电影| 嫩草影院新地址| 特级一级黄色大片| 69人妻影院| 免费看光身美女| 欧美性猛交╳xxx乱大交人| 久久精品国产鲁丝片午夜精品| 成人美女网站在线观看视频| 免费观看a级毛片全部| 国产v大片淫在线免费观看| 亚洲成色77777| 少妇裸体淫交视频免费看高清| 中国美白少妇内射xxxbb| 久久久精品94久久精品| a级一级毛片免费在线观看| 国产国拍精品亚洲av在线观看| 成人美女网站在线观看视频| 国产精品国产三级国产av玫瑰| 高清在线视频一区二区三区| 少妇人妻 视频| 成年av动漫网址| 黄片wwwwww| 中文字幕亚洲精品专区| 五月伊人婷婷丁香| 特大巨黑吊av在线直播| 亚洲成人中文字幕在线播放| 亚洲精品456在线播放app| 深夜a级毛片| 成人鲁丝片一二三区免费| 亚洲精品日韩在线中文字幕| 国产成人免费无遮挡视频| 久久久精品免费免费高清| 麻豆国产97在线/欧美| 一级毛片aaaaaa免费看小| 大片电影免费在线观看免费| 成年女人在线观看亚洲视频 | 午夜激情福利司机影院| 2022亚洲国产成人精品| 成年免费大片在线观看| 日韩欧美精品v在线| 国产视频内射| 深夜a级毛片| 国产v大片淫在线免费观看| 亚洲精品成人久久久久久| 久久久久久久大尺度免费视频| 黄片wwwwww| 蜜桃久久精品国产亚洲av| 亚洲av成人精品一二三区| 亚洲av在线观看美女高潮| 国产成人91sexporn| 涩涩av久久男人的天堂| av又黄又爽大尺度在线免费看| 午夜精品一区二区三区免费看| 大片电影免费在线观看免费| 人妻 亚洲 视频| 国产视频首页在线观看| 人人妻人人爽人人添夜夜欢视频 | 青春草视频在线免费观看| 18禁裸乳无遮挡动漫免费视频 | 黑人高潮一二区| 欧美97在线视频| 一级a做视频免费观看| 18+在线观看网站| 国产综合精华液| 九草在线视频观看| 成人无遮挡网站| 天堂中文最新版在线下载 | 波野结衣二区三区在线| 少妇人妻精品综合一区二区| 少妇人妻久久综合中文| 日日摸夜夜添夜夜添av毛片| 一本久久精品| 国产精品成人在线| 免费少妇av软件| 国产高清有码在线观看视频| 交换朋友夫妻互换小说| 欧美高清性xxxxhd video| 久久久精品94久久精品| 在线a可以看的网站| 国产精品国产三级国产专区5o| av免费在线看不卡| 欧美老熟妇乱子伦牲交| 99久久精品国产国产毛片| 亚洲熟女精品中文字幕| 久久精品熟女亚洲av麻豆精品| 色播亚洲综合网| 久久久亚洲精品成人影院| 直男gayav资源| 听说在线观看完整版免费高清| 肉色欧美久久久久久久蜜桃 | 日日撸夜夜添| 国产精品99久久久久久久久| 国产老妇伦熟女老妇高清| 男女下面进入的视频免费午夜| 精品久久久久久久人妻蜜臀av| 一区二区三区免费毛片| 免费高清在线观看视频在线观看| 观看免费一级毛片| 久久精品久久精品一区二区三区| 成人毛片60女人毛片免费| 狠狠精品人妻久久久久久综合| 成人特级av手机在线观看| av天堂中文字幕网| 麻豆乱淫一区二区| 亚洲一级一片aⅴ在线观看| 伊人久久精品亚洲午夜| 黄色视频在线播放观看不卡| 日韩不卡一区二区三区视频在线| kizo精华| 国产亚洲精品久久久com| 日本色播在线视频| 日韩欧美一区视频在线观看 | 丰满乱子伦码专区| 在线天堂最新版资源| 欧美 日韩 精品 国产| 一级毛片电影观看| 夜夜看夜夜爽夜夜摸| 亚洲成人一二三区av| 欧美精品国产亚洲| 国产精品一区二区三区四区免费观看| 毛片女人毛片| 自拍偷自拍亚洲精品老妇| 成人综合一区亚洲| 亚洲婷婷狠狠爱综合网| 91aial.com中文字幕在线观看| 丝袜喷水一区| 69av精品久久久久久| 亚洲精品久久久久久婷婷小说| 国产日韩欧美在线精品| 国产精品久久久久久av不卡| 国产精品成人在线| 欧美潮喷喷水| 一区二区三区乱码不卡18| 国产精品成人在线| 中文字幕久久专区| 国模一区二区三区四区视频|