• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Green rapid synthesis of Cu2O/Ag heterojunctions exerting synergistic antibiosis

    2022-03-14 09:28:44FeiyueHuBoSongXiohnWngShenBoSiyngShngShupeiLvBingbingFnRuiZhngJingguoLi
    Chinese Chemical Letters 2022年1期

    Feiyue Hu,Bo Song,Xiohn Wng,Shen Bo,Siyng Shng,Shupei Lv,Bingbing Fn,?,Rui Zhng,c,Jingguo Li,b,?

    aSchool of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China

    bPeople’s Hospital of Zhengzhou University,Henan Provincial People’s Hospital,Zhengzhou 450003,China

    cSchool of Material Science and Engineering,Luoyang Institute of Science and Technology,Luoyang 471023,China

    ABSTRACT Semiconductor-noble metal composite has become a research focus due to its superior performance compared with its respective component.Although various methods have been developed to synthesize semiconductor-noble metal heterostructures,most of them are relatively complex multistep and use toxic reactants of high cost and risk.In this work,a series of Cu2O/Ag heterojunctions were quickly prepared in one step via simple microwave-assisted green route.XRD,SEM,TEM,EDS,XPS, etc.were used to characterize obtained products,and the results indicate a Cu2O/Ag metal-semiconductor heterojunction in micro-nano size was fabricated successfully.In addition,antibacterial behavior of Cu2O/Ag heterojunctions against E.coli and S.aureus were investigated.Owing to the synergistic effect of Cu2O and Ag,the heterojunction exhibits much better antibacterial performance than the pristine Cu2O does.This work provides new insights into the green design and fabrication of surface-modified Cu2O hybrid multifunctional materials for antibacterial applications.

    Keywords:Cu2O/Ag heterojunctions Green synthesis Microwave-assisted Antibacterial Synergistic effect

    Semiconductor-noble metal composites of hybrid nanostructure could retain original merits of each constituent and simultaneously display attractive comprehensive properties[1,2].Various methods have been developed to synthesize semiconductor-noble metal heterostructures by assembling noble metal nanoparticles such as Ag,Au,Pd,and Pt to the surface of semiconductor[3,4].

    In recent years,some scholars have proposed to construct a metal-semiconductor heterojunction to promote the transfer of electrons and holes between Cu2O and Ag,and further improved the stability and property of Cu2O[5].As an important semiconductor of direct band-gap of about 2.1 eV,non-toxicity,low price,and good environmental friendliness[6,7],Cu2O has aroused much interest owing to its potential applications,especially in antimicrobial area.Meanwhile,Ag is a relatively cheap precious metal of excellent broad-spectrum,strong durability and safety,and has showed usability in various medical areas[8,9].Microbes hazard real world seriously,such as health and safety issues of human beings,metal surface corrosion and equipment-related infections[10–13].Yet,only a few researches focused on the antibacterial properties of Cu2O/Ag heterojunctions[14],and others mostly investigated their photocatalytic applications and surface-enhanced Raman scattering(SERS)[15-17].Most semiconductor-noble metal composites are prepared using relatively complex multistep methods and toxic reactants,which has the characteristics of high energy consumption and risk.Therefore,it is quite necessary to explore the green rapid synthesis of Cu2O/Ag as an emerging efficient fungicide in the field of pollution-free sterilization.

    In this communication,a simple microwave-assisted method was used to prepare Cu2O/Ag heterojunction and the antibacterial behavior of it was investigated.By bringing advantages of microwave synthesis such as energy-saving and large efficiency,Cu2O/Ag heterojunctions in micro-nano size could be produced in just a few minutes.Meanwhile,this method is green and environmentally friendly by using glucose as reducing agent and safe and reliable without using strong alkali.

    Fig.1.(A)Schematic illustration of the facile method to prepare samples.(B)SEM images of prepared Cu2O/Ag composites:(i)T1,(ii)T2,(iii)T3 and(iv)T4.Scale bar:1 μm.(C)XRD patterns of prepared Cu2O/Ag composites.For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.

    Experimental details are provided in Supporting information.As-prepared Cu2O/Ag hybrids of various molar ratios of AgNO3:Cu(Ac)2(0,1:15,1:9 and 1:3,respectively)are indexed as T1,T2,T3 and T4.Fig.1A exhibits the simple microwave-assisted one-step synthesis of Cu2O/Ag heterojunctions.Fig.1B shows the morphology of as-prepared composites and it can be easily found that the size of Cu2O particles decreased obviously with the increase of molar ratio of AgNO3:Cu(Ac)2(nAgNO3:nCu(Ac)2).The average particle size of pure Cu2O prepared without addition of AgNO3(T1)is between 0.9 μm and 1.2 μm(Fig.1B,image i).When nAgNO3:nCu(Ac)2=1:15,Cu2O particles of the composites become much smaller(400-500 nm)and Ag particles in flake geometry exist alone(Fig.1B,image ii).When nAgNO3:nCu(Ac)2increases to 1:9,a triangular sheet-like heterostructure of a side length of about 700 nm appears(Fig.1B,image iii).The formation mechanism of triangular flakes could be in following routine:Silver nanosheets generates initially,and then act as the nucleating substrate of Cu2O;Cu2O finally develops into a triangular flake heterojunction structure in the microwave-assisted synthesis process.Therefore,Cu2O particles and Ag would form close contact in this step.In the same way,a lot of Ag nanoparticles generate and act as nucleation sites before Cu2O begins to nucleate,which brings about the decrease in size of Cu2O.When of nAgNO3:nCu(Ac)2goes up further,Ag/Cu2O triangular flakes disappear and the particles tend to agglomerate(Fig.1B,image iv).

    Fig.1C shows the XRD patterns of prepared samples.It could be easily found that all the composites show strong diffraction peak intensity at the characteristic peak locations corresponding the Cu2O phase of cubic crystal structure(space group:Pn3m,JCPDS 5-667)with fitted lattice parameter ofa=0.430 nm.In addition,there are extra peaks(plum notations)emerging in the XRD patterns of Ag/Cu2O products(T2,T3,T4)due to the introduction of Ag,and the XRD peaks at 2θdegrees of 38.116°,44.277°,64.426°,77.472°,and 81.536° can be attributed to the(111),(200),(220),(311),and(222)crystalline planes of the FCC crystalline structure of Ag,respectively(space group:Fm-3m,JCPDS 4-783)with fitted lattice parameter ofa=0.409 nm[18].Meanwhile,no other peaks representing impurity are identified in XRD patterns,indicating that the high purity of the as-obtained products.With the increase of nAgNO3:nCu(Ac)2,the intensity of the Ag peaks increased obviously,which indicated that the Ag content in the composites was positively correlated with the amount of AgNO3added.

    Morphology and microstructure of T3 were further characterized by TEM and HRTEM and shown in Fig.2A.Image i in Fig.2A demonstrates the unique geometry of triangular and spherical heterostructures of T3,which is consistent with the geometry observed using SEM(Fig.1B,image iii).Image ii in Fig.2A indicates an obvious interface between Ag and Cu2O at larger magnification and it can be seen clearly from the TEM image that the thickness of Ag layer is around 30 nm.The interplanar spacing shown in the left area of image iii in Fig.2A is 0.245 nm,which corresponds to the spacing between the(111)lattice planes of Ag.While the interplanar spacing in the right area is 0.298 nm,corresponding to the spacing between the(110)lattice planes of Cu2O.Image iv in Fig.2A is the selected-area electron diffraction(SAED)image of the interface between Ag and Cu2O,indicating that the composite has a single-crystal structure.It is clear that the generation of Cu2O/Ag heterojunction occurs during the microwave synthesis process according to the above results.

    EDS mapping of T3 is conducted and the result is shown in Fig.2B.It confirms the coexistence of Ag,Cu,and O elements in the Cu2O/Ag heterojunctions and further proves that the composite material is not just a simple mixture of Ag particles and Cu2O particles,but a micro-nano composite that is tightly bound together.UV-visible absorption spectra of prepared composites are shown in Fig.2C.It can be seen that Cu2O has a good absorption in the range of 400-600 nm.The absorption of the Cu2O/Ag heterojunctions in the visible light range is significantly enhanced after comparing curves T2,T3 and T4 with T1.The band gap can be determined from the tangent intercept of the(αhv)2~(hv)graph,whereαis the absorption coefficient,his the Planck constant,andvis the frequency(Fig.2D).The band gap energies of the original Cu2O microspheres and the Cu2O/Ag heterojunction obtained by adding silver nitrate gradually are~2.1,1.9,1.6,and 1.4 eV,respectively.As the Ag content increases,the band gap energy decreases.The red shift of the adsorption edge and the reduction of band gap energy are mainly attributed to the Schottky effects between Ag and Cu2O[19].

    XPS scan is performed to further investigate the composition and the elemental states of T3.The binding energies in the XPS spectra presented in Figs.2E-H are calibrated by referring that of C 1s(284.8 eV).In Fig.2E,all peaks in the curve can be ascribed to Cu,Ag,O and C elements.The presence of C mainly comes from the hydrocarbon of the XPS instrument itself.The peaks at 932.1 and 952.1 eV are assigned to the Cu 2p3/2and Cu 2p1/2of Cu2O(Fig.2F).No peak corresponding to CuO(933.6 eV)is detected.The peaks at 368.2 and 374.2 eV should be assigned to Ag 3d5/2and Ag 3d3/2,respectively(Fig.2G),and the splitting of the 3d doublet is 6.0 eV,which hints that Ag is of metallic nature[18].The O 1s region shown in Fig.2H could be fit into two peaks.The main peak(530.7 eV)is attributed to Cu-O in Cu2O whereas the minor peak(531.9 eV)can be ascribed to O adsorbed at the surface of the sample[20].

    Minimal inhibition concentration(MIC)and minimal bactericidal concentration(MBC)can be used to quantitatively evaluate the antibacterial property of substrates.The microplate reader is a routine instrument for enzyme-linked immunosorbent assay,which utilizes material absorption spectroscopy and visible light colorimetric technique.It is widely used in microbiology because of its rapid detection and tracing of microbe microstructures.Due to the scattering and absorption of bacteria,when light passes through the bacterial suspension,the optical density(OD)value can represent the concentration of bacteria within a certain range[21].The larger the OD value,the higher the bacterial content,and the poorer the antibacterial performance.Therefore,the antibacterial effect of antimicrobial agents can be characterized by measuring the OD of the bacterial solution with a spectrophotometer.

    MICs of Cu2O/Ag heterojunctions against Gram-negative bacteria(E.coli)and Gram-positive bacteria(S.aureus)were determined by Methyl Thiazolyl Tetrazolium(MTT)assay.As shown in Figs.3B and D,at higher Cu2O/Ag concentration,the cell viability is lower than that at other small concentrations of Cu2O/Ag.This is due to that high concentration Cu2O/Ag heterojunctions could directly inhibit the growth of bacteria.When the inorganic antibiotics are of small concentrations,bacteria propagate fast since they show large bacterial cell viability.

    Fig.2.(A)Morphology and composition of Cu2O/Ag heterostructure in sample T3:(i)Cu2O/Ag heterostructure morphology;(ii)edge of heterostructure in(i)at larger magnification;(iii)HRTEM image of heterostructure showing composition information,and(iv)SAED pattern of(iii).(B)Elemental mappings of T3.(C)UV-visible absorption spectra of Cu2O/Ag composites.(D)Plots of(αhv)2vs.hv for the Cu2O/Ag composites.(E)XPS full spectrum of the sample T3.(F)Cu 2p spectrum.(G)Ag 3d spectrum.(H)O 1s spectrum.

    To quantitatively assess the antibacterial activities of Cu2O/Ag heterojunctions,MICs and MBCs ofE.coliandS.aureusbacteria are shown in Table S1(Supporting information).MICs of T1(pure Cu2O)againstE.coliandS.aureusare 7.8 and 15.6 μg/mL,respectively.When the Cu2O/Ag heterojunction is introduced,MICs of both bacteria decrease dramatically.MICs in T3 trail againstE.coliandS.aureusare 0.5 and 1.0 μg/mL,presenting a best antibacterial performance in this work.This superiority is attributed to the unique triangular sheet heterostructure of Cu2O/Ag,which provides a stronger synergistic effect on the antibacterial activity when compared with single Cu2O or Cu2O/Ag heterojunctions of other ratios.In addition,compared with other antimicrobial agents,such as Cu2O[22],Cu2O@ZrP[23]and RGO-Cu2O[24],our Cu2O/Ag heterojunctions are equally excellent or even more outstanding in antimicrobial applications.Then,to further evaluate the antimicrobial activity of the materials,MBC tests againstE.coliandS.aureuswere performed in all sample trails and by using colony counting methods(Figs.3A and C).Obviously,E.coliandS.aureusColony Forming Units(CFUs)sharply decrease with increasing concentrations of antibacterial agents.All samples including T1 show a bactericidal effect on both two kinds of bacteria and T2,T3 and T4 are more potent than T1.Like the results of MTT assay mentioned above,T3 has the highest antibacterial performance among all four samples.Another point needs to be emphasized is,all four samples show a better antibacterial effect when dealing withE.coliis.This is due to the peptidoglycan layer ofE.coliis thicker than that ofS.aureus,makingS.aureusless sensitive to nanoparticles thanE.coli[25].

    In order to study the antibacterial mechanism of Cu2O/Ag heterojunctions,two fluorescent nucleic acid dyes,4′,6-diamidino-2-phenylindole(DAPI)and polyimide(PI),were used to stain bacteria.DAPI marks both live and dead cells,while PI can only penetrate cells having compromised or damaged membranes(dead cells).Therefore,they can be used to test whether the bacteria are live(blue)or dead(red).As shown in Fig.4A,E.coliandS.aureuscells are almost completely stained by PI,which indicates damaged cell walls and membranes and/or mass cell death after treatment using 50 μg/mL T3 solution for 1 h[26].

    Fig.3.MBC measurements against(A) E.coli and(C) S.aureus:(i)T1,(ii)T2,(iii)T3 and(iv)T4.Bacterial cell viability of(B) E.coli and(D) S.aureus:(i)T1,(ii)T2,(iii)T3 and(iv)T4.

    Fig.4.(A)Fluorescence images of live and dead bacterial cells after incubation with T3 at a concentration of 50 μg/mL for 1 h.(B)Effects of T3 composites on the morphology of E.coli and S.aureus as examined by scanning electron microscopy:(i) E.coli without any treatment,(ii) E.coli treated with T3 particles,(iii)the larger multiples of(ii),(iv)S.aureus without any treatment,(v) S.aureus treated with T3 particles,and(vi)the larger multiples of(v).(C)Schematic illustration of the possible synergistic antibacterial mechanism of Cu2O/Ag heterojunctions(T3).

    Zeta potential measurement was made on all the samples(Table S2 in Supporting information).The zeta potential of single Cu2O was–2.6 mV.While the zeta potential of all Cu2O/Ag heterojunctions was greater than 10 mV,which can greatly improve the adsorption contact between the samples and the bacteria because the surface of the bacteria is generally negatively charged[27].T3 composites have the best adsorption capacity for bacteria,which may bring mechanical damage to the bacterial cell membrane more easily.To better understand the antimicrobial mechanism,SEM was used to study the interactions between T3 composites and bacteria.As shown in image i in Fig.4B,the untreatedE.colicells are typically rod-shaped having smooth cell surface with intact cell.Yet,when treated with T3 particles,the number ofE.colicells significantly reduces and cells are not intact due to the distortion and deformation of cell wall and cell membrane(Fig.4B,images ii and iii).Significant loss of integrity of cell membrane may possibly lead to the death of cell.Similarly,untreated GrampositiveS.aureuscells are generally spherical,having smooth and normal cell wall and cell membrane(Fig.4B,image iv).After treating with Cu2O/Ag,S.aureuscells are not intact due to the distortion and deformation of cell wall and cell membrane and much substance in the cells leaks out,representing significant loss of integrity of cell membrane that may possibly bring about cell death(Fig.4B,image v).As shown in image vi in Fig.4B,Cu2O/Ag particles are tightly adsorbed by the bacteria surface,leading to the deformation and damage of the cell membrane,which is the reason that the bacteria are eliminated.

    According to previous studies,the bactericidal mechanism of Cu2O is mainly the release of Cu2+ions and the promotion of the production and accumulation of reactive oxygen species(ROS)inside bacteria[28,29].The bactericidal mechanism of Ag nanoparticles is mainly the puncture effect of the tiny size on bacterial cell membranes[30].The synergistic effect of Cu2O and Ag nanoparticles could promote the migration of electrons and holes from the core of Cu2O to the surface of Ag,resulting in an increase in the production of ROS that will put destructive oxidative stress to bacteria[14].The synergistic antibacterial effect of Cu2O and Ag as a heterojunction is testified in this study.As shown in Fig.4C,possible multi-level synergistic antibacterial mechanisms are proposed:1)The formation of Cu2O/Ag heterojunction enhanced the adsorption capacity,and its sharp edges had a significant piercing effect on the bacterial surface,resulting in the bacteria to burst and die;2)The released Cu2+is quite toxic to bacteria;3)Cu2O/Ag could promote surface charge transfer,and the transferred electrons and holes would induce excessive accumulation of toxic substances that damage DNA,inactivate protein and finally kill bacteria.

    In summary,Cu2O/Ag heterojunctions were developed using a green microwave-assisted method in this work.The microwaveassisted synthesis of Cu2O/Ag heterostructures exhibit much better antibacterial properties than that of pristine Cu2O.Besides,T3(nAgNO3:nCu(Ac)2=1:9)has a heterogeneous structure of microspheres/triangular sheets that is different from other samples,resulting in better adsorption and sterilization of bacteria.The investigation of the antibacterial mechanism of Cu2O/Ag heterojunctions suggests that the mechanical damage to the cell membrane by the sharp edges,the release of Cu2+ions,and the promotion of the rapid production of toxic substances contributed to the antibacterial activity together.Thus,the synergistic effect of Cu2O/Ag heterojunction makes it a potential candidate that can be exploited for various biomedical and other industrial applications.Additionally,the excellent performance of the microwave-assisted method in the fast,green and efficient synthesis of two-phase heterojunctions provide novel research ideas for the modification of inorganic fungicides.

    Declaration of competing interest

    There are no conflicts to declare.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China(Nos.U2004177 and 21504082),Zhongyuan Thousand Talents Plan Project,Outstanding Youth Fund of Henan Province(No.212300410081)and Natural Science Research Project of Henan Educational Committee(No.20A43001).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.07.018.

    最新美女视频免费是黄的| 久久久久久九九精品二区国产| www.自偷自拍.com| 99精品欧美一区二区三区四区| 精品国产乱码久久久久久男人| 国产欧美日韩一区二区精品| 免费观看精品视频网站| 精品国产超薄肉色丝袜足j| 国产精品香港三级国产av潘金莲| 国产高清有码在线观看视频| 精品99又大又爽又粗少妇毛片 | 精品国产美女av久久久久小说| 亚洲七黄色美女视频| 国产97色在线日韩免费| 韩国av一区二区三区四区| 亚洲熟女毛片儿| 久久精品国产亚洲av香蕉五月| 一个人免费在线观看电影 | av国产免费在线观看| 成在线人永久免费视频| 两人在一起打扑克的视频| 窝窝影院91人妻| 国产极品精品免费视频能看的| 丰满的人妻完整版| 一边摸一边抽搐一进一小说| 色尼玛亚洲综合影院| www日本在线高清视频| 免费看a级黄色片| 国产精品九九99| 国产欧美日韩一区二区精品| 一级毛片高清免费大全| 97碰自拍视频| 叶爱在线成人免费视频播放| 欧美3d第一页| 两性午夜刺激爽爽歪歪视频在线观看| 欧美日本亚洲视频在线播放| 免费大片18禁| 精品99又大又爽又粗少妇毛片 | 69av精品久久久久久| 欧美3d第一页| 手机成人av网站| 色在线成人网| 午夜亚洲福利在线播放| 欧美丝袜亚洲另类 | 国产av在哪里看| 欧美日韩中文字幕国产精品一区二区三区| 久久这里只有精品19| 国产精品野战在线观看| 亚洲av成人不卡在线观看播放网| 国产精品自产拍在线观看55亚洲| 夜夜夜夜夜久久久久| 91九色精品人成在线观看| 免费在线观看影片大全网站| 视频区欧美日本亚洲| 久9热在线精品视频| 亚洲人成网站高清观看| 精品国产亚洲在线| 亚洲av成人av| 美女 人体艺术 gogo| 精品国内亚洲2022精品成人| 成人av一区二区三区在线看| 黄色女人牲交| 免费看美女性在线毛片视频| 俺也久久电影网| 黄色片一级片一级黄色片| 99久久精品国产亚洲精品| 免费看日本二区| 级片在线观看| 可以在线观看毛片的网站| 搞女人的毛片| 在线观看免费视频日本深夜| 两个人的视频大全免费| av中文乱码字幕在线| 国产精品久久久人人做人人爽| 日本精品一区二区三区蜜桃| 99国产综合亚洲精品| 午夜免费激情av| 美女 人体艺术 gogo| 制服人妻中文乱码| 日韩免费av在线播放| 亚洲中文av在线| 亚洲成人久久爱视频| 中文字幕av在线有码专区| 国产三级中文精品| 舔av片在线| xxxwww97欧美| 国产精品98久久久久久宅男小说| www.999成人在线观看| tocl精华| 中文资源天堂在线| 亚洲国产精品sss在线观看| 国产黄色小视频在线观看| 91麻豆av在线| 亚洲人成网站在线播放欧美日韩| 成年女人永久免费观看视频| 国产单亲对白刺激| 国产视频一区二区在线看| 97超视频在线观看视频| 精品无人区乱码1区二区| 好看av亚洲va欧美ⅴa在| 美女大奶头视频| cao死你这个sao货| 淫妇啪啪啪对白视频| 日韩欧美 国产精品| 亚洲国产欧美人成| 婷婷丁香在线五月| 日本黄大片高清| 国产精品日韩av在线免费观看| 无人区码免费观看不卡| 久久久久国产精品人妻aⅴ院| 精品国产三级普通话版| 免费看十八禁软件| 成人精品一区二区免费| 男人舔女人的私密视频| 亚洲精品美女久久av网站| 国产精品久久久久久人妻精品电影| 美女cb高潮喷水在线观看 | 久久精品人妻少妇| 99在线人妻在线中文字幕| 女警被强在线播放| h日本视频在线播放| 久久天堂一区二区三区四区| 精品无人区乱码1区二区| 欧美绝顶高潮抽搐喷水| 国产91精品成人一区二区三区| 国产亚洲精品久久久com| 99热精品在线国产| av国产免费在线观看| 麻豆av在线久日| 亚洲在线自拍视频| 久久久国产欧美日韩av| 色精品久久人妻99蜜桃| 人妻丰满熟妇av一区二区三区| 12—13女人毛片做爰片一| 国产精品自产拍在线观看55亚洲| svipshipincom国产片| 动漫黄色视频在线观看| av在线天堂中文字幕| 人妻久久中文字幕网| 国产精品一区二区精品视频观看| 国产高清视频在线观看网站| 性欧美人与动物交配| 老司机在亚洲福利影院| 长腿黑丝高跟| 精品日产1卡2卡| 婷婷精品国产亚洲av| 在线免费观看的www视频| 女警被强在线播放| 欧美日韩精品网址| 九九热线精品视视频播放| 美女高潮的动态| 欧美日韩精品网址| 噜噜噜噜噜久久久久久91| 欧美丝袜亚洲另类 | 麻豆成人午夜福利视频| 不卡av一区二区三区| 99久久精品热视频| 亚洲成人久久爱视频| 免费在线观看视频国产中文字幕亚洲| 黄片小视频在线播放| 欧美日韩福利视频一区二区| 欧美日韩精品网址| 琪琪午夜伦伦电影理论片6080| 最新在线观看一区二区三区| 亚洲色图av天堂| 久久中文看片网| 亚洲人成电影免费在线| 成人国产综合亚洲| 国产精品一区二区三区四区久久| 色视频www国产| 日韩精品中文字幕看吧| 国产av不卡久久| 免费在线观看亚洲国产| av福利片在线观看| 国产一区二区激情短视频| 国产视频内射| 国产毛片a区久久久久| 国产精品一及| 在线看三级毛片| 十八禁网站免费在线| 99久久国产精品久久久| 午夜两性在线视频| 免费观看人在逋| 久久伊人香网站| 色哟哟哟哟哟哟| 90打野战视频偷拍视频| 中文字幕最新亚洲高清| 美女免费视频网站| 免费观看的影片在线观看| 日韩欧美在线乱码| 1024香蕉在线观看| 日本黄色片子视频| 日本成人三级电影网站| 91av网站免费观看| 中文字幕久久专区| 日韩 欧美 亚洲 中文字幕| 午夜免费激情av| 色综合婷婷激情| 午夜a级毛片| 成年人黄色毛片网站| 亚洲国产日韩欧美精品在线观看 | 夜夜爽天天搞| 日本在线视频免费播放| 精品一区二区三区视频在线观看免费| 日韩欧美免费精品| 一级毛片女人18水好多| 丁香欧美五月| 国产成人aa在线观看| 欧美乱码精品一区二区三区| 亚洲av免费在线观看| 最新在线观看一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 观看美女的网站| 亚洲天堂国产精品一区在线| 亚洲一区二区三区色噜噜| 99精品欧美一区二区三区四区| 日韩欧美免费精品| 美女午夜性视频免费| 亚洲av日韩精品久久久久久密| 日韩欧美免费精品| 成年女人毛片免费观看观看9| 色综合婷婷激情| 免费在线观看影片大全网站| 色在线成人网| 91字幕亚洲| 一个人看视频在线观看www免费 | 亚洲va日本ⅴa欧美va伊人久久| 欧美日本亚洲视频在线播放| 久久香蕉国产精品| 亚洲av电影在线进入| 亚洲国产欧美一区二区综合| 女警被强在线播放| 小蜜桃在线观看免费完整版高清| 老汉色∧v一级毛片| 99久久精品热视频| av视频在线观看入口| 国产成人aa在线观看| 国内精品久久久久精免费| av天堂中文字幕网| 日本 av在线| 亚洲av熟女| 欧美黄色淫秽网站| 不卡av一区二区三区| 搡老岳熟女国产| 九九热线精品视视频播放| 一进一出抽搐动态| 国产 一区 欧美 日韩| 国产视频一区二区在线看| 久久精品夜夜夜夜夜久久蜜豆| 国产精品女同一区二区软件 | 免费在线观看成人毛片| 成人18禁在线播放| 中文资源天堂在线| 999久久久国产精品视频| 哪里可以看免费的av片| 嫩草影院入口| 99热6这里只有精品| 久久午夜综合久久蜜桃| 国产欧美日韩精品一区二区| 国内少妇人妻偷人精品xxx网站 | 国内精品一区二区在线观看| 亚洲av成人不卡在线观看播放网| 亚洲欧美精品综合一区二区三区| 国产精品一及| 久久久国产成人免费| 亚洲欧美精品综合久久99| 99久久99久久久精品蜜桃| 此物有八面人人有两片| 在线免费观看的www视频| 三级毛片av免费| 少妇熟女aⅴ在线视频| 亚洲,欧美精品.| 久99久视频精品免费| 免费在线观看视频国产中文字幕亚洲| 99久久精品热视频| av视频在线观看入口| 日本一本二区三区精品| 三级国产精品欧美在线观看 | 国产高清videossex| 国产爱豆传媒在线观看| 国产伦人伦偷精品视频| 午夜激情欧美在线| 欧美国产日韩亚洲一区| 在线观看66精品国产| 十八禁网站免费在线| 香蕉国产在线看| 一区二区三区国产精品乱码| 欧美日本亚洲视频在线播放| 亚洲成av人片免费观看| 黑人操中国人逼视频| 国产一区在线观看成人免费| 嫩草影院精品99| 中文在线观看免费www的网站| av在线蜜桃| 九九热线精品视视频播放| 欧美色欧美亚洲另类二区| 欧美绝顶高潮抽搐喷水| 国产精品影院久久| 久久久久国内视频| 亚洲国产欧美网| 国产精品久久久av美女十八| 亚洲黑人精品在线| 嫁个100分男人电影在线观看| 黑人操中国人逼视频| 亚洲美女视频黄频| 一本一本综合久久| 精品午夜福利视频在线观看一区| 国产伦在线观看视频一区| 丰满的人妻完整版| 欧美黑人巨大hd| 国产高清三级在线| 国产一级毛片七仙女欲春2| 久久久水蜜桃国产精品网| 日韩av在线大香蕉| 日韩欧美国产在线观看| 亚洲中文字幕一区二区三区有码在线看 | 久久亚洲精品不卡| 日韩高清综合在线| 免费一级毛片在线播放高清视频| 精品人妻1区二区| 亚洲七黄色美女视频| 久久人妻av系列| 每晚都被弄得嗷嗷叫到高潮| 久久香蕉国产精品| 亚洲av电影不卡..在线观看| 国产视频一区二区在线看| 嫩草影院精品99| 亚洲av成人精品一区久久| 男女午夜视频在线观看| 嫁个100分男人电影在线观看| 99国产精品99久久久久| 在线观看一区二区三区| 给我免费播放毛片高清在线观看| 欧美乱码精品一区二区三区| 亚洲成人中文字幕在线播放| 一边摸一边抽搐一进一小说| 一级毛片高清免费大全| 久久精品aⅴ一区二区三区四区| 精品熟女少妇八av免费久了| 国产毛片a区久久久久| 女生性感内裤真人,穿戴方法视频| 日本三级黄在线观看| 日韩欧美 国产精品| 99国产综合亚洲精品| 校园春色视频在线观看| 亚洲电影在线观看av| 亚洲熟妇熟女久久| 中出人妻视频一区二区| 国产精品一区二区免费欧美| 日韩免费av在线播放| 99国产精品一区二区蜜桃av| 欧美成人免费av一区二区三区| 婷婷精品国产亚洲av| 欧美黄色片欧美黄色片| 久久久久性生活片| 亚洲av成人一区二区三| 久久精品国产清高在天天线| 一本久久中文字幕| 无限看片的www在线观看| 99精品欧美一区二区三区四区| 中出人妻视频一区二区| 成人av一区二区三区在线看| 18美女黄网站色大片免费观看| 日韩欧美在线二视频| 欧美三级亚洲精品| 国产成人福利小说| 精品无人区乱码1区二区| 国产成人精品久久二区二区免费| 久久精品人妻少妇| 亚洲国产精品成人综合色| 久久久精品大字幕| 国产一区在线观看成人免费| 国产97色在线日韩免费| 国产一区二区三区视频了| 岛国在线免费视频观看| 精品国产乱子伦一区二区三区| 国产野战对白在线观看| 欧美激情在线99| 久久国产精品人妻蜜桃| 999久久久国产精品视频| 久久久久国内视频| 又黄又粗又硬又大视频| 日韩三级视频一区二区三区| 色av中文字幕| 99久久久亚洲精品蜜臀av| 天天躁日日操中文字幕| 国产伦在线观看视频一区| 18禁黄网站禁片免费观看直播| 成年人黄色毛片网站| 亚洲专区字幕在线| 久久精品国产清高在天天线| 桃色一区二区三区在线观看| 黑人巨大精品欧美一区二区mp4| 九色成人免费人妻av| 国产精品永久免费网站| 无遮挡黄片免费观看| 麻豆国产av国片精品| 小蜜桃在线观看免费完整版高清| www.999成人在线观看| 亚洲欧洲精品一区二区精品久久久| 搡老岳熟女国产| 最新在线观看一区二区三区| 久久久久久人人人人人| 国产三级黄色录像| 久久人妻av系列| 一a级毛片在线观看| 成年免费大片在线观看| 我的老师免费观看完整版| 日本 欧美在线| 757午夜福利合集在线观看| 亚洲狠狠婷婷综合久久图片| 真实男女啪啪啪动态图| 亚洲一区二区三区色噜噜| 91av网站免费观看| 真人做人爱边吃奶动态| 他把我摸到了高潮在线观看| 美女高潮的动态| 精品国产亚洲在线| 我要搜黄色片| 国内精品久久久久精免费| 亚洲国产看品久久| 非洲黑人性xxxx精品又粗又长| 久久香蕉精品热| 国产伦人伦偷精品视频| 国产欧美日韩精品一区二区| 日韩欧美一区二区三区在线观看| 夜夜夜夜夜久久久久| 身体一侧抽搐| 成人午夜高清在线视频| 国产av麻豆久久久久久久| 亚洲美女视频黄频| 99热6这里只有精品| 中文亚洲av片在线观看爽| 国产黄色小视频在线观看| 国产探花在线观看一区二区| 色噜噜av男人的天堂激情| bbb黄色大片| 国产亚洲精品久久久久久毛片| 亚洲av第一区精品v没综合| 搡老熟女国产l中国老女人| 亚洲九九香蕉| 激情在线观看视频在线高清| 日本一二三区视频观看| 亚洲一区二区三区色噜噜| 一级作爱视频免费观看| av天堂在线播放| xxxwww97欧美| 午夜福利欧美成人| 99久久成人亚洲精品观看| 18禁国产床啪视频网站| 窝窝影院91人妻| 久久中文字幕人妻熟女| 成人高潮视频无遮挡免费网站| 亚洲av熟女| 国产精品一区二区精品视频观看| 黄片大片在线免费观看| 两个人的视频大全免费| 国产亚洲欧美98| 国产主播在线观看一区二区| 精品一区二区三区av网在线观看| 国产精品爽爽va在线观看网站| 亚洲国产欧美一区二区综合| 亚洲午夜精品一区,二区,三区| 这个男人来自地球电影免费观看| 日本黄大片高清| 国产精品美女特级片免费视频播放器 | 舔av片在线| 9191精品国产免费久久| 岛国在线免费视频观看| 欧美日韩精品网址| 黄片大片在线免费观看| 好男人电影高清在线观看| 国产v大片淫在线免费观看| 国产高清激情床上av| 久久久久久久久免费视频了| 久久精品综合一区二区三区| 国产伦在线观看视频一区| 69av精品久久久久久| 99视频精品全部免费 在线 | 一a级毛片在线观看| 国产aⅴ精品一区二区三区波| 日韩三级视频一区二区三区| 国产伦在线观看视频一区| 亚洲aⅴ乱码一区二区在线播放| 一二三四在线观看免费中文在| 桃红色精品国产亚洲av| 又粗又爽又猛毛片免费看| 欧美中文日本在线观看视频| 黄片小视频在线播放| 成人精品一区二区免费| 亚洲七黄色美女视频| 黑人巨大精品欧美一区二区mp4| 精品欧美国产一区二区三| 久久精品人妻少妇| 校园春色视频在线观看| 国产av不卡久久| 国产精品亚洲美女久久久| 男女视频在线观看网站免费| 欧美日韩黄片免| 免费在线观看成人毛片| 久久这里只有精品中国| 国产激情偷乱视频一区二区| 免费观看人在逋| av福利片在线观看| 欧美日韩一级在线毛片| 国产三级在线视频| 亚洲国产中文字幕在线视频| 99精品欧美一区二区三区四区| 韩国av一区二区三区四区| 天天躁日日操中文字幕| 午夜视频精品福利| 国产单亲对白刺激| 美女黄网站色视频| 中文资源天堂在线| 男插女下体视频免费在线播放| 午夜福利高清视频| 少妇的丰满在线观看| 国产欧美日韩一区二区三| 日日摸夜夜添夜夜添小说| 叶爱在线成人免费视频播放| 国产精品久久久久久久电影 | 亚洲中文日韩欧美视频| 成人午夜高清在线视频| 国产一区二区三区视频了| 最新在线观看一区二区三区| 日韩欧美三级三区| 黑人操中国人逼视频| 亚洲国产欧美一区二区综合| 国产精品综合久久久久久久免费| 国产单亲对白刺激| 男女床上黄色一级片免费看| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利视频1000在线观看| 久久欧美精品欧美久久欧美| 亚洲男人的天堂狠狠| 长腿黑丝高跟| 亚洲一区二区三区不卡视频| 久久性视频一级片| 久久人人精品亚洲av| 久久伊人香网站| 麻豆国产97在线/欧美| 搞女人的毛片| 久久午夜亚洲精品久久| av国产免费在线观看| 91老司机精品| 免费观看人在逋| 久久香蕉精品热| 免费在线观看成人毛片| 久久精品国产清高在天天线| 欧美日韩国产亚洲二区| 18禁裸乳无遮挡免费网站照片| 成人国产一区最新在线观看| 色尼玛亚洲综合影院| 午夜福利免费观看在线| 熟女电影av网| 国产69精品久久久久777片 | 人人妻人人看人人澡| 在线观看午夜福利视频| 波多野结衣高清无吗| 一本精品99久久精品77| 国内毛片毛片毛片毛片毛片| 久久精品91蜜桃| 99久国产av精品| 五月玫瑰六月丁香| 成人国产综合亚洲| 国产美女午夜福利| 欧美午夜高清在线| 国产伦在线观看视频一区| 国产精华一区二区三区| 欧美av亚洲av综合av国产av| 99热这里只有是精品50| 亚洲精品中文字幕一二三四区| 老熟妇仑乱视频hdxx| 亚洲avbb在线观看| 女生性感内裤真人,穿戴方法视频| 黄色成人免费大全| 日本撒尿小便嘘嘘汇集6| 97超视频在线观看视频| 国内精品一区二区在线观看| 欧美日韩一级在线毛片| 久久这里只有精品中国| 欧美日本视频| 一本久久中文字幕| 亚洲国产精品sss在线观看| 国产欧美日韩精品一区二区| 最近最新免费中文字幕在线| 午夜福利在线在线| 久久久精品大字幕| 欧美zozozo另类| 91字幕亚洲| 两个人看的免费小视频| 观看美女的网站| 日本免费一区二区三区高清不卡| 色尼玛亚洲综合影院| 听说在线观看完整版免费高清| 不卡一级毛片| 色av中文字幕| 90打野战视频偷拍视频| 国产午夜福利久久久久久| 免费看日本二区| 国产黄a三级三级三级人| 国语自产精品视频在线第100页| 国产视频内射| 十八禁网站免费在线| 免费无遮挡裸体视频| 亚洲欧美激情综合另类| 免费高清视频大片| 国语自产精品视频在线第100页| 亚洲欧美激情综合另类| 巨乳人妻的诱惑在线观看| 人妻久久中文字幕网| 亚洲激情在线av| 国产久久久一区二区三区| 亚洲欧美日韩东京热| 亚洲专区中文字幕在线|