• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Green rapid synthesis of Cu2O/Ag heterojunctions exerting synergistic antibiosis

    2022-03-14 09:28:44FeiyueHuBoSongXiohnWngShenBoSiyngShngShupeiLvBingbingFnRuiZhngJingguoLi
    Chinese Chemical Letters 2022年1期

    Feiyue Hu,Bo Song,Xiohn Wng,Shen Bo,Siyng Shng,Shupei Lv,Bingbing Fn,?,Rui Zhng,c,Jingguo Li,b,?

    aSchool of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China

    bPeople’s Hospital of Zhengzhou University,Henan Provincial People’s Hospital,Zhengzhou 450003,China

    cSchool of Material Science and Engineering,Luoyang Institute of Science and Technology,Luoyang 471023,China

    ABSTRACT Semiconductor-noble metal composite has become a research focus due to its superior performance compared with its respective component.Although various methods have been developed to synthesize semiconductor-noble metal heterostructures,most of them are relatively complex multistep and use toxic reactants of high cost and risk.In this work,a series of Cu2O/Ag heterojunctions were quickly prepared in one step via simple microwave-assisted green route.XRD,SEM,TEM,EDS,XPS, etc.were used to characterize obtained products,and the results indicate a Cu2O/Ag metal-semiconductor heterojunction in micro-nano size was fabricated successfully.In addition,antibacterial behavior of Cu2O/Ag heterojunctions against E.coli and S.aureus were investigated.Owing to the synergistic effect of Cu2O and Ag,the heterojunction exhibits much better antibacterial performance than the pristine Cu2O does.This work provides new insights into the green design and fabrication of surface-modified Cu2O hybrid multifunctional materials for antibacterial applications.

    Keywords:Cu2O/Ag heterojunctions Green synthesis Microwave-assisted Antibacterial Synergistic effect

    Semiconductor-noble metal composites of hybrid nanostructure could retain original merits of each constituent and simultaneously display attractive comprehensive properties[1,2].Various methods have been developed to synthesize semiconductor-noble metal heterostructures by assembling noble metal nanoparticles such as Ag,Au,Pd,and Pt to the surface of semiconductor[3,4].

    In recent years,some scholars have proposed to construct a metal-semiconductor heterojunction to promote the transfer of electrons and holes between Cu2O and Ag,and further improved the stability and property of Cu2O[5].As an important semiconductor of direct band-gap of about 2.1 eV,non-toxicity,low price,and good environmental friendliness[6,7],Cu2O has aroused much interest owing to its potential applications,especially in antimicrobial area.Meanwhile,Ag is a relatively cheap precious metal of excellent broad-spectrum,strong durability and safety,and has showed usability in various medical areas[8,9].Microbes hazard real world seriously,such as health and safety issues of human beings,metal surface corrosion and equipment-related infections[10–13].Yet,only a few researches focused on the antibacterial properties of Cu2O/Ag heterojunctions[14],and others mostly investigated their photocatalytic applications and surface-enhanced Raman scattering(SERS)[15-17].Most semiconductor-noble metal composites are prepared using relatively complex multistep methods and toxic reactants,which has the characteristics of high energy consumption and risk.Therefore,it is quite necessary to explore the green rapid synthesis of Cu2O/Ag as an emerging efficient fungicide in the field of pollution-free sterilization.

    In this communication,a simple microwave-assisted method was used to prepare Cu2O/Ag heterojunction and the antibacterial behavior of it was investigated.By bringing advantages of microwave synthesis such as energy-saving and large efficiency,Cu2O/Ag heterojunctions in micro-nano size could be produced in just a few minutes.Meanwhile,this method is green and environmentally friendly by using glucose as reducing agent and safe and reliable without using strong alkali.

    Fig.1.(A)Schematic illustration of the facile method to prepare samples.(B)SEM images of prepared Cu2O/Ag composites:(i)T1,(ii)T2,(iii)T3 and(iv)T4.Scale bar:1 μm.(C)XRD patterns of prepared Cu2O/Ag composites.For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.

    Experimental details are provided in Supporting information.As-prepared Cu2O/Ag hybrids of various molar ratios of AgNO3:Cu(Ac)2(0,1:15,1:9 and 1:3,respectively)are indexed as T1,T2,T3 and T4.Fig.1A exhibits the simple microwave-assisted one-step synthesis of Cu2O/Ag heterojunctions.Fig.1B shows the morphology of as-prepared composites and it can be easily found that the size of Cu2O particles decreased obviously with the increase of molar ratio of AgNO3:Cu(Ac)2(nAgNO3:nCu(Ac)2).The average particle size of pure Cu2O prepared without addition of AgNO3(T1)is between 0.9 μm and 1.2 μm(Fig.1B,image i).When nAgNO3:nCu(Ac)2=1:15,Cu2O particles of the composites become much smaller(400-500 nm)and Ag particles in flake geometry exist alone(Fig.1B,image ii).When nAgNO3:nCu(Ac)2increases to 1:9,a triangular sheet-like heterostructure of a side length of about 700 nm appears(Fig.1B,image iii).The formation mechanism of triangular flakes could be in following routine:Silver nanosheets generates initially,and then act as the nucleating substrate of Cu2O;Cu2O finally develops into a triangular flake heterojunction structure in the microwave-assisted synthesis process.Therefore,Cu2O particles and Ag would form close contact in this step.In the same way,a lot of Ag nanoparticles generate and act as nucleation sites before Cu2O begins to nucleate,which brings about the decrease in size of Cu2O.When of nAgNO3:nCu(Ac)2goes up further,Ag/Cu2O triangular flakes disappear and the particles tend to agglomerate(Fig.1B,image iv).

    Fig.1C shows the XRD patterns of prepared samples.It could be easily found that all the composites show strong diffraction peak intensity at the characteristic peak locations corresponding the Cu2O phase of cubic crystal structure(space group:Pn3m,JCPDS 5-667)with fitted lattice parameter ofa=0.430 nm.In addition,there are extra peaks(plum notations)emerging in the XRD patterns of Ag/Cu2O products(T2,T3,T4)due to the introduction of Ag,and the XRD peaks at 2θdegrees of 38.116°,44.277°,64.426°,77.472°,and 81.536° can be attributed to the(111),(200),(220),(311),and(222)crystalline planes of the FCC crystalline structure of Ag,respectively(space group:Fm-3m,JCPDS 4-783)with fitted lattice parameter ofa=0.409 nm[18].Meanwhile,no other peaks representing impurity are identified in XRD patterns,indicating that the high purity of the as-obtained products.With the increase of nAgNO3:nCu(Ac)2,the intensity of the Ag peaks increased obviously,which indicated that the Ag content in the composites was positively correlated with the amount of AgNO3added.

    Morphology and microstructure of T3 were further characterized by TEM and HRTEM and shown in Fig.2A.Image i in Fig.2A demonstrates the unique geometry of triangular and spherical heterostructures of T3,which is consistent with the geometry observed using SEM(Fig.1B,image iii).Image ii in Fig.2A indicates an obvious interface between Ag and Cu2O at larger magnification and it can be seen clearly from the TEM image that the thickness of Ag layer is around 30 nm.The interplanar spacing shown in the left area of image iii in Fig.2A is 0.245 nm,which corresponds to the spacing between the(111)lattice planes of Ag.While the interplanar spacing in the right area is 0.298 nm,corresponding to the spacing between the(110)lattice planes of Cu2O.Image iv in Fig.2A is the selected-area electron diffraction(SAED)image of the interface between Ag and Cu2O,indicating that the composite has a single-crystal structure.It is clear that the generation of Cu2O/Ag heterojunction occurs during the microwave synthesis process according to the above results.

    EDS mapping of T3 is conducted and the result is shown in Fig.2B.It confirms the coexistence of Ag,Cu,and O elements in the Cu2O/Ag heterojunctions and further proves that the composite material is not just a simple mixture of Ag particles and Cu2O particles,but a micro-nano composite that is tightly bound together.UV-visible absorption spectra of prepared composites are shown in Fig.2C.It can be seen that Cu2O has a good absorption in the range of 400-600 nm.The absorption of the Cu2O/Ag heterojunctions in the visible light range is significantly enhanced after comparing curves T2,T3 and T4 with T1.The band gap can be determined from the tangent intercept of the(αhv)2~(hv)graph,whereαis the absorption coefficient,his the Planck constant,andvis the frequency(Fig.2D).The band gap energies of the original Cu2O microspheres and the Cu2O/Ag heterojunction obtained by adding silver nitrate gradually are~2.1,1.9,1.6,and 1.4 eV,respectively.As the Ag content increases,the band gap energy decreases.The red shift of the adsorption edge and the reduction of band gap energy are mainly attributed to the Schottky effects between Ag and Cu2O[19].

    XPS scan is performed to further investigate the composition and the elemental states of T3.The binding energies in the XPS spectra presented in Figs.2E-H are calibrated by referring that of C 1s(284.8 eV).In Fig.2E,all peaks in the curve can be ascribed to Cu,Ag,O and C elements.The presence of C mainly comes from the hydrocarbon of the XPS instrument itself.The peaks at 932.1 and 952.1 eV are assigned to the Cu 2p3/2and Cu 2p1/2of Cu2O(Fig.2F).No peak corresponding to CuO(933.6 eV)is detected.The peaks at 368.2 and 374.2 eV should be assigned to Ag 3d5/2and Ag 3d3/2,respectively(Fig.2G),and the splitting of the 3d doublet is 6.0 eV,which hints that Ag is of metallic nature[18].The O 1s region shown in Fig.2H could be fit into two peaks.The main peak(530.7 eV)is attributed to Cu-O in Cu2O whereas the minor peak(531.9 eV)can be ascribed to O adsorbed at the surface of the sample[20].

    Minimal inhibition concentration(MIC)and minimal bactericidal concentration(MBC)can be used to quantitatively evaluate the antibacterial property of substrates.The microplate reader is a routine instrument for enzyme-linked immunosorbent assay,which utilizes material absorption spectroscopy and visible light colorimetric technique.It is widely used in microbiology because of its rapid detection and tracing of microbe microstructures.Due to the scattering and absorption of bacteria,when light passes through the bacterial suspension,the optical density(OD)value can represent the concentration of bacteria within a certain range[21].The larger the OD value,the higher the bacterial content,and the poorer the antibacterial performance.Therefore,the antibacterial effect of antimicrobial agents can be characterized by measuring the OD of the bacterial solution with a spectrophotometer.

    MICs of Cu2O/Ag heterojunctions against Gram-negative bacteria(E.coli)and Gram-positive bacteria(S.aureus)were determined by Methyl Thiazolyl Tetrazolium(MTT)assay.As shown in Figs.3B and D,at higher Cu2O/Ag concentration,the cell viability is lower than that at other small concentrations of Cu2O/Ag.This is due to that high concentration Cu2O/Ag heterojunctions could directly inhibit the growth of bacteria.When the inorganic antibiotics are of small concentrations,bacteria propagate fast since they show large bacterial cell viability.

    Fig.2.(A)Morphology and composition of Cu2O/Ag heterostructure in sample T3:(i)Cu2O/Ag heterostructure morphology;(ii)edge of heterostructure in(i)at larger magnification;(iii)HRTEM image of heterostructure showing composition information,and(iv)SAED pattern of(iii).(B)Elemental mappings of T3.(C)UV-visible absorption spectra of Cu2O/Ag composites.(D)Plots of(αhv)2vs.hv for the Cu2O/Ag composites.(E)XPS full spectrum of the sample T3.(F)Cu 2p spectrum.(G)Ag 3d spectrum.(H)O 1s spectrum.

    To quantitatively assess the antibacterial activities of Cu2O/Ag heterojunctions,MICs and MBCs ofE.coliandS.aureusbacteria are shown in Table S1(Supporting information).MICs of T1(pure Cu2O)againstE.coliandS.aureusare 7.8 and 15.6 μg/mL,respectively.When the Cu2O/Ag heterojunction is introduced,MICs of both bacteria decrease dramatically.MICs in T3 trail againstE.coliandS.aureusare 0.5 and 1.0 μg/mL,presenting a best antibacterial performance in this work.This superiority is attributed to the unique triangular sheet heterostructure of Cu2O/Ag,which provides a stronger synergistic effect on the antibacterial activity when compared with single Cu2O or Cu2O/Ag heterojunctions of other ratios.In addition,compared with other antimicrobial agents,such as Cu2O[22],Cu2O@ZrP[23]and RGO-Cu2O[24],our Cu2O/Ag heterojunctions are equally excellent or even more outstanding in antimicrobial applications.Then,to further evaluate the antimicrobial activity of the materials,MBC tests againstE.coliandS.aureuswere performed in all sample trails and by using colony counting methods(Figs.3A and C).Obviously,E.coliandS.aureusColony Forming Units(CFUs)sharply decrease with increasing concentrations of antibacterial agents.All samples including T1 show a bactericidal effect on both two kinds of bacteria and T2,T3 and T4 are more potent than T1.Like the results of MTT assay mentioned above,T3 has the highest antibacterial performance among all four samples.Another point needs to be emphasized is,all four samples show a better antibacterial effect when dealing withE.coliis.This is due to the peptidoglycan layer ofE.coliis thicker than that ofS.aureus,makingS.aureusless sensitive to nanoparticles thanE.coli[25].

    In order to study the antibacterial mechanism of Cu2O/Ag heterojunctions,two fluorescent nucleic acid dyes,4′,6-diamidino-2-phenylindole(DAPI)and polyimide(PI),were used to stain bacteria.DAPI marks both live and dead cells,while PI can only penetrate cells having compromised or damaged membranes(dead cells).Therefore,they can be used to test whether the bacteria are live(blue)or dead(red).As shown in Fig.4A,E.coliandS.aureuscells are almost completely stained by PI,which indicates damaged cell walls and membranes and/or mass cell death after treatment using 50 μg/mL T3 solution for 1 h[26].

    Fig.3.MBC measurements against(A) E.coli and(C) S.aureus:(i)T1,(ii)T2,(iii)T3 and(iv)T4.Bacterial cell viability of(B) E.coli and(D) S.aureus:(i)T1,(ii)T2,(iii)T3 and(iv)T4.

    Fig.4.(A)Fluorescence images of live and dead bacterial cells after incubation with T3 at a concentration of 50 μg/mL for 1 h.(B)Effects of T3 composites on the morphology of E.coli and S.aureus as examined by scanning electron microscopy:(i) E.coli without any treatment,(ii) E.coli treated with T3 particles,(iii)the larger multiples of(ii),(iv)S.aureus without any treatment,(v) S.aureus treated with T3 particles,and(vi)the larger multiples of(v).(C)Schematic illustration of the possible synergistic antibacterial mechanism of Cu2O/Ag heterojunctions(T3).

    Zeta potential measurement was made on all the samples(Table S2 in Supporting information).The zeta potential of single Cu2O was–2.6 mV.While the zeta potential of all Cu2O/Ag heterojunctions was greater than 10 mV,which can greatly improve the adsorption contact between the samples and the bacteria because the surface of the bacteria is generally negatively charged[27].T3 composites have the best adsorption capacity for bacteria,which may bring mechanical damage to the bacterial cell membrane more easily.To better understand the antimicrobial mechanism,SEM was used to study the interactions between T3 composites and bacteria.As shown in image i in Fig.4B,the untreatedE.colicells are typically rod-shaped having smooth cell surface with intact cell.Yet,when treated with T3 particles,the number ofE.colicells significantly reduces and cells are not intact due to the distortion and deformation of cell wall and cell membrane(Fig.4B,images ii and iii).Significant loss of integrity of cell membrane may possibly lead to the death of cell.Similarly,untreated GrampositiveS.aureuscells are generally spherical,having smooth and normal cell wall and cell membrane(Fig.4B,image iv).After treating with Cu2O/Ag,S.aureuscells are not intact due to the distortion and deformation of cell wall and cell membrane and much substance in the cells leaks out,representing significant loss of integrity of cell membrane that may possibly bring about cell death(Fig.4B,image v).As shown in image vi in Fig.4B,Cu2O/Ag particles are tightly adsorbed by the bacteria surface,leading to the deformation and damage of the cell membrane,which is the reason that the bacteria are eliminated.

    According to previous studies,the bactericidal mechanism of Cu2O is mainly the release of Cu2+ions and the promotion of the production and accumulation of reactive oxygen species(ROS)inside bacteria[28,29].The bactericidal mechanism of Ag nanoparticles is mainly the puncture effect of the tiny size on bacterial cell membranes[30].The synergistic effect of Cu2O and Ag nanoparticles could promote the migration of electrons and holes from the core of Cu2O to the surface of Ag,resulting in an increase in the production of ROS that will put destructive oxidative stress to bacteria[14].The synergistic antibacterial effect of Cu2O and Ag as a heterojunction is testified in this study.As shown in Fig.4C,possible multi-level synergistic antibacterial mechanisms are proposed:1)The formation of Cu2O/Ag heterojunction enhanced the adsorption capacity,and its sharp edges had a significant piercing effect on the bacterial surface,resulting in the bacteria to burst and die;2)The released Cu2+is quite toxic to bacteria;3)Cu2O/Ag could promote surface charge transfer,and the transferred electrons and holes would induce excessive accumulation of toxic substances that damage DNA,inactivate protein and finally kill bacteria.

    In summary,Cu2O/Ag heterojunctions were developed using a green microwave-assisted method in this work.The microwaveassisted synthesis of Cu2O/Ag heterostructures exhibit much better antibacterial properties than that of pristine Cu2O.Besides,T3(nAgNO3:nCu(Ac)2=1:9)has a heterogeneous structure of microspheres/triangular sheets that is different from other samples,resulting in better adsorption and sterilization of bacteria.The investigation of the antibacterial mechanism of Cu2O/Ag heterojunctions suggests that the mechanical damage to the cell membrane by the sharp edges,the release of Cu2+ions,and the promotion of the rapid production of toxic substances contributed to the antibacterial activity together.Thus,the synergistic effect of Cu2O/Ag heterojunction makes it a potential candidate that can be exploited for various biomedical and other industrial applications.Additionally,the excellent performance of the microwave-assisted method in the fast,green and efficient synthesis of two-phase heterojunctions provide novel research ideas for the modification of inorganic fungicides.

    Declaration of competing interest

    There are no conflicts to declare.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China(Nos.U2004177 and 21504082),Zhongyuan Thousand Talents Plan Project,Outstanding Youth Fund of Henan Province(No.212300410081)and Natural Science Research Project of Henan Educational Committee(No.20A43001).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.07.018.

    日韩亚洲欧美综合| 国产精品久久久久久精品电影小说 | 亚洲激情五月婷婷啪啪| 三级经典国产精品| 不卡视频在线观看欧美| 天堂av国产一区二区熟女人妻| 国产在视频线在精品| 乱系列少妇在线播放| 亚洲av熟女| 国产男人的电影天堂91| 国产 一区精品| 村上凉子中文字幕在线| 国产av在哪里看| 蜜臀久久99精品久久宅男| 边亲边吃奶的免费视频| 在线天堂最新版资源| 国产一级毛片七仙女欲春2| 亚洲成人久久性| 午夜福利在线在线| 久久久午夜欧美精品| 男人舔奶头视频| 亚洲激情五月婷婷啪啪| 只有这里有精品99| 亚洲真实伦在线观看| 日韩欧美精品v在线| 欧美bdsm另类| 国产伦精品一区二区三区视频9| 男女做爰动态图高潮gif福利片| 国内揄拍国产精品人妻在线| 欧美bdsm另类| 久久久久久久久大av| 久久久久久久久久黄片| 国产精品人妻久久久影院| 久久精品综合一区二区三区| 国国产精品蜜臀av免费| 国产精品日韩av在线免费观看| 97在线视频观看| 舔av片在线| 91在线精品国自产拍蜜月| 好男人视频免费观看在线| 日韩高清综合在线| 午夜老司机福利剧场| 高清毛片免费观看视频网站| 日本一二三区视频观看| 久久午夜亚洲精品久久| 国产精品美女特级片免费视频播放器| 久久久久网色| 麻豆精品久久久久久蜜桃| 特大巨黑吊av在线直播| 内地一区二区视频在线| 亚洲不卡免费看| 久久久a久久爽久久v久久| 青春草视频在线免费观看| 看黄色毛片网站| 久久久久免费精品人妻一区二区| 久久久久国产网址| 欧美区成人在线视频| 国产女主播在线喷水免费视频网站 | 床上黄色一级片| 国产精品爽爽va在线观看网站| 最近中文字幕高清免费大全6| 毛片一级片免费看久久久久| 禁无遮挡网站| 亚洲国产色片| 午夜激情欧美在线| 91精品国产九色| 尤物成人国产欧美一区二区三区| 亚洲第一电影网av| av在线老鸭窝| 亚洲人成网站高清观看| 久久人人爽人人爽人人片va| 欧美精品国产亚洲| 少妇裸体淫交视频免费看高清| 色播亚洲综合网| 性色avwww在线观看| 成人性生交大片免费视频hd| 非洲黑人性xxxx精品又粗又长| 欧美色欧美亚洲另类二区| 欧美丝袜亚洲另类| 久久人人爽人人片av| 中出人妻视频一区二区| 夜夜夜夜夜久久久久| 精品无人区乱码1区二区| 麻豆精品久久久久久蜜桃| 国产v大片淫在线免费观看| 性欧美人与动物交配| 青春草国产在线视频 | 精品久久久噜噜| 少妇的逼水好多| 一个人看视频在线观看www免费| 大香蕉久久网| 免费无遮挡裸体视频| 天天一区二区日本电影三级| 欧美日韩国产亚洲二区| 亚洲最大成人中文| 成人特级黄色片久久久久久久| 日韩精品青青久久久久久| 欧美日韩精品成人综合77777| 久久这里只有精品中国| 久久中文看片网| 九九热线精品视视频播放| 日韩av在线大香蕉| 亚洲精品久久国产高清桃花| 国产精品久久久久久精品电影小说 | 欧美一级a爱片免费观看看| 成人午夜精彩视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产成人freesex在线| 成年版毛片免费区| 中文亚洲av片在线观看爽| 欧美一区二区精品小视频在线| 深夜a级毛片| 久久久久久久久大av| 我要看日韩黄色一级片| 性插视频无遮挡在线免费观看| 久久久国产成人免费| 免费看日本二区| 午夜福利成人在线免费观看| 在线播放无遮挡| 久久久久久久久中文| 国产精品一区二区三区四区免费观看| 一级黄色大片毛片| av天堂在线播放| 亚洲精品成人久久久久久| 高清日韩中文字幕在线| 亚洲无线在线观看| 成人午夜高清在线视频| 午夜免费激情av| 麻豆乱淫一区二区| 国产乱人偷精品视频| 免费av观看视频| 老熟妇乱子伦视频在线观看| 悠悠久久av| 搡女人真爽免费视频火全软件| 国产一区二区在线av高清观看| 校园人妻丝袜中文字幕| 亚洲最大成人手机在线| 国产69精品久久久久777片| 午夜久久久久精精品| 国产伦精品一区二区三区四那| 不卡视频在线观看欧美| 亚洲人成网站在线观看播放| 看非洲黑人一级黄片| 男人的好看免费观看在线视频| 久久这里只有精品中国| 1000部很黄的大片| 波多野结衣高清无吗| 色噜噜av男人的天堂激情| 亚洲内射少妇av| 国产成人影院久久av| 亚洲一区高清亚洲精品| 99热精品在线国产| 两性午夜刺激爽爽歪歪视频在线观看| 欧美激情久久久久久爽电影| 亚洲欧美精品自产自拍| 午夜a级毛片| 国产精品爽爽va在线观看网站| 高清毛片免费观看视频网站| 午夜免费激情av| 桃色一区二区三区在线观看| 一本精品99久久精品77| 人妻制服诱惑在线中文字幕| ponron亚洲| 99热网站在线观看| 嫩草影院新地址| 亚洲成人久久爱视频| 亚洲av电影不卡..在线观看| 国产伦精品一区二区三区四那| 国产精品国产高清国产av| 中文字幕av成人在线电影| 丰满的人妻完整版| 成人漫画全彩无遮挡| 亚洲国产欧美在线一区| 日本免费a在线| 国产麻豆成人av免费视频| 国产又黄又爽又无遮挡在线| 久久久久久久久久成人| 欧美一区二区精品小视频在线| 国产精品久久久久久精品电影| 欧美日韩乱码在线| 国内精品宾馆在线| 日本三级黄在线观看| 欧美激情国产日韩精品一区| av在线蜜桃| 丰满的人妻完整版| а√天堂www在线а√下载| 能在线免费观看的黄片| 国产精品久久久久久久久免| 在线国产一区二区在线| 日本成人三级电影网站| 国产一区二区三区av在线 | av在线老鸭窝| h日本视频在线播放| 亚洲自拍偷在线| 成年女人永久免费观看视频| 一本久久精品| 中文字幕制服av| 亚洲精华国产精华液的使用体验 | 午夜免费激情av| 欧洲精品卡2卡3卡4卡5卡区| 国产在线男女| 亚洲欧美精品自产自拍| 一区福利在线观看| 深爱激情五月婷婷| 久99久视频精品免费| 日本一本二区三区精品| 美女脱内裤让男人舔精品视频 | 亚洲欧美日韩卡通动漫| a级毛色黄片| 国产激情偷乱视频一区二区| 成人特级黄色片久久久久久久| 九九久久精品国产亚洲av麻豆| 嫩草影院精品99| 亚洲成人久久爱视频| 中文字幕久久专区| h日本视频在线播放| 久久精品国产自在天天线| 激情 狠狠 欧美| 狂野欧美白嫩少妇大欣赏| 免费人成在线观看视频色| 人体艺术视频欧美日本| 深夜a级毛片| 免费观看人在逋| 国产日本99.免费观看| 小蜜桃在线观看免费完整版高清| 天堂中文最新版在线下载 | 小说图片视频综合网站| 亚洲成人中文字幕在线播放| 超碰av人人做人人爽久久| 亚洲欧美中文字幕日韩二区| 国产色爽女视频免费观看| 欧美+日韩+精品| 亚洲精品自拍成人| 精品午夜福利在线看| 久久6这里有精品| 欧美色欧美亚洲另类二区| 99热精品在线国产| 精品不卡国产一区二区三区| 亚洲精品日韩av片在线观看| 久久久精品欧美日韩精品| 99热6这里只有精品| 联通29元200g的流量卡| 亚洲中文字幕日韩| 高清日韩中文字幕在线| 欧美成人a在线观看| 内地一区二区视频在线| 黄色一级大片看看| 18禁黄网站禁片免费观看直播| 久久综合国产亚洲精品| 一级黄片播放器| 99久久精品一区二区三区| 两个人的视频大全免费| 国产男人的电影天堂91| 日本一二三区视频观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲成人av在线免费| 国产精品国产三级国产av玫瑰| 久久久久九九精品影院| 欧美高清性xxxxhd video| 内射极品少妇av片p| 国产极品天堂在线| a级毛片a级免费在线| 日韩亚洲欧美综合| 又黄又爽又刺激的免费视频.| h日本视频在线播放| 少妇人妻一区二区三区视频| 18禁在线播放成人免费| 少妇熟女欧美另类| av专区在线播放| 久久久久久九九精品二区国产| 中文精品一卡2卡3卡4更新| 性色avwww在线观看| 老女人水多毛片| 国产午夜福利久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲欧美成人综合另类久久久 | 嫩草影院新地址| 一卡2卡三卡四卡精品乱码亚洲| 国产白丝娇喘喷水9色精品| 国产高清激情床上av| 97热精品久久久久久| 午夜久久久久精精品| 日本黄色视频三级网站网址| 国产成年人精品一区二区| 久久久久九九精品影院| 成人美女网站在线观看视频| 边亲边吃奶的免费视频| 丰满乱子伦码专区| 日本黄色片子视频| 麻豆一二三区av精品| 三级经典国产精品| 国产精品av视频在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲av不卡在线观看| 黄色日韩在线| 久久中文看片网| 国产精品美女特级片免费视频播放器| 看黄色毛片网站| 国产午夜精品久久久久久一区二区三区| 狂野欧美激情性xxxx在线观看| 欧美色欧美亚洲另类二区| 国产伦一二天堂av在线观看| 国产 一区精品| 一区二区三区四区激情视频 | 亚洲真实伦在线观看| 两个人视频免费观看高清| 国产久久久一区二区三区| 日本成人三级电影网站| 97超视频在线观看视频| 亚洲欧美清纯卡通| 亚洲在线观看片| 日韩精品青青久久久久久| 一级二级三级毛片免费看| 国产精品蜜桃在线观看 | 久久这里只有精品中国| 禁无遮挡网站| 大又大粗又爽又黄少妇毛片口| 又粗又爽又猛毛片免费看| 欧美性猛交╳xxx乱大交人| 亚洲精品456在线播放app| 少妇高潮的动态图| 久久久久久伊人网av| 亚洲精品国产av成人精品| 国产成人a区在线观看| 久久久久久九九精品二区国产| 欧美一区二区亚洲| 女的被弄到高潮叫床怎么办| 黄色日韩在线| 九色成人免费人妻av| 亚洲人与动物交配视频| 日日摸夜夜添夜夜添av毛片| 看非洲黑人一级黄片| 国产精华一区二区三区| 免费一级毛片在线播放高清视频| 国产亚洲5aaaaa淫片| 狠狠狠狠99中文字幕| 直男gayav资源| 精品一区二区三区人妻视频| 成人特级av手机在线观看| 国产精品一二三区在线看| 人人妻人人澡人人爽人人夜夜 | 国产老妇伦熟女老妇高清| 国产av麻豆久久久久久久| 久久99蜜桃精品久久| 亚洲国产精品成人综合色| 成人美女网站在线观看视频| 日韩一本色道免费dvd| 国国产精品蜜臀av免费| 国产69精品久久久久777片| 欧美不卡视频在线免费观看| 免费电影在线观看免费观看| 可以在线观看的亚洲视频| 国产精品99久久久久久久久| 久久99热这里只有精品18| 国产美女午夜福利| 精品久久久噜噜| 日产精品乱码卡一卡2卡三| 日日干狠狠操夜夜爽| 99久久成人亚洲精品观看| 国产女主播在线喷水免费视频网站 | 国产亚洲精品久久久com| 在线国产一区二区在线| 一区福利在线观看| 一本一本综合久久| 小蜜桃在线观看免费完整版高清| 菩萨蛮人人尽说江南好唐韦庄 | 少妇的逼好多水| 干丝袜人妻中文字幕| 欧美最新免费一区二区三区| 成年女人永久免费观看视频| 成人亚洲精品av一区二区| 夜夜看夜夜爽夜夜摸| 亚洲最大成人av| 中文字幕人妻熟人妻熟丝袜美| 人妻夜夜爽99麻豆av| 91在线精品国自产拍蜜月| 久久久久久久亚洲中文字幕| av在线观看视频网站免费| 精品久久久久久久末码| 麻豆一二三区av精品| 国产伦精品一区二区三区视频9| 国产亚洲精品久久久com| 国产伦理片在线播放av一区 | 丝袜美腿在线中文| 啦啦啦韩国在线观看视频| 美女大奶头视频| 亚洲精品国产av成人精品| 国产伦理片在线播放av一区 | 久久国内精品自在自线图片| 中国美白少妇内射xxxbb| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲av熟女| 精品久久久噜噜| 精华霜和精华液先用哪个| av女优亚洲男人天堂| 成人高潮视频无遮挡免费网站| АⅤ资源中文在线天堂| 日韩一区二区三区影片| 精品不卡国产一区二区三区| 国产视频首页在线观看| 特大巨黑吊av在线直播| 国产精品一区二区性色av| 日韩成人av中文字幕在线观看| 中文字幕人妻熟人妻熟丝袜美| 欧美日本亚洲视频在线播放| 性插视频无遮挡在线免费观看| 看黄色毛片网站| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品女同一区二区软件| 国产在视频线在精品| 蜜臀久久99精品久久宅男| 久久久久九九精品影院| 国产午夜精品论理片| 爱豆传媒免费全集在线观看| 婷婷色av中文字幕| av.在线天堂| 69人妻影院| 看黄色毛片网站| 免费不卡的大黄色大毛片视频在线观看 | 亚洲在线观看片| www日本黄色视频网| 国内精品宾馆在线| 国产激情偷乱视频一区二区| 久久这里只有精品中国| 久久99热6这里只有精品| 国产精品久久久久久久电影| 久久综合国产亚洲精品| 欧美一级a爱片免费观看看| 久久精品国产自在天天线| 中文字幕精品亚洲无线码一区| 三级经典国产精品| a级毛片a级免费在线| 国内久久婷婷六月综合欲色啪| 只有这里有精品99| 日本欧美国产在线视频| 国产毛片a区久久久久| 国产一区二区激情短视频| 在线播放国产精品三级| 蜜臀久久99精品久久宅男| 男人和女人高潮做爰伦理| 婷婷亚洲欧美| 亚洲国产欧美人成| 老师上课跳d突然被开到最大视频| 亚洲18禁久久av| 午夜老司机福利剧场| 看黄色毛片网站| 国产男人的电影天堂91| 亚洲欧美精品综合久久99| 国产高潮美女av| av卡一久久| 尾随美女入室| 爱豆传媒免费全集在线观看| 欧美丝袜亚洲另类| 免费无遮挡裸体视频| 久久综合国产亚洲精品| 联通29元200g的流量卡| 亚洲欧美成人综合另类久久久 | 桃色一区二区三区在线观看| 身体一侧抽搐| 日日摸夜夜添夜夜爱| 欧美激情国产日韩精品一区| 亚洲精品粉嫩美女一区| 别揉我奶头 嗯啊视频| 亚洲欧美日韩无卡精品| 欧美xxxx性猛交bbbb| av天堂中文字幕网| 校园人妻丝袜中文字幕| 少妇的逼水好多| 国产成年人精品一区二区| 午夜福利成人在线免费观看| 国产三级中文精品| 午夜免费激情av| 成年版毛片免费区| 久久久精品欧美日韩精品| av在线老鸭窝| 国产精品久久久久久精品电影| 晚上一个人看的免费电影| 日本五十路高清| 国产黄色视频一区二区在线观看 | 不卡一级毛片| 久久午夜福利片| 久久精品国产亚洲av涩爱 | 国产精品电影一区二区三区| 国产私拍福利视频在线观看| 欧美xxxx性猛交bbbb| 1000部很黄的大片| 国产精品久久视频播放| 亚洲成av人片在线播放无| 国产av不卡久久| 亚洲第一电影网av| 亚洲精品成人久久久久久| 韩国av在线不卡| 麻豆久久精品国产亚洲av| 国产成人影院久久av| h日本视频在线播放| 免费大片18禁| 日韩在线高清观看一区二区三区| 日韩三级伦理在线观看| 亚洲国产精品久久男人天堂| 18禁黄网站禁片免费观看直播| 国产麻豆成人av免费视频| 亚洲成人久久性| 免费观看的影片在线观看| 国产黄片美女视频| 少妇裸体淫交视频免费看高清| 18+在线观看网站| 国产成人福利小说| 观看免费一级毛片| 亚洲欧洲国产日韩| 特大巨黑吊av在线直播| 日本与韩国留学比较| 日韩一区二区三区影片| 天天躁夜夜躁狠狠久久av| 男人和女人高潮做爰伦理| av福利片在线观看| 国产高清有码在线观看视频| 国产精品不卡视频一区二区| 久久久精品94久久精品| 国产伦精品一区二区三区四那| 亚洲精品粉嫩美女一区| 国产在视频线在精品| 丰满的人妻完整版| 中文字幕免费在线视频6| 国产 一区精品| 夜夜夜夜夜久久久久| 2021天堂中文幕一二区在线观| 成人性生交大片免费视频hd| 国产午夜福利久久久久久| 美女cb高潮喷水在线观看| 人体艺术视频欧美日本| 亚洲婷婷狠狠爱综合网| 欧美不卡视频在线免费观看| 欧美在线一区亚洲| 色综合色国产| 久久韩国三级中文字幕| 国产精品一区二区三区四区免费观看| 日本爱情动作片www.在线观看| 精品少妇黑人巨大在线播放 | 观看美女的网站| 日韩,欧美,国产一区二区三区 | 一区二区三区四区激情视频 | 国产精品女同一区二区软件| 亚洲成av人片在线播放无| 久久久精品94久久精品| 国产伦精品一区二区三区四那| 五月玫瑰六月丁香| 国内久久婷婷六月综合欲色啪| 久久这里只有精品中国| 高清毛片免费看| 亚洲综合色惰| 日韩欧美国产在线观看| 国产精品人妻久久久影院| 中文字幕久久专区| 97超视频在线观看视频| 国产成人精品一,二区 | 久久精品国产鲁丝片午夜精品| 久久久成人免费电影| 日本在线视频免费播放| 菩萨蛮人人尽说江南好唐韦庄 | 男人和女人高潮做爰伦理| 午夜福利在线观看免费完整高清在 | 成熟少妇高潮喷水视频| 少妇丰满av| 日本在线视频免费播放| 我的女老师完整版在线观看| 亚洲天堂国产精品一区在线| 深夜精品福利| 国产欧美日韩精品一区二区| 亚洲国产欧美人成| 18+在线观看网站| av在线天堂中文字幕| 亚洲在久久综合| 女人十人毛片免费观看3o分钟| 村上凉子中文字幕在线| 亚洲欧美精品综合久久99| 色噜噜av男人的天堂激情| 色尼玛亚洲综合影院| 午夜a级毛片| 乱码一卡2卡4卡精品| 久久精品影院6| 欧美高清成人免费视频www| 99九九线精品视频在线观看视频| 麻豆成人av视频| av视频在线观看入口| 亚洲成人av在线免费| 午夜精品在线福利| 亚洲精品乱码久久久久久按摩| 久久精品国产亚洲网站| 国产真实伦视频高清在线观看| 成人鲁丝片一二三区免费| 亚洲精品日韩av片在线观看| 午夜精品国产一区二区电影 | 久久热精品热| 美女高潮的动态| 最新中文字幕久久久久| 中文在线观看免费www的网站| 国产国拍精品亚洲av在线观看| 日韩一区二区视频免费看| 欧美日韩乱码在线| 三级经典国产精品| 天天躁日日操中文字幕| 在线a可以看的网站| 久久午夜亚洲精品久久| 亚洲精品乱码久久久久久按摩| 亚洲精品456在线播放app| 久久精品夜夜夜夜夜久久蜜豆| 真实男女啪啪啪动态图| 哪里可以看免费的av片| 亚洲欧美成人精品一区二区| 岛国在线免费视频观看| 日本黄色视频三级网站网址| 可以在线观看的亚洲视频| 日本五十路高清| 欧美3d第一页| 国产一区二区在线观看日韩|