• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Orange-emitting bimetallic nanoclusters combined with cyan-emitting Fe@TAOH as white light-emitting materials

    2022-03-14 09:28:38WenyingMiNaShao
    Chinese Chemical Letters 2022年1期

    Wenying Mi,Na Shao

    College of Chemistry,Beijing Normal University,Beijing 100875,China

    ABSTRACT White-light-emitting diodes(WLEDs)possess many merits,such as high efficiency and stability.Developing cost-effective,environmentally friendly,high-performance luminophores to achieve high-quality,full-spectrum,white lighting is of great importance to the construction and progress of WLEDs.In this work,solid-state,highly luminescent orange-emitting nanoclusters(MgCl2-Lys-Ag/Au NCs)were prepared via the salt-induced precipitation of Lys-Ag/Au NCs from solution,which showed a high absolute quantum yield of 44.5%.A cyan-emitting metal-organic framework(MOF)-like nanomaterial(named Fe@TAOH)was also prepared by the self-assembly of the coordination compound of Fe3+ and TAOH acted upon by H3PO4 via H-bonding and π-π stacking interactions,which showed an emission peak at 485 nm and an absolute quantum yield of 21.7%.The potential application of the two facile-synthesis,low toxicity,and highly luminescent materials in WLEDs was investigated.The WLEDs was constructed by coating powdered Fe@TAOH and MgCl2-Lys-Ag/Au NCs samples on commercial GaN LED chip with 365 nm emissions,and it exhibited acceptable white light characteristics with a CIE color coordinates and a color rendering index(CRI)of(0.28,0.34)and 79.6,respectively,implying good prospects in the field of WLEDs.

    Keywords:Metal nanoclusters Salt-mediated precipitation Fe@TAOH MOFs Self-assembly White light-emitting materials

    White-light-emitting diodes(WLEDs)have attracted attention in solid-state lighting due to their advantages of a high luminous efficiency,long lifetime,high energy conversion,and fast response time[1,2].Most commercial WLEDs fabricated by coating yellowemitting phosphors onto blue-emitting LED chips suffer from a low color rendering index(CRI)and highly correlated color temperature due to the absence of a red-emitting component[3,4].The strong blue light produced by the blue chips is also harmful to human health.Near-ultraviolet LED chips mixed with tricolor phosphors(blue,green,and red)are candidates for fabricating WLEDs[5,6].Nevertheless,an obvious spectra gap in the cyan region(480–520 nm)was locked out for this kind of WLED,thus restricting their potential application in high-quality lighting[7].WLEDs with higher performance,such as an enhanced CRI,can be obtained by introducing cyan-emitting phosphors into tricolor phosphors or red-emitting phosphors to fill the cyan gap[8,9].

    In addition,most commercial WLEDs rely on the up-conversion of luminescent materials doped with rare earth elements,which suffers from several issues such as high cost,limited resources,and complex synthetic procedures[10–12].Although much attention has been paid to semiconductor quantum dots in the field of white-light phosphors fields due to their high fluorescence quantum yield[13,14],the toxicity of the heavy metal component restricts their wider application.It is of importance to explore simple synthesis,low-cost,and environmentally friendly luminous materials for the fabrication of white-light phosphors.

    Metal nanoclusters(MNCs)have attracted a great deal of interest in the field of WLEDs in recent years[15–17],due to their strong luminescence,high photostability,tunable luminance,and especially facile synthesis and low toxicity[18–21].To date,most nanocluster-based phosphors have taken advantage of the aggregation-induced emission(AIE)property to acquire stronger luminescence in solid state;the commonly utilized method to prepare solid MNCs is by drying solvent directly,which suffers from being time-consuming and difficult for mass production.Thus,it is still of great significance to prepare highly luminescent solid-state MNCs by simple methods.Herein,highly luminescent solid-state MNCs were preparedviathe salt-mediated precipitation of MNCs from solution.The prepared solid MgCl2-Lys-Ag/Au NCs with orange emission exhibited an enhanced fluorescence quantum yield compared with the solid Lys-Ag/Au NCs(from 34.5% to 44.5%).

    Fig.1.(A)TEM image and(B)size distribution of Lys-Ag/Au NCs.XPS spectra exhibiting the binding energy of Au element(C)and Ag element(D)in the Lys-Ag/Au NCs.

    Terephthalic acid(TA)and its derivatives are commonly used for synthesizing iron-based metal-organic frameworks(Fe-MOFs)[22,23],where TA is oxidized to TAOH in the presence of hydroxyl radical,showing strong fluorescence[24,25].Here,a cyan-emitting nanomaterial(named Fe@TAOH)prepared by the self-assembly of the complex of Fe3+and 2-hydroxy terephthalic acid(TAOH)viathe reaction of TA and Fenton reagent acted upon by phosphoric acid was developed.The prepared Fe@TAOH showed a maximum emission peak at 485 nm with an absolute fluorescence quantum yield of 21.7%.

    The WLEDs fabricated by encapsulating orange-emitting MgCl2-Lys-Ag/Au NCs and cyan-emitting Fe@TAOH powders on a commercially available 365 nm GaN LED chip showed a CIE color coordinates of(0.28,0.34)and a CRI of 79.6,demonstrating their feasibility in WLED applications.The synthesis of the solid MgCl2-Lys-Ag/Au NCs and Fe@TAOH was environmentally friendly and cost-effective.The preparation of the two luminescent materials,as well as their combination for white-light materials,is shown in Scheme 1.

    Scheme 1.Schematic of the preparation of orange-emitting MgCl2-Lys-Ag-/Au NCs and cyan-emitting Fe@TAOH,and their combination for white light materials.

    Transmission electron microscopy(TEM)was employed to characterize the morphology of the as-prepared Lys-Ag/Au NCs(Fig.1A),which showed high dispersity with an average diameter of 2.1 nm(Fig.1B).X-ray photoelectron spectroscopy(XPS)was also performed to prove the existence of Au and Ag elements in Lys-Ag/Au NCs(Figs.1C and D).Inductively coupled plasma atomic emission spectroscopy analysis confirmed that the ratio of Au to Ag in the Lys-Ag/Au NCs was 5.02(Table S1 in Supporting information),which was consistent with that of Au3+to Ag+in the precursor solution for synthesizing the Lys-Ag/Au NCs.

    Fig.2.(A)The process of preparing MgCl2-Lys-Ag/Au NCs.Photographs of Lys-Ag/Au NCs in the absence(B)and presence(C)of MgCl2 solution under visible and UV light.

    Fig.3.(A)Dynamic light scattering(DLS)analysis and(B)Zeta potential measurements of the Lys-Ag/Au NCs.(C)Photographs of the Lys-Ag/Au NCs added with different salt solution and(D)corresponding DLS measurements.The concentration of NaCl was 200 mmol/L,and that of Na2SO4,MgCl2 and MgSO4 were 100 mmol/L.

    It is known that protein will precipitate out of solution in the presence of high concentrations of salt,referred to as protein salting-out[26,27].Therefore,it was speculated that proteincapped nanoclusters would precipitate out of the solution when salt solution was introduced,which could supply a novel method to prepare solid-state luminescent nanoclusters.As Fig.2A shows,when the MgCl2solution was added into the as-prepared Lys-Ag/Au NCs,the clear solution(Fig.2B)became cloudy immediately and a large amount of white precipitate(Fig.2C)formed(denoted as MgCl2-Lys-Ag/Au NCs),which showed intense orange-emission under UV lamp excitation.

    To investigate the Lys-Ag/Au NCs precipitation induced by MgCl2solution,first,dynamic light scattering experiments were carried out to determine the hydrodynamic diameter and surface charge of the Lys-Ag/Au NCs.As shown in Figs.3A and B,the diameter of the MNCs was 12.9 nm,and the Zeta potential was about ?108 mV,indicating that the Lys-Ag/Au NCs dispersed well in the solution and possessed a negative surface charge.As shown in Fig.3C,the Lys-Ag/Au NCs solution became cloudy after MgCl2and MgSO4were added,while those with added NaCl or Na2SO4were still clear.As shown in Fig.3D,the hydrodynamic diameter of the Lys-Ag/Au NCs increased to 133.1 nm after MgCl2was added,while it showed little change when NaCl was added.

    Fig.4.(A)SEM image and(B)elemental mapping analyses(the scale bar is 2 μm)of MgCl2-Lys-Ag/Au NCs.(C)Survey XPS spectra of MgCl2-Lys-Ag/Au NCs.(D)XPS spectrum exhibiting the binding energy of Mg element in the MgCl2-Lys-Ag/Au NCs.(E)Fluorescence excitation and emission spectra of the Lys-Ag/Au NCs in solution(blue line)and in solid(green line)as well as that of the solid MgCl2-Lys-Ag/Au NCs(red line)(QY presented the absolute quantum yield).(F)Time-resolved fluorescence lifetime analysis of the MgCl2-Lys-Ag/Au NCs.For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.

    The effect of salt ions on MNC precipitation was further explored.As shown in Fig.S1A(Supporting information),precipitate could form even when 50 mmol/L of MgSO4was added into the Lys-Ag/Au NCs solution,and the precipitate increased with the increasing salt concentration.However,for the MNCs with added Na2SO4(Fig.S1B in Supporting information),no precipitate was generated,even when the salt concentration was increased to 1 mol/L.The results demonstrated that cation-like Mg2+can connect with the Lys-Ag/Au NCsviacoordination interactions except for electrostatic interactions.These interactions between the cation and the MNCs were also proved by the fact that(NH4)2SO4could make the Lys-Ag/Au NCs precipitate but Na2SO4with the same concentration could not(Fig.S2 in Supporting information).NH4+with the negatively charged Lys-Ag/Au NCs,not onlyviaelectrostatics,but also intermolecular hydrogen bonding.It was speculated that the surface charge of the Lys-Ag/Au NCs was shielded by the ions with the opposite charge,thus leading to the precipitation of Lys-Ag/Au NCs due to the reduced electrostatic repulsion force among the MNCs.

    Subsequently,the composition and morphology of the prepared MgCl2-Lys-Ag/Au NCs were studied.The MgCl2-Lys-Ag/Au NCs showed a net-work structure(Fig.4A)composed of C,N,O,Au,Ag,and Mg elements,as confirmed by SEM elemental mapping analysis(Fig.4B)and XPS measurements(Fig.4C).The low signal for Au and Ag elements in the SEM elemental mapping may be attributed to Au and Ag being embedded by surface ligands[28].XPS measurements(Fig.4D)also indicated the existence of Mg2+,which most likely connects to the Lys-Ag/Au NCs by linking with the carboxyl group of the ligandsviaelectrostatic and coordination interactions.The cross-linked morphology of the Lys-Ag/Au NCs with added MgCl2solution was further supported by TEM measurements(Fig.S3 in Supporting information).

    Fig.5.The photographs of(A)TA dissolved in alkali solution,(B)Fenton reagent added into(A),(C)the component in(B)added with phosphoric acid,and(D)the prepared Fe@TAOH under UV light.For interpretation of the references to color in this figure,the reader is referred to the web version of this article.

    Fluorescence spectra were measured to investigate the optical properties of the MgCl2-Lys-Ag/Au NCs.As shown in Fig.4E,the fluorescence intensity of the solid MgCl2-Lys-Ag/Au NCs at the maximum emission wavelength was remarkably enhanced compared with that of the Lys-Ag/Au NCs in solution and as a solid,increasing the absolute quantum yield to 44.5% from 19.0% to 34.6%,respectively.The fluorescence enhancement of the solid MgCl2-Lys-Ag/Au NCs can be attributed to the restriction of nonradiative motions of the surface ligands and an enhanced ligand-tometal charge transfer by forming a cross-linked network connected by Mg2+[29,30].The fluorescence decay curve of the MgCl2-Lys-Ag/Au NCs presented in Fig.4F shows that the average lifetime of the MgCl2-Lys-Ag/Au NCs was 2.29 μs after combining the two components,each with lifetimes of 1.22 μs(49.07%)and 3.32 μs(50.93%),respectively.

    The cyan-emitting Fe@TAOH was then prepared.A nonluminous,brick-red precipitate(named Fe-TAOH)was generated when H2O2was added into the mixture solution of TA and Fe2+(Fig.5A and B),and then white precipitate formed when phosphoric acid(H3PO4)was introduced into the above brick-red precipitate(Fig.5C).The obtained white precipitate(denoted as Fe@TAOH)emitted strong cyan fluorescence under the UV lamp(Fig.5D).

    Fig.6.(A)SEM image and(B)XRD analysis of the Fe-TAOH.(C)SEM image and(D)XRD analysis of Fe@TAOH.(For interpretation of the references to color in this figure,the reader is referred to the web version of this article.)

    The chemical composition of Fe@TAOH was examined.As displayed by X-ray photoelectron spectroscopy(XPS)measurements shown in Fig.S4A(Supporting information),Fe@TAOH was composed of C,O,and Fe elements,where Fe element came from the Fenton reagent.Fe 2p1/2and Fe 2p3/2peaks were located at 726.4 and 712.9 eV(Fig.S4B)(Supporting information)),which implied that the valence state of the Fe element in Fe@TAOH was +3 and verified the production of Fe3+from the Fenton reaction.Electrospray ionization mass spectrometry(ESI-MS)was also employed to determine the chemical structure of Fe@TAOH,as shown in Fig.S5(Supporting information).The mass peak at 338.3433 corresponded to the composition of Fe2.5(TAOH)(H2O),and the mass peak at 675.6778 was a diploid peak corresponding to composition of Fe5(TAOH)2(H2O)2.

    SEM imaging showed that the brick-red precipitate was composed of spherical particles with a uniform size,as shown in Fig.6A.The XRD pattern showed a bulging peak shape(Fig.6B),implying the brick precipitate had an amorphous morphology[31].The white precipitate(Fe@TAOH)showed a regular bar structure in the SEM experiments(Fig.6C).The XRD pattern of Fe@TAOH shown in Fig.6D displayed several distinct,sharp peaks,implying Fe@TAOH had a crystalline structure[31].It is speculated that the amorphous Fe-MOF self-assembled to form a regular bar structure under the influence of hydrogen bonding andπ-πinteraction in the presence of H3PO4[32].The FT-IR spectra of TA,Fe-TAOH,and Fe@TAOH are shown in Fig.7A.Compared with that of TA,the characteristic absorption peak of hydroxy(O?H)bonds at 3424 cm?1demonstrated that TA was oxidized to TAOH by the Fenton reagent.The disappearance of the ?COOH peak at 2500–3300 cm?1and appearance of C=O peaks from the ?COO?group at 1556 cm?1and 1389 cm?1showed that TAOH coordinated with iron,for that carboxyl group can coordinate with Fe3+[33,34].The absorption peak of the C?H bonds in phenyl at 756 cm?1and that of Fe?O bonds at 535.43 cm?1further indicated the formation of TAOH and its combination with Fe.

    The results indicated that the luminescent white precipitate of Fe@TAOH can be generatedviaTA reacting with the products(Fe3+and?OH)of the Fenton reagent.Non-fluorescent TA was oxidized to fluorescent hydroxy terephthalic acid(TAOH)by?OH from the Fenton reaction.The brick-red precipitate of Fe-TAOH formed by the coordination of TAOH with Fe3+was nonluminous due to the quenching effect of Fe3+on TAOH However,by adding H3PO4to the brick-red precipitate,the nonluminous Fe-TAOH proceeded to self-assemble to form luminous Fe@TAOH.

    The optical properties of the Fe@TAOH were investigated.As Fig.7B shows,the Fe@TAOH had wide excitation spectra ranging from 255 to 465 nm,with two distinct peaks located at 318 and 420 nm.Fe@TAOH showed two emission peaks located at 396 and 485 nm when excited at 318 nm;when excited at 420 nm,only one emission peak located at 490 nm appeared,and with an absolute quantum yield of 21.7%.The time-resolved fluorescence lifetime of Fe@TAOH was also determined,as shown in Fig.7C.The average lifetime of Fe@TAOH was 6.49 ns after combining the two components,each with lifetimes of 3.93 ns(21.98%)and 7.21 ns(78.02%).

    The fluorescence emission spectra of the cyan-emitting Fe@TAOH ranged from 325 to 650 nm(Fig.8A),while that of the orange-emitting MgCl2-Lys-Ag/Au NCs ranged from 455 to 800 nm(Fig.8B).The emission of the two components can almost cover the whole visible spectral range from 400 to 800 nm,which is beneficial to the fabrication of white-light-emitting materials.Meanwhile,the excitation spectra of Fe@TAOH and MgCl2-Lys-Ag/Au NCs overlapped well from 290 to 465 nm,ensuring that both components of the mixture can be excited under a certain excitation light source.

    To investigate the feasibility of the prepared MgCl2-Lys-Ag/Au NCs and Fe@TAOH in the application of white-light-emitting materials,their photostability against storage time was first investigated.As shown in Fig.S6(Supporting information),the fluorescence intensity of Fe@TAOH and MgCl2-Lys-Ag/Au NCs displayed minor changes after three months of storage in a refrigerator at 4 °C under dark conditions.In addition,the obtained Fe@TAOH and MgCl2-Lys-Ag/Au NCs solids were insoluble in water(Fig.S7 in Supporting information),implying they were stable in highmoisture circumstances.Importantly,the Fe@TAOH and MgCl2-Lys-Ag/Au NCs showed excellent photostability against long exposures to light irradiation(Fig.S8 in Supporting information),which is beneficial for luminescent material applications.

    Fig.7.(A)FT-IR spectra of the TA(blue line),Fe-TAOH(green line)and Fe@TAOH(red line).(B)Fluorescence excitation and emission spectra of solid Fe@TAOH.(C)Timeresolved fluorescence lifetime analysis of Fe@TAOH.(For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.)

    Fig.8.Emission spectra of(A)Fe@TAOH,(B)MgCl2-Lys-Ag/Au NCs and(C)WLEDs fabricated by Fe@TAOH and MgCl2-Lys-Ag/Au NCs(the insets were the photographs of corresponding materials under UV lamp and WLEDs).And CIE color coordinates of cyan-emitting Fe@TAOH(D),orange-emitting MgCl2-Lys-Ag/Au NCs(E)and WLEDs(F).For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.

    Due to their distinctly advantageous properties,Fe@TAOH and MgCl2-Lys-Ag/Au NCs were utilized to fabricate WLEDs.The cyanemitting Fe@TAOH and orange-emitting MgCl2-Lys-Ag/Au NCs have color coordinates of(0.20,0.31)(Fig.8D)and(0.58,0.39)(Fig.8E),respectively.The WLEDs fabricated by coating Fe@TAOH and MgCl2-Lys-Ag/Au NCs powders on a commercial UV-light(365 nm)LED chip showed an emission spectra ranging from 425 to 800 nm(Fig.8C),and emitted white light under the excitation of UV-light chip(the inset of Fig.8F).As shown in Table S2(Supporting information),the performance of WLEDs was measured and it displayed an acceptable white light emission with CIE color coordinates of(0.28,0.34),and showed high CRI of 79.6 and correlated color temperature(CCT)of 5299.These results demonstrated that our prepared Fe@TAOH and MgCl2-Lys-Ag/Au NCs have prospects in the application of WLEDs.

    In summary,orange-emitting MgCl2-Lys-Ag/Au NCs and cyanemitting Fe@TAOH were prepared and employed to fabricate WLEDs.Highly luminescent solid-state MgCl2-Lys-Ag/Au NCs were preparedviaa convenient method involving the salt-induced precipitation of Lys-Ag/Au NCs out of the parent solution,which exhibited a high absolute quantum yield(44.5%),large Stokes shift(215 nm),and good photostability.In addition,cyan-emitting phosphors preparedviathe reaction of TA and Fenton reagent under the guidance of phosphoric acid were developed.The prepared Fe@TAOH had a maximum emission wavelength at 485 nm,with wide excitation spectra ranging from 255 to 465 nm,as well as an absolute quantum yield of 21.7%.The excitation spectra of the Fe@TAOH and MgCl2-Lys-Ag/Au NCs overlapped well from 290 to 465 nm,and the emission of the two components combined covered the whole visible spectral range from 400 to 800 nm,which showed an acceptable white emission with CIE color coordinates of(0.28,0.34)and high CRI of 79.6.This work provides a simple method to quickly prepare highly efficient,environmentally friendly,and low-cost emitting phosphors for solid-state luminescence.The prepared nanomaterials have bright prospects for applications in the field of WLEDs.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    The project was supported by the National Natural Science Foundation of China(No.22074007).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.039.

    伦理电影免费视频| a级片在线免费高清观看视频| 亚洲专区国产一区二区| 成人影院久久| 久久人妻av系列| 一级毛片电影观看| av片东京热男人的天堂| 久久久久视频综合| www.熟女人妻精品国产| 国产成人影院久久av| 久久亚洲真实| 久9热在线精品视频| 精品熟女少妇八av免费久了| 国产一区二区三区综合在线观看| 成在线人永久免费视频| 国产在线视频一区二区| 国产欧美日韩精品亚洲av| 人人妻人人爽人人添夜夜欢视频| 女性生殖器流出的白浆| 日韩三级视频一区二区三区| 亚洲国产看品久久| 午夜福利乱码中文字幕| 91精品三级在线观看| 国产精品久久久人人做人人爽| 伊人久久大香线蕉亚洲五| 日韩 欧美 亚洲 中文字幕| 精品少妇黑人巨大在线播放| 亚洲中文av在线| 精品视频人人做人人爽| 国产免费av片在线观看野外av| 国产日韩欧美视频二区| 在线观看66精品国产| 曰老女人黄片| 激情在线观看视频在线高清 | 国产在线精品亚洲第一网站| av国产精品久久久久影院| 久久亚洲真实| 丝袜美腿诱惑在线| 老司机影院毛片| 交换朋友夫妻互换小说| 成人国产一区最新在线观看| 99久久人妻综合| 国产xxxxx性猛交| 人妻一区二区av| 每晚都被弄得嗷嗷叫到高潮| 国产精品熟女久久久久浪| 丝袜在线中文字幕| 动漫黄色视频在线观看| 欧美在线黄色| 成人18禁高潮啪啪吃奶动态图| 久久久国产成人免费| 久久久国产一区二区| √禁漫天堂资源中文www| 女警被强在线播放| 国产成人啪精品午夜网站| 99香蕉大伊视频| 日韩欧美免费精品| 久久精品国产亚洲av香蕉五月 | 亚洲欧美精品综合一区二区三区| 黄网站色视频无遮挡免费观看| 黑人巨大精品欧美一区二区mp4| 国产精品1区2区在线观看. | 99久久精品国产亚洲精品| 少妇的丰满在线观看| 久久久久久亚洲精品国产蜜桃av| 免费看十八禁软件| 日本wwww免费看| 老司机影院毛片| 狠狠婷婷综合久久久久久88av| a级片在线免费高清观看视频| 国产有黄有色有爽视频| h视频一区二区三区| 亚洲自偷自拍图片 自拍| 日本黄色视频三级网站网址 | 9191精品国产免费久久| 在线十欧美十亚洲十日本专区| 国产精品国产高清国产av | 亚洲av片天天在线观看| 国产精品98久久久久久宅男小说| 少妇粗大呻吟视频| 久久久精品免费免费高清| 嫩草影视91久久| 丁香欧美五月| 蜜桃在线观看..| 大陆偷拍与自拍| 国产野战对白在线观看| 精品国产一区二区三区四区第35| 亚洲av美国av| 少妇被粗大的猛进出69影院| 99精国产麻豆久久婷婷| 欧美在线一区亚洲| 欧美亚洲 丝袜 人妻 在线| 日韩大片免费观看网站| 淫妇啪啪啪对白视频| 亚洲国产欧美网| 亚洲一区中文字幕在线| 一区二区三区激情视频| 9热在线视频观看99| 悠悠久久av| 在线观看舔阴道视频| 色综合婷婷激情| 国产精品免费大片| 国产精品秋霞免费鲁丝片| 婷婷丁香在线五月| 久久精品国产99精品国产亚洲性色 | 久久99热这里只频精品6学生| 成人精品一区二区免费| 国产成人啪精品午夜网站| 王馨瑶露胸无遮挡在线观看| 搡老熟女国产l中国老女人| www日本在线高清视频| 不卡av一区二区三区| 97人妻天天添夜夜摸| 国产成人欧美| 日韩 欧美 亚洲 中文字幕| 国产高清激情床上av| 午夜福利免费观看在线| av有码第一页| 久久精品亚洲av国产电影网| av网站在线播放免费| 亚洲avbb在线观看| 亚洲欧美一区二区三区久久| 水蜜桃什么品种好| 精品亚洲成a人片在线观看| 丝袜在线中文字幕| 无限看片的www在线观看| 涩涩av久久男人的天堂| 老汉色av国产亚洲站长工具| 大香蕉久久网| 一级,二级,三级黄色视频| 国产成人欧美在线观看 | av一本久久久久| 又黄又粗又硬又大视频| 精品少妇一区二区三区视频日本电影| 国产99久久九九免费精品| 高清欧美精品videossex| 亚洲自偷自拍图片 自拍| 国产精品免费视频内射| 在线观看舔阴道视频| 在线亚洲精品国产二区图片欧美| 黑人巨大精品欧美一区二区蜜桃| 精品视频人人做人人爽| 亚洲av日韩在线播放| 日本av免费视频播放| 三级毛片av免费| 大片电影免费在线观看免费| 精品少妇内射三级| 老司机靠b影院| 欧美日韩av久久| 亚洲第一av免费看| 久久人人97超碰香蕉20202| 一区二区日韩欧美中文字幕| 18禁美女被吸乳视频| a在线观看视频网站| 电影成人av| 人妻久久中文字幕网| 精品国产乱子伦一区二区三区| 亚洲avbb在线观看| 欧美人与性动交α欧美软件| 九色亚洲精品在线播放| 成人av一区二区三区在线看| 高清视频免费观看一区二区| 国产精品香港三级国产av潘金莲| 久久久欧美国产精品| 久久99一区二区三区| 99国产综合亚洲精品| 欧美乱妇无乱码| 亚洲精品国产一区二区精华液| 精品国产国语对白av| 50天的宝宝边吃奶边哭怎么回事| 欧美日韩av久久| 精品少妇一区二区三区视频日本电影| 欧美在线黄色| 精品一品国产午夜福利视频| 久久精品国产亚洲av高清一级| 久久国产精品大桥未久av| 午夜精品久久久久久毛片777| 久久久国产一区二区| 久久精品亚洲精品国产色婷小说| 一区二区三区激情视频| 欧美成人午夜精品| 欧美变态另类bdsm刘玥| 99在线人妻在线中文字幕 | 亚洲精品美女久久久久99蜜臀| 中文字幕人妻丝袜制服| 人成视频在线观看免费观看| 夜夜夜夜夜久久久久| 国产精品一区二区免费欧美| 色老头精品视频在线观看| 老司机亚洲免费影院| 国产精品久久久av美女十八| 欧美黑人精品巨大| 国产在线免费精品| 波多野结衣一区麻豆| 大型av网站在线播放| 少妇裸体淫交视频免费看高清 | 国产黄频视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 首页视频小说图片口味搜索| 亚洲五月婷婷丁香| 丰满迷人的少妇在线观看| 我的亚洲天堂| 纯流量卡能插随身wifi吗| 国产成人欧美| 国产高清激情床上av| 天堂中文最新版在线下载| 在线av久久热| 久久影院123| 国产精品电影一区二区三区 | 欧美日韩黄片免| 一边摸一边做爽爽视频免费| 国产主播在线观看一区二区| 国产福利在线免费观看视频| 欧美乱妇无乱码| 国产一区二区 视频在线| 免费日韩欧美在线观看| 久久久国产欧美日韩av| 色在线成人网| 天堂中文最新版在线下载| 欧美亚洲 丝袜 人妻 在线| 91老司机精品| 国产亚洲av高清不卡| 韩国精品一区二区三区| 高清视频免费观看一区二区| 51午夜福利影视在线观看| 夜夜夜夜夜久久久久| 欧美中文综合在线视频| 成人永久免费在线观看视频 | 国产色视频综合| 精品一区二区三区av网在线观看 | 乱人伦中国视频| 久久毛片免费看一区二区三区| 久久精品亚洲av国产电影网| 欧美日韩中文字幕国产精品一区二区三区 | 欧美亚洲日本最大视频资源| 国产xxxxx性猛交| 国产有黄有色有爽视频| 汤姆久久久久久久影院中文字幕| 岛国毛片在线播放| 久久精品aⅴ一区二区三区四区| 国产欧美日韩精品亚洲av| 午夜精品久久久久久毛片777| 操美女的视频在线观看| 日韩免费高清中文字幕av| 黄色 视频免费看| 欧美激情 高清一区二区三区| a级毛片在线看网站| 人人澡人人妻人| 欧美日韩av久久| 亚洲欧美色中文字幕在线| 国产精品av久久久久免费| 超色免费av| 777米奇影视久久| av电影中文网址| 中文字幕制服av| 黑丝袜美女国产一区| 精品久久久久久电影网| 久久精品亚洲熟妇少妇任你| 亚洲专区字幕在线| 成年动漫av网址| 亚洲精品粉嫩美女一区| 国产熟女午夜一区二区三区| 怎么达到女性高潮| 乱人伦中国视频| 午夜福利欧美成人| 99re6热这里在线精品视频| 欧美日韩福利视频一区二区| 正在播放国产对白刺激| 下体分泌物呈黄色| 他把我摸到了高潮在线观看 | 成人永久免费在线观看视频 | 一级片'在线观看视频| 欧美日韩国产mv在线观看视频| 欧美av亚洲av综合av国产av| 老司机影院毛片| 老司机午夜福利在线观看视频 | 不卡一级毛片| 国产欧美日韩一区二区三| 亚洲男人天堂网一区| 日本wwww免费看| 午夜免费鲁丝| www.自偷自拍.com| 免费高清在线观看日韩| 丝袜人妻中文字幕| 亚洲欧美日韩高清在线视频 | 在线天堂中文资源库| 黄色片一级片一级黄色片| 青青草视频在线视频观看| 悠悠久久av| 精品久久久久久久毛片微露脸| 黄色片一级片一级黄色片| 免费在线观看视频国产中文字幕亚洲| 每晚都被弄得嗷嗷叫到高潮| 国产不卡av网站在线观看| 男人操女人黄网站| 国产欧美日韩综合在线一区二区| 99国产精品99久久久久| 亚洲专区中文字幕在线| 黑丝袜美女国产一区| 俄罗斯特黄特色一大片| 精品国产一区二区久久| 国产精品亚洲av一区麻豆| 国产精品国产高清国产av | 老熟女久久久| 日韩欧美三级三区| 国产欧美日韩综合在线一区二区| 精品午夜福利视频在线观看一区 | 国产免费av片在线观看野外av| 如日韩欧美国产精品一区二区三区| 91麻豆av在线| 黄色成人免费大全| 国产一卡二卡三卡精品| 国产欧美日韩综合在线一区二区| 色综合婷婷激情| 999久久久精品免费观看国产| 国产精品久久久久久精品古装| avwww免费| 成年人免费黄色播放视频| 免费观看人在逋| 欧美中文综合在线视频| 999久久久精品免费观看国产| 波多野结衣av一区二区av| 中文字幕人妻丝袜一区二区| 亚洲人成电影免费在线| 国精品久久久久久国模美| 韩国精品一区二区三区| 男女免费视频国产| 后天国语完整版免费观看| netflix在线观看网站| 老汉色∧v一级毛片| 国产精品九九99| 国产国语露脸激情在线看| 欧美日韩精品网址| 另类亚洲欧美激情| 久9热在线精品视频| 国产成+人综合+亚洲专区| 亚洲午夜精品一区,二区,三区| 日韩视频在线欧美| 国产亚洲欧美在线一区二区| 精品国产一区二区久久| 不卡av一区二区三区| 亚洲成人免费av在线播放| 国产黄频视频在线观看| 大码成人一级视频| 手机成人av网站| 99re6热这里在线精品视频| 亚洲熟女精品中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 久久精品国产亚洲av高清一级| 一级毛片精品| 丝袜喷水一区| 女性生殖器流出的白浆| 国产精品 欧美亚洲| 亚洲三区欧美一区| 久久中文字幕一级| 一级毛片电影观看| 午夜激情av网站| 性高湖久久久久久久久免费观看| 国产极品粉嫩免费观看在线| 欧美激情久久久久久爽电影 | 日本欧美视频一区| 欧美老熟妇乱子伦牲交| 亚洲人成电影观看| 性少妇av在线| 丰满饥渴人妻一区二区三| 亚洲精品国产精品久久久不卡| 久久这里只有精品19| 欧美国产精品va在线观看不卡| 国产精品久久久人人做人人爽| 午夜老司机福利片| 久久精品亚洲熟妇少妇任你| 国产日韩欧美视频二区| 男女之事视频高清在线观看| 亚洲国产av新网站| 国产亚洲一区二区精品| 成年人免费黄色播放视频| 一边摸一边抽搐一进一小说 | 国产激情久久老熟女| 91字幕亚洲| 欧美av亚洲av综合av国产av| 一级片免费观看大全| 国产精品电影一区二区三区 | 人妻 亚洲 视频| 电影成人av| 亚洲av成人一区二区三| 一级a爱视频在线免费观看| 国产91精品成人一区二区三区 | 欧美成人午夜精品| 欧美日本中文国产一区发布| 欧美日韩亚洲国产一区二区在线观看 | 日韩三级视频一区二区三区| www.熟女人妻精品国产| 国产精品麻豆人妻色哟哟久久| 久久精品人人爽人人爽视色| 搡老乐熟女国产| 日韩一区二区三区影片| 99在线人妻在线中文字幕 | 大型av网站在线播放| 亚洲avbb在线观看| 国产高清视频在线播放一区| 久久人妻福利社区极品人妻图片| 国产日韩一区二区三区精品不卡| 国产日韩欧美视频二区| 十八禁网站免费在线| www.熟女人妻精品国产| 又紧又爽又黄一区二区| 免费女性裸体啪啪无遮挡网站| www.精华液| 国产成+人综合+亚洲专区| 性高湖久久久久久久久免费观看| 成人国产av品久久久| 女人爽到高潮嗷嗷叫在线视频| 国产不卡av网站在线观看| 久久99一区二区三区| 精品少妇久久久久久888优播| 久久久久久久大尺度免费视频| 久久精品人人爽人人爽视色| 人人澡人人妻人| 少妇粗大呻吟视频| 国产在线免费精品| 久久热在线av| 国产亚洲精品第一综合不卡| 欧美日韩视频精品一区| 亚洲专区国产一区二区| 性色av乱码一区二区三区2| 后天国语完整版免费观看| 一区二区三区乱码不卡18| av在线播放免费不卡| 欧美日韩视频精品一区| 精品少妇一区二区三区视频日本电影| 91麻豆精品激情在线观看国产 | 无遮挡黄片免费观看| 天天操日日干夜夜撸| 国产精品免费大片| 老司机靠b影院| 啦啦啦 在线观看视频| 国产成人免费观看mmmm| 老熟妇乱子伦视频在线观看| 午夜福利,免费看| 69精品国产乱码久久久| 亚洲成a人片在线一区二区| 黄色 视频免费看| 岛国毛片在线播放| 国产亚洲午夜精品一区二区久久| 久久 成人 亚洲| 国产欧美日韩精品亚洲av| 国产精品免费大片| 国产精品久久久久久精品电影小说| 精品久久久久久久毛片微露脸| 脱女人内裤的视频| 91麻豆精品激情在线观看国产 | 十八禁高潮呻吟视频| 女人高潮潮喷娇喘18禁视频| 久久亚洲真实| 人人妻人人添人人爽欧美一区卜| 在线观看一区二区三区激情| 菩萨蛮人人尽说江南好唐韦庄| 国产精品国产高清国产av | 在线观看一区二区三区激情| 无人区码免费观看不卡 | 久久狼人影院| 久9热在线精品视频| 中文亚洲av片在线观看爽 | 久久久欧美国产精品| 老司机福利观看| 日韩欧美国产一区二区入口| 91精品三级在线观看| 亚洲情色 制服丝袜| 国产成人系列免费观看| 满18在线观看网站| 无限看片的www在线观看| 国产淫语在线视频| 中文字幕色久视频| 欧美+亚洲+日韩+国产| 国产成人影院久久av| 法律面前人人平等表现在哪些方面| 久久精品国产a三级三级三级| 国产一区二区三区视频了| 桃红色精品国产亚洲av| 黄色a级毛片大全视频| 欧美黄色片欧美黄色片| www.精华液| 老司机亚洲免费影院| 亚洲一码二码三码区别大吗| 欧美人与性动交α欧美软件| 精品亚洲成a人片在线观看| 日本撒尿小便嘘嘘汇集6| 精品福利观看| 亚洲黑人精品在线| 精品国产国语对白av| 国产男女超爽视频在线观看| 看免费av毛片| 少妇被粗大的猛进出69影院| 国产欧美日韩综合在线一区二区| 老汉色∧v一级毛片| 一区二区三区精品91| 热re99久久国产66热| 在线观看一区二区三区激情| 18禁裸乳无遮挡动漫免费视频| 无遮挡黄片免费观看| 大型av网站在线播放| 国产精品熟女久久久久浪| 黄色视频,在线免费观看| 国产成人av激情在线播放| 美女高潮喷水抽搐中文字幕| 成年人黄色毛片网站| 久久久精品区二区三区| 国产色视频综合| 国产1区2区3区精品| 色94色欧美一区二区| 国产熟女午夜一区二区三区| 美女视频免费永久观看网站| 久久香蕉激情| 最近最新中文字幕大全电影3 | 69av精品久久久久久 | 在线观看一区二区三区激情| 狂野欧美激情性xxxx| 男女无遮挡免费网站观看| 欧美精品一区二区免费开放| 久久久久久久大尺度免费视频| 制服诱惑二区| 国产高清国产精品国产三级| 亚洲视频免费观看视频| 亚洲国产欧美在线一区| 女人高潮潮喷娇喘18禁视频| 久久精品国产99精品国产亚洲性色 | 国产伦人伦偷精品视频| 黑人操中国人逼视频| 久久精品aⅴ一区二区三区四区| 伦理电影免费视频| 精品一区二区三卡| 无人区码免费观看不卡 | 国产av又大| 精品国产亚洲在线| 麻豆国产av国片精品| 亚洲精品在线美女| 精品国产乱码久久久久久小说| 无限看片的www在线观看| 99国产精品一区二区蜜桃av | av不卡在线播放| cao死你这个sao货| 超碰成人久久| 亚洲中文av在线| 淫妇啪啪啪对白视频| 久久中文看片网| 欧美中文综合在线视频| 亚洲国产看品久久| 成人18禁在线播放| 国产在线一区二区三区精| 大码成人一级视频| 精品人妻1区二区| 人人妻人人爽人人添夜夜欢视频| 国产99久久九九免费精品| 国产在线免费精品| 国产av国产精品国产| 午夜福利免费观看在线| 久久精品亚洲精品国产色婷小说| 亚洲 国产 在线| 夜夜夜夜夜久久久久| 色在线成人网| 国产亚洲午夜精品一区二区久久| 少妇 在线观看| 男人操女人黄网站| 777久久人妻少妇嫩草av网站| 最新的欧美精品一区二区| 欧美亚洲日本最大视频资源| 热99re8久久精品国产| 变态另类成人亚洲欧美熟女 | 最新在线观看一区二区三区| 国产真人三级小视频在线观看| 免费观看a级毛片全部| 国产亚洲一区二区精品| 亚洲精华国产精华精| 蜜桃国产av成人99| 日本欧美视频一区| 夫妻午夜视频| 亚洲av美国av| 99精品在免费线老司机午夜| 露出奶头的视频| 国产成人免费无遮挡视频| 国产精品一区二区在线观看99| 中文字幕精品免费在线观看视频| 亚洲精品粉嫩美女一区| 亚洲av片天天在线观看| 99精国产麻豆久久婷婷| 五月天丁香电影| 天堂中文最新版在线下载| 久久青草综合色| 大陆偷拍与自拍| 精品国内亚洲2022精品成人 | 日日爽夜夜爽网站| 欧美+亚洲+日韩+国产| 成人国语在线视频| 国产一区有黄有色的免费视频| 首页视频小说图片口味搜索| 精品亚洲成国产av| 麻豆av在线久日| 亚洲熟女毛片儿| 91国产中文字幕| 久久人人97超碰香蕉20202| 国产精品秋霞免费鲁丝片| 麻豆乱淫一区二区| 视频区图区小说| 成人国产一区最新在线观看| 99精国产麻豆久久婷婷| 国产精品国产高清国产av | 久久精品熟女亚洲av麻豆精品| 老司机福利观看| 热99久久久久精品小说推荐| 777米奇影视久久| 欧美老熟妇乱子伦牲交| 成人精品一区二区免费| 黄色视频不卡| 国产精品久久久久成人av| 欧美激情高清一区二区三区|