• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cucurbit[6]uril functionalized gold nanoparticles and electrode for the detection of metformin drug

    2022-03-14 09:28:30YqiWngLingDingHuiYuFengLing
    Chinese Chemical Letters 2022年1期

    Yqi Wng,Ling Ding,Hui Yu,Feng Ling,?

    aThe State Key Laboratory of Refractories and Metallurgy,School of Chemistry and Chemical Engineering,Wuhan University of Science and Technology,Wuhan 430081,China

    bDepartment of Civil and Environmental Engineering,Temple University,Philadelphia,PA 19122,United States

    ABSTRACT Based on the host-guest molecular recognition capability of cucurbit[6]uril(CB[6])modified on the gold surface,sensitive spectrophotometric and electrochemical methods for the detection of metformin(MET)have been developed.The molecular recognition between cucurbit[7]uril(CB[7])or CB[6]and MET is initially demonstrated and the related recognition mechanism is further deliberated.First,CB[6]-modified gold nanoparticles(AuNPs/CB[6])were synthesized and then characterized by ultraviolet visible light spectrum(UV–vis)and transmission electron microscopy(TEM).The aggregation of AuNPs/CB[6]prompted by MET triggered changes of color and the absorption spectrum,that explored for the visual identification and spectrophotometric determination of MET.Under the optimized detection conditions,the UV–vis spectrometry had a good linear relationship in the range of 6–700 μmol/L,and the detection limit was 2 μmol/L.In addition,a single-layer CB[6]-modified gold electrode(GE-CB[6])detection system for MET was constructed.As the concentration of MET in the solution continues to increase,the charge transfer resistance(Rct)in the Nyquist diagram of the electrochemical impedance method(EIS)continues to increase.In the concentration range from 10 pmol/L to 20 nmol/L,the logarithm of the MET concentration has a good linear relationship with Rct,and the detection limit of this method is 1.35 pmol/L.Both methods have good concentration sensitivity to MET in different concentration ranges,providing a powerful tool for the detection of MET.

    Keywords:Metformin Cucurbiturils Host-guest interactions Gold nanoparticles Gold electrode

    Metformin(MET)is an oral hypoglycemic biguanide with imine and guanidine groups[1-4].Specifically,MET can reduce the absorption of glucose and accelerate the transport of glucose into cells.It can also reduce the concentration of free fatty acids in plasma and inhibit gluconeogenesis.In addition,some researchers have shown that MET has anticancer and antiaging effects.In the process of metabolism in the body,about 70% of MET remains unchanged,and finally it enters the urine through the kidneys[5].The effect of MET is closely related to its dosage.More than 3000 mg of MET in the blood per day can cause life-threatening lactic acidosis,liver disease,kidney problems and gastrointestinal infections[6].Therefore,the determination of metformin in the blood is very important in the clinical diagnosis and medical management of the above-mentioned diseases.

    Several analytical methods for the determination of MET have been reported in the literature,mainly including ultra-high performance liquid chromatography-ultraviolet detection[7,8],liquid chromatography-tandem mass spectrometry[9,10],high performance thin layer chromatography[11],capillary electrophoresis[12]and electrochemical analysis[13].However,some of the limitations of these analytical methods,such as expensive instruments,complicated pre-processing steps and long analysis time,limit their use in professional laboratories.Therefore,it is becoming more and more urgent to develop a simple,fast and sensitive analytical method for the determination of MET.

    Many host-guest functionalized interfaces,including metal surfaces[14,15],inorganic substrates[16],and biological and solid nanochannels[17-19]have been comprehensively presented as effective discrimination and detection platforms.Gold nanoparticles(AuNPs)have clear morphology,composition and unique physical and chemical properties,and have shown their broad application prospects in catalysis,sensing and biomedicine[20-23].Due to the surface plasmon resonance(SPR)effect,large interactions between the surfaces of nanoparticles can easily lead to agglomeration,resulting in redshift and color changes[24-26].Functional nanostructures of AuNPs will be ideal candidates for reducing non-specific agglomeration and improving selectivity.

    Fig.1.(A)1H NMR titration spectrum of MET(4.0 mmol/L)and different content of CB[6](a 0,b 0.25,c 0.5,d 0.75,e 1.0,f 1.5,g 2.0 equiv.);(B)UV–vis spectra of MET(70 μmol/L)and CB[6](0-4.29 equiv.).Inset:The relationship between absorption intensity at 232 nm and NCB[6]/NMET.

    Cucurbituril(CB[n])can be easily combined with the electrondeficient groups of the alkyl chain and cationic amine groups to achieve selective molecular recognition[27-32].In most cases,chemical adsorption as one of the main immobilization methods has been used to aggregate macrocyclic compounds and nanoparticles or metal surfaces.The carbonyl epoxy atoms of CB[6]and CB[7]can interact with AuNPs[33]to form a stable nanocomposite,which has the advantages of simple preparation and convenient use.We have prepared a new type of highly sensitive drug probe for the detection of MET based on CB[6],CB[7]and AuNPs.

    In this article,we first synthesized CB[6]or CB[7]functinalized AuNPs as sensing probe.The molecular recognition behavior between CB[6],CB[7]and MET has been preliminarily deliberate,and then CB[6]is used as the recognition receptor for MET.According to the molecular recognition of host and guest,MET can be accurately combined with CB[6].It then promotes the aggregation of the nanoparticles,which leads to changes in color and UV–vis absorption spectrum.With these changes,MET can be detecting by the UV–vis spectral analysis(Scheme 1).Alternatively,macrocyclic receptor functionalized GE have been used to detect various biomolecules[34-36].Here,based on the interaction between CB[6]and the gold surface,GE-CB[6]was used to detect MET.Under optimized experimental conditions,it was found that in the solution of AuNPs/CB[6],MET can cause the aggregation of AuNPs/CB[6]and trigger the change of color and UV–vis absorption spectrum.When the concentration of MET is in the range of 6–120 μmol/L,the change in absorption intensity has a good linear relationship with the corresponding concentration,and the detection limit is 2.0 μmol/L.And electrochemical impedance spectroscopy experiment(EIS)shows that the logarithm of the MET concentration has a good linear relationship with charge transfer resistance(Rct)in the concentration range from 10 pmol/L to 20 nmol/L,and the detection limit of this method is 1.35 pmol/L.Relying on molecular recognition mechanisms,these assay methods deliver a encouraging tool for highly specific drug determination in different concentration ranges.

    The molecular recognition behavior and related mechanisms of CB[n](n=6,7)and MET were analyzed and discussed by1H NMR and UV–vis spectroscopy.The1H NMR spectrum of CB[6]and MET is shown in Fig.1A.It can be seen that as the equivalent of CB[6]increases,the two methyl proton hydrogens on MET move to a high field.When adding more than 1.0 equiv.of CB[6],the proton hydrogen on the methyl group has no obvious chemical shift change,and it appears as a fast exchange in the nuclear magnetic time scale.It can be seen from the results of nuclear magnetic integration that the binding ratio of CB[6]and MET is 1:1.The MET used is non-protonated,MET aqueous solution(4.0 mmol/L)is weakly alkaline(pH 7.5)and the pKavalue is 12.4 at room temperature.But when 1.0 equiv.of CB[6]was added,the pH of the mixed solution increased to 10.3,which was due to the increase in the content of protonated MET formed by hydrolysis,that is,the cationic dipole interaction between MET and CB[6]promotes them to form stable complexes.Because of the small structure of MET,it only forms external interactions with carbonyl groups.Therefore,there is an enhanced conjugation effect(including hydrogen bond)between the guanidine group and CB[6],which makes the proton peak of CB[6]also shift to the high field.On the other hand,the molar ratio method based on UV–vis spectroscopy was used to determine the binding ratio between CB[6]and MET.As shown in Fig.1B,after adding CB[6]to the MET solution,the UV–vis absorption peak of MET at 232 nm disappeared immediately,this is because the interaction between CB[6]and MET weakens the characteristics of MET absorption.As the concentration of CB[6]increases,the absorbance at 232 nm gradually decreases.When the absorbance is almost constant,it indicates that CB[6]forms clathrates with almost all MET molecules.As NCB[6]/NMETincreases,A232gradually decreases.There is an obvious inflection point at the tangent of the curve,and the corresponding NCB[6]/NMETvalue is 1,which confirms that the combination ratio of CB[6]and MET is 1:1.Similarly,the recognition behavior of MET and CB[7]is also analyzed in the same way.As shown in Figs.S1a and b(Supporting information),due to the size effect,the complexing ability of CB[7]and MET is lower than CB[6].Unlike protonated MET[37],non-protonated MET “adheres” to the outside of the carbonyl port(electrostatic interaction).It can be found from the UV–vis that the cavity of CB[7]cannot completely shield the conjugated groups of MET,so the binding ratio of CB[7]and MET is 2:1 finally.The difference with CB[6]is that in the 2:1 binding mode,the guanidine group of MET cannot form a conjugation phenomenon with CB[7],so the proton peak of CB[7]on the1H NMR spectrum does not change.

    By improving the method of our group[33],stable and monodisperse CB[n](n=6,7)-modified AuNPs(AuNPs/CB[n])were prepared and used for the detection of MET(Supporting information for details).The morphology and size of the two AuNPs/CB[n]s were characterized by transmission electron microscopy(TEM)and UV–vis.Fig.S2(Supporting information)shows the TEM images and particle size distribution histograms of the two types of nanoparticles(AuNPs/CB[6]&AuNPs/CB[7]).The shape of the nanoparticles is spherical and the size is relatively uniform.The statistical results of the particle size show that the average particle size is 10.6 ± 1.6 nm and 16.2 ± 2.3 nm,respectively.Fig.S3(Supporting information)shows the UV–vis spectrum of AuNPs/CB[6]and AuNPs/CB[7]with maximum absorption peaks at 552 nm.

    Fig.2.(A)UV–vis spectra of the CB[6]-modified AuNPs with the addition of MET at different concentrations;(B)Linear relationship curve between △A552 and the concentrations of MET.

    Regarding the characteristics of MET and the ability of CB[6]to recognize host and guest molecules,CB[6]can selectively encapsulate the guanidine group of MET in its hydrophobic cavity.As shown in Scheme 1,when MET is added to the AuNPs/CB[6]solution,the guanidine group of MET is incorporated into the cavity,resulting in the aggregation of AuNPs/CB[6]solution.

    In order to exclude non-specific interference,the aggregation of AuNP induced by MET was also studied.When different concentrations of MET were added to the AuNPs solution,no changes in color and spectrum absorption were found,indicating that MET could not trigger the aggregation of AuNPs(Fig.S4 in Supporting information).To determine the optimal analysis conditions for the detection system,the incubation time of MET and nanoparticle complexes were optimized in the experiment.The results are shown in Fig.S5(Supporting information).Under the action of 250 μmol/L MET,within 30 min,as the reaction time increases,the absorbanceA552value gradually decreases,and the change of absorption peak at 552 nm(△A552)gradually increases,which indicates that as the reaction time increases,MET continuously binds to the CB[n]s molecules on the surface of AuNPs.After 30 min,the △A552value does not change,indicating that at the combination of MET and CB[n]s in the solution is almost complete,so 30 min was chosen as the incubation time for subsequent experiments.

    As shown in Fig.2A,the color of the AuNPs/CB[6]solution gradually changed from light red to charcoal gray,and the absorbance at about 552 nm decreased.At the same time,the absorption intensity increases in the wavelength range close to infrared.Then,MET can be perfectly detected by measuring the △A552of AuNPs/CB[6].Under the optimal conditions,MET solutions of different concentrations in the range of 6–700 μmol/L were added to the AuNPs/CB[6]solution.As the concentration of MET increases,the color of the solution gradually changes from light red to charcoal gray.Under the action of MET(500 μmol/L),AuNPs/CB[6]has obvious aggregation(Fig.S6 in Supporting information).The naked eye can easily distinguish the presence of MET.Then use △A552to quantify MET,as shown in Fig.2B,a good linear relationship was found between △A552and the concentration of MET over the range of 6–120 μmol/L(△A552=0.0008C+ 0.0274,R2=0.9890)and from 120 μmol/L to 700 μmol/L(△A552=0.00015C+ 0.1030,R2=0.9903).The limit of detection(LOD)was calculated to be 2.0 μmol/L(LOD=3 × standard deviation/slope).

    The excellent biocompatibility of CB[7]makes it widely used in the field of sensing.CB[7]can form a 2:1 inclusion compound with MET,which is a more promising molecular probe than CB[6].Similarly,under the optimal conditions,AuNPs/CB[7]was also used to detect MET.As shown in Fig.S7(Supporting information),when MET was added to the AuNPs/CB[7]solution,the complex did not aggregate as expected,and with the continuous addition of MET,the absorbance at 552 nm is unchanged.This may be due to the different binding ability of MET with CB[6]and CB[7].The repulsive force between nanoparticles will gradually increase when the MET were specifically identified with CB[n]s on the surface of AuNPs.The binding force of CB[7]and MET on the surface of AuNPs is less than the repulsive force between nanoparticles,so there is no specific aggregation phenomenon.

    To confirm this assumption,isothermal titration calorimetric(ITC)measurement experiments were performed between MET and AuNPs/CB[n]s.As shown in Fig.S8(Supporting information),the primary binding constantKaof CB[6],CB[7]and the nanoparticle complexes are evaluated to be 1.761 × 106L/mol and 4.307 × 103L/mol,respectively.It can be seen that the titration system of AuNPs/CB[7]has never reached the equilibrium state of heat exchange.This can prove that the specific recognition of MET and CB[7]on the surface of AuNPs is affected by the repulsion between the nanoparticles,that is to say,AuNPs/CB[7]cannot be used for accurate detection of MET for the time being.

    Based on these phenomena,the results can be easily read by naked eye observation and UV–vis spectrum analysis.However,for lower concentrations of target molecules,highly sensitive electrochemical sensors are needed to detect them.Compared with other biosensors,EIS uses a lower overvoltage to get rid of detection limitations.Here,we define an impedance sensor based on the active electrode of CB[6]interacting with the gold surface[38-40]to detect MET(Scheme 2).

    Scheme 1.The sensing process for metformin(MET)-mediated aggregation of CB[6]-modified AuNPs.

    Scheme 2.Structure of eletrochemical system and detection process of MET via electrochemical impedance based on host–guest interaction.

    First,compare the Nyquist diagrams of CB[6]modified GE(GECB[6]with bare GE),as shown in Fig.S9(Supporting information)in the electrolyte,theRct(green curve)of the exposed GE is about 190Ω.While CB[6]was modified,theRct in the modified electrode system was significantly reduced to 72Ω.This shows that CB[6]has a certain degree of conductivity on GE and also shows that CB[6]has been successfully modified on GE.The final modified electrode has low impedance,which promotes the electron transfer between the electrode and the electrolyte.In order to obtain more accurate detection results,the molecular recognition time in the system was optimized.MET(10 nmol/L)was added to the electrolyte solution,as time increases,the content of molecules on the electrode surface increases,and the Nyquist plots shows that the diameter of the semicircle becomes larger,that is,the impedance value becomes larger(Fig.S10 in Supporting information).At about 30 min,the diameter of the semicircle did not change,indicating that the host and guest recognition on the electrode surface was close to the equilibrium state.This time can ensure that the cucurbitacin can completely capture the molecule to be tested,so this stabilization time is selected for future test systems.

    Fig.3.(A)Nyquist plots for GE-CB[6]with the addition of MET at different concentrations;(B)Linear relationship curve between Rct and the logarithmic concentrations of MET.

    The calculation is made using the equivalent circuit shown in Fig.3A(inset).The model linearly diffuses the surface of the electrode using the Warburg impedance(W)andRct.The significant change in the impedance values reflects a change in the surface state of the electrode.The larger the diameter of the semicircle,the greater the impedance value and the electron transfer resistance.As the concentration of MET increases,the impedance increases.Fig.3B shows a good linear relationship between the logarithm of MET concentrations andRct over the range from 10 pmol/L to 20 nmol/L(Rct=30.118 lgCMET+ 47.039,R2=0.9910),the detection limit is 1.8 pmol/L.Compared with the spectrophotometry method,the detection limit is greatly lower and the accuracy is higher.Since the GE structure has a fixed number of CB[6]binding sites,the electrochemical system has the advantages of low detection limit and high accuracy at the picomolar concentration level.

    In conclusion,we have demonstrated two simple and sensitive methods for detecting MET.Use CB[6]to modify the surface of AuNPs to obtain recognition performance and SPR effect at the same time.It was perceived that as the concentration of MET increased,the nanoparticles gradually aggregated,with sensitive detection ability at the micromolar concentration level(detection limit=2.0 μmol/L).An electrochemical impedance system for detecting MET was constructed on the GE modified by CB[6].Rctaccurately displays the state change of the electrode surface.The system has a more accurate and sensitive detection capability at the picomolar concentration level(detection limit=1.35 pmol/L).

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China(No.21807083),the Program for Innovative Teams of Outstanding Young and Middleaged Researchers in the Higher Education Institutions of Hubei Province(No.T201702).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.044.

    99国产极品粉嫩在线观看| 日本免费一区二区三区高清不卡| 亚洲,欧美,日韩| 看十八女毛片水多多多| 国产成人精品久久久久久| 悠悠久久av| 亚洲精品久久久久久婷婷小说 | 亚洲精品456在线播放app| a级毛色黄片| 日本黄色片子视频| 性欧美人与动物交配| 男人狂女人下面高潮的视频| 午夜福利成人在线免费观看| 少妇熟女欧美另类| 国产人妻一区二区三区在| 久久国内精品自在自线图片| 性插视频无遮挡在线免费观看| 欧美日韩乱码在线| 国产高清视频在线观看网站| 床上黄色一级片| 床上黄色一级片| 国产一区二区三区在线臀色熟女| 国产精品爽爽va在线观看网站| 美女xxoo啪啪120秒动态图| 一级毛片电影观看 | 久久久成人免费电影| 国产一区二区亚洲精品在线观看| 三级毛片av免费| 成人欧美大片| 国产av在哪里看| 久久久久久久午夜电影| 中文字幕精品亚洲无线码一区| 国产精品电影一区二区三区| 永久网站在线| 色哟哟·www| 国产精品嫩草影院av在线观看| 国产高清三级在线| 午夜福利高清视频| 一级二级三级毛片免费看| 国产成人aa在线观看| 99热这里只有是精品50| 在线观看免费视频日本深夜| 国产精品久久久久久精品电影| 国产成人a∨麻豆精品| 蜜桃亚洲精品一区二区三区| 亚洲av二区三区四区| avwww免费| av在线播放精品| 麻豆av噜噜一区二区三区| 国产亚洲精品av在线| 大型黄色视频在线免费观看| 青青草视频在线视频观看| 久久99热6这里只有精品| 18+在线观看网站| 亚洲精品亚洲一区二区| 日本av手机在线免费观看| 麻豆av噜噜一区二区三区| 欧美日本视频| 村上凉子中文字幕在线| 91在线精品国自产拍蜜月| 女人被狂操c到高潮| 国产伦理片在线播放av一区 | 国产成人影院久久av| 欧美高清性xxxxhd video| 伦理电影大哥的女人| 一区福利在线观看| 毛片女人毛片| 美女被艹到高潮喷水动态| 成人毛片a级毛片在线播放| 久久精品影院6| 国产人妻一区二区三区在| 久久这里有精品视频免费| 22中文网久久字幕| 日本免费a在线| 免费看av在线观看网站| 国产黄片美女视频| 精品午夜福利在线看| 精品欧美国产一区二区三| 国产 一区 欧美 日韩| 免费观看在线日韩| 乱人视频在线观看| 亚洲精品乱码久久久v下载方式| www.av在线官网国产| 看非洲黑人一级黄片| 99国产精品一区二区蜜桃av| av在线老鸭窝| 欧美+亚洲+日韩+国产| 91久久精品国产一区二区三区| 日本撒尿小便嘘嘘汇集6| 91狼人影院| 最好的美女福利视频网| 18禁在线无遮挡免费观看视频| 直男gayav资源| 婷婷精品国产亚洲av| www.色视频.com| 一本久久精品| 小蜜桃在线观看免费完整版高清| 色噜噜av男人的天堂激情| 亚洲五月天丁香| 乱码一卡2卡4卡精品| 午夜福利在线观看免费完整高清在 | 18禁裸乳无遮挡免费网站照片| 天堂影院成人在线观看| 日韩精品青青久久久久久| 深爱激情五月婷婷| 午夜精品国产一区二区电影 | 国产黄色小视频在线观看| 老司机福利观看| .国产精品久久| 久久中文看片网| 国产精品嫩草影院av在线观看| 免费一级毛片在线播放高清视频| 亚洲成人中文字幕在线播放| 中国美女看黄片| 国产成人精品一,二区 | 欧美成人免费av一区二区三区| 少妇高潮的动态图| av又黄又爽大尺度在线免费看 | 国产一级毛片在线| 热99re8久久精品国产| 麻豆一二三区av精品| av天堂在线播放| 观看美女的网站| 亚洲av不卡在线观看| 欧美最新免费一区二区三区| 亚州av有码| 久99久视频精品免费| 欧美日本视频| 99久久中文字幕三级久久日本| 精品欧美国产一区二区三| 国产在线男女| 九九久久精品国产亚洲av麻豆| 午夜免费激情av| 联通29元200g的流量卡| 欧美bdsm另类| 精品一区二区三区视频在线| 岛国毛片在线播放| 又粗又硬又长又爽又黄的视频 | 中文亚洲av片在线观看爽| 哪里可以看免费的av片| 特大巨黑吊av在线直播| 一级黄色大片毛片| 亚洲最大成人av| 欧美极品一区二区三区四区| 久久精品91蜜桃| 久久久久久久午夜电影| 色尼玛亚洲综合影院| 永久网站在线| 亚洲七黄色美女视频| 国内久久婷婷六月综合欲色啪| av.在线天堂| 久久久久久国产a免费观看| 免费看av在线观看网站| 国产一级毛片七仙女欲春2| 国产视频首页在线观看| 午夜久久久久精精品| 日本免费一区二区三区高清不卡| av卡一久久| 成人综合一区亚洲| eeuss影院久久| 在线观看午夜福利视频| 国产av麻豆久久久久久久| 亚洲成人精品中文字幕电影| 天天躁日日操中文字幕| 啦啦啦韩国在线观看视频| 日本五十路高清| av卡一久久| 成人一区二区视频在线观看| 男人舔女人下体高潮全视频| 精品人妻熟女av久视频| 国语自产精品视频在线第100页| 深夜精品福利| 一卡2卡三卡四卡精品乱码亚洲| 国产午夜福利久久久久久| 中国国产av一级| 欧洲精品卡2卡3卡4卡5卡区| 欧美一区二区精品小视频在线| 天堂√8在线中文| 色综合色国产| 日本黄色视频三级网站网址| 国产精品综合久久久久久久免费| www日本黄色视频网| 有码 亚洲区| 卡戴珊不雅视频在线播放| 美女 人体艺术 gogo| 日本在线视频免费播放| 国产伦理片在线播放av一区 | 国产一区亚洲一区在线观看| 岛国在线免费视频观看| 少妇人妻精品综合一区二区 | 永久网站在线| 美女国产视频在线观看| 色播亚洲综合网| 欧美成人精品欧美一级黄| 网址你懂的国产日韩在线| 麻豆国产97在线/欧美| 嘟嘟电影网在线观看| 成人特级黄色片久久久久久久| 亚洲无线在线观看| 最近最新中文字幕大全电影3| 国产极品天堂在线| 亚洲最大成人手机在线| 看免费成人av毛片| 国产一区二区三区在线臀色熟女| 久久久精品大字幕| 亚洲欧洲国产日韩| 久久精品久久久久久久性| 九九在线视频观看精品| 亚洲av一区综合| 真实男女啪啪啪动态图| 少妇被粗大猛烈的视频| 久久人人爽人人片av| 小说图片视频综合网站| 日韩强制内射视频| 精品国内亚洲2022精品成人| 久久婷婷人人爽人人干人人爱| 午夜激情福利司机影院| 亚洲中文字幕一区二区三区有码在线看| 少妇裸体淫交视频免费看高清| 国产又黄又爽又无遮挡在线| 日韩精品有码人妻一区| 色视频www国产| 全区人妻精品视频| 免费观看人在逋| 亚洲在线观看片| 国产 一区精品| 日韩亚洲欧美综合| 精品不卡国产一区二区三区| 欧美性猛交╳xxx乱大交人| 国产色爽女视频免费观看| 国产极品天堂在线| 人妻少妇偷人精品九色| 成人亚洲欧美一区二区av| 美女xxoo啪啪120秒动态图| 国产在线精品亚洲第一网站| 少妇丰满av| 少妇人妻精品综合一区二区 | 一区二区三区四区激情视频 | 我要搜黄色片| 中文字幕av在线有码专区| 国产成人91sexporn| 欧美色欧美亚洲另类二区| 亚洲电影在线观看av| 两个人视频免费观看高清| 久久这里有精品视频免费| 精品一区二区免费观看| 特大巨黑吊av在线直播| 久久99蜜桃精品久久| 精品欧美国产一区二区三| 白带黄色成豆腐渣| 久久久久久久午夜电影| 国产探花在线观看一区二区| 色噜噜av男人的天堂激情| 午夜激情福利司机影院| 国产爱豆传媒在线观看| 好男人视频免费观看在线| 日韩欧美在线乱码| 床上黄色一级片| 精品久久久久久久久久久久久| 国产三级中文精品| 精品人妻熟女av久视频| 人妻夜夜爽99麻豆av| 性插视频无遮挡在线免费观看| 日韩欧美在线乱码| 少妇的逼好多水| 久久精品国产鲁丝片午夜精品| 国产午夜精品久久久久久一区二区三区| 男人和女人高潮做爰伦理| 黄色配什么色好看| 九色成人免费人妻av| 国内久久婷婷六月综合欲色啪| 国产午夜精品久久久久久一区二区三区| 99在线视频只有这里精品首页| 免费无遮挡裸体视频| a级毛片a级免费在线| 国产又黄又爽又无遮挡在线| 丰满的人妻完整版| 蜜桃久久精品国产亚洲av| 日本与韩国留学比较| 国产淫片久久久久久久久| 一个人看的www免费观看视频| 狂野欧美激情性xxxx在线观看| 亚洲av成人精品一区久久| 男女下面进入的视频免费午夜| 国产视频内射| 男人舔奶头视频| 国内精品宾馆在线| av.在线天堂| 亚洲精品影视一区二区三区av| 国产伦一二天堂av在线观看| 亚洲最大成人av| 青春草视频在线免费观看| 丰满的人妻完整版| 国内久久婷婷六月综合欲色啪| 亚洲精品成人久久久久久| 中文字幕精品亚洲无线码一区| 日本黄大片高清| 成人无遮挡网站| 欧美激情久久久久久爽电影| 一个人免费在线观看电影| 成人午夜精彩视频在线观看| 色哟哟·www| 国产成人a区在线观看| 日韩制服骚丝袜av| 亚洲国产精品国产精品| 国产精品久久久久久精品电影| 女的被弄到高潮叫床怎么办| 91av网一区二区| 韩国av在线不卡| 国产精品一区二区性色av| 国产成人影院久久av| 久久久久久久久久久免费av| 丝袜美腿在线中文| 亚洲色图av天堂| 观看美女的网站| 亚洲成av人片在线播放无| 精品久久久久久久久av| 亚洲丝袜综合中文字幕| 男女边吃奶边做爰视频| 免费一级毛片在线播放高清视频| 国产精品三级大全| 午夜视频国产福利| 欧美一区二区国产精品久久精品| 波多野结衣巨乳人妻| 亚洲国产欧美在线一区| 久久久精品大字幕| 哪里可以看免费的av片| 天堂网av新在线| 国产精品国产三级国产av玫瑰| 国产精品永久免费网站| 久久婷婷人人爽人人干人人爱| 中文字幕制服av| 免费观看a级毛片全部| 欧美色欧美亚洲另类二区| 又粗又爽又猛毛片免费看| 老司机影院成人| 亚洲国产高清在线一区二区三| 亚洲五月天丁香| 成年版毛片免费区| 欧美zozozo另类| 国产探花极品一区二区| 国产精品女同一区二区软件| 日韩在线高清观看一区二区三区| 乱人视频在线观看| 久久久久久久久久成人| 精品免费久久久久久久清纯| 天天一区二区日本电影三级| 亚洲七黄色美女视频| 久久精品国产亚洲av涩爱 | 欧美日韩综合久久久久久| 嫩草影院入口| 在线观看免费视频日本深夜| 国产精华一区二区三区| 色哟哟哟哟哟哟| 日本欧美国产在线视频| 亚洲电影在线观看av| 男插女下体视频免费在线播放| 一级黄色大片毛片| 国产亚洲精品久久久com| 欧美三级亚洲精品| 久久久国产成人免费| 1000部很黄的大片| 一进一出抽搐动态| 最好的美女福利视频网| 蜜桃亚洲精品一区二区三区| 在线观看一区二区三区| 亚洲国产精品国产精品| 免费不卡的大黄色大毛片视频在线观看 | 岛国在线免费视频观看| 国语自产精品视频在线第100页| 久久韩国三级中文字幕| 欧美最新免费一区二区三区| 春色校园在线视频观看| 日韩欧美 国产精品| 亚洲国产精品成人久久小说 | 久久草成人影院| 少妇人妻一区二区三区视频| 成人亚洲精品av一区二区| av国产免费在线观看| 欧美成人精品欧美一级黄| 五月伊人婷婷丁香| 直男gayav资源| 久久久久久伊人网av| 乱码一卡2卡4卡精品| 国产精品国产三级国产av玫瑰| 国产高清三级在线| 亚洲精品粉嫩美女一区| 人人妻人人看人人澡| 亚洲最大成人av| 国产伦理片在线播放av一区 | 天堂av国产一区二区熟女人妻| 男女边吃奶边做爰视频| av在线亚洲专区| 欧美一区二区亚洲| 欧美激情久久久久久爽电影| 成人无遮挡网站| 成人特级黄色片久久久久久久| 亚洲四区av| 寂寞人妻少妇视频99o| 亚洲四区av| 欧美精品一区二区大全| 午夜激情福利司机影院| 成人三级黄色视频| 日本三级黄在线观看| 美女国产视频在线观看| 大又大粗又爽又黄少妇毛片口| 99在线人妻在线中文字幕| 天堂av国产一区二区熟女人妻| 国产一区二区三区在线臀色熟女| 日本熟妇午夜| 亚洲精品影视一区二区三区av| 在线观看免费视频日本深夜| 国产老妇伦熟女老妇高清| ponron亚洲| 美女 人体艺术 gogo| 亚洲乱码一区二区免费版| 一级av片app| 欧美日韩精品成人综合77777| 蜜桃久久精品国产亚洲av| 高清日韩中文字幕在线| 美女被艹到高潮喷水动态| 国产精品爽爽va在线观看网站| 欧美日韩国产亚洲二区| 日日摸夜夜添夜夜爱| 在线a可以看的网站| 午夜免费激情av| 国产高潮美女av| 美女 人体艺术 gogo| 亚洲自拍偷在线| 亚洲人成网站在线播| 美女国产视频在线观看| 99精品在免费线老司机午夜| 欧美性感艳星| 亚洲av二区三区四区| 禁无遮挡网站| 国产精品久久久久久亚洲av鲁大| 一级av片app| 99久久精品热视频| 日韩视频在线欧美| 18禁在线播放成人免费| 免费无遮挡裸体视频| 午夜免费激情av| 成人毛片a级毛片在线播放| 久久久久性生活片| 少妇丰满av| 久久人妻av系列| 国产精品三级大全| 日本熟妇午夜| 亚洲欧美清纯卡通| 神马国产精品三级电影在线观看| 久久草成人影院| 久久99热这里只有精品18| 国产日韩欧美在线精品| 欧美性猛交╳xxx乱大交人| 婷婷亚洲欧美| 男人和女人高潮做爰伦理| 男人舔奶头视频| 欧美成人免费av一区二区三区| 亚洲av男天堂| 成人一区二区视频在线观看| 天美传媒精品一区二区| 美女脱内裤让男人舔精品视频 | 中文亚洲av片在线观看爽| 午夜爱爱视频在线播放| 晚上一个人看的免费电影| 国产69精品久久久久777片| 亚洲国产高清在线一区二区三| 男女视频在线观看网站免费| 国产成人freesex在线| 观看美女的网站| 日日摸夜夜添夜夜添av毛片| 国产精品日韩av在线免费观看| 老女人水多毛片| 国产蜜桃级精品一区二区三区| 特大巨黑吊av在线直播| 亚洲精品日韩av片在线观看| 秋霞在线观看毛片| 又粗又爽又猛毛片免费看| 国产人妻一区二区三区在| 午夜福利高清视频| 亚洲成人久久爱视频| 亚洲av中文av极速乱| 欧美色欧美亚洲另类二区| 高清午夜精品一区二区三区 | 99热这里只有是精品在线观看| 欧美精品一区二区大全| 麻豆成人午夜福利视频| 日本黄大片高清| 欧美xxxx性猛交bbbb| 又粗又爽又猛毛片免费看| 青春草国产在线视频 | 亚洲av一区综合| 黄色配什么色好看| 欧美激情在线99| 国产黄片美女视频| 国产成人a∨麻豆精品| 国产精品.久久久| 丝袜美腿在线中文| 不卡视频在线观看欧美| 久久精品影院6| 国内精品久久久久精免费| 又粗又硬又长又爽又黄的视频 | 亚洲国产高清在线一区二区三| 日韩欧美精品免费久久| 在线观看66精品国产| 久久午夜福利片| 美女脱内裤让男人舔精品视频 | 美女被艹到高潮喷水动态| 色哟哟·www| 麻豆一二三区av精品| 丰满乱子伦码专区| 天堂av国产一区二区熟女人妻| 亚洲精品粉嫩美女一区| av专区在线播放| 久久精品综合一区二区三区| 欧美变态另类bdsm刘玥| 国产一区二区在线av高清观看| 大又大粗又爽又黄少妇毛片口| 99在线人妻在线中文字幕| 亚洲丝袜综合中文字幕| 欧美一区二区国产精品久久精品| 波多野结衣巨乳人妻| 噜噜噜噜噜久久久久久91| 亚洲人成网站在线观看播放| 国产黄片视频在线免费观看| 三级国产精品欧美在线观看| 婷婷色av中文字幕| 亚洲国产欧洲综合997久久,| 成人高潮视频无遮挡免费网站| 在线观看午夜福利视频| 成年女人看的毛片在线观看| 男人和女人高潮做爰伦理| 熟妇人妻久久中文字幕3abv| 久久亚洲国产成人精品v| 波多野结衣高清作品| 国产探花在线观看一区二区| 欧美精品国产亚洲| 免费人成在线观看视频色| 成年女人永久免费观看视频| 欧美日本视频| av在线播放精品| .国产精品久久| av卡一久久| 99视频精品全部免费 在线| 亚洲国产色片| 最好的美女福利视频网| 在现免费观看毛片| 人人妻人人澡欧美一区二区| 亚洲不卡免费看| 国产一区亚洲一区在线观看| 精品久久久久久久久久免费视频| 成人特级av手机在线观看| 国产亚洲精品av在线| 色播亚洲综合网| 久久精品91蜜桃| 乱系列少妇在线播放| 日日啪夜夜撸| 又爽又黄无遮挡网站| 97人妻精品一区二区三区麻豆| 蜜桃久久精品国产亚洲av| 免费观看a级毛片全部| 麻豆av噜噜一区二区三区| 亚洲激情五月婷婷啪啪| 在线免费观看不下载黄p国产| 久久99精品国语久久久| 国产v大片淫在线免费观看| 亚洲美女视频黄频| av在线老鸭窝| 亚洲国产欧美在线一区| 欧美最黄视频在线播放免费| 亚洲国产欧美人成| 欧美+日韩+精品| 男女视频在线观看网站免费| 麻豆久久精品国产亚洲av| 桃色一区二区三区在线观看| 97人妻精品一区二区三区麻豆| 国产久久久一区二区三区| 亚洲av免费在线观看| 亚洲三级黄色毛片| 日韩强制内射视频| 国产伦一二天堂av在线观看| 亚洲aⅴ乱码一区二区在线播放| 夫妻性生交免费视频一级片| 99久国产av精品国产电影| 亚洲精品自拍成人| 国产单亲对白刺激| 热99在线观看视频| 久久久精品大字幕| 嫩草影院精品99| www.av在线官网国产| 高清毛片免费观看视频网站| 一区二区三区高清视频在线| 韩国av在线不卡| 男女下面进入的视频免费午夜| 国产色爽女视频免费观看| 久久久精品94久久精品| 欧美人与善性xxx| videossex国产| 一进一出抽搐gif免费好疼| 成年免费大片在线观看| 男女做爰动态图高潮gif福利片| 亚洲在线自拍视频| 国产精品精品国产色婷婷| 三级经典国产精品| 精品欧美国产一区二区三| 免费看a级黄色片| 中文字幕制服av| av又黄又爽大尺度在线免费看 | 亚洲人与动物交配视频| 91aial.com中文字幕在线观看| 国产 一区 欧美 日韩| 亚洲av熟女| 国产av在哪里看| 成人一区二区视频在线观看| 能在线免费看毛片的网站|