• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cucurbit[6]uril functionalized gold nanoparticles and electrode for the detection of metformin drug

    2022-03-14 09:28:30YqiWngLingDingHuiYuFengLing
    Chinese Chemical Letters 2022年1期

    Yqi Wng,Ling Ding,Hui Yu,Feng Ling,?

    aThe State Key Laboratory of Refractories and Metallurgy,School of Chemistry and Chemical Engineering,Wuhan University of Science and Technology,Wuhan 430081,China

    bDepartment of Civil and Environmental Engineering,Temple University,Philadelphia,PA 19122,United States

    ABSTRACT Based on the host-guest molecular recognition capability of cucurbit[6]uril(CB[6])modified on the gold surface,sensitive spectrophotometric and electrochemical methods for the detection of metformin(MET)have been developed.The molecular recognition between cucurbit[7]uril(CB[7])or CB[6]and MET is initially demonstrated and the related recognition mechanism is further deliberated.First,CB[6]-modified gold nanoparticles(AuNPs/CB[6])were synthesized and then characterized by ultraviolet visible light spectrum(UV–vis)and transmission electron microscopy(TEM).The aggregation of AuNPs/CB[6]prompted by MET triggered changes of color and the absorption spectrum,that explored for the visual identification and spectrophotometric determination of MET.Under the optimized detection conditions,the UV–vis spectrometry had a good linear relationship in the range of 6–700 μmol/L,and the detection limit was 2 μmol/L.In addition,a single-layer CB[6]-modified gold electrode(GE-CB[6])detection system for MET was constructed.As the concentration of MET in the solution continues to increase,the charge transfer resistance(Rct)in the Nyquist diagram of the electrochemical impedance method(EIS)continues to increase.In the concentration range from 10 pmol/L to 20 nmol/L,the logarithm of the MET concentration has a good linear relationship with Rct,and the detection limit of this method is 1.35 pmol/L.Both methods have good concentration sensitivity to MET in different concentration ranges,providing a powerful tool for the detection of MET.

    Keywords:Metformin Cucurbiturils Host-guest interactions Gold nanoparticles Gold electrode

    Metformin(MET)is an oral hypoglycemic biguanide with imine and guanidine groups[1-4].Specifically,MET can reduce the absorption of glucose and accelerate the transport of glucose into cells.It can also reduce the concentration of free fatty acids in plasma and inhibit gluconeogenesis.In addition,some researchers have shown that MET has anticancer and antiaging effects.In the process of metabolism in the body,about 70% of MET remains unchanged,and finally it enters the urine through the kidneys[5].The effect of MET is closely related to its dosage.More than 3000 mg of MET in the blood per day can cause life-threatening lactic acidosis,liver disease,kidney problems and gastrointestinal infections[6].Therefore,the determination of metformin in the blood is very important in the clinical diagnosis and medical management of the above-mentioned diseases.

    Several analytical methods for the determination of MET have been reported in the literature,mainly including ultra-high performance liquid chromatography-ultraviolet detection[7,8],liquid chromatography-tandem mass spectrometry[9,10],high performance thin layer chromatography[11],capillary electrophoresis[12]and electrochemical analysis[13].However,some of the limitations of these analytical methods,such as expensive instruments,complicated pre-processing steps and long analysis time,limit their use in professional laboratories.Therefore,it is becoming more and more urgent to develop a simple,fast and sensitive analytical method for the determination of MET.

    Many host-guest functionalized interfaces,including metal surfaces[14,15],inorganic substrates[16],and biological and solid nanochannels[17-19]have been comprehensively presented as effective discrimination and detection platforms.Gold nanoparticles(AuNPs)have clear morphology,composition and unique physical and chemical properties,and have shown their broad application prospects in catalysis,sensing and biomedicine[20-23].Due to the surface plasmon resonance(SPR)effect,large interactions between the surfaces of nanoparticles can easily lead to agglomeration,resulting in redshift and color changes[24-26].Functional nanostructures of AuNPs will be ideal candidates for reducing non-specific agglomeration and improving selectivity.

    Fig.1.(A)1H NMR titration spectrum of MET(4.0 mmol/L)and different content of CB[6](a 0,b 0.25,c 0.5,d 0.75,e 1.0,f 1.5,g 2.0 equiv.);(B)UV–vis spectra of MET(70 μmol/L)and CB[6](0-4.29 equiv.).Inset:The relationship between absorption intensity at 232 nm and NCB[6]/NMET.

    Cucurbituril(CB[n])can be easily combined with the electrondeficient groups of the alkyl chain and cationic amine groups to achieve selective molecular recognition[27-32].In most cases,chemical adsorption as one of the main immobilization methods has been used to aggregate macrocyclic compounds and nanoparticles or metal surfaces.The carbonyl epoxy atoms of CB[6]and CB[7]can interact with AuNPs[33]to form a stable nanocomposite,which has the advantages of simple preparation and convenient use.We have prepared a new type of highly sensitive drug probe for the detection of MET based on CB[6],CB[7]and AuNPs.

    In this article,we first synthesized CB[6]or CB[7]functinalized AuNPs as sensing probe.The molecular recognition behavior between CB[6],CB[7]and MET has been preliminarily deliberate,and then CB[6]is used as the recognition receptor for MET.According to the molecular recognition of host and guest,MET can be accurately combined with CB[6].It then promotes the aggregation of the nanoparticles,which leads to changes in color and UV–vis absorption spectrum.With these changes,MET can be detecting by the UV–vis spectral analysis(Scheme 1).Alternatively,macrocyclic receptor functionalized GE have been used to detect various biomolecules[34-36].Here,based on the interaction between CB[6]and the gold surface,GE-CB[6]was used to detect MET.Under optimized experimental conditions,it was found that in the solution of AuNPs/CB[6],MET can cause the aggregation of AuNPs/CB[6]and trigger the change of color and UV–vis absorption spectrum.When the concentration of MET is in the range of 6–120 μmol/L,the change in absorption intensity has a good linear relationship with the corresponding concentration,and the detection limit is 2.0 μmol/L.And electrochemical impedance spectroscopy experiment(EIS)shows that the logarithm of the MET concentration has a good linear relationship with charge transfer resistance(Rct)in the concentration range from 10 pmol/L to 20 nmol/L,and the detection limit of this method is 1.35 pmol/L.Relying on molecular recognition mechanisms,these assay methods deliver a encouraging tool for highly specific drug determination in different concentration ranges.

    The molecular recognition behavior and related mechanisms of CB[n](n=6,7)and MET were analyzed and discussed by1H NMR and UV–vis spectroscopy.The1H NMR spectrum of CB[6]and MET is shown in Fig.1A.It can be seen that as the equivalent of CB[6]increases,the two methyl proton hydrogens on MET move to a high field.When adding more than 1.0 equiv.of CB[6],the proton hydrogen on the methyl group has no obvious chemical shift change,and it appears as a fast exchange in the nuclear magnetic time scale.It can be seen from the results of nuclear magnetic integration that the binding ratio of CB[6]and MET is 1:1.The MET used is non-protonated,MET aqueous solution(4.0 mmol/L)is weakly alkaline(pH 7.5)and the pKavalue is 12.4 at room temperature.But when 1.0 equiv.of CB[6]was added,the pH of the mixed solution increased to 10.3,which was due to the increase in the content of protonated MET formed by hydrolysis,that is,the cationic dipole interaction between MET and CB[6]promotes them to form stable complexes.Because of the small structure of MET,it only forms external interactions with carbonyl groups.Therefore,there is an enhanced conjugation effect(including hydrogen bond)between the guanidine group and CB[6],which makes the proton peak of CB[6]also shift to the high field.On the other hand,the molar ratio method based on UV–vis spectroscopy was used to determine the binding ratio between CB[6]and MET.As shown in Fig.1B,after adding CB[6]to the MET solution,the UV–vis absorption peak of MET at 232 nm disappeared immediately,this is because the interaction between CB[6]and MET weakens the characteristics of MET absorption.As the concentration of CB[6]increases,the absorbance at 232 nm gradually decreases.When the absorbance is almost constant,it indicates that CB[6]forms clathrates with almost all MET molecules.As NCB[6]/NMETincreases,A232gradually decreases.There is an obvious inflection point at the tangent of the curve,and the corresponding NCB[6]/NMETvalue is 1,which confirms that the combination ratio of CB[6]and MET is 1:1.Similarly,the recognition behavior of MET and CB[7]is also analyzed in the same way.As shown in Figs.S1a and b(Supporting information),due to the size effect,the complexing ability of CB[7]and MET is lower than CB[6].Unlike protonated MET[37],non-protonated MET “adheres” to the outside of the carbonyl port(electrostatic interaction).It can be found from the UV–vis that the cavity of CB[7]cannot completely shield the conjugated groups of MET,so the binding ratio of CB[7]and MET is 2:1 finally.The difference with CB[6]is that in the 2:1 binding mode,the guanidine group of MET cannot form a conjugation phenomenon with CB[7],so the proton peak of CB[7]on the1H NMR spectrum does not change.

    By improving the method of our group[33],stable and monodisperse CB[n](n=6,7)-modified AuNPs(AuNPs/CB[n])were prepared and used for the detection of MET(Supporting information for details).The morphology and size of the two AuNPs/CB[n]s were characterized by transmission electron microscopy(TEM)and UV–vis.Fig.S2(Supporting information)shows the TEM images and particle size distribution histograms of the two types of nanoparticles(AuNPs/CB[6]&AuNPs/CB[7]).The shape of the nanoparticles is spherical and the size is relatively uniform.The statistical results of the particle size show that the average particle size is 10.6 ± 1.6 nm and 16.2 ± 2.3 nm,respectively.Fig.S3(Supporting information)shows the UV–vis spectrum of AuNPs/CB[6]and AuNPs/CB[7]with maximum absorption peaks at 552 nm.

    Fig.2.(A)UV–vis spectra of the CB[6]-modified AuNPs with the addition of MET at different concentrations;(B)Linear relationship curve between △A552 and the concentrations of MET.

    Regarding the characteristics of MET and the ability of CB[6]to recognize host and guest molecules,CB[6]can selectively encapsulate the guanidine group of MET in its hydrophobic cavity.As shown in Scheme 1,when MET is added to the AuNPs/CB[6]solution,the guanidine group of MET is incorporated into the cavity,resulting in the aggregation of AuNPs/CB[6]solution.

    In order to exclude non-specific interference,the aggregation of AuNP induced by MET was also studied.When different concentrations of MET were added to the AuNPs solution,no changes in color and spectrum absorption were found,indicating that MET could not trigger the aggregation of AuNPs(Fig.S4 in Supporting information).To determine the optimal analysis conditions for the detection system,the incubation time of MET and nanoparticle complexes were optimized in the experiment.The results are shown in Fig.S5(Supporting information).Under the action of 250 μmol/L MET,within 30 min,as the reaction time increases,the absorbanceA552value gradually decreases,and the change of absorption peak at 552 nm(△A552)gradually increases,which indicates that as the reaction time increases,MET continuously binds to the CB[n]s molecules on the surface of AuNPs.After 30 min,the △A552value does not change,indicating that at the combination of MET and CB[n]s in the solution is almost complete,so 30 min was chosen as the incubation time for subsequent experiments.

    As shown in Fig.2A,the color of the AuNPs/CB[6]solution gradually changed from light red to charcoal gray,and the absorbance at about 552 nm decreased.At the same time,the absorption intensity increases in the wavelength range close to infrared.Then,MET can be perfectly detected by measuring the △A552of AuNPs/CB[6].Under the optimal conditions,MET solutions of different concentrations in the range of 6–700 μmol/L were added to the AuNPs/CB[6]solution.As the concentration of MET increases,the color of the solution gradually changes from light red to charcoal gray.Under the action of MET(500 μmol/L),AuNPs/CB[6]has obvious aggregation(Fig.S6 in Supporting information).The naked eye can easily distinguish the presence of MET.Then use △A552to quantify MET,as shown in Fig.2B,a good linear relationship was found between △A552and the concentration of MET over the range of 6–120 μmol/L(△A552=0.0008C+ 0.0274,R2=0.9890)and from 120 μmol/L to 700 μmol/L(△A552=0.00015C+ 0.1030,R2=0.9903).The limit of detection(LOD)was calculated to be 2.0 μmol/L(LOD=3 × standard deviation/slope).

    The excellent biocompatibility of CB[7]makes it widely used in the field of sensing.CB[7]can form a 2:1 inclusion compound with MET,which is a more promising molecular probe than CB[6].Similarly,under the optimal conditions,AuNPs/CB[7]was also used to detect MET.As shown in Fig.S7(Supporting information),when MET was added to the AuNPs/CB[7]solution,the complex did not aggregate as expected,and with the continuous addition of MET,the absorbance at 552 nm is unchanged.This may be due to the different binding ability of MET with CB[6]and CB[7].The repulsive force between nanoparticles will gradually increase when the MET were specifically identified with CB[n]s on the surface of AuNPs.The binding force of CB[7]and MET on the surface of AuNPs is less than the repulsive force between nanoparticles,so there is no specific aggregation phenomenon.

    To confirm this assumption,isothermal titration calorimetric(ITC)measurement experiments were performed between MET and AuNPs/CB[n]s.As shown in Fig.S8(Supporting information),the primary binding constantKaof CB[6],CB[7]and the nanoparticle complexes are evaluated to be 1.761 × 106L/mol and 4.307 × 103L/mol,respectively.It can be seen that the titration system of AuNPs/CB[7]has never reached the equilibrium state of heat exchange.This can prove that the specific recognition of MET and CB[7]on the surface of AuNPs is affected by the repulsion between the nanoparticles,that is to say,AuNPs/CB[7]cannot be used for accurate detection of MET for the time being.

    Based on these phenomena,the results can be easily read by naked eye observation and UV–vis spectrum analysis.However,for lower concentrations of target molecules,highly sensitive electrochemical sensors are needed to detect them.Compared with other biosensors,EIS uses a lower overvoltage to get rid of detection limitations.Here,we define an impedance sensor based on the active electrode of CB[6]interacting with the gold surface[38-40]to detect MET(Scheme 2).

    Scheme 1.The sensing process for metformin(MET)-mediated aggregation of CB[6]-modified AuNPs.

    Scheme 2.Structure of eletrochemical system and detection process of MET via electrochemical impedance based on host–guest interaction.

    First,compare the Nyquist diagrams of CB[6]modified GE(GECB[6]with bare GE),as shown in Fig.S9(Supporting information)in the electrolyte,theRct(green curve)of the exposed GE is about 190Ω.While CB[6]was modified,theRct in the modified electrode system was significantly reduced to 72Ω.This shows that CB[6]has a certain degree of conductivity on GE and also shows that CB[6]has been successfully modified on GE.The final modified electrode has low impedance,which promotes the electron transfer between the electrode and the electrolyte.In order to obtain more accurate detection results,the molecular recognition time in the system was optimized.MET(10 nmol/L)was added to the electrolyte solution,as time increases,the content of molecules on the electrode surface increases,and the Nyquist plots shows that the diameter of the semicircle becomes larger,that is,the impedance value becomes larger(Fig.S10 in Supporting information).At about 30 min,the diameter of the semicircle did not change,indicating that the host and guest recognition on the electrode surface was close to the equilibrium state.This time can ensure that the cucurbitacin can completely capture the molecule to be tested,so this stabilization time is selected for future test systems.

    Fig.3.(A)Nyquist plots for GE-CB[6]with the addition of MET at different concentrations;(B)Linear relationship curve between Rct and the logarithmic concentrations of MET.

    The calculation is made using the equivalent circuit shown in Fig.3A(inset).The model linearly diffuses the surface of the electrode using the Warburg impedance(W)andRct.The significant change in the impedance values reflects a change in the surface state of the electrode.The larger the diameter of the semicircle,the greater the impedance value and the electron transfer resistance.As the concentration of MET increases,the impedance increases.Fig.3B shows a good linear relationship between the logarithm of MET concentrations andRct over the range from 10 pmol/L to 20 nmol/L(Rct=30.118 lgCMET+ 47.039,R2=0.9910),the detection limit is 1.8 pmol/L.Compared with the spectrophotometry method,the detection limit is greatly lower and the accuracy is higher.Since the GE structure has a fixed number of CB[6]binding sites,the electrochemical system has the advantages of low detection limit and high accuracy at the picomolar concentration level.

    In conclusion,we have demonstrated two simple and sensitive methods for detecting MET.Use CB[6]to modify the surface of AuNPs to obtain recognition performance and SPR effect at the same time.It was perceived that as the concentration of MET increased,the nanoparticles gradually aggregated,with sensitive detection ability at the micromolar concentration level(detection limit=2.0 μmol/L).An electrochemical impedance system for detecting MET was constructed on the GE modified by CB[6].Rctaccurately displays the state change of the electrode surface.The system has a more accurate and sensitive detection capability at the picomolar concentration level(detection limit=1.35 pmol/L).

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China(No.21807083),the Program for Innovative Teams of Outstanding Young and Middleaged Researchers in the Higher Education Institutions of Hubei Province(No.T201702).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.044.

    美女国产高潮福利片在线看| 久久鲁丝午夜福利片| 2021少妇久久久久久久久久久| 亚洲精品aⅴ在线观看| 美国免费a级毛片| 国产欧美亚洲国产| 在线观看免费高清a一片| 国产免费一级a男人的天堂| 性色av一级| av不卡在线播放| 午夜免费鲁丝| 婷婷色麻豆天堂久久| 高清在线视频一区二区三区| av卡一久久| 亚洲综合色网址| 国产白丝娇喘喷水9色精品| 色婷婷久久久亚洲欧美| 菩萨蛮人人尽说江南好唐韦庄| 成人毛片60女人毛片免费| 自线自在国产av| 色吧在线观看| 国产成人精品在线电影| 亚洲精品一区蜜桃| a级毛片黄视频| 欧美精品av麻豆av| 国产免费福利视频在线观看| 99re6热这里在线精品视频| 成年动漫av网址| 国产精品蜜桃在线观看| 91精品国产国语对白视频| 极品人妻少妇av视频| 精品国产露脸久久av麻豆| 少妇被粗大的猛进出69影院 | 我的女老师完整版在线观看| 亚洲第一区二区三区不卡| 丁香六月天网| xxxhd国产人妻xxx| 插逼视频在线观看| 亚洲精品日韩在线中文字幕| 免费人成在线观看视频色| 另类亚洲欧美激情| 九九爱精品视频在线观看| 一本大道久久a久久精品| 91精品国产国语对白视频| 久久午夜综合久久蜜桃| 有码 亚洲区| 亚洲一级一片aⅴ在线观看| 国产欧美日韩综合在线一区二区| 超色免费av| 欧美精品一区二区大全| 成人午夜精彩视频在线观看| 婷婷成人精品国产| 韩国高清视频一区二区三区| 韩国高清视频一区二区三区| 免费看av在线观看网站| 一本大道久久a久久精品| 下体分泌物呈黄色| www日本在线高清视频| 人人妻人人添人人爽欧美一区卜| 成人无遮挡网站| 韩国高清视频一区二区三区| 天天躁夜夜躁狠狠躁躁| tube8黄色片| 韩国高清视频一区二区三区| 两个人看的免费小视频| av免费观看日本| 欧美精品一区二区大全| 99精国产麻豆久久婷婷| 免费看光身美女| 久久精品国产a三级三级三级| 老司机影院成人| 久久人人爽av亚洲精品天堂| 久久 成人 亚洲| 欧美精品av麻豆av| 黑人高潮一二区| 亚洲欧洲国产日韩| 亚洲精品乱码久久久久久按摩| 色94色欧美一区二区| 亚洲,欧美,日韩| 男人添女人高潮全过程视频| 久久人人97超碰香蕉20202| 秋霞在线观看毛片| 久久精品国产综合久久久 | 亚洲精品456在线播放app| 国产成人aa在线观看| 一本大道久久a久久精品| 国产欧美另类精品又又久久亚洲欧美| 亚洲美女黄色视频免费看| 老司机影院毛片| 99re6热这里在线精品视频| 亚洲精品一二三| 女人被躁到高潮嗷嗷叫费观| 亚洲精品中文字幕在线视频| 青春草国产在线视频| 亚洲人与动物交配视频| 九色亚洲精品在线播放| 亚洲,一卡二卡三卡| 卡戴珊不雅视频在线播放| 成人影院久久| 我的女老师完整版在线观看| 亚洲天堂av无毛| 欧美最新免费一区二区三区| 日本黄色日本黄色录像| 国产精品人妻久久久久久| 久热这里只有精品99| 欧美精品高潮呻吟av久久| 成年av动漫网址| 人妻少妇偷人精品九色| 一本大道久久a久久精品| 最近中文字幕高清免费大全6| 又粗又硬又长又爽又黄的视频| 亚洲伊人久久精品综合| 丝袜人妻中文字幕| 男女免费视频国产| 色网站视频免费| 国产探花极品一区二区| 国产成人精品一,二区| 九九爱精品视频在线观看| 天堂俺去俺来也www色官网| 人妻人人澡人人爽人人| 午夜免费鲁丝| www.熟女人妻精品国产 | 午夜老司机福利剧场| 又黄又粗又硬又大视频| 9191精品国产免费久久| 亚洲精品国产色婷婷电影| 亚洲国产av影院在线观看| 日韩一本色道免费dvd| 亚洲成av片中文字幕在线观看 | 性色av一级| 亚洲综合精品二区| 咕卡用的链子| 久久久久精品性色| 欧美精品亚洲一区二区| 热re99久久精品国产66热6| 婷婷成人精品国产| 国产精品99久久99久久久不卡 | 国产乱人偷精品视频| 天天躁夜夜躁狠狠躁躁| 飞空精品影院首页| 黄色 视频免费看| 啦啦啦啦在线视频资源| 成年av动漫网址| 久久久久久久亚洲中文字幕| 久久精品aⅴ一区二区三区四区 | 欧美精品人与动牲交sv欧美| 国产免费现黄频在线看| 捣出白浆h1v1| 亚洲av电影在线进入| 久久久久精品人妻al黑| kizo精华| 亚洲在久久综合| 免费大片黄手机在线观看| 国产白丝娇喘喷水9色精品| 亚洲性久久影院| 18禁国产床啪视频网站| kizo精华| 十八禁网站网址无遮挡| 国产成人一区二区在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 777米奇影视久久| 精品午夜福利在线看| 日韩大片免费观看网站| 国产成人91sexporn| 久久精品国产自在天天线| 久久免费观看电影| 日本与韩国留学比较| 91aial.com中文字幕在线观看| 两性夫妻黄色片 | 久久免费观看电影| 国产在线视频一区二区| 国产免费现黄频在线看| 寂寞人妻少妇视频99o| 天堂中文最新版在线下载| 国产女主播在线喷水免费视频网站| av有码第一页| 99视频精品全部免费 在线| 99re6热这里在线精品视频| 国产探花极品一区二区| 女性生殖器流出的白浆| 免费女性裸体啪啪无遮挡网站| 精品国产一区二区三区久久久樱花| 成人毛片a级毛片在线播放| 午夜日本视频在线| 亚洲精品自拍成人| 精品人妻偷拍中文字幕| 天堂中文最新版在线下载| 高清黄色对白视频在线免费看| 亚洲av欧美aⅴ国产| 母亲3免费完整高清在线观看 | 美女视频免费永久观看网站| 国产精品久久久久久久久免| 亚洲av在线观看美女高潮| 晚上一个人看的免费电影| 一级黄片播放器| 国产精品久久久久久精品古装| 亚洲成人一二三区av| 精品人妻一区二区三区麻豆| 免费黄网站久久成人精品| av在线老鸭窝| 深夜精品福利| 捣出白浆h1v1| 寂寞人妻少妇视频99o| 男女啪啪激烈高潮av片| 亚洲激情五月婷婷啪啪| 免费高清在线观看视频在线观看| 欧美日韩成人在线一区二区| 亚洲综合色惰| 伦理电影免费视频| av卡一久久| 人妻系列 视频| 飞空精品影院首页| 成人午夜精彩视频在线观看| 亚洲欧美成人精品一区二区| 五月开心婷婷网| 亚洲一码二码三码区别大吗| 国产极品粉嫩免费观看在线| 视频区图区小说| 亚洲 欧美一区二区三区| 韩国精品一区二区三区 | 精品人妻在线不人妻| 久久久久久伊人网av| 欧美老熟妇乱子伦牲交| 在线观看人妻少妇| 日本欧美视频一区| 国产精品不卡视频一区二区| 插逼视频在线观看| 1024视频免费在线观看| 欧美精品国产亚洲| av在线播放精品| 丝袜脚勾引网站| 在线亚洲精品国产二区图片欧美| 日本欧美视频一区| 免费av不卡在线播放| freevideosex欧美| 女人精品久久久久毛片| 黄色毛片三级朝国网站| 国产日韩欧美视频二区| 国产日韩欧美视频二区| 亚洲国产成人一精品久久久| 国产免费又黄又爽又色| 日韩在线高清观看一区二区三区| 亚洲在久久综合| 天堂中文最新版在线下载| 国产精品偷伦视频观看了| 国产成人免费观看mmmm| 免费大片18禁| 曰老女人黄片| 九九爱精品视频在线观看| 国产淫语在线视频| 国产在线视频一区二区| 成人毛片a级毛片在线播放| 日韩av不卡免费在线播放| 国产国语露脸激情在线看| av天堂久久9| videossex国产| 侵犯人妻中文字幕一二三四区| 如何舔出高潮| 国产xxxxx性猛交| 老司机影院毛片| 欧美日韩成人在线一区二区| 国产成人91sexporn| 久久99热这里只频精品6学生| 亚洲av免费高清在线观看| 99热这里只有是精品在线观看| 丝袜喷水一区| 女人久久www免费人成看片| 如日韩欧美国产精品一区二区三区| 久久人人爽人人爽人人片va| 亚洲四区av| 在线观看一区二区三区激情| 国产精品.久久久| 91aial.com中文字幕在线观看| 午夜久久久在线观看| 人妻人人澡人人爽人人| 香蕉精品网在线| 日韩精品免费视频一区二区三区 | 边亲边吃奶的免费视频| 五月伊人婷婷丁香| 国产日韩一区二区三区精品不卡| 一本大道久久a久久精品| 久久久久久久国产电影| 精品国产一区二区三区四区第35| 久久人妻熟女aⅴ| 一区在线观看完整版| 制服人妻中文乱码| 亚洲婷婷狠狠爱综合网| 啦啦啦啦在线视频资源| 成人午夜精彩视频在线观看| 在线天堂最新版资源| 又大又黄又爽视频免费| av国产精品久久久久影院| 啦啦啦啦在线视频资源| 不卡视频在线观看欧美| 久久99精品国语久久久| 久久精品国产自在天天线| 亚洲欧洲日产国产| 我要看黄色一级片免费的| 国产亚洲一区二区精品| 热99久久久久精品小说推荐| 在线看a的网站| 亚洲国产av影院在线观看| 天堂8中文在线网| 亚洲av综合色区一区| 免费看光身美女| 久久精品国产自在天天线| 国产国拍精品亚洲av在线观看| 欧美日韩国产mv在线观看视频| 亚洲国产精品国产精品| 国产白丝娇喘喷水9色精品| 欧美人与性动交α欧美精品济南到 | 久久免费观看电影| 一本色道久久久久久精品综合| 亚洲欧美日韩卡通动漫| 中文字幕亚洲精品专区| 亚洲在久久综合| 亚洲精品视频女| 久久人人爽人人爽人人片va| 青青草视频在线视频观看| 国产成人免费无遮挡视频| 中文字幕亚洲精品专区| 亚洲,欧美精品.| 只有这里有精品99| 国产精品女同一区二区软件| 九色亚洲精品在线播放| 91成人精品电影| 伦理电影大哥的女人| 日本与韩国留学比较| 成人漫画全彩无遮挡| 性色av一级| 国产精品不卡视频一区二区| 狠狠婷婷综合久久久久久88av| 国产麻豆69| 大片免费播放器 马上看| 久久人人97超碰香蕉20202| 久久国产精品男人的天堂亚洲 | 亚洲精品乱码久久久久久按摩| 亚洲一区二区三区欧美精品| 高清av免费在线| av不卡在线播放| 一个人免费看片子| 亚洲一码二码三码区别大吗| 99香蕉大伊视频| 美女xxoo啪啪120秒动态图| 亚洲人与动物交配视频| 午夜免费观看性视频| 成人毛片a级毛片在线播放| 久久久精品94久久精品| 少妇 在线观看| 考比视频在线观看| 亚洲av中文av极速乱| 一级片'在线观看视频| 久久久久精品性色| 日韩一区二区视频免费看| 男女下面插进去视频免费观看 | av一本久久久久| 51国产日韩欧美| 老女人水多毛片| 人体艺术视频欧美日本| 久久久久久伊人网av| 欧美 亚洲 国产 日韩一| 亚洲国产毛片av蜜桃av| 纵有疾风起免费观看全集完整版| 国产精品免费大片| 下体分泌物呈黄色| 精品亚洲成a人片在线观看| 国产精品一区二区在线观看99| 人人妻人人澡人人看| av电影中文网址| 午夜福利视频在线观看免费| 天天操日日干夜夜撸| 免费av中文字幕在线| 在现免费观看毛片| 精品一品国产午夜福利视频| 视频在线观看一区二区三区| 国产日韩一区二区三区精品不卡| 亚洲av综合色区一区| 黄色配什么色好看| 观看av在线不卡| 日本爱情动作片www.在线观看| 国产欧美日韩一区二区三区在线| 女人久久www免费人成看片| 欧美日韩精品成人综合77777| 久久午夜综合久久蜜桃| 国产一级毛片在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 午夜免费鲁丝| 美女视频免费永久观看网站| videosex国产| 九色成人免费人妻av| 三级国产精品片| 高清视频免费观看一区二区| 亚洲国产av新网站| 最近手机中文字幕大全| 久久国产精品男人的天堂亚洲 | 国产免费视频播放在线视频| 精品亚洲成a人片在线观看| 黑丝袜美女国产一区| 国产熟女午夜一区二区三区| 亚洲精品av麻豆狂野| 日日啪夜夜爽| 午夜日本视频在线| 亚洲,一卡二卡三卡| 亚洲美女搞黄在线观看| 伦理电影大哥的女人| 18禁裸乳无遮挡动漫免费视频| 人妻人人澡人人爽人人| 久久久久久久亚洲中文字幕| 男女边摸边吃奶| 中文字幕av电影在线播放| 亚洲精品国产av蜜桃| 久久久久久久久久人人人人人人| 丰满乱子伦码专区| 一级黄片播放器| 九草在线视频观看| 日本vs欧美在线观看视频| 欧美 亚洲 国产 日韩一| 另类亚洲欧美激情| 国产黄频视频在线观看| 精品卡一卡二卡四卡免费| 亚洲国产看品久久| 午夜日本视频在线| 免费观看无遮挡的男女| 国产精品麻豆人妻色哟哟久久| 亚洲欧美一区二区三区黑人 | 国产极品天堂在线| 一区二区三区四区激情视频| 久久精品国产鲁丝片午夜精品| 满18在线观看网站| 精品一区在线观看国产| 纯流量卡能插随身wifi吗| 国产福利在线免费观看视频| 色视频在线一区二区三区| 久久久久久人妻| 亚洲精品aⅴ在线观看| 视频中文字幕在线观看| 一边摸一边做爽爽视频免费| 不卡视频在线观看欧美| 日韩中文字幕视频在线看片| 九色亚洲精品在线播放| 人人妻人人澡人人爽人人夜夜| 成人影院久久| 极品少妇高潮喷水抽搐| 母亲3免费完整高清在线观看 | 国产在线免费精品| 在线观看三级黄色| 欧美丝袜亚洲另类| 大陆偷拍与自拍| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产精品一区三区| 亚洲国产成人一精品久久久| 日本免费在线观看一区| 久久ye,这里只有精品| 午夜福利视频在线观看免费| 国产精品成人在线| 国产精品久久久久成人av| 九草在线视频观看| 国产国拍精品亚洲av在线观看| 天堂俺去俺来也www色官网| 美女中出高潮动态图| 亚洲精品久久成人aⅴ小说| 欧美精品一区二区免费开放| 大片免费播放器 马上看| 人妻 亚洲 视频| 99热国产这里只有精品6| 成年人午夜在线观看视频| 大香蕉久久网| 国产精品欧美亚洲77777| 高清在线视频一区二区三区| 亚洲色图 男人天堂 中文字幕 | 自线自在国产av| 22中文网久久字幕| 亚洲,一卡二卡三卡| 国产一区有黄有色的免费视频| 国产精品一国产av| 99久国产av精品国产电影| 亚洲人成77777在线视频| 青春草亚洲视频在线观看| 国产精品久久久av美女十八| 天天躁夜夜躁狠狠久久av| 一级毛片我不卡| av视频免费观看在线观看| 成人国产麻豆网| 久久久久国产精品人妻一区二区| 波野结衣二区三区在线| 久久久久久久精品精品| 国产一区有黄有色的免费视频| freevideosex欧美| 国产精品熟女久久久久浪| 亚洲精品美女久久av网站| 日韩大片免费观看网站| 少妇人妻精品综合一区二区| 成人亚洲精品一区在线观看| 99久久中文字幕三级久久日本| 啦啦啦啦在线视频资源| 精品熟女少妇av免费看| 一区二区三区四区激情视频| 日韩一区二区视频免费看| 亚洲精品乱久久久久久| 国产欧美日韩一区二区三区在线| 亚洲av欧美aⅴ国产| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美成人精品一区二区| 国产一区亚洲一区在线观看| 999精品在线视频| 伊人亚洲综合成人网| 一区二区三区乱码不卡18| 伦理电影大哥的女人| 视频中文字幕在线观看| 少妇的逼水好多| 色吧在线观看| 18禁动态无遮挡网站| 91午夜精品亚洲一区二区三区| 国产成人a∨麻豆精品| 色5月婷婷丁香| 爱豆传媒免费全集在线观看| 欧美成人午夜免费资源| 91国产中文字幕| 精品一区二区三区视频在线| 人体艺术视频欧美日本| 天美传媒精品一区二区| 久久精品熟女亚洲av麻豆精品| 亚洲国产精品专区欧美| 国产成人欧美| 汤姆久久久久久久影院中文字幕| 热99国产精品久久久久久7| 老司机影院毛片| 看免费av毛片| av视频免费观看在线观看| 极品人妻少妇av视频| 久久久久久久大尺度免费视频| 成人毛片a级毛片在线播放| 丝袜美足系列| 欧美+日韩+精品| 夫妻午夜视频| 在线观看一区二区三区激情| 69精品国产乱码久久久| 国产黄色视频一区二区在线观看| 国产精品.久久久| 亚洲情色 制服丝袜| 日韩欧美一区视频在线观看| 国产极品粉嫩免费观看在线| 国产黄色视频一区二区在线观看| 亚洲国产精品一区二区三区在线| 亚洲综合精品二区| videosex国产| 91精品伊人久久大香线蕉| 欧美激情国产日韩精品一区| 在线观看国产h片| 亚洲国产看品久久| 一本—道久久a久久精品蜜桃钙片| 飞空精品影院首页| 国产女主播在线喷水免费视频网站| 精品少妇内射三级| 黄色配什么色好看| 久久 成人 亚洲| 伦精品一区二区三区| 中文字幕最新亚洲高清| 日韩精品免费视频一区二区三区 | 成人国产av品久久久| 欧美精品av麻豆av| 精品国产一区二区三区四区第35| 日本vs欧美在线观看视频| 国产精品蜜桃在线观看| 香蕉国产在线看| 免费看av在线观看网站| 丝袜人妻中文字幕| 狂野欧美激情性bbbbbb| 人成视频在线观看免费观看| 午夜福利影视在线免费观看| 色网站视频免费| 国产成人a∨麻豆精品| 欧美最新免费一区二区三区| 亚洲,一卡二卡三卡| 亚洲精品美女久久久久99蜜臀 | 欧美精品国产亚洲| 精品一区二区三卡| 日韩av免费高清视频| av在线老鸭窝| 免费不卡的大黄色大毛片视频在线观看| 韩国精品一区二区三区 | 亚洲欧美中文字幕日韩二区| 99国产综合亚洲精品| 最后的刺客免费高清国语| 99精国产麻豆久久婷婷| 国语对白做爰xxxⅹ性视频网站| 亚洲成色77777| 日日摸夜夜添夜夜爱| 成人免费观看视频高清| 日本爱情动作片www.在线观看| 亚洲国产精品999| 成人影院久久| 国产伦理片在线播放av一区| av一本久久久久| 亚洲性久久影院| 人人澡人人妻人| 免费看光身美女| 男男h啪啪无遮挡| 日韩熟女老妇一区二区性免费视频| 国产精品久久久久久av不卡| 国产精品.久久久| 18禁在线无遮挡免费观看视频| 五月开心婷婷网| 美国免费a级毛片| 你懂的网址亚洲精品在线观看| 高清欧美精品videossex| 亚洲国产精品一区二区三区在线| 男人爽女人下面视频在线观看| 亚洲精品aⅴ在线观看| 97精品久久久久久久久久精品| 欧美精品人与动牲交sv欧美| 国产精品国产三级国产专区5o| 只有这里有精品99| 国产69精品久久久久777片| 观看av在线不卡|