• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Selective C-C bonds formation, N-alkylation and benzo[d]imidazoles synthesis by a recyclable zinc composite

    2022-03-14 09:28:20GunxinZhuZhengChoDunHiynZhuDongdongYeDweiWng
    Chinese Chemical Letters 2022年1期

    Gunxin Zhu,Zheng-Cho Dun,Hiyn Zhu,Dongdong Ye,Dwei Wng,?

    aThe Key Laboratory of Synthetic and Biological Colloids,Ministry of Education,School of Chemical and Material Engineering,Jiangnan University,Wuxi 214122,China

    bState Key Laboratory of Pulp and Paper Engineering,South China University of Technology,Guangzhou 510640,China

    cSchool of Chemical and Environmental Engineering,Hubei Minzu University,Enshi 445000,China

    ABSTRACT Earth abundant metals are much less expensive,promising,valuable metals and could be served as catalysts for the borrowing hydrogen reaction,dehydrogenation and heterocycles synthesis,instead of noble metals.The uniformly dispersed zinc composites were designed,synthesized and carefully characterized by means of XPS,EDS,TEM and XRD.The resulting zinc composite showed good catalytic activity for the N-alkylation of amines with amines,ketones with alcohols in water under base-free conditions,while unsaturated carbonyl compounds could also be synthesized by tuning the reaction conditions.Importantly,it was the first time to realize the synthesis of 2-aryl-1H-benzo[d]imidazole derivatives by using this zinc composite under green conditions.Meanwhile,this zinc catalyst could be easily recovered and reused for at least five times.

    Keywords:Unsymmetrical Zinc Borrowing hydrogen Recyclability Selective

    Functionalized imines and amines are important intermediates for organic synthesis,biological,and pharmaceutical applications because they are widely used as pharmacophores in many biologically active compounds and agrochemicals[1,2].Although the traditional methods of alkylation of primary amines with alkyl halides to functionalized amines are studied,great quantities of unexpected wastes create an undesirable ecological footprint.In addition,the reaction of amines with alkyl halides in the presence of large amounts of bases,which often suffers from overalkylation,and exhibits low selectivity for the desired products[3].Hence,the development of efficient and sustainable methods is of infinite interest.To address these problems,borrowing hydrogen strategy is stand out from other methods[4].N-Alkylation of amines and alcohols or two amines was documented for the preparation of imines or amines through the borrowing hydrogen strategy.

    Earth abundant metals,like Mn,Fe,Co,Zn,Ni,are much economic,promising,valuable catalysts for borrowing hydrogen reaction,dehydrogenation and heterocycles synthesis.Kirchneret al.recently described an excellent example of cobalt-catalyzed borrowing hydrogen reaction and predicted that earth abundant metals are the most economic and promising catalysts for modern industry[5].Therefore,the research on earth abundant metals for borrowing hydrogen reaction and dehydrogenation is highly interesting and desirable[6-10].

    Recently,our group developed several triazole-skeleton ligand bridged transition-metal complexes,which showed good catalytic activities in dehydrogenation and borrowing hydrogen reactions[11-16].However,most of the central metals are noble metals,low catalyst stability or catalysts are difficult to be recovered and reused[17-19].Herein,we have described the synthesis of an unsymmetrical thienyl-pyrazoly-triazole ligand(TPT)and the corresponding heterogeneous zinc composite on molecular sieve(MS),which was carefully characterized by means of XPS,EDS,TEM and XRD(Scheme 1).The resulting zinc composite revealed good catalytic activity for borrowing hydrogen reaction of amines with amines in water under base-free conditions.Moreover,2-aryl-1H-benzo[d]imidazole derivatives were synthesized with this zinc composite in water under base-free conditions.

    Scheme 1.The designed PPT-Zn@SBA-15.

    Scheme 2.The synthesis of thienyl-pyrazoly-triazole.

    Fig.1.SEM image(a),EDS pattern(b)and TEM images(c,d)of TPT-Zn@MS.

    The thienyl-pyrazoly-triazole ligand(TPT,1)was synthesized in two steps with moderate yield(Scheme 2)and the detailed steps of TPT synthesis and purification were provided in Supporting information.TPT-Zn@MS was obtained through a one-pot method,as follows:A flame-dried flask was charged with TPT(1.0 equiv.)and freshly distilled THF under nitrogen at room temperature,then diethylzinc(1.0 mol/L in hexanes;2.0 equiv.)was added dropwise under vigorous stirring condition.The flask was removed after 30 min,then silica was introduced into the above flask byin situhydrolysis of the added TEOS with ammonium hydroxide.After that the flask was heated to reflux at 65 °C for 5 h,the power of 13X molecular sieve(MS)was added to the solution and refluxed with vigorous stirring for another 5 h.The resulting mixture was grounded to a fine powder after removed the reaction solvent,and pyrolyzed at 800 °C with a constant argon flow for 2 h.Then the black power was cooled down to room temperature,and washed with HCl solution,water respectively.Finally,the resulting material(TPT-Zn@MS)was obtained for characterizations.

    The prepared TPT-Zn@MS material was characterized by X-ray photoelectron spectrometry(XPS),scanning electron microscope(SEM),energy dispersive X-ray spectroscopy(EDS)and transmission electron microscopy(TEM).

    The TEM images(Fig.1)demonstrate the existence of crystal phases of zinc composite and the interplanar spacing of crystal phases is be afforded(Fig.1d),which shows that the interplanar spacing of zinc composite is 0.205 nm.Furthermore,there are many crystal phases belong to 13X molecular sieve,suggesting the material remained active salts after firing and Zn was uniformly dispersed.Meanwhile,scanning electron microscope(SEM)and energy dispersive X-ray spectroscopy(EDS)were conducted to better characterize TPT-Zn@MS.As shown in Fig.1a,this composite is amorphous,and we random sampled on five different areas to perform EDS test,the maximal element content of Zn is at 4.75 wt%and minimal element content is at 2.21 wt%,suggesting the distribution of Zn element was uniformly dispersed.Other element contents are as follows:Na(2.89 wt%),Al(2.331 wt%),Si(6.59 wt%),O(31.087 wt%),S(0.49 wt%).

    Fig.2.(a)XPS spectra of TPT-Zn@MS,(b)narrow spectra of Zn.

    X-ray photoelectron spectroscopy(XPS)was subsequently performed to study the surface chemistry of TPT-Zn@MS.The Zn element content on the surface is 2.681 wt%,the result is achieved agreeable to the EDS results.In addition,low intensity of the N 1s and S 2p shows N and S elements maybe reacted with ultralow air,so that the content of N and S was under low level(Fig.2).

    With above encouraging zinc composite in hand,the catalytic activity of TPT-Zn@MS was next investigated.Initially,the challenging reaction involvingN-alkylation of amines and amines was selected to test the catalyst activity of TPT-Zn@MS,especially in water.Compared to classicalN-alkylation conditions,such as,strong base,organic solvents,sealed flask,this reaction was attempted in water under base-free conditions.After a series of conditions screening,it was disclosed that the reaction could occur in water under base-free conditions.For a higher yield,the additive experiments were carried out and the results showed that AgNTf2/KF could produce a much higher yield.The introduction of phase transfer catalyst could further enhance the yield of desired product(Table 1,entry 11).It was observed that the reaction of amine and amine could not take place in the absence of catalyst(Table 1,entry 16).It should be noted that the reaction could take place under solvent-free conditions,however,only moderate yield was achieved(entry 21).

    Table 1 Optimization of reaction conditions.a

    After establishing the optimal conditions,the substrate scope was then extended by utilizing a variety of substituted aromatic amines and various benzylamine derivatives.As showed in Scheme 3,all the amines were smoothly converted into the correspondingN-phenylbenzylamines and moderate to high isolated yields were obtained regardless of the electronic properties of starting materials.

    It was confirmed that the substituent groups of aromatic amines and benzylamines,such as methoxyl,methyl and chloro,were smoothly reacted and it was noticed that the aromatic amines containing methoxyl or chloro groups produced much higher yields(4c,4e,4f).It was observed that benzylamines with electron-withdrawing group producedN-phenylbenzylamines in admirable yields(4g,4i,4j).In addition,2-thiophenemethylamine could also react with aromatic amine and generated the desired product in moderate yield(4l).

    Encouraged by such wonderful results,we further employed TPT-Zn@MS to ketones and various benzyl alcohols.After optimizing the condition of the reaction of ketones and various benzyl alcohols,it was demonstrated that the C-C bond formation could be smoothly transformed by this Zn composite,and then the substrate scope was explored and the results were summarized in Scheme 4.The experiments showed the products were obtained with good to excellent yields.It was noticed all combinations of ketones and benzyl alcohols provided high selectivity of the process on the formation of C=C bond.Under suitable conditions,both electron-rich and electron-deficient substrates could be reacted efficiently and the desired products were achieved with good yields(7b,7e,7h,7k,7l,7n).The electron-rich benzyl alcohols bearing methyl,methoxyl groups afforded the products in high yields(7c,7d,7f,7g,7i).The electron-efficient ketones bearing chloro,bromo groups were also suitable to this transformation in good yields(7j,7m,7o).

    Scheme 3.Reaction of aromatic aimines and benzylamines.Reagents and conditions:2(1.0 mmol),3(1.2 mmol),TPT-Zn@MS(10 mg),AgNTf2(0.3 mmol),KF(0.3 mmol),TBAF(0.3 mmol),water(3.5 mL),90 °C,48 h,N2.Isolated yields.

    Scheme 4.Selective synthesis of unsaturated carbonyl compounds.Conditions:5(1.0 mmol),6(1.2 mmol),TPT-Zn@MS(10 mg),AgNTf2(0.3 mmol),KF(0.3 mmol),TBAF(0.3 mmol),water(3.5 mL),60 °C,air,12 h.Isolated yields.

    Interestingly,when we changed the conditions of the reaction of ketones and benzyl alcohols,an unexpected result was observed(Scheme 5).The 3-phenylpropiophenone as the main product was provided with the same TPT-Zn@MS catalytic system.We further demonstrated the C-C bond formation scope of ketones and benzyl alcohols with this reaction system,and the 3-phenylpropiophenone derivatives were provided in good to high yields.This system was able to tolerate the -Cl,-Me,-Ph and -OMe groups,even the strong electron-rich substrate like 3,5-dimethoxybenzyl alcohol was also reacted smoothly(8f).In addition,the 2-acetonaphthone and 2-thiophenemethanol were suitable to this transformation,leading to the corresponding products in 90% and 76% yields,respectively(8k,8l).

    2-Aryl-1H-benzo[d]imidazole derivatives are an important and valuable natural products or intermediates and are found in natural alkaloids,pharmaceuticals and bioactive molecules[20].Recently,we developed copper-catalyzed the synthesis of 2-aryl-1Hbenzo[d]imidazole derivatives,however,strong base,organic solvents and the catalyst could not be recovered[21-23].Therefore,we next utilized TPT-Zn@MS to catalyze the synthesis of 2-aryl-1H-benzo[d]imidazoles.The experiments revealed that lots of 2-aryl-1H-benzo[d]imidazole derivatives could be synthesized with TPT-Zn@MS as a catalyst in water under base-free conditions(Scheme 6).

    Scheme 5.Selective synthesis of phenylpropiophenones.Conditions:5(1.0 mmol),6(1.2 mmol),TPT-Zn@MS(10 mg),AgNTf2(0.3 mmol),KF(0.3 mmol),TBAF(0.3 mmol), iPrOH(3 mmol),water(3.5 mL),90 °C,N2,48 h.Isolated yields.

    Scheme 6.Substrate expansion of 2-phenylbenzimidazole.Conditions:5(1.0 mmol),6(1.2 mmol),TPT-Zn@MS(10 mg),AgNTf2(0.3 mmol),KF(0.3 mmol),TBAF(0.3 mmol), iPrOH(3 mmol),water(3.5 mL),90 °C,N2,48 h.Isolated yields.

    Scheme 7.The control experiments.

    To better explore and understand what roles of TPT-Zn@MS and AgNTf2played in the synthesis of 2-aryl-1H-benzo[d]imidazole derivatives,the control experiments were introduced into this mechanism exploration and the results were listed in Table 1.

    Fig.3.Kinetic plot of 2-aryl-1H-benzo[d]imidazole.A0:original concentration of substrate.At:concentration of substrate at time t. K:rate constant.

    The experiments revealed that TPT-Zn@MS and additives played the important roles in 2-aryl-1H-benzo[d]imidazole synthesis process,which was not produced in the absence of TPT-Zn@MS.In addition,only TPT and MS could not catalyze this reaction.The control experiments were set up to exclude the possibility of a radical pathway including the single electron transfer process.The results showed that the yield of 2-aryl-1H-benzo[d]imidazole(10a)was almost the same by using TEMPO(1.1 equiv.)as a radical scavenger with TPT-Zn@MS as a catalyst(Scheme 7).As expected,the experiments disclosed that this process is not a single electron transfer one(SET).

    Hammett plot equation was investigated and the results were concluded in Supporting information Meanwhile,to clearly explain this reaction,kinetic isotope effect vale(KIE)was studied to explore the kinetically relevant elementary steps and the experiments revealed that KIE value(1.86)was achieved through the first order reaction plot between ln[6a]and ln[6a-d2](Fig.3).This disclosed that the rate-determining step is the dehydrogenation of alcohol(6a)in the synthesis of 2-aryl-1H-benzo[d]imidazole derivatives.

    TPT-Zn@MS was finally recovered and washed with water(10 mL × 3),ethanol(10 mL × 3)and water(10 mL × 3).After drying for 24 h,the recovered TPT-Zn@MS was reused to catalyze all the above four transformations and the recycled experiments were concluded in Scheme 8.It was demonstrated that yields of the desired products could be nearly maintained until the composite was recovered for even five times.In addition,the extent experiment of TPT-Zn@MS revealed that no copper was detected through ICP analysis,which exclude the effect of copper catalysis.Meanwhile,the ICP assessment of recovered TPT-Zn@MS showed that silver was not found.

    Scheme 8.Recycled experiments.

    Scheme 9.The synthesis of 1-benzyl-2-aryl-1H-benzo[d]imidazole in gram scale.

    Moreover,the summary of 2-aryl-1H-benzo[d]imidazole derivative derivatives synthesis[24-30]was listed in Table 2.It was observed that TPT-Zn@MS composite was a good catalytic system,which revealed a green method under base-free and water conditions with good recovery performance.This TPT-Zn@MS system offered an efficient methodology for the selective synthesis of saturated and unsaturated carbonyl compounds,2-aryl-1Hbenzo[d]imidazole derivative derivatives with only water(or hydrogen gas)as by-products for the first time[31,32].

    Table 2 The synthesis conditions of 2-aryl-1H-benzo[d]imidazole.

    Finally,thegram-scalesynthesisof2-aryl-1Hbenzo[d]imidazole from the reaction of phenylenediamine(5a)and benzyl alcohol(2a)was carried out.As expected,the result showed that the desired product(10a)was achieved smoothly in 89% yield(Scheme 9).This gram scale experiment disclosed that TPT-Zn@MS system could promote the synthesis 2-aryl-1H-benzo[d]imidazole derivatives under base-free conditions in water.

    In conclusion,we developed a new type of heterogeneous TPTZn@MS catalyst,which was proved to be effective for selective borrowing hydrogen reaction of ketones and alcohols.TPT-Zn@MS was efficient for theN-alkylation of amines with amines,and the synthesis of synthesis of 2-aryl-1H-benzo[d]imidazole derivatives from diamines and alcohols.This provided an easy method the synthesis of substituted amines,2-aryl-1H-benzo[d]imidazole derivatives with high yields in water.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    We gratefully acknowledge financial support of this work by the National Natural Science Foundation of China(Nos.21776111,21861039),State Key Laboratory of Pulp and Paper Engineering(No.202001)and Central Laboratory,School of Chemical and Material Engineering,Jiangnan University.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.060.

    90打野战视频偷拍视频| 女人被狂操c到高潮| 搡老妇女老女人老熟妇| 亚洲国产欧洲综合997久久, | 高清毛片免费观看视频网站| 啪啪无遮挡十八禁网站| 亚洲欧美一区二区三区黑人| 日韩视频一区二区在线观看| 亚洲精品粉嫩美女一区| 男女床上黄色一级片免费看| 久久午夜综合久久蜜桃| 法律面前人人平等表现在哪些方面| 男男h啪啪无遮挡| 999久久久精品免费观看国产| 久久婷婷人人爽人人干人人爱| 男女之事视频高清在线观看| 成熟少妇高潮喷水视频| 日本熟妇午夜| 国产又色又爽无遮挡免费看| 母亲3免费完整高清在线观看| 久久久久国产一级毛片高清牌| 久久精品国产综合久久久| 国产视频一区二区在线看| 国产不卡一卡二| 搡老妇女老女人老熟妇| 亚洲成国产人片在线观看| 精品卡一卡二卡四卡免费| 悠悠久久av| 欧美黑人欧美精品刺激| 欧美日韩福利视频一区二区| 亚洲av中文字字幕乱码综合 | 99热6这里只有精品| 一级毛片女人18水好多| 午夜视频精品福利| 国产一区二区激情短视频| 给我免费播放毛片高清在线观看| 国产av一区在线观看免费| 亚洲av五月六月丁香网| 18禁黄网站禁片免费观看直播| 欧美性猛交╳xxx乱大交人| 黄色片一级片一级黄色片| 欧美最黄视频在线播放免费| 亚洲专区中文字幕在线| 黄色视频,在线免费观看| 国产国语露脸激情在线看| 成人欧美大片| 人人妻人人澡欧美一区二区| 制服丝袜大香蕉在线| aaaaa片日本免费| 亚洲av片天天在线观看| 亚洲自拍偷在线| 成在线人永久免费视频| 狂野欧美激情性xxxx| 成人永久免费在线观看视频| 亚洲美女黄片视频| 亚洲aⅴ乱码一区二区在线播放 | 精品少妇一区二区三区视频日本电影| 美女高潮喷水抽搐中文字幕| 欧美人与性动交α欧美精品济南到| 国产在线精品亚洲第一网站| 久久久久久九九精品二区国产 | 国产欧美日韩一区二区精品| 国产99久久九九免费精品| 亚洲成人久久性| 老汉色av国产亚洲站长工具| 亚洲成人久久爱视频| 一级毛片精品| 人人妻,人人澡人人爽秒播| 亚洲人成77777在线视频| 很黄的视频免费| 国产成人精品久久二区二区免费| 国产男靠女视频免费网站| 一个人免费在线观看的高清视频| 成年女人毛片免费观看观看9| 国产免费男女视频| 亚洲国产精品sss在线观看| 黄频高清免费视频| 午夜福利成人在线免费观看| 亚洲一区中文字幕在线| 亚洲激情在线av| 免费看十八禁软件| 啦啦啦韩国在线观看视频| 老熟妇仑乱视频hdxx| 欧美日韩中文字幕国产精品一区二区三区| 国产成人欧美在线观看| 在线观看66精品国产| 香蕉av资源在线| 99riav亚洲国产免费| 最新美女视频免费是黄的| 日本黄色视频三级网站网址| 香蕉av资源在线| 成人手机av| 国产成人av激情在线播放| 身体一侧抽搐| 国产精品爽爽va在线观看网站 | 悠悠久久av| 国产亚洲欧美在线一区二区| 可以在线观看的亚洲视频| 成人精品一区二区免费| 日韩 欧美 亚洲 中文字幕| 亚洲精华国产精华精| 亚洲天堂国产精品一区在线| 好男人电影高清在线观看| 欧美日韩中文字幕国产精品一区二区三区| 桃色一区二区三区在线观看| 曰老女人黄片| www.999成人在线观看| 最近在线观看免费完整版| 欧美最黄视频在线播放免费| 美女大奶头视频| 国产精品久久久久久人妻精品电影| 国产精品久久电影中文字幕| 国产99白浆流出| 变态另类丝袜制服| 91麻豆av在线| 亚洲精品中文字幕在线视频| 国产亚洲欧美在线一区二区| 精品久久蜜臀av无| 黑人巨大精品欧美一区二区mp4| 亚洲精品色激情综合| 99在线视频只有这里精品首页| 中文字幕av电影在线播放| 亚洲精品在线观看二区| 中亚洲国语对白在线视频| 国产在线精品亚洲第一网站| 久久久国产欧美日韩av| 91国产中文字幕| 中文字幕av电影在线播放| 男女午夜视频在线观看| a在线观看视频网站| 免费在线观看日本一区| 美女午夜性视频免费| 久久精品91无色码中文字幕| 真人做人爱边吃奶动态| 日韩欧美一区视频在线观看| 精品熟女少妇八av免费久了| 757午夜福利合集在线观看| 少妇被粗大的猛进出69影院| 国产成人av教育| 一本大道久久a久久精品| 久热这里只有精品99| 一本久久中文字幕| 一本综合久久免费| 日本精品一区二区三区蜜桃| 国产欧美日韩精品亚洲av| 国产精品 国内视频| 国产精品一区二区免费欧美| 在线视频色国产色| 亚洲色图 男人天堂 中文字幕| 久久久久久久久中文| 国产又爽黄色视频| 真人一进一出gif抽搐免费| 人人妻人人看人人澡| 丁香欧美五月| 精品熟女少妇八av免费久了| 国产精品98久久久久久宅男小说| 黄色视频不卡| 午夜久久久在线观看| 亚洲国产高清在线一区二区三 | 50天的宝宝边吃奶边哭怎么回事| 在线视频色国产色| 欧美人与性动交α欧美精品济南到| 国产熟女xx| 欧美黑人精品巨大| 中文字幕精品亚洲无线码一区 | 午夜福利免费观看在线| 黄色丝袜av网址大全| 少妇粗大呻吟视频| 欧美zozozo另类| 日本一本二区三区精品| 婷婷精品国产亚洲av在线| 日韩av在线大香蕉| 成人精品一区二区免费| 免费av毛片视频| 在线观看免费午夜福利视频| 在线观看66精品国产| 国产一区二区激情短视频| 欧美一级毛片孕妇| 男人舔女人的私密视频| 久久精品成人免费网站| 亚洲av中文字字幕乱码综合 | 我的亚洲天堂| 男人舔女人下体高潮全视频| 午夜激情福利司机影院| 又紧又爽又黄一区二区| 国产精品自产拍在线观看55亚洲| 中文在线观看免费www的网站 | 淫秽高清视频在线观看| 亚洲天堂国产精品一区在线| 亚洲第一av免费看| 中文字幕人妻熟女乱码| 麻豆成人av在线观看| 色综合站精品国产| 91大片在线观看| 日韩欧美国产一区二区入口| 又大又爽又粗| 超碰成人久久| 岛国视频午夜一区免费看| 99久久精品国产亚洲精品| 国产精品99久久99久久久不卡| 久久香蕉国产精品| 高清在线国产一区| 亚洲精品在线观看二区| 一本一本综合久久| 欧美乱色亚洲激情| 国产一区二区激情短视频| 校园春色视频在线观看| 亚洲av成人不卡在线观看播放网| 在线观看免费日韩欧美大片| 久久精品亚洲精品国产色婷小说| 黄色视频不卡| 一本精品99久久精品77| 美女免费视频网站| 无人区码免费观看不卡| 精品一区二区三区视频在线观看免费| 69av精品久久久久久| 欧美最黄视频在线播放免费| 欧美午夜高清在线| 中出人妻视频一区二区| 一区二区三区高清视频在线| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美日韩高清在线视频| 久久精品夜夜夜夜夜久久蜜豆 | 91麻豆av在线| av天堂在线播放| 久久久久九九精品影院| 欧美不卡视频在线免费观看 | 国产精品美女特级片免费视频播放器 | 国产成人一区二区三区免费视频网站| 黄色成人免费大全| 香蕉丝袜av| 高潮久久久久久久久久久不卡| 在线视频色国产色| 国内精品久久久久久久电影| 妹子高潮喷水视频| 久久天躁狠狠躁夜夜2o2o| 久久精品国产综合久久久| 在线免费观看的www视频| 久久久国产成人精品二区| 亚洲一区二区三区色噜噜| 两个人视频免费观看高清| 久久青草综合色| av欧美777| 无人区码免费观看不卡| 亚洲一区二区三区色噜噜| 大型av网站在线播放| 男男h啪啪无遮挡| 国产私拍福利视频在线观看| 久久草成人影院| 99久久久亚洲精品蜜臀av| 老鸭窝网址在线观看| 国产亚洲精品综合一区在线观看 | 高清毛片免费观看视频网站| 亚洲自偷自拍图片 自拍| 欧美黑人欧美精品刺激| 午夜久久久久精精品| 日韩成人在线观看一区二区三区| 精品欧美国产一区二区三| 色老头精品视频在线观看| 国产午夜精品久久久久久| 午夜成年电影在线免费观看| 日韩成人在线观看一区二区三区| 免费在线观看亚洲国产| 欧美一区二区精品小视频在线| 99久久无色码亚洲精品果冻| 中文字幕精品免费在线观看视频| 亚洲av电影在线进入| 成人18禁高潮啪啪吃奶动态图| 最好的美女福利视频网| 人人妻人人澡人人看| 国产亚洲精品久久久久久毛片| а√天堂www在线а√下载| 日日摸夜夜添夜夜添小说| 国产欧美日韩一区二区三| 久久久国产成人精品二区| 国内少妇人妻偷人精品xxx网站 | 老鸭窝网址在线观看| 好看av亚洲va欧美ⅴa在| 19禁男女啪啪无遮挡网站| 国产av一区在线观看免费| 成人三级黄色视频| 97超级碰碰碰精品色视频在线观看| 不卡一级毛片| 青草久久国产| 侵犯人妻中文字幕一二三四区| 亚洲九九香蕉| 韩国av一区二区三区四区| 中文字幕人妻丝袜一区二区| 九色国产91popny在线| 精品国产一区二区三区四区第35| 亚洲成国产人片在线观看| 男人舔女人的私密视频| 免费在线观看黄色视频的| 亚洲熟女毛片儿| 久久久久久久精品吃奶| 久久久久国产精品人妻aⅴ院| 久久久精品欧美日韩精品| 脱女人内裤的视频| 哪里可以看免费的av片| 50天的宝宝边吃奶边哭怎么回事| 免费在线观看完整版高清| 午夜成年电影在线免费观看| 法律面前人人平等表现在哪些方面| 午夜影院日韩av| 国产国语露脸激情在线看| 精品一区二区三区视频在线观看免费| 在线观看免费日韩欧美大片| 成人特级黄色片久久久久久久| 大型av网站在线播放| 国产亚洲精品一区二区www| 琪琪午夜伦伦电影理论片6080| 国产成人av激情在线播放| 免费av毛片视频| 亚洲av电影不卡..在线观看| 成人三级黄色视频| 亚洲第一欧美日韩一区二区三区| 亚洲国产毛片av蜜桃av| 老司机午夜福利在线观看视频| 欧美又色又爽又黄视频| 免费在线观看亚洲国产| av中文乱码字幕在线| 日本一区二区免费在线视频| 日韩免费av在线播放| 最近在线观看免费完整版| 成人特级黄色片久久久久久久| 亚洲国产欧美一区二区综合| 国产黄片美女视频| a级毛片在线看网站| 在线十欧美十亚洲十日本专区| 欧美性猛交╳xxx乱大交人| 男男h啪啪无遮挡| 在线天堂中文资源库| 亚洲人成网站高清观看| 深夜精品福利| 国产在线精品亚洲第一网站| 国产精品一区二区三区四区久久 | 97人妻精品一区二区三区麻豆 | 一区二区三区高清视频在线| 欧美日韩福利视频一区二区| 12—13女人毛片做爰片一| 欧美成狂野欧美在线观看| 亚洲五月色婷婷综合| a级毛片在线看网站| 手机成人av网站| 亚洲一码二码三码区别大吗| 老司机在亚洲福利影院| 中亚洲国语对白在线视频| 国产乱人伦免费视频| 欧美成人性av电影在线观看| 亚洲午夜精品一区,二区,三区| 国产亚洲精品久久久久5区| 99久久99久久久精品蜜桃| 视频区欧美日本亚洲| 久久 成人 亚洲| 国产一区二区在线av高清观看| 免费在线观看日本一区| av有码第一页| 亚洲av中文字字幕乱码综合 | 亚洲va日本ⅴa欧美va伊人久久| 久久中文字幕一级| 日本熟妇午夜| 久久亚洲真实| 国产视频一区二区在线看| 在线观看午夜福利视频| 日韩中文字幕欧美一区二区| 欧美乱妇无乱码| 亚洲国产高清在线一区二区三 | 亚洲色图av天堂| 日韩av在线大香蕉| 亚洲专区国产一区二区| 一区二区三区精品91| 一区二区三区激情视频| 亚洲成av人片免费观看| 老司机靠b影院| 麻豆成人午夜福利视频| 999久久久国产精品视频| 女警被强在线播放| 精品人妻1区二区| 老司机午夜十八禁免费视频| 午夜福利18| 亚洲成国产人片在线观看| 亚洲欧美日韩无卡精品| 欧美另类亚洲清纯唯美| 黄色女人牲交| 国产又黄又爽又无遮挡在线| 亚洲男人天堂网一区| 两个人看的免费小视频| 哪里可以看免费的av片| 亚洲av片天天在线观看| 国产黄色小视频在线观看| 亚洲最大成人中文| 午夜福利在线观看吧| 一级a爱视频在线免费观看| 亚洲精华国产精华精| 麻豆成人av在线观看| 十八禁人妻一区二区| 亚洲电影在线观看av| 午夜福利视频1000在线观看| 日韩欧美 国产精品| 麻豆成人午夜福利视频| 99国产极品粉嫩在线观看| 亚洲成a人片在线一区二区| 亚洲欧美日韩无卡精品| 日韩欧美在线二视频| 免费av毛片视频| 久久人妻av系列| 亚洲熟妇中文字幕五十中出| 久久久久久久久中文| 亚洲九九香蕉| 老司机在亚洲福利影院| 国产精华一区二区三区| 日韩免费av在线播放| 精品一区二区三区四区五区乱码| 亚洲精品在线观看二区| 欧美成人免费av一区二区三区| 久久亚洲精品不卡| 久久久久久久久免费视频了| 亚洲成人久久性| 日韩大码丰满熟妇| 午夜视频精品福利| 两人在一起打扑克的视频| 精华霜和精华液先用哪个| 日韩欧美在线二视频| 国产私拍福利视频在线观看| 日日夜夜操网爽| 成人亚洲精品一区在线观看| 99国产精品一区二区三区| 亚洲黑人精品在线| 国产午夜福利久久久久久| 久9热在线精品视频| 成人国产一区最新在线观看| 久久草成人影院| 婷婷六月久久综合丁香| 两个人看的免费小视频| 久久久国产精品麻豆| 成人永久免费在线观看视频| 亚洲五月天丁香| 中文亚洲av片在线观看爽| 两性夫妻黄色片| 一区二区三区高清视频在线| 国产97色在线日韩免费| 在线观看一区二区三区| 人人澡人人妻人| 国产一区二区激情短视频| 国产亚洲精品一区二区www| 大型av网站在线播放| 国产精品亚洲一级av第二区| 青草久久国产| 人人妻,人人澡人人爽秒播| 亚洲第一欧美日韩一区二区三区| 亚洲片人在线观看| 久久草成人影院| 婷婷精品国产亚洲av在线| 久久久久国产一级毛片高清牌| 精品久久久久久,| 亚洲一卡2卡3卡4卡5卡精品中文| 老汉色∧v一级毛片| 女警被强在线播放| 成人三级黄色视频| 国产又黄又爽又无遮挡在线| 视频区欧美日本亚洲| 免费在线观看视频国产中文字幕亚洲| 亚洲国产欧美一区二区综合| 亚洲成人久久性| e午夜精品久久久久久久| av在线播放免费不卡| 正在播放国产对白刺激| 女性生殖器流出的白浆| 老司机深夜福利视频在线观看| 久久精品91无色码中文字幕| 老熟妇仑乱视频hdxx| 国产成人一区二区三区免费视频网站| 午夜福利欧美成人| 淫妇啪啪啪对白视频| 免费高清视频大片| 中文字幕精品免费在线观看视频| 久久久久国内视频| 男人舔女人的私密视频| 色av中文字幕| 亚洲久久久国产精品| 亚洲国产日韩欧美精品在线观看 | 精品国产超薄肉色丝袜足j| 欧美日韩福利视频一区二区| 美女免费视频网站| 成人18禁高潮啪啪吃奶动态图| 女性生殖器流出的白浆| 婷婷亚洲欧美| 国产av又大| av中文乱码字幕在线| 午夜成年电影在线免费观看| 国产一区二区在线av高清观看| 搞女人的毛片| 91国产中文字幕| av天堂在线播放| www.精华液| 黄片大片在线免费观看| 日韩精品青青久久久久久| 精品欧美一区二区三区在线| 88av欧美| 成人永久免费在线观看视频| 高清毛片免费观看视频网站| av中文乱码字幕在线| 久久伊人香网站| 欧美激情极品国产一区二区三区| 757午夜福利合集在线观看| 国产亚洲av嫩草精品影院| 精品人妻1区二区| www.熟女人妻精品国产| 90打野战视频偷拍视频| 亚洲精品一卡2卡三卡4卡5卡| 在线观看日韩欧美| 午夜影院日韩av| 亚洲天堂国产精品一区在线| 天天添夜夜摸| 国产亚洲精品久久久久久毛片| 中文字幕精品亚洲无线码一区 | 成人国语在线视频| 日韩欧美三级三区| 国产伦一二天堂av在线观看| 大香蕉久久成人网| 久久久国产欧美日韩av| 两个人看的免费小视频| 精品国产乱码久久久久久男人| 熟女电影av网| e午夜精品久久久久久久| 亚洲激情在线av| 9191精品国产免费久久| 欧美在线一区亚洲| 老熟妇仑乱视频hdxx| 成熟少妇高潮喷水视频| 欧美激情极品国产一区二区三区| 曰老女人黄片| 日本一区二区免费在线视频| 一区二区日韩欧美中文字幕| 亚洲中文日韩欧美视频| 最近最新免费中文字幕在线| 韩国精品一区二区三区| 欧美中文综合在线视频| 欧美激情极品国产一区二区三区| 免费无遮挡裸体视频| 精品熟女少妇八av免费久了| 亚洲片人在线观看| 看黄色毛片网站| a级毛片在线看网站| 韩国精品一区二区三区| 正在播放国产对白刺激| 国产精品av久久久久免费| 国产亚洲精品久久久久久毛片| 97超级碰碰碰精品色视频在线观看| 国产私拍福利视频在线观看| 国产伦一二天堂av在线观看| 午夜精品在线福利| 成人三级黄色视频| 亚洲 欧美一区二区三区| 欧美在线一区亚洲| 伊人久久大香线蕉亚洲五| 亚洲第一电影网av| 成在线人永久免费视频| 日本黄色视频三级网站网址| 亚洲第一欧美日韩一区二区三区| 久久久水蜜桃国产精品网| 色老头精品视频在线观看| 操出白浆在线播放| 国产免费av片在线观看野外av| netflix在线观看网站| 亚洲精品久久国产高清桃花| 国产男靠女视频免费网站| 精品第一国产精品| 免费女性裸体啪啪无遮挡网站| 在线观看www视频免费| 99久久综合精品五月天人人| 黄色视频不卡| 一二三四在线观看免费中文在| 亚洲人成伊人成综合网2020| 亚洲,欧美精品.| 老司机深夜福利视频在线观看| 99在线视频只有这里精品首页| 国产精品香港三级国产av潘金莲| 中文字幕高清在线视频| 日韩高清综合在线| 97人妻精品一区二区三区麻豆 | 国产精品久久久人人做人人爽| 亚洲国产日韩欧美精品在线观看 | 大型黄色视频在线免费观看| 成人18禁在线播放| 久久中文字幕人妻熟女| 亚洲精品中文字幕在线视频| 亚洲国产中文字幕在线视频| 黑丝袜美女国产一区| 999久久久精品免费观看国产| 成人三级做爰电影| 91成年电影在线观看| 亚洲三区欧美一区| 久久久久国产一级毛片高清牌| 久久久久久国产a免费观看| 国产精品亚洲一级av第二区| 精品久久蜜臀av无| 成人免费观看视频高清| 黄网站色视频无遮挡免费观看| 婷婷丁香在线五月| 90打野战视频偷拍视频| 亚洲 欧美 日韩 在线 免费| 亚洲第一欧美日韩一区二区三区| 琪琪午夜伦伦电影理论片6080| 变态另类成人亚洲欧美熟女| 人人妻人人澡人人看| 黄色女人牲交| 亚洲自偷自拍图片 自拍| 亚洲成人久久爱视频| 国产一区在线观看成人免费| 丁香六月欧美| 麻豆av在线久日| 97人妻精品一区二区三区麻豆 | 天堂动漫精品| av免费在线观看网站|