• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Selective C-C bonds formation, N-alkylation and benzo[d]imidazoles synthesis by a recyclable zinc composite

    2022-03-14 09:28:20GunxinZhuZhengChoDunHiynZhuDongdongYeDweiWng
    Chinese Chemical Letters 2022年1期

    Gunxin Zhu,Zheng-Cho Dun,Hiyn Zhu,Dongdong Ye,Dwei Wng,?

    aThe Key Laboratory of Synthetic and Biological Colloids,Ministry of Education,School of Chemical and Material Engineering,Jiangnan University,Wuxi 214122,China

    bState Key Laboratory of Pulp and Paper Engineering,South China University of Technology,Guangzhou 510640,China

    cSchool of Chemical and Environmental Engineering,Hubei Minzu University,Enshi 445000,China

    ABSTRACT Earth abundant metals are much less expensive,promising,valuable metals and could be served as catalysts for the borrowing hydrogen reaction,dehydrogenation and heterocycles synthesis,instead of noble metals.The uniformly dispersed zinc composites were designed,synthesized and carefully characterized by means of XPS,EDS,TEM and XRD.The resulting zinc composite showed good catalytic activity for the N-alkylation of amines with amines,ketones with alcohols in water under base-free conditions,while unsaturated carbonyl compounds could also be synthesized by tuning the reaction conditions.Importantly,it was the first time to realize the synthesis of 2-aryl-1H-benzo[d]imidazole derivatives by using this zinc composite under green conditions.Meanwhile,this zinc catalyst could be easily recovered and reused for at least five times.

    Keywords:Unsymmetrical Zinc Borrowing hydrogen Recyclability Selective

    Functionalized imines and amines are important intermediates for organic synthesis,biological,and pharmaceutical applications because they are widely used as pharmacophores in many biologically active compounds and agrochemicals[1,2].Although the traditional methods of alkylation of primary amines with alkyl halides to functionalized amines are studied,great quantities of unexpected wastes create an undesirable ecological footprint.In addition,the reaction of amines with alkyl halides in the presence of large amounts of bases,which often suffers from overalkylation,and exhibits low selectivity for the desired products[3].Hence,the development of efficient and sustainable methods is of infinite interest.To address these problems,borrowing hydrogen strategy is stand out from other methods[4].N-Alkylation of amines and alcohols or two amines was documented for the preparation of imines or amines through the borrowing hydrogen strategy.

    Earth abundant metals,like Mn,Fe,Co,Zn,Ni,are much economic,promising,valuable catalysts for borrowing hydrogen reaction,dehydrogenation and heterocycles synthesis.Kirchneret al.recently described an excellent example of cobalt-catalyzed borrowing hydrogen reaction and predicted that earth abundant metals are the most economic and promising catalysts for modern industry[5].Therefore,the research on earth abundant metals for borrowing hydrogen reaction and dehydrogenation is highly interesting and desirable[6-10].

    Recently,our group developed several triazole-skeleton ligand bridged transition-metal complexes,which showed good catalytic activities in dehydrogenation and borrowing hydrogen reactions[11-16].However,most of the central metals are noble metals,low catalyst stability or catalysts are difficult to be recovered and reused[17-19].Herein,we have described the synthesis of an unsymmetrical thienyl-pyrazoly-triazole ligand(TPT)and the corresponding heterogeneous zinc composite on molecular sieve(MS),which was carefully characterized by means of XPS,EDS,TEM and XRD(Scheme 1).The resulting zinc composite revealed good catalytic activity for borrowing hydrogen reaction of amines with amines in water under base-free conditions.Moreover,2-aryl-1H-benzo[d]imidazole derivatives were synthesized with this zinc composite in water under base-free conditions.

    Scheme 1.The designed PPT-Zn@SBA-15.

    Scheme 2.The synthesis of thienyl-pyrazoly-triazole.

    Fig.1.SEM image(a),EDS pattern(b)and TEM images(c,d)of TPT-Zn@MS.

    The thienyl-pyrazoly-triazole ligand(TPT,1)was synthesized in two steps with moderate yield(Scheme 2)and the detailed steps of TPT synthesis and purification were provided in Supporting information.TPT-Zn@MS was obtained through a one-pot method,as follows:A flame-dried flask was charged with TPT(1.0 equiv.)and freshly distilled THF under nitrogen at room temperature,then diethylzinc(1.0 mol/L in hexanes;2.0 equiv.)was added dropwise under vigorous stirring condition.The flask was removed after 30 min,then silica was introduced into the above flask byin situhydrolysis of the added TEOS with ammonium hydroxide.After that the flask was heated to reflux at 65 °C for 5 h,the power of 13X molecular sieve(MS)was added to the solution and refluxed with vigorous stirring for another 5 h.The resulting mixture was grounded to a fine powder after removed the reaction solvent,and pyrolyzed at 800 °C with a constant argon flow for 2 h.Then the black power was cooled down to room temperature,and washed with HCl solution,water respectively.Finally,the resulting material(TPT-Zn@MS)was obtained for characterizations.

    The prepared TPT-Zn@MS material was characterized by X-ray photoelectron spectrometry(XPS),scanning electron microscope(SEM),energy dispersive X-ray spectroscopy(EDS)and transmission electron microscopy(TEM).

    The TEM images(Fig.1)demonstrate the existence of crystal phases of zinc composite and the interplanar spacing of crystal phases is be afforded(Fig.1d),which shows that the interplanar spacing of zinc composite is 0.205 nm.Furthermore,there are many crystal phases belong to 13X molecular sieve,suggesting the material remained active salts after firing and Zn was uniformly dispersed.Meanwhile,scanning electron microscope(SEM)and energy dispersive X-ray spectroscopy(EDS)were conducted to better characterize TPT-Zn@MS.As shown in Fig.1a,this composite is amorphous,and we random sampled on five different areas to perform EDS test,the maximal element content of Zn is at 4.75 wt%and minimal element content is at 2.21 wt%,suggesting the distribution of Zn element was uniformly dispersed.Other element contents are as follows:Na(2.89 wt%),Al(2.331 wt%),Si(6.59 wt%),O(31.087 wt%),S(0.49 wt%).

    Fig.2.(a)XPS spectra of TPT-Zn@MS,(b)narrow spectra of Zn.

    X-ray photoelectron spectroscopy(XPS)was subsequently performed to study the surface chemistry of TPT-Zn@MS.The Zn element content on the surface is 2.681 wt%,the result is achieved agreeable to the EDS results.In addition,low intensity of the N 1s and S 2p shows N and S elements maybe reacted with ultralow air,so that the content of N and S was under low level(Fig.2).

    With above encouraging zinc composite in hand,the catalytic activity of TPT-Zn@MS was next investigated.Initially,the challenging reaction involvingN-alkylation of amines and amines was selected to test the catalyst activity of TPT-Zn@MS,especially in water.Compared to classicalN-alkylation conditions,such as,strong base,organic solvents,sealed flask,this reaction was attempted in water under base-free conditions.After a series of conditions screening,it was disclosed that the reaction could occur in water under base-free conditions.For a higher yield,the additive experiments were carried out and the results showed that AgNTf2/KF could produce a much higher yield.The introduction of phase transfer catalyst could further enhance the yield of desired product(Table 1,entry 11).It was observed that the reaction of amine and amine could not take place in the absence of catalyst(Table 1,entry 16).It should be noted that the reaction could take place under solvent-free conditions,however,only moderate yield was achieved(entry 21).

    Table 1 Optimization of reaction conditions.a

    After establishing the optimal conditions,the substrate scope was then extended by utilizing a variety of substituted aromatic amines and various benzylamine derivatives.As showed in Scheme 3,all the amines were smoothly converted into the correspondingN-phenylbenzylamines and moderate to high isolated yields were obtained regardless of the electronic properties of starting materials.

    It was confirmed that the substituent groups of aromatic amines and benzylamines,such as methoxyl,methyl and chloro,were smoothly reacted and it was noticed that the aromatic amines containing methoxyl or chloro groups produced much higher yields(4c,4e,4f).It was observed that benzylamines with electron-withdrawing group producedN-phenylbenzylamines in admirable yields(4g,4i,4j).In addition,2-thiophenemethylamine could also react with aromatic amine and generated the desired product in moderate yield(4l).

    Encouraged by such wonderful results,we further employed TPT-Zn@MS to ketones and various benzyl alcohols.After optimizing the condition of the reaction of ketones and various benzyl alcohols,it was demonstrated that the C-C bond formation could be smoothly transformed by this Zn composite,and then the substrate scope was explored and the results were summarized in Scheme 4.The experiments showed the products were obtained with good to excellent yields.It was noticed all combinations of ketones and benzyl alcohols provided high selectivity of the process on the formation of C=C bond.Under suitable conditions,both electron-rich and electron-deficient substrates could be reacted efficiently and the desired products were achieved with good yields(7b,7e,7h,7k,7l,7n).The electron-rich benzyl alcohols bearing methyl,methoxyl groups afforded the products in high yields(7c,7d,7f,7g,7i).The electron-efficient ketones bearing chloro,bromo groups were also suitable to this transformation in good yields(7j,7m,7o).

    Scheme 3.Reaction of aromatic aimines and benzylamines.Reagents and conditions:2(1.0 mmol),3(1.2 mmol),TPT-Zn@MS(10 mg),AgNTf2(0.3 mmol),KF(0.3 mmol),TBAF(0.3 mmol),water(3.5 mL),90 °C,48 h,N2.Isolated yields.

    Scheme 4.Selective synthesis of unsaturated carbonyl compounds.Conditions:5(1.0 mmol),6(1.2 mmol),TPT-Zn@MS(10 mg),AgNTf2(0.3 mmol),KF(0.3 mmol),TBAF(0.3 mmol),water(3.5 mL),60 °C,air,12 h.Isolated yields.

    Interestingly,when we changed the conditions of the reaction of ketones and benzyl alcohols,an unexpected result was observed(Scheme 5).The 3-phenylpropiophenone as the main product was provided with the same TPT-Zn@MS catalytic system.We further demonstrated the C-C bond formation scope of ketones and benzyl alcohols with this reaction system,and the 3-phenylpropiophenone derivatives were provided in good to high yields.This system was able to tolerate the -Cl,-Me,-Ph and -OMe groups,even the strong electron-rich substrate like 3,5-dimethoxybenzyl alcohol was also reacted smoothly(8f).In addition,the 2-acetonaphthone and 2-thiophenemethanol were suitable to this transformation,leading to the corresponding products in 90% and 76% yields,respectively(8k,8l).

    2-Aryl-1H-benzo[d]imidazole derivatives are an important and valuable natural products or intermediates and are found in natural alkaloids,pharmaceuticals and bioactive molecules[20].Recently,we developed copper-catalyzed the synthesis of 2-aryl-1Hbenzo[d]imidazole derivatives,however,strong base,organic solvents and the catalyst could not be recovered[21-23].Therefore,we next utilized TPT-Zn@MS to catalyze the synthesis of 2-aryl-1H-benzo[d]imidazoles.The experiments revealed that lots of 2-aryl-1H-benzo[d]imidazole derivatives could be synthesized with TPT-Zn@MS as a catalyst in water under base-free conditions(Scheme 6).

    Scheme 5.Selective synthesis of phenylpropiophenones.Conditions:5(1.0 mmol),6(1.2 mmol),TPT-Zn@MS(10 mg),AgNTf2(0.3 mmol),KF(0.3 mmol),TBAF(0.3 mmol), iPrOH(3 mmol),water(3.5 mL),90 °C,N2,48 h.Isolated yields.

    Scheme 6.Substrate expansion of 2-phenylbenzimidazole.Conditions:5(1.0 mmol),6(1.2 mmol),TPT-Zn@MS(10 mg),AgNTf2(0.3 mmol),KF(0.3 mmol),TBAF(0.3 mmol), iPrOH(3 mmol),water(3.5 mL),90 °C,N2,48 h.Isolated yields.

    Scheme 7.The control experiments.

    To better explore and understand what roles of TPT-Zn@MS and AgNTf2played in the synthesis of 2-aryl-1H-benzo[d]imidazole derivatives,the control experiments were introduced into this mechanism exploration and the results were listed in Table 1.

    Fig.3.Kinetic plot of 2-aryl-1H-benzo[d]imidazole.A0:original concentration of substrate.At:concentration of substrate at time t. K:rate constant.

    The experiments revealed that TPT-Zn@MS and additives played the important roles in 2-aryl-1H-benzo[d]imidazole synthesis process,which was not produced in the absence of TPT-Zn@MS.In addition,only TPT and MS could not catalyze this reaction.The control experiments were set up to exclude the possibility of a radical pathway including the single electron transfer process.The results showed that the yield of 2-aryl-1H-benzo[d]imidazole(10a)was almost the same by using TEMPO(1.1 equiv.)as a radical scavenger with TPT-Zn@MS as a catalyst(Scheme 7).As expected,the experiments disclosed that this process is not a single electron transfer one(SET).

    Hammett plot equation was investigated and the results were concluded in Supporting information Meanwhile,to clearly explain this reaction,kinetic isotope effect vale(KIE)was studied to explore the kinetically relevant elementary steps and the experiments revealed that KIE value(1.86)was achieved through the first order reaction plot between ln[6a]and ln[6a-d2](Fig.3).This disclosed that the rate-determining step is the dehydrogenation of alcohol(6a)in the synthesis of 2-aryl-1H-benzo[d]imidazole derivatives.

    TPT-Zn@MS was finally recovered and washed with water(10 mL × 3),ethanol(10 mL × 3)and water(10 mL × 3).After drying for 24 h,the recovered TPT-Zn@MS was reused to catalyze all the above four transformations and the recycled experiments were concluded in Scheme 8.It was demonstrated that yields of the desired products could be nearly maintained until the composite was recovered for even five times.In addition,the extent experiment of TPT-Zn@MS revealed that no copper was detected through ICP analysis,which exclude the effect of copper catalysis.Meanwhile,the ICP assessment of recovered TPT-Zn@MS showed that silver was not found.

    Scheme 8.Recycled experiments.

    Scheme 9.The synthesis of 1-benzyl-2-aryl-1H-benzo[d]imidazole in gram scale.

    Moreover,the summary of 2-aryl-1H-benzo[d]imidazole derivative derivatives synthesis[24-30]was listed in Table 2.It was observed that TPT-Zn@MS composite was a good catalytic system,which revealed a green method under base-free and water conditions with good recovery performance.This TPT-Zn@MS system offered an efficient methodology for the selective synthesis of saturated and unsaturated carbonyl compounds,2-aryl-1Hbenzo[d]imidazole derivative derivatives with only water(or hydrogen gas)as by-products for the first time[31,32].

    Table 2 The synthesis conditions of 2-aryl-1H-benzo[d]imidazole.

    Finally,thegram-scalesynthesisof2-aryl-1Hbenzo[d]imidazole from the reaction of phenylenediamine(5a)and benzyl alcohol(2a)was carried out.As expected,the result showed that the desired product(10a)was achieved smoothly in 89% yield(Scheme 9).This gram scale experiment disclosed that TPT-Zn@MS system could promote the synthesis 2-aryl-1H-benzo[d]imidazole derivatives under base-free conditions in water.

    In conclusion,we developed a new type of heterogeneous TPTZn@MS catalyst,which was proved to be effective for selective borrowing hydrogen reaction of ketones and alcohols.TPT-Zn@MS was efficient for theN-alkylation of amines with amines,and the synthesis of synthesis of 2-aryl-1H-benzo[d]imidazole derivatives from diamines and alcohols.This provided an easy method the synthesis of substituted amines,2-aryl-1H-benzo[d]imidazole derivatives with high yields in water.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    We gratefully acknowledge financial support of this work by the National Natural Science Foundation of China(Nos.21776111,21861039),State Key Laboratory of Pulp and Paper Engineering(No.202001)and Central Laboratory,School of Chemical and Material Engineering,Jiangnan University.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.060.

    亚洲精品乱久久久久久| 在线天堂最新版资源| 男女边摸边吃奶| 久久久久精品久久久久真实原创| 91老司机精品| 婷婷色av中文字幕| 黄色视频不卡| 国产国语露脸激情在线看| 久久久久精品国产欧美久久久 | 国产精品av久久久久免费| 亚洲人成电影观看| 国产日韩一区二区三区精品不卡| a级毛片黄视频| 波多野结衣av一区二区av| 成人亚洲精品一区在线观看| 亚洲伊人久久精品综合| 美国免费a级毛片| www.自偷自拍.com| 久久久国产精品麻豆| 免费观看a级毛片全部| 久久午夜综合久久蜜桃| 国产精品国产三级国产专区5o| 国产淫语在线视频| 亚洲av中文av极速乱| 国产亚洲欧美精品永久| 欧美日韩精品网址| 午夜福利一区二区在线看| 男女下面插进去视频免费观看| 一级毛片 在线播放| 中文字幕高清在线视频| av线在线观看网站| 夫妻性生交免费视频一级片| 菩萨蛮人人尽说江南好唐韦庄| 一二三四中文在线观看免费高清| 韩国高清视频一区二区三区| 免费黄网站久久成人精品| 亚洲美女搞黄在线观看| 国产 精品1| av国产久精品久网站免费入址| 十分钟在线观看高清视频www| 中国三级夫妇交换| 国产男人的电影天堂91| 日韩av免费高清视频| 精品一区在线观看国产| 国产精品女同一区二区软件| 黄片播放在线免费| 国产av国产精品国产| 一级毛片我不卡| 五月天丁香电影| 国产一级毛片在线| 女人高潮潮喷娇喘18禁视频| 免费看不卡的av| 亚洲中文av在线| 免费观看av网站的网址| 欧美日韩成人在线一区二区| 视频区图区小说| 久久久久国产一级毛片高清牌| 午夜福利影视在线免费观看| 精品视频人人做人人爽| 十八禁人妻一区二区| 国产人伦9x9x在线观看| 丝袜在线中文字幕| 亚洲av电影在线进入| 国产极品粉嫩免费观看在线| 人妻人人澡人人爽人人| 国产精品香港三级国产av潘金莲 | 国产成人91sexporn| 精品少妇内射三级| 精品亚洲成a人片在线观看| 老司机影院毛片| 亚洲国产av新网站| 欧美国产精品va在线观看不卡| 国产精品麻豆人妻色哟哟久久| 免费观看人在逋| 国产精品亚洲av一区麻豆 | 这个男人来自地球电影免费观看 | 国产免费现黄频在线看| 爱豆传媒免费全集在线观看| 狂野欧美激情性bbbbbb| 久久鲁丝午夜福利片| 国产极品粉嫩免费观看在线| 欧美人与性动交α欧美软件| 国产淫语在线视频| 欧美精品一区二区免费开放| av卡一久久| 国产在线一区二区三区精| 色94色欧美一区二区| 亚洲国产av影院在线观看| 午夜91福利影院| 女人高潮潮喷娇喘18禁视频| 老鸭窝网址在线观看| 久久午夜综合久久蜜桃| 性色av一级| 午夜福利,免费看| 哪个播放器可以免费观看大片| av在线播放精品| 熟妇人妻不卡中文字幕| 在线天堂最新版资源| 亚洲国产欧美在线一区| 欧美成人午夜精品| 五月开心婷婷网| 亚洲av成人精品一二三区| 亚洲成人手机| 天天影视国产精品| 在线观看免费日韩欧美大片| 色播在线永久视频| 国产av一区二区精品久久| 男女边摸边吃奶| 两个人看的免费小视频| 久久精品国产a三级三级三级| 肉色欧美久久久久久久蜜桃| av天堂久久9| 黄色 视频免费看| 黄色一级大片看看| 一本色道久久久久久精品综合| 老司机亚洲免费影院| 精品人妻在线不人妻| 日韩大码丰满熟妇| 国产av国产精品国产| 中文字幕制服av| 老司机影院毛片| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日韩av久久| 蜜桃在线观看..| 69精品国产乱码久久久| 欧美 亚洲 国产 日韩一| 美女中出高潮动态图| 精品久久蜜臀av无| 久久久精品区二区三区| 国产熟女欧美一区二区| 十分钟在线观看高清视频www| 国产片特级美女逼逼视频| 国产成人午夜福利电影在线观看| 亚洲色图 男人天堂 中文字幕| 男男h啪啪无遮挡| 日本91视频免费播放| 国产福利在线免费观看视频| 欧美日韩视频高清一区二区三区二| 成年av动漫网址| 叶爱在线成人免费视频播放| 中文精品一卡2卡3卡4更新| 日韩 亚洲 欧美在线| 欧美黄色片欧美黄色片| 一级毛片 在线播放| 丝袜脚勾引网站| 亚洲国产精品999| 久久精品久久久久久噜噜老黄| 一区二区三区乱码不卡18| 欧美97在线视频| 亚洲精品久久久久久婷婷小说| 亚洲 欧美一区二区三区| 97在线人人人人妻| 免费高清在线观看视频在线观看| 国产在视频线精品| 国产不卡av网站在线观看| 免费在线观看黄色视频的| 天天躁日日躁夜夜躁夜夜| 久久狼人影院| av福利片在线| 亚洲一区中文字幕在线| 捣出白浆h1v1| 啦啦啦在线观看免费高清www| 亚洲欧美激情在线| 丝袜美腿诱惑在线| 国产精品一区二区在线不卡| 亚洲精品一区av在线观看| 日韩av在线大香蕉| 黄色毛片三级朝国网站| 精品一品国产午夜福利视频| 男人操女人黄网站| 欧美激情久久久久久爽电影 | 色播在线永久视频| 精品乱码久久久久久99久播| 欧美中文日本在线观看视频| 亚洲国产欧美日韩在线播放| 极品教师在线免费播放| 国产日韩一区二区三区精品不卡| 国产在线观看jvid| 国产极品粉嫩免费观看在线| av免费在线观看网站| 天堂动漫精品| aaaaa片日本免费| 亚洲午夜精品一区,二区,三区| 日韩欧美三级三区| 色av中文字幕| 久久人人97超碰香蕉20202| 18禁美女被吸乳视频| av天堂久久9| 神马国产精品三级电影在线观看 | 色综合站精品国产| svipshipincom国产片| 久久婷婷成人综合色麻豆| 日韩欧美免费精品| 久久久久久久精品吃奶| 久久热在线av| 91成人精品电影| 1024视频免费在线观看| 国产伦一二天堂av在线观看| 黄色视频不卡| 亚洲天堂国产精品一区在线| 美女大奶头视频| 男人的好看免费观看在线视频 | 精品第一国产精品| 日韩 欧美 亚洲 中文字幕| 成年人黄色毛片网站| 国产成+人综合+亚洲专区| 一进一出好大好爽视频| 亚洲一区高清亚洲精品| 亚洲国产高清在线一区二区三 | 大型av网站在线播放| 91老司机精品| 黄色女人牲交| 可以免费在线观看a视频的电影网站| 一区二区三区激情视频| 免费搜索国产男女视频| 亚洲专区字幕在线| 视频区欧美日本亚洲| 欧美中文综合在线视频| 亚洲国产毛片av蜜桃av| 国产欧美日韩一区二区精品| 美女国产高潮福利片在线看| 天天添夜夜摸| 国内精品久久久久精免费| 欧美av亚洲av综合av国产av| 热99re8久久精品国产| 国产精品1区2区在线观看.| 女生性感内裤真人,穿戴方法视频| 成人亚洲精品av一区二区| 午夜视频精品福利| a在线观看视频网站| 一本综合久久免费| 琪琪午夜伦伦电影理论片6080| 亚洲国产精品久久男人天堂| 精品久久久久久,| 久久午夜亚洲精品久久| 女同久久另类99精品国产91| 国产精品av久久久久免费| 九色国产91popny在线| 波多野结衣av一区二区av| 真人一进一出gif抽搐免费| 不卡av一区二区三区| 天堂√8在线中文| 一卡2卡三卡四卡精品乱码亚洲| 一进一出抽搐gif免费好疼| 满18在线观看网站| 香蕉久久夜色| 淫秽高清视频在线观看| 黑人欧美特级aaaaaa片| 精品国产美女av久久久久小说| 老司机午夜十八禁免费视频| 每晚都被弄得嗷嗷叫到高潮| 十八禁人妻一区二区| 中文字幕精品免费在线观看视频| 亚洲精品粉嫩美女一区| 50天的宝宝边吃奶边哭怎么回事| 丁香欧美五月| 女人精品久久久久毛片| 999久久久国产精品视频| 免费看十八禁软件| 国产免费男女视频| 一个人免费在线观看的高清视频| 一级毛片女人18水好多| 欧美激情 高清一区二区三区| 中出人妻视频一区二区| 精品人妻1区二区| 午夜精品在线福利| 中文亚洲av片在线观看爽| 一夜夜www| 精品高清国产在线一区| 久久精品影院6| 日本在线视频免费播放| av在线播放免费不卡| 非洲黑人性xxxx精品又粗又长| 国产精品亚洲一级av第二区| 啪啪无遮挡十八禁网站| 女性被躁到高潮视频| 女性生殖器流出的白浆| 日韩大尺度精品在线看网址 | 国产成人免费无遮挡视频| 国产蜜桃级精品一区二区三区| 69av精品久久久久久| 看片在线看免费视频| 久久精品国产清高在天天线| √禁漫天堂资源中文www| 婷婷精品国产亚洲av在线| 桃红色精品国产亚洲av| 亚洲欧美日韩另类电影网站| 免费人成视频x8x8入口观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产精品合色在线| 极品教师在线免费播放| 亚洲午夜理论影院| 99在线人妻在线中文字幕| 亚洲第一电影网av| 久久精品aⅴ一区二区三区四区| av片东京热男人的天堂| 自线自在国产av| 精品欧美国产一区二区三| 九色亚洲精品在线播放| 日韩视频一区二区在线观看| 国产精品一区二区免费欧美| 日韩欧美三级三区| xxx96com| 亚洲男人天堂网一区| 日韩欧美在线二视频| 成人三级黄色视频| 国产精品秋霞免费鲁丝片| 久久精品91蜜桃| 一级,二级,三级黄色视频| 在线十欧美十亚洲十日本专区| 90打野战视频偷拍视频| 中文字幕av电影在线播放| 亚洲成人国产一区在线观看| 黄色丝袜av网址大全| 日韩精品免费视频一区二区三区| 成人三级做爰电影| 久久国产精品男人的天堂亚洲| 18禁黄网站禁片午夜丰满| 色哟哟哟哟哟哟| 日韩高清综合在线| 九色亚洲精品在线播放| 久久精品91无色码中文字幕| 亚洲专区国产一区二区| 免费看十八禁软件| 亚洲熟女毛片儿| 免费搜索国产男女视频| 国语自产精品视频在线第100页| 日本a在线网址| 欧美日本视频| 日韩欧美免费精品| 不卡av一区二区三区| 久久人妻福利社区极品人妻图片| 一本大道久久a久久精品| 久久久久久国产a免费观看| 啦啦啦观看免费观看视频高清 | 在线国产一区二区在线| 午夜福利免费观看在线| 亚洲av片天天在线观看| 精品久久久久久久毛片微露脸| 人妻丰满熟妇av一区二区三区| 18禁国产床啪视频网站| 久久久久久久久免费视频了| 十八禁网站免费在线| 国产在线精品亚洲第一网站| 美女高潮喷水抽搐中文字幕| 我的亚洲天堂| 久久天堂一区二区三区四区| 亚洲免费av在线视频| 日本黄色视频三级网站网址| 免费看美女性在线毛片视频| 久久人妻av系列| av视频免费观看在线观看| 亚洲avbb在线观看| 国产蜜桃级精品一区二区三区| 午夜久久久在线观看| 欧美av亚洲av综合av国产av| 久久久国产成人免费| 亚洲自偷自拍图片 自拍| 99re在线观看精品视频| 麻豆av在线久日| 亚洲精品国产一区二区精华液| 少妇粗大呻吟视频| 禁无遮挡网站| 色老头精品视频在线观看| 亚洲av电影在线进入| 精品高清国产在线一区| 黄色视频,在线免费观看| 色综合婷婷激情| 亚洲av电影在线进入| 色播在线永久视频| 中文字幕另类日韩欧美亚洲嫩草| 757午夜福利合集在线观看| 久久精品国产亚洲av高清一级| 成人永久免费在线观看视频| 免费观看人在逋| 欧美乱色亚洲激情| 久久人妻熟女aⅴ| 欧美乱色亚洲激情| cao死你这个sao货| 九色亚洲精品在线播放| av超薄肉色丝袜交足视频| 欧美不卡视频在线免费观看 | 国产精品九九99| 亚洲精品av麻豆狂野| 日韩三级视频一区二区三区| 91精品国产国语对白视频| 亚洲精品粉嫩美女一区| 黑人操中国人逼视频| 久久中文字幕人妻熟女| 女性被躁到高潮视频| 人成视频在线观看免费观看| 免费无遮挡裸体视频| 日本 欧美在线| 九色亚洲精品在线播放| 久久性视频一级片| 麻豆久久精品国产亚洲av| 真人一进一出gif抽搐免费| 少妇粗大呻吟视频| aaaaa片日本免费| 亚洲美女黄片视频| 色综合欧美亚洲国产小说| 午夜a级毛片| 日本三级黄在线观看| 黄色女人牲交| 高潮久久久久久久久久久不卡| 99在线人妻在线中文字幕| 国产精品野战在线观看| 欧美日韩亚洲综合一区二区三区_| 国产免费男女视频| a级毛片在线看网站| 国产精品1区2区在线观看.| 99riav亚洲国产免费| 欧美日韩黄片免| 午夜精品久久久久久毛片777| 999精品在线视频| 99精品久久久久人妻精品| 18禁观看日本| 欧美中文日本在线观看视频| 久久婷婷人人爽人人干人人爱 | 免费高清在线观看日韩| 亚洲va日本ⅴa欧美va伊人久久| cao死你这个sao货| 日本黄色视频三级网站网址| 国产国语露脸激情在线看| 亚洲少妇的诱惑av| 欧美成人免费av一区二区三区| 婷婷六月久久综合丁香| 国产精品永久免费网站| 欧美黑人欧美精品刺激| 50天的宝宝边吃奶边哭怎么回事| 亚洲无线在线观看| www日本在线高清视频| 人成视频在线观看免费观看| 亚洲成人免费电影在线观看| 69精品国产乱码久久久| 人人妻,人人澡人人爽秒播| 97超级碰碰碰精品色视频在线观看| 色在线成人网| www.熟女人妻精品国产| 变态另类丝袜制服| 午夜福利影视在线免费观看| 电影成人av| 精品国产超薄肉色丝袜足j| 久久香蕉激情| 亚洲伊人色综图| 久久久久国产一级毛片高清牌| 久久婷婷人人爽人人干人人爱 | 国产精品自产拍在线观看55亚洲| 在线十欧美十亚洲十日本专区| 亚洲久久久国产精品| 一级毛片精品| 亚洲九九香蕉| 不卡av一区二区三区| 最近最新免费中文字幕在线| 亚洲国产欧美日韩在线播放| 在线av久久热| 他把我摸到了高潮在线观看| 成人欧美大片| 中文字幕另类日韩欧美亚洲嫩草| 少妇 在线观看| 午夜精品在线福利| 涩涩av久久男人的天堂| 色尼玛亚洲综合影院| 亚洲精品美女久久久久99蜜臀| 中文字幕高清在线视频| 久久中文字幕一级| 亚洲欧美精品综合一区二区三区| 国产熟女午夜一区二区三区| 久久人人精品亚洲av| 法律面前人人平等表现在哪些方面| 亚洲av美国av| 成人欧美大片| 亚洲欧美一区二区三区黑人| 亚洲电影在线观看av| 国产极品粉嫩免费观看在线| 国产真人三级小视频在线观看| 在线播放国产精品三级| 久久久久久国产a免费观看| 欧美绝顶高潮抽搐喷水| 亚洲精品中文字幕一二三四区| 国产亚洲av高清不卡| 精品熟女少妇八av免费久了| 成人三级黄色视频| 国产精品一区二区在线不卡| 久久久久久大精品| 少妇熟女aⅴ在线视频| 日韩高清综合在线| 神马国产精品三级电影在线观看 | 可以在线观看的亚洲视频| 亚洲美女黄片视频| av天堂久久9| 色综合站精品国产| 少妇熟女aⅴ在线视频| 久久久久九九精品影院| 亚洲av成人不卡在线观看播放网| 成人三级做爰电影| 深夜精品福利| 国产熟女xx| 麻豆av在线久日| 18禁观看日本| 国产激情久久老熟女| АⅤ资源中文在线天堂| 天天一区二区日本电影三级 | 男女午夜视频在线观看| 多毛熟女@视频| 老汉色av国产亚洲站长工具| 欧美乱色亚洲激情| 久久性视频一级片| 亚洲成人精品中文字幕电影| 两个人看的免费小视频| 88av欧美| 亚洲自偷自拍图片 自拍| 桃红色精品国产亚洲av| 人人妻人人澡欧美一区二区 | 色综合站精品国产| 精品福利观看| bbb黄色大片| 国产又色又爽无遮挡免费看| 午夜免费鲁丝| 性色av乱码一区二区三区2| 在线观看免费视频日本深夜| 久久久精品国产亚洲av高清涩受| 久久精品国产亚洲av香蕉五月| 99精品在免费线老司机午夜| 99国产精品一区二区蜜桃av| 色哟哟哟哟哟哟| 国产成人欧美在线观看| 岛国视频午夜一区免费看| 亚洲一区二区三区不卡视频| 国产亚洲av嫩草精品影院| 亚洲美女黄片视频| 人人澡人人妻人| 丝袜美腿诱惑在线| 亚洲电影在线观看av| 成人国语在线视频| 中文字幕人妻丝袜一区二区| 一本大道久久a久久精品| 久久久久九九精品影院| 无遮挡黄片免费观看| 成人18禁高潮啪啪吃奶动态图| 99国产综合亚洲精品| 午夜两性在线视频| 女人被狂操c到高潮| 美女高潮喷水抽搐中文字幕| 日韩国内少妇激情av| 国产色视频综合| 成人三级黄色视频| 国产99久久九九免费精品| 咕卡用的链子| 国产亚洲av嫩草精品影院| 神马国产精品三级电影在线观看 | 国产精品亚洲av一区麻豆| 岛国视频午夜一区免费看| 老司机深夜福利视频在线观看| 如日韩欧美国产精品一区二区三区| 国产精品久久久av美女十八| 夜夜躁狠狠躁天天躁| 久久人妻熟女aⅴ| 丝袜在线中文字幕| 亚洲精品国产一区二区精华液| 国产亚洲欧美在线一区二区| 国产乱人伦免费视频| 国产国语露脸激情在线看| 黄色女人牲交| 欧美乱码精品一区二区三区| 91国产中文字幕| 美女免费视频网站| 中文字幕av电影在线播放| 母亲3免费完整高清在线观看| 日韩精品青青久久久久久| 色尼玛亚洲综合影院| 国产精品自产拍在线观看55亚洲| 激情视频va一区二区三区| 国产成人欧美在线观看| 欧美日本中文国产一区发布| 欧美日韩瑟瑟在线播放| 国产成人av教育| 色综合亚洲欧美另类图片| 美国免费a级毛片| 亚洲色图 男人天堂 中文字幕| 国产不卡一卡二| 久久久久久久久中文| 嫁个100分男人电影在线观看| 国产在线观看jvid| 黄色毛片三级朝国网站| 一边摸一边抽搐一进一小说| 欧美日本亚洲视频在线播放| 精品国产乱子伦一区二区三区| av网站免费在线观看视频| 人人妻,人人澡人人爽秒播| 亚洲情色 制服丝袜| 69av精品久久久久久| 国产精品久久久久久亚洲av鲁大| 久久午夜综合久久蜜桃| 日本a在线网址| 好男人电影高清在线观看| 级片在线观看| 亚洲欧美一区二区三区黑人| 91字幕亚洲| 91大片在线观看| 两个人视频免费观看高清| 亚洲全国av大片| 国产人伦9x9x在线观看| 亚洲欧美一区二区三区黑人| 亚洲 国产 在线| 久久热在线av| 亚洲aⅴ乱码一区二区在线播放 | 老汉色∧v一级毛片| √禁漫天堂资源中文www| 亚洲九九香蕉| 午夜视频精品福利| av天堂久久9| 高清黄色对白视频在线免费看| 亚洲 国产 在线| 精品久久久久久久久久免费视频|