• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Selective C-C bonds formation, N-alkylation and benzo[d]imidazoles synthesis by a recyclable zinc composite

    2022-03-14 09:28:20GunxinZhuZhengChoDunHiynZhuDongdongYeDweiWng
    Chinese Chemical Letters 2022年1期

    Gunxin Zhu,Zheng-Cho Dun,Hiyn Zhu,Dongdong Ye,Dwei Wng,?

    aThe Key Laboratory of Synthetic and Biological Colloids,Ministry of Education,School of Chemical and Material Engineering,Jiangnan University,Wuxi 214122,China

    bState Key Laboratory of Pulp and Paper Engineering,South China University of Technology,Guangzhou 510640,China

    cSchool of Chemical and Environmental Engineering,Hubei Minzu University,Enshi 445000,China

    ABSTRACT Earth abundant metals are much less expensive,promising,valuable metals and could be served as catalysts for the borrowing hydrogen reaction,dehydrogenation and heterocycles synthesis,instead of noble metals.The uniformly dispersed zinc composites were designed,synthesized and carefully characterized by means of XPS,EDS,TEM and XRD.The resulting zinc composite showed good catalytic activity for the N-alkylation of amines with amines,ketones with alcohols in water under base-free conditions,while unsaturated carbonyl compounds could also be synthesized by tuning the reaction conditions.Importantly,it was the first time to realize the synthesis of 2-aryl-1H-benzo[d]imidazole derivatives by using this zinc composite under green conditions.Meanwhile,this zinc catalyst could be easily recovered and reused for at least five times.

    Keywords:Unsymmetrical Zinc Borrowing hydrogen Recyclability Selective

    Functionalized imines and amines are important intermediates for organic synthesis,biological,and pharmaceutical applications because they are widely used as pharmacophores in many biologically active compounds and agrochemicals[1,2].Although the traditional methods of alkylation of primary amines with alkyl halides to functionalized amines are studied,great quantities of unexpected wastes create an undesirable ecological footprint.In addition,the reaction of amines with alkyl halides in the presence of large amounts of bases,which often suffers from overalkylation,and exhibits low selectivity for the desired products[3].Hence,the development of efficient and sustainable methods is of infinite interest.To address these problems,borrowing hydrogen strategy is stand out from other methods[4].N-Alkylation of amines and alcohols or two amines was documented for the preparation of imines or amines through the borrowing hydrogen strategy.

    Earth abundant metals,like Mn,Fe,Co,Zn,Ni,are much economic,promising,valuable catalysts for borrowing hydrogen reaction,dehydrogenation and heterocycles synthesis.Kirchneret al.recently described an excellent example of cobalt-catalyzed borrowing hydrogen reaction and predicted that earth abundant metals are the most economic and promising catalysts for modern industry[5].Therefore,the research on earth abundant metals for borrowing hydrogen reaction and dehydrogenation is highly interesting and desirable[6-10].

    Recently,our group developed several triazole-skeleton ligand bridged transition-metal complexes,which showed good catalytic activities in dehydrogenation and borrowing hydrogen reactions[11-16].However,most of the central metals are noble metals,low catalyst stability or catalysts are difficult to be recovered and reused[17-19].Herein,we have described the synthesis of an unsymmetrical thienyl-pyrazoly-triazole ligand(TPT)and the corresponding heterogeneous zinc composite on molecular sieve(MS),which was carefully characterized by means of XPS,EDS,TEM and XRD(Scheme 1).The resulting zinc composite revealed good catalytic activity for borrowing hydrogen reaction of amines with amines in water under base-free conditions.Moreover,2-aryl-1H-benzo[d]imidazole derivatives were synthesized with this zinc composite in water under base-free conditions.

    Scheme 1.The designed PPT-Zn@SBA-15.

    Scheme 2.The synthesis of thienyl-pyrazoly-triazole.

    Fig.1.SEM image(a),EDS pattern(b)and TEM images(c,d)of TPT-Zn@MS.

    The thienyl-pyrazoly-triazole ligand(TPT,1)was synthesized in two steps with moderate yield(Scheme 2)and the detailed steps of TPT synthesis and purification were provided in Supporting information.TPT-Zn@MS was obtained through a one-pot method,as follows:A flame-dried flask was charged with TPT(1.0 equiv.)and freshly distilled THF under nitrogen at room temperature,then diethylzinc(1.0 mol/L in hexanes;2.0 equiv.)was added dropwise under vigorous stirring condition.The flask was removed after 30 min,then silica was introduced into the above flask byin situhydrolysis of the added TEOS with ammonium hydroxide.After that the flask was heated to reflux at 65 °C for 5 h,the power of 13X molecular sieve(MS)was added to the solution and refluxed with vigorous stirring for another 5 h.The resulting mixture was grounded to a fine powder after removed the reaction solvent,and pyrolyzed at 800 °C with a constant argon flow for 2 h.Then the black power was cooled down to room temperature,and washed with HCl solution,water respectively.Finally,the resulting material(TPT-Zn@MS)was obtained for characterizations.

    The prepared TPT-Zn@MS material was characterized by X-ray photoelectron spectrometry(XPS),scanning electron microscope(SEM),energy dispersive X-ray spectroscopy(EDS)and transmission electron microscopy(TEM).

    The TEM images(Fig.1)demonstrate the existence of crystal phases of zinc composite and the interplanar spacing of crystal phases is be afforded(Fig.1d),which shows that the interplanar spacing of zinc composite is 0.205 nm.Furthermore,there are many crystal phases belong to 13X molecular sieve,suggesting the material remained active salts after firing and Zn was uniformly dispersed.Meanwhile,scanning electron microscope(SEM)and energy dispersive X-ray spectroscopy(EDS)were conducted to better characterize TPT-Zn@MS.As shown in Fig.1a,this composite is amorphous,and we random sampled on five different areas to perform EDS test,the maximal element content of Zn is at 4.75 wt%and minimal element content is at 2.21 wt%,suggesting the distribution of Zn element was uniformly dispersed.Other element contents are as follows:Na(2.89 wt%),Al(2.331 wt%),Si(6.59 wt%),O(31.087 wt%),S(0.49 wt%).

    Fig.2.(a)XPS spectra of TPT-Zn@MS,(b)narrow spectra of Zn.

    X-ray photoelectron spectroscopy(XPS)was subsequently performed to study the surface chemistry of TPT-Zn@MS.The Zn element content on the surface is 2.681 wt%,the result is achieved agreeable to the EDS results.In addition,low intensity of the N 1s and S 2p shows N and S elements maybe reacted with ultralow air,so that the content of N and S was under low level(Fig.2).

    With above encouraging zinc composite in hand,the catalytic activity of TPT-Zn@MS was next investigated.Initially,the challenging reaction involvingN-alkylation of amines and amines was selected to test the catalyst activity of TPT-Zn@MS,especially in water.Compared to classicalN-alkylation conditions,such as,strong base,organic solvents,sealed flask,this reaction was attempted in water under base-free conditions.After a series of conditions screening,it was disclosed that the reaction could occur in water under base-free conditions.For a higher yield,the additive experiments were carried out and the results showed that AgNTf2/KF could produce a much higher yield.The introduction of phase transfer catalyst could further enhance the yield of desired product(Table 1,entry 11).It was observed that the reaction of amine and amine could not take place in the absence of catalyst(Table 1,entry 16).It should be noted that the reaction could take place under solvent-free conditions,however,only moderate yield was achieved(entry 21).

    Table 1 Optimization of reaction conditions.a

    After establishing the optimal conditions,the substrate scope was then extended by utilizing a variety of substituted aromatic amines and various benzylamine derivatives.As showed in Scheme 3,all the amines were smoothly converted into the correspondingN-phenylbenzylamines and moderate to high isolated yields were obtained regardless of the electronic properties of starting materials.

    It was confirmed that the substituent groups of aromatic amines and benzylamines,such as methoxyl,methyl and chloro,were smoothly reacted and it was noticed that the aromatic amines containing methoxyl or chloro groups produced much higher yields(4c,4e,4f).It was observed that benzylamines with electron-withdrawing group producedN-phenylbenzylamines in admirable yields(4g,4i,4j).In addition,2-thiophenemethylamine could also react with aromatic amine and generated the desired product in moderate yield(4l).

    Encouraged by such wonderful results,we further employed TPT-Zn@MS to ketones and various benzyl alcohols.After optimizing the condition of the reaction of ketones and various benzyl alcohols,it was demonstrated that the C-C bond formation could be smoothly transformed by this Zn composite,and then the substrate scope was explored and the results were summarized in Scheme 4.The experiments showed the products were obtained with good to excellent yields.It was noticed all combinations of ketones and benzyl alcohols provided high selectivity of the process on the formation of C=C bond.Under suitable conditions,both electron-rich and electron-deficient substrates could be reacted efficiently and the desired products were achieved with good yields(7b,7e,7h,7k,7l,7n).The electron-rich benzyl alcohols bearing methyl,methoxyl groups afforded the products in high yields(7c,7d,7f,7g,7i).The electron-efficient ketones bearing chloro,bromo groups were also suitable to this transformation in good yields(7j,7m,7o).

    Scheme 3.Reaction of aromatic aimines and benzylamines.Reagents and conditions:2(1.0 mmol),3(1.2 mmol),TPT-Zn@MS(10 mg),AgNTf2(0.3 mmol),KF(0.3 mmol),TBAF(0.3 mmol),water(3.5 mL),90 °C,48 h,N2.Isolated yields.

    Scheme 4.Selective synthesis of unsaturated carbonyl compounds.Conditions:5(1.0 mmol),6(1.2 mmol),TPT-Zn@MS(10 mg),AgNTf2(0.3 mmol),KF(0.3 mmol),TBAF(0.3 mmol),water(3.5 mL),60 °C,air,12 h.Isolated yields.

    Interestingly,when we changed the conditions of the reaction of ketones and benzyl alcohols,an unexpected result was observed(Scheme 5).The 3-phenylpropiophenone as the main product was provided with the same TPT-Zn@MS catalytic system.We further demonstrated the C-C bond formation scope of ketones and benzyl alcohols with this reaction system,and the 3-phenylpropiophenone derivatives were provided in good to high yields.This system was able to tolerate the -Cl,-Me,-Ph and -OMe groups,even the strong electron-rich substrate like 3,5-dimethoxybenzyl alcohol was also reacted smoothly(8f).In addition,the 2-acetonaphthone and 2-thiophenemethanol were suitable to this transformation,leading to the corresponding products in 90% and 76% yields,respectively(8k,8l).

    2-Aryl-1H-benzo[d]imidazole derivatives are an important and valuable natural products or intermediates and are found in natural alkaloids,pharmaceuticals and bioactive molecules[20].Recently,we developed copper-catalyzed the synthesis of 2-aryl-1Hbenzo[d]imidazole derivatives,however,strong base,organic solvents and the catalyst could not be recovered[21-23].Therefore,we next utilized TPT-Zn@MS to catalyze the synthesis of 2-aryl-1H-benzo[d]imidazoles.The experiments revealed that lots of 2-aryl-1H-benzo[d]imidazole derivatives could be synthesized with TPT-Zn@MS as a catalyst in water under base-free conditions(Scheme 6).

    Scheme 5.Selective synthesis of phenylpropiophenones.Conditions:5(1.0 mmol),6(1.2 mmol),TPT-Zn@MS(10 mg),AgNTf2(0.3 mmol),KF(0.3 mmol),TBAF(0.3 mmol), iPrOH(3 mmol),water(3.5 mL),90 °C,N2,48 h.Isolated yields.

    Scheme 6.Substrate expansion of 2-phenylbenzimidazole.Conditions:5(1.0 mmol),6(1.2 mmol),TPT-Zn@MS(10 mg),AgNTf2(0.3 mmol),KF(0.3 mmol),TBAF(0.3 mmol), iPrOH(3 mmol),water(3.5 mL),90 °C,N2,48 h.Isolated yields.

    Scheme 7.The control experiments.

    To better explore and understand what roles of TPT-Zn@MS and AgNTf2played in the synthesis of 2-aryl-1H-benzo[d]imidazole derivatives,the control experiments were introduced into this mechanism exploration and the results were listed in Table 1.

    Fig.3.Kinetic plot of 2-aryl-1H-benzo[d]imidazole.A0:original concentration of substrate.At:concentration of substrate at time t. K:rate constant.

    The experiments revealed that TPT-Zn@MS and additives played the important roles in 2-aryl-1H-benzo[d]imidazole synthesis process,which was not produced in the absence of TPT-Zn@MS.In addition,only TPT and MS could not catalyze this reaction.The control experiments were set up to exclude the possibility of a radical pathway including the single electron transfer process.The results showed that the yield of 2-aryl-1H-benzo[d]imidazole(10a)was almost the same by using TEMPO(1.1 equiv.)as a radical scavenger with TPT-Zn@MS as a catalyst(Scheme 7).As expected,the experiments disclosed that this process is not a single electron transfer one(SET).

    Hammett plot equation was investigated and the results were concluded in Supporting information Meanwhile,to clearly explain this reaction,kinetic isotope effect vale(KIE)was studied to explore the kinetically relevant elementary steps and the experiments revealed that KIE value(1.86)was achieved through the first order reaction plot between ln[6a]and ln[6a-d2](Fig.3).This disclosed that the rate-determining step is the dehydrogenation of alcohol(6a)in the synthesis of 2-aryl-1H-benzo[d]imidazole derivatives.

    TPT-Zn@MS was finally recovered and washed with water(10 mL × 3),ethanol(10 mL × 3)and water(10 mL × 3).After drying for 24 h,the recovered TPT-Zn@MS was reused to catalyze all the above four transformations and the recycled experiments were concluded in Scheme 8.It was demonstrated that yields of the desired products could be nearly maintained until the composite was recovered for even five times.In addition,the extent experiment of TPT-Zn@MS revealed that no copper was detected through ICP analysis,which exclude the effect of copper catalysis.Meanwhile,the ICP assessment of recovered TPT-Zn@MS showed that silver was not found.

    Scheme 8.Recycled experiments.

    Scheme 9.The synthesis of 1-benzyl-2-aryl-1H-benzo[d]imidazole in gram scale.

    Moreover,the summary of 2-aryl-1H-benzo[d]imidazole derivative derivatives synthesis[24-30]was listed in Table 2.It was observed that TPT-Zn@MS composite was a good catalytic system,which revealed a green method under base-free and water conditions with good recovery performance.This TPT-Zn@MS system offered an efficient methodology for the selective synthesis of saturated and unsaturated carbonyl compounds,2-aryl-1Hbenzo[d]imidazole derivative derivatives with only water(or hydrogen gas)as by-products for the first time[31,32].

    Table 2 The synthesis conditions of 2-aryl-1H-benzo[d]imidazole.

    Finally,thegram-scalesynthesisof2-aryl-1Hbenzo[d]imidazole from the reaction of phenylenediamine(5a)and benzyl alcohol(2a)was carried out.As expected,the result showed that the desired product(10a)was achieved smoothly in 89% yield(Scheme 9).This gram scale experiment disclosed that TPT-Zn@MS system could promote the synthesis 2-aryl-1H-benzo[d]imidazole derivatives under base-free conditions in water.

    In conclusion,we developed a new type of heterogeneous TPTZn@MS catalyst,which was proved to be effective for selective borrowing hydrogen reaction of ketones and alcohols.TPT-Zn@MS was efficient for theN-alkylation of amines with amines,and the synthesis of synthesis of 2-aryl-1H-benzo[d]imidazole derivatives from diamines and alcohols.This provided an easy method the synthesis of substituted amines,2-aryl-1H-benzo[d]imidazole derivatives with high yields in water.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    We gratefully acknowledge financial support of this work by the National Natural Science Foundation of China(Nos.21776111,21861039),State Key Laboratory of Pulp and Paper Engineering(No.202001)and Central Laboratory,School of Chemical and Material Engineering,Jiangnan University.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.060.

    国产v大片淫在线免费观看| 日韩一区二区视频免费看| 欧美国产日韩亚洲一区| 国产黄色小视频在线观看| 国产男靠女视频免费网站| 国产精品1区2区在线观看.| 九九在线视频观看精品| 国产单亲对白刺激| 男女做爰动态图高潮gif福利片| 精品人妻一区二区三区麻豆 | 一卡2卡三卡四卡精品乱码亚洲| 亚洲图色成人| 亚洲在线观看片| 国产色婷婷99| 国产极品精品免费视频能看的| 婷婷六月久久综合丁香| 黄色配什么色好看| 成人高潮视频无遮挡免费网站| 免费看a级黄色片| 精品久久国产蜜桃| 国产黄色视频一区二区在线观看 | 亚洲欧美精品综合久久99| 小蜜桃在线观看免费完整版高清| 国产一级毛片七仙女欲春2| 我的老师免费观看完整版| 国产伦精品一区二区三区视频9| 嫩草影院精品99| 美女 人体艺术 gogo| 国产色婷婷99| 国产一级毛片七仙女欲春2| av免费在线看不卡| 给我免费播放毛片高清在线观看| 久久精品国产亚洲av天美| 少妇熟女aⅴ在线视频| 午夜影院日韩av| 淫秽高清视频在线观看| 一级黄片播放器| 免费看av在线观看网站| 亚洲欧美成人精品一区二区| 日韩一本色道免费dvd| 少妇的逼好多水| 老司机影院成人| 精品一区二区三区av网在线观看| 国产老妇女一区| www.色视频.com| 亚洲精品影视一区二区三区av| 色av中文字幕| 色综合色国产| 99久久中文字幕三级久久日本| 亚洲五月天丁香| 欧洲精品卡2卡3卡4卡5卡区| 黄色配什么色好看| 91麻豆精品激情在线观看国产| 天天躁日日操中文字幕| 免费在线观看成人毛片| 99热这里只有是精品在线观看| 99九九线精品视频在线观看视频| 国产精品日韩av在线免费观看| 中国国产av一级| 深爱激情五月婷婷| 少妇人妻精品综合一区二区 | 伦精品一区二区三区| 久久久午夜欧美精品| a级毛片免费高清观看在线播放| 成人av在线播放网站| 中文字幕久久专区| 欧美又色又爽又黄视频| 国产黄色小视频在线观看| 老司机午夜福利在线观看视频| 国产精品亚洲美女久久久| 国产男靠女视频免费网站| 18禁在线播放成人免费| 俺也久久电影网| 亚洲精品影视一区二区三区av| 日韩av在线大香蕉| 国产精品久久久久久av不卡| 性插视频无遮挡在线免费观看| 亚洲国产色片| 一级av片app| 丝袜喷水一区| 两个人的视频大全免费| 激情 狠狠 欧美| 久久人人爽人人片av| 人人妻人人看人人澡| 蜜臀久久99精品久久宅男| 国产精品爽爽va在线观看网站| a级毛色黄片| 熟妇人妻久久中文字幕3abv| 婷婷精品国产亚洲av在线| 亚洲性夜色夜夜综合| 久久人人爽人人片av| 国产成人一区二区在线| 草草在线视频免费看| 免费搜索国产男女视频| 好男人在线观看高清免费视频| 最近手机中文字幕大全| 精品人妻熟女av久视频| 内地一区二区视频在线| 亚洲天堂国产精品一区在线| 18+在线观看网站| 女同久久另类99精品国产91| 亚洲av中文av极速乱| 精品一区二区免费观看| 少妇被粗大猛烈的视频| 久久人人精品亚洲av| 国产精品福利在线免费观看| 久久亚洲精品不卡| 成年女人永久免费观看视频| 男女视频在线观看网站免费| 麻豆成人午夜福利视频| av在线老鸭窝| 神马国产精品三级电影在线观看| 乱人视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 欧美最新免费一区二区三区| 日日撸夜夜添| 国产精品嫩草影院av在线观看| 久久久久精品国产欧美久久久| av专区在线播放| 直男gayav资源| 国产精品电影一区二区三区| 老熟妇乱子伦视频在线观看| 欧美+亚洲+日韩+国产| 91av网一区二区| 精品久久久久久久久av| 一区二区三区四区激情视频 | 特大巨黑吊av在线直播| 人妻夜夜爽99麻豆av| 狂野欧美激情性xxxx在线观看| 国产视频内射| 天堂av国产一区二区熟女人妻| 欧美激情久久久久久爽电影| 91狼人影院| 中文亚洲av片在线观看爽| 亚洲专区国产一区二区| 久久欧美精品欧美久久欧美| 欧美日本亚洲视频在线播放| 国产精品免费一区二区三区在线| 有码 亚洲区| 国产精品,欧美在线| 欧美性猛交黑人性爽| 日日干狠狠操夜夜爽| 春色校园在线视频观看| 在线免费观看不下载黄p国产| 亚洲精品乱码久久久v下载方式| 国产高清三级在线| 日本成人三级电影网站| 国产精品福利在线免费观看| 亚洲国产欧洲综合997久久,| 欧美zozozo另类| 人妻少妇偷人精品九色| 秋霞在线观看毛片| 久久草成人影院| 成年av动漫网址| 成人一区二区视频在线观看| 不卡视频在线观看欧美| 久久热精品热| 久久久久久久久大av| 六月丁香七月| 久久人妻av系列| 国产爱豆传媒在线观看| 一级毛片久久久久久久久女| 免费黄网站久久成人精品| 精品熟女少妇av免费看| 日本精品一区二区三区蜜桃| 午夜激情福利司机影院| 两性午夜刺激爽爽歪歪视频在线观看| 精品午夜福利在线看| 久久精品夜色国产| 国产高清不卡午夜福利| 国产精品三级大全| 国产亚洲欧美98| 国产白丝娇喘喷水9色精品| 美女黄网站色视频| 99热全是精品| 黄色日韩在线| 色吧在线观看| 一区二区三区免费毛片| 亚洲欧美精品综合久久99| 精品人妻一区二区三区麻豆 | 女同久久另类99精品国产91| 九色成人免费人妻av| 一级av片app| 九九在线视频观看精品| 狂野欧美激情性xxxx在线观看| 亚洲久久久久久中文字幕| 成人av一区二区三区在线看| 免费看美女性在线毛片视频| 午夜久久久久精精品| 亚洲精品日韩在线中文字幕 | 日本三级黄在线观看| 人妻夜夜爽99麻豆av| 欧美日韩乱码在线| 日本在线视频免费播放| 午夜福利高清视频| 亚洲av熟女| 国产精品一区二区免费欧美| 国产三级在线视频| 精品久久久久久久末码| 欧美潮喷喷水| www.色视频.com| 精品无人区乱码1区二区| 大香蕉久久网| 国国产精品蜜臀av免费| 一卡2卡三卡四卡精品乱码亚洲| 国产精品一区二区性色av| 国产一区二区在线av高清观看| 国产精品久久久久久av不卡| 精品人妻熟女av久视频| 国产乱人偷精品视频| av天堂中文字幕网| 男女做爰动态图高潮gif福利片| 变态另类丝袜制服| 免费搜索国产男女视频| 国产精品永久免费网站| 中文字幕av成人在线电影| 夜夜爽天天搞| 搡老熟女国产l中国老女人| 色综合亚洲欧美另类图片| 久99久视频精品免费| 欧美激情久久久久久爽电影| 国产精品三级大全| 蜜桃久久精品国产亚洲av| 成人高潮视频无遮挡免费网站| 悠悠久久av| 久久这里只有精品中国| 亚洲av第一区精品v没综合| 非洲黑人性xxxx精品又粗又长| 十八禁国产超污无遮挡网站| 日韩一区二区视频免费看| 国产精品一区二区三区四区免费观看 | 精品福利观看| 亚洲中文字幕一区二区三区有码在线看| 国产精品综合久久久久久久免费| 看非洲黑人一级黄片| 久久久色成人| 欧美区成人在线视频| 99九九线精品视频在线观看视频| 国产aⅴ精品一区二区三区波| 亚洲美女黄片视频| 在现免费观看毛片| 久久久久国产精品人妻aⅴ院| 麻豆国产97在线/欧美| 日本三级黄在线观看| 国产男靠女视频免费网站| 美女cb高潮喷水在线观看| 国产伦在线观看视频一区| 在线免费观看的www视频| 国产精品久久久久久久久免| 悠悠久久av| 性插视频无遮挡在线免费观看| 18+在线观看网站| 在线免费观看的www视频| 精品午夜福利视频在线观看一区| 91久久精品电影网| 久久韩国三级中文字幕| 国产在线男女| 我的女老师完整版在线观看| 男人狂女人下面高潮的视频| 国产免费一级a男人的天堂| 丝袜美腿在线中文| 少妇的逼水好多| 日本色播在线视频| 亚洲精品国产成人久久av| 午夜精品在线福利| 国产久久久一区二区三区| av在线亚洲专区| 国产一级毛片七仙女欲春2| 久久婷婷人人爽人人干人人爱| 亚洲精品影视一区二区三区av| 人妻久久中文字幕网| 成人亚洲欧美一区二区av| 久久99热这里只有精品18| 国产成人a∨麻豆精品| av黄色大香蕉| 永久网站在线| 床上黄色一级片| 久99久视频精品免费| 国产精品电影一区二区三区| 国产老妇女一区| 一区福利在线观看| 两个人视频免费观看高清| 久久精品国产99精品国产亚洲性色| 午夜免费男女啪啪视频观看 | 亚洲国产色片| 欧美最黄视频在线播放免费| 亚洲精品日韩在线中文字幕 | 亚洲图色成人| 3wmmmm亚洲av在线观看| 日本撒尿小便嘘嘘汇集6| 人妻夜夜爽99麻豆av| 最后的刺客免费高清国语| 亚洲国产精品合色在线| 嫩草影院精品99| 欧美最黄视频在线播放免费| 在线免费观看的www视频| 内地一区二区视频在线| 亚洲国产精品sss在线观看| 热99re8久久精品国产| 夜夜看夜夜爽夜夜摸| 免费搜索国产男女视频| 欧美人与善性xxx| 亚洲国产欧美人成| 亚洲在线自拍视频| 色综合亚洲欧美另类图片| 精品日产1卡2卡| av天堂在线播放| 老司机影院成人| 熟女电影av网| 午夜福利视频1000在线观看| 精品福利观看| 亚洲婷婷狠狠爱综合网| 免费看光身美女| 亚洲精品国产成人久久av| 大又大粗又爽又黄少妇毛片口| 精品一区二区免费观看| 亚洲av电影不卡..在线观看| 国产精品福利在线免费观看| 免费在线观看成人毛片| 久久久久久九九精品二区国产| 亚洲av免费高清在线观看| av福利片在线观看| 欧美在线一区亚洲| 91狼人影院| 综合色av麻豆| 精品久久久久久久人妻蜜臀av| 欧美精品国产亚洲| 国产色爽女视频免费观看| 丰满的人妻完整版| 九九爱精品视频在线观看| 深夜a级毛片| 桃色一区二区三区在线观看| 国产爱豆传媒在线观看| 1024手机看黄色片| 亚洲电影在线观看av| 嫩草影院入口| 亚洲av二区三区四区| 天美传媒精品一区二区| 国产精品不卡视频一区二区| 91久久精品国产一区二区三区| 亚洲丝袜综合中文字幕| 国产欧美日韩精品亚洲av| 99热这里只有是精品50| 99久久中文字幕三级久久日本| 国产精品久久久久久久久免| 我的老师免费观看完整版| 精品乱码久久久久久99久播| 国产蜜桃级精品一区二区三区| 在现免费观看毛片| 伦精品一区二区三区| 午夜影院日韩av| 午夜a级毛片| 一边摸一边抽搐一进一小说| 99久久精品一区二区三区| 亚洲真实伦在线观看| 国产高清有码在线观看视频| 十八禁国产超污无遮挡网站| 神马国产精品三级电影在线观看| 一边摸一边抽搐一进一小说| 日日摸夜夜添夜夜添av毛片| 香蕉av资源在线| 成人鲁丝片一二三区免费| 国产一级毛片七仙女欲春2| 99久久无色码亚洲精品果冻| 久久久久免费精品人妻一区二区| 欧美bdsm另类| 好男人在线观看高清免费视频| 黄色一级大片看看| 国产伦精品一区二区三区视频9| 最近的中文字幕免费完整| 亚洲av五月六月丁香网| 变态另类丝袜制服| 99热这里只有精品一区| 亚洲精品在线观看二区| 亚洲高清免费不卡视频| 亚洲精华国产精华液的使用体验 | 精品久久国产蜜桃| 欧美最黄视频在线播放免费| 久久久久久国产a免费观看| 精品久久久久久久人妻蜜臀av| 久久精品综合一区二区三区| 午夜视频国产福利| a级毛片a级免费在线| 国产精品人妻久久久久久| 亚洲性夜色夜夜综合| 91狼人影院| 在线观看美女被高潮喷水网站| 国产免费男女视频| 一个人免费在线观看电影| 亚洲欧美日韩东京热| 日日干狠狠操夜夜爽| 国产精品一区二区三区四区免费观看 | 啦啦啦观看免费观看视频高清| 亚洲自偷自拍三级| 亚洲av成人精品一区久久| 欧美精品国产亚洲| 日日摸夜夜添夜夜添小说| 精品久久国产蜜桃| 在线国产一区二区在线| av在线天堂中文字幕| 久久精品国产亚洲av涩爱 | 九九爱精品视频在线观看| 一a级毛片在线观看| 色视频www国产| 91午夜精品亚洲一区二区三区| 国产爱豆传媒在线观看| 国产一区二区激情短视频| 国产成人aa在线观看| 99久久九九国产精品国产免费| 亚洲av美国av| 欧美中文日本在线观看视频| 久久久久国产网址| 91久久精品国产一区二区三区| 大又大粗又爽又黄少妇毛片口| 天堂动漫精品| 真人做人爱边吃奶动态| a级毛片a级免费在线| 亚洲,欧美,日韩| 嫩草影院新地址| 国产黄片美女视频| 俺也久久电影网| 12—13女人毛片做爰片一| 老司机影院成人| 国产高清不卡午夜福利| 欧美一区二区国产精品久久精品| 午夜久久久久精精品| 国产午夜精品久久久久久一区二区三区 | 无遮挡黄片免费观看| 欧美丝袜亚洲另类| 一级a爱片免费观看的视频| 中文字幕免费在线视频6| 国产伦精品一区二区三区视频9| aaaaa片日本免费| 国产精品福利在线免费观看| 国产69精品久久久久777片| 3wmmmm亚洲av在线观看| 亚洲国产精品国产精品| 深夜精品福利| 免费av观看视频| 超碰av人人做人人爽久久| 久久久久国产网址| 99riav亚洲国产免费| 我的老师免费观看完整版| 三级毛片av免费| 自拍偷自拍亚洲精品老妇| 成人亚洲精品av一区二区| 国产精品一及| 可以在线观看毛片的网站| 淫秽高清视频在线观看| 日韩,欧美,国产一区二区三区 | 激情 狠狠 欧美| 免费看光身美女| 亚洲av一区综合| 色尼玛亚洲综合影院| 精品久久久噜噜| 国内精品一区二区在线观看| 国内揄拍国产精品人妻在线| 国产视频内射| 天天躁夜夜躁狠狠久久av| 亚洲四区av| 久久久久国产精品人妻aⅴ院| 深爱激情五月婷婷| 美女被艹到高潮喷水动态| 欧美精品国产亚洲| 国产探花在线观看一区二区| 热99在线观看视频| 91精品国产九色| 久久人人精品亚洲av| 热99re8久久精品国产| 男人舔奶头视频| 久久99热6这里只有精品| 身体一侧抽搐| 老司机影院成人| 国产亚洲精品久久久久久毛片| 乱人视频在线观看| 欧美人与善性xxx| 黄色视频,在线免费观看| 天堂av国产一区二区熟女人妻| 亚洲av免费在线观看| 一本精品99久久精品77| 高清日韩中文字幕在线| 在线播放国产精品三级| 久久这里只有精品中国| 免费看日本二区| 中文字幕av成人在线电影| 亚洲国产色片| 成人毛片a级毛片在线播放| 午夜激情欧美在线| 日本 av在线| 亚洲人成网站高清观看| 深爱激情五月婷婷| 九九在线视频观看精品| 秋霞在线观看毛片| 久久精品国产亚洲av香蕉五月| 青春草视频在线免费观看| 超碰av人人做人人爽久久| 在线a可以看的网站| 麻豆成人午夜福利视频| 亚洲成人中文字幕在线播放| 久久人妻av系列| 成人特级av手机在线观看| 亚洲欧美日韩东京热| 99久久精品国产国产毛片| 国产av在哪里看| 欧洲精品卡2卡3卡4卡5卡区| 女生性感内裤真人,穿戴方法视频| 亚洲最大成人中文| 国产精品嫩草影院av在线观看| 午夜影院日韩av| 一本精品99久久精品77| 久久久精品欧美日韩精品| 伦理电影大哥的女人| 最近在线观看免费完整版| 日本与韩国留学比较| 色尼玛亚洲综合影院| 久久精品综合一区二区三区| h日本视频在线播放| 精品人妻熟女av久视频| 成人国产麻豆网| 亚洲av成人精品一区久久| 一级毛片久久久久久久久女| 你懂的网址亚洲精品在线观看 | 嫩草影院新地址| 午夜福利在线观看免费完整高清在 | 97超级碰碰碰精品色视频在线观看| 日本黄大片高清| 欧美xxxx性猛交bbbb| 婷婷色综合大香蕉| 成人美女网站在线观看视频| 久久综合国产亚洲精品| 高清午夜精品一区二区三区 | 观看免费一级毛片| 97在线视频观看| 亚洲欧美日韩高清在线视频| 久久久成人免费电影| 少妇高潮的动态图| 免费看a级黄色片| 亚洲无线观看免费| 我的女老师完整版在线观看| 精品无人区乱码1区二区| 观看免费一级毛片| 22中文网久久字幕| 国产精品久久久久久av不卡| 国产免费男女视频| 国产精品,欧美在线| 亚洲天堂国产精品一区在线| 香蕉av资源在线| 中出人妻视频一区二区| 国产 一区精品| 国产69精品久久久久777片| 亚洲成人精品中文字幕电影| 免费看日本二区| 日韩欧美精品v在线| 国产精品伦人一区二区| 国产精品福利在线免费观看| 久久99热6这里只有精品| 午夜影院日韩av| 国产精品久久久久久久久免| 国产真实伦视频高清在线观看| 夜夜夜夜夜久久久久| 蜜臀久久99精品久久宅男| 麻豆精品久久久久久蜜桃| 亚洲精品在线观看二区| 欧美色欧美亚洲另类二区| 欧美区成人在线视频| 97热精品久久久久久| 国产亚洲精品av在线| 日韩成人av中文字幕在线观看 | 91久久精品国产一区二区三区| 日日摸夜夜添夜夜添小说| 九九热线精品视视频播放| 国产精品国产高清国产av| 亚洲国产色片| 日韩精品有码人妻一区| 免费一级毛片在线播放高清视频| 免费人成视频x8x8入口观看| 日韩一本色道免费dvd| 麻豆精品久久久久久蜜桃| 97人妻精品一区二区三区麻豆| 亚洲人与动物交配视频| 免费看日本二区| www日本黄色视频网| 国产91av在线免费观看| 一进一出好大好爽视频| 国产精品一区二区免费欧美| 麻豆国产97在线/欧美| 欧美日韩国产亚洲二区| 国产成人a∨麻豆精品| 波野结衣二区三区在线| 午夜精品在线福利| 亚洲精品在线观看二区| 欧洲精品卡2卡3卡4卡5卡区| 九九久久精品国产亚洲av麻豆| 老女人水多毛片| 欧美精品国产亚洲| 日韩大尺度精品在线看网址| 国产精品一区二区三区四区久久| 少妇的逼水好多| 日本a在线网址| 99久久九九国产精品国产免费| 18禁裸乳无遮挡免费网站照片| 人人妻人人澡人人爽人人夜夜 | 午夜福利视频1000在线观看| 亚洲一区二区三区色噜噜| 少妇熟女欧美另类| 97人妻精品一区二区三区麻豆| 99久久成人亚洲精品观看| 国产精品免费一区二区三区在线| 日韩一区二区视频免费看| 激情 狠狠 欧美| 联通29元200g的流量卡| 国产精品99久久久久久久久| 久久久精品欧美日韩精品| 天堂av国产一区二区熟女人妻| 久久久久久大精品|