• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    TPE based aggregation induced emission fluorescent sensors for viscosity of liquid and mechanical properties of hydrogel

    2022-03-14 09:28:12WngHngYoQiToJingSunHoYngWngChengChengZhouHongyingFnHongxiShoAijinQinDweiSuChenyinWngHuiChong
    Chinese Chemical Letters 2022年1期

    N Wng,Hng Yo,?,Qi To,Jing Sun,Ho M,Yng Wng,ChengCheng Zhou,Hongying Fn,Hongxi Sho,Aijin Qin,Dwei Su,Chenyin Wng,?,Hui Chong,?

    aSchool of Chemistry and Chemical Engineering,Yangzhou University,Yangzhou 225009,China

    bTesting center of Yangzhou University,Yangzhou 225009,China

    cMinistry of Education Key Lab for Avian Preventive Medicine,Key Laboratory of Jiangsu Preventive Veterinary Medicine,College of Veterinary Medicine,Yangzhou University,Yangzhou 225009,China

    dCenter for Clean Energy Technology,School of Mathematical and Physical Science,Faculty of Science,University of Technology Sydney,Sydney NSW 2000,Australia

    1These two authors contribute equally to this manuscript

    ABSTRACT Two amphiphilic TPE E/Z isomers with aggregation induced emission(AIE)property have been synthesized and characterized.The logarithmic fluorescent intensity of the two molecules was in positive relationship with logarithmic viscosity of liquid.To note,the Z-TPE isomer exhibited more sensitivity in the viscosity of liquid sensing in comparison with the corresponding E-TPE counterpart(around 1.80 folds).Furthermore,two molecules could be used as fluorescent sensors for mechanical properties(viscosity and storage modulus)of hydrogel as well.In addition,two sensors displayed low cytotoxicity in normal tissue cell line(L929)within the concentration range of 2–10 μmol/L.These results potentially promised their applications as fluorescent sensors for mechanical properties in the fields of biological and biomedical.

    Keywords:TPE AIE Viscosity of liquid Mechanical property of hydrogel Fluorescent sensing

    Tetraphenyl ethylene(TPE)and the derivates were distinguished with their aggregation induced emission(AIE)property,which allowed fluorescent emission in aggregating state[1-2].The reason was documented to be restricted intramolecular rotation(RIR)effect[3].In solution,non-emissive decay pathway of TPE in excited state privileged and almost no fluorescence would be observed[4].Upon aggregation or in solid state,rotation of phenyl rings was blocked and TPE would regain its fluorescent emission[5].Due to this unique fluorescent property,various TPE derivates have been widely applied in the fields of fluorescent imaging,fluorescent sensing,disease diagnosis and organic optoelectronics[6-17].Currently,TPE has been recognized as versatile building block of functional materials with fluorescent property[18].

    The mechanical property of cellular microenvironment and extracellular matrix(ECM)has been reported to influence a plethora of biological behaviors[19-23].For instance,the nano-viscosity of fluid could influence enzyme catalyzed DNA cleavage rate[24].ECM stiffness was reported to affect intracellular rheology of cancer cells and was related to cancer metastasis[25-28].Currently,biocompatible 3D hydrogels were regarded as one of promising systems for mimickingin vivoECM of cancer cell[29-31].Therefore,a probe for viscosity of liquid and mechanical parameters of hydrogel is of great significance in biological and biomedical fields.In this aspect,fluorescent molecular rotors have been applied as efficient liquid viscosity sensor[32-33].Yet,these probes generally require complicated synthetical procedures and expensive fluorescence life imaging microscope(FLIM)[34].Liquid viscosity could affect intramolecular rotation of phenyl rings on TPE core.Therefore,fluorescence intensity of TPE was in positive relationship with the viscosity of surrounding liquid[35].A handful TPE based liquid viscosity sensors with cellular organelle targeting capabilities have been synthesized and succeeded in revealing the relationship of viscosity and cellular function[11-36].These TPE based probes advanced in simple synthetical procedure and avoidance of expensive instruments.On top of the fluid viscosity sensing,TPE derivates were applied in the description of hydrogel degradation[37].In principle,the viscosity of fluid confined to micro network inside hydrogel could also be sensed by TPE derivates.To some extent,this micro fluid viscosity could reflect the macro mechanical properties of hydrogel[38].On base of that,TPE could potentially be applied in mechanical property sensing of hydrogel.

    Fig.1.Synthetical route for E-TPE and Z-TPE.

    Herein,we wish to report the syntheses of TPE based sensors for fluid viscosity and mechanical parameters of hydrogel.The resultingE/Z-TPE isomers succeeded in fluid viscosity and hydrogel mechanical parameters sensing.Noticeability,Z-TPE showed more sensitivity in viscosity of fluid sensing in comparison with the correspondingE-TPE(1.8 times).To best of our knowledge,this is the first report of TPE based sensor for both fluid viscosity and mechanical parameters of hydrogel.

    As shown in Fig.1,we employed a straight-forward synthetical route for compoundsE/Z-TPE.Mixed precursors 1 and 2 were afforded in the yield of 80% through typical titanium tetrachloride catalyzed Mcmurry reaction by using 4-hydroxybenzophenone as starting material.The mixture was subsequently reacted with tosyl activated oligoethylene glycol to afford desired productEandZ-TPE.After carefully purification using silica chromatography,the yield forEandZ-TPE amounted to 51% and 52%,respectively.The detailed synthetical procedures and corresponding1H NMR,13C NMR and high-resolution mass spectroscopies were shown in supporting information(Figs.S5-S12 in Supporting information).The structures ofEandZ-TPE were confirmed by1H NMR.As shown in Fig.2,doublets of protons of substituted phenyl ring(Ha,Hb,Ha′ and Hb′)indicated pureEandZisomers.In case of a mixture,the protons would be triplets.Haand HbinE-TPE slightly upfield shifted in comparison with that of Ha′ and Hb′ inZ-TPE(Δδ=?0.03 ppm).On the contrary,Hc,Hdand HeinE-TPE were observed to slightly downfield shift in comparison with that of Hc′,Hd′ and He′ inZ-TPE.The resonance signal pattern of individualE/Z-TPE isomer matched previously TPE isomers[39].

    The photophysical properties were investigated.Both compounds displayed UV–vis absorption with maxima absorbance centered at 260 and 338 nm in ddH2O(Fig.S1 in Supporting information).These absorbances should be assigned toπ-π?electronic transition of TPE[40].The amphiphilic nature of the two molecules facilitate self-assembling in water(10 μmol/L),thus a typical TPE fluorescent emission(centered at 491 nm,Fig.S1)has been observed.

    TPE derivates were reported to be sensitive towards microenvironment,e.g.,fluid viscosity[10].Yet,the impact of configuration on sensitivity remained to be investigated.The currentE-andZTPE isomers(10 μmol/L)displayed different fluorescent emission intensity in relatively low viscous liquid(pure ethylene glycol,31 cp).In details,the fluorescent quantum yield ofE-TPE was around two times than that ofZ-TPE(data not shown).Tang reported similar oligoethylene glycol bearing TPE withZ-configuration has slightly lower fluorescent quantum yield in comparison with theE-configuration isomer due to different assembling behavior[41].In our case,E-TPE(10 μmol/L)showed an amorphous morphology(Fig.3a)andZ-TPE(10 μmol/L)was in a micelle-like morphology(Fig.3b)as characterized by TEM.The different assembly behavior together with fluorescent quantum yields in water was in good agreement with previous result,indicating the assembling behavior could be the reason for varied fluorescent emission properties of the isomers[41].

    Fig.2.Partial 1H NMR spectra of E-TPE and Z-TPE(CDCl3,300 MHz).

    Fig.3.TEM images of E-TPE(a)and Z-TPE(b).Scale bar=500 nm.Acc.voltage was 100 kV.Magnificence for(a)and(b)were 25.0 K and 30.0 K.

    Fig.4.Fluorescence emission spectra of E-TPE(a)and Z-TPE(c)in mixture of ethylene glycol and glycerol with different fraction of glycerol(0-99.90%).Plots of logarithmic fluorescent intensity(Log I)of E-TPE(b)and Z-TPE(d) vs. logarithmic mixture viscosity(Log η).[E/Z-TPE]=10 μmol/L,excitation wavelength was 340 nm.

    We tuned viscosity of liquid by changing glycerol fraction in ethylene glycol.Both isomers displayed viscosity dependent fluorescent increase.As shown in Fig.4a,E-TPE showed an approximately 11 fold increase of fluorescence intensity in 99.90% glycerol solution(609 cp)in comparison to the condition of pure ethylene glycol(37 cp).The logarithmic fluorescent emission intensity ofE-TPE displayed excellent linear relationship(R2=0.9953)with logarithmic viscosity of the testing solvent(Fig.4b).The enhanced emission intensity should be due to fluid viscosity induced restriction of phenyl ring on TPE that block the non-radioactive decay pathway[39].In addition,the fluorescence maxima ofE-TPE displayed a slightly blue shift in high viscous medium(around 12 nm in 99.90% glycerol).Similar phenomena were observed in other TPE based viscosity sensor,and was supposed to be the influence of vibrational energy level in viscous solution[34].Z-TPE was found to be more sensitive towards microenvironment viscosity.As shown in Fig.4c,increasing glycerol fraction to 99.90% resulted a 19.82-folds enhancement of the fluorescent intensity(around 1.8 times sensitive towards viscosity in comparison toE-TPE).The logarithmic fluorescent emission intensity ofZ-TPE also displayed excellent linear relationship(R2=0.9935)with logarithmic viscosity of the testing solvent(Fig.4d).The fluorescence from the agarose has been ruled out according to the spectra of hydrogel with different agarose concentration(Fig.S2 in Supporting information).

    Fig.5.Fluorescence emission spectra of E-TPE(a)and Z-TPE(b)in mixture of ethylene glycol and glycerol with different fraction of glycerol(0-99.9%)in the presence of 1 mol/L acetic acid.[E/Z-TPE]=10 μmol/L,excitation wavelength was 340 nm.

    Since the restriction of intramolecular rotation(RIR)effect contributes to fluorescence emission of TPE molecules,we suspectedE- andZ-TPE may have different rotational energy barriers.According to DFT calculations(Supporting information),only slight difference in rotational barrier is observed between the two isomers;the Gibbs free energy barriers at room temperature and ambient pressure are from 8.4 kcal/mol to 9.7 kcal/mol for both isomers(Fig.S3 in Supporting information),in good agreement with those for similar compounds[37].This suggests that there should be other reasons for the different sensitivity.Alternatively,we suspect hydrogen bonds between solvent and the oligoethylene glycol side-chains on TPE could serve as an external factor that influencing the rotation of the phenyl rings.In the situation ofZ-TPE,which the oligoethylene glycol side chains stay in close distance,a successive hydrogen bonds bridge mediated by solvent molecules may form between the two side chains.This successive hydrogen bonds bridge might produce extra rotational energy barrier of the phenyl rings.Whereas the oligoethylene glycol chains stay relative far apart inE-TPE,the corresponding successive hydrogen bonds bridge would be less stable or even hard to form.Therefore,E-TPE was supposed to be less sensitive towards hydrogen bond formation solvent molecules in contrast toZ-TPE.

    In order to verify this hypothesis,we measured the fluorescent spectra of the two TPE isomers in solvents composed of different ratio of ethylene glycol and glycerol in the presence of 1 mol/L acetic acid to eliminate potential hydrogen bonds interactions.Both TPE isomers displayed fluorescence enhancement with increasing of glycerol in acidic solution.In 99.90% percentage of glycerol,E(Fig.5a)andZ-TPE(Fig.5b)showed 13.74- and 14.20-folds increase of fluorescence intensity enhancement,respectively.The similar fluorescence enhancement ratio in the presence of acid suggests hydrogen bond indeed played partial role in the RIR effect dominated fluorescence enhancement.

    On top of liquid viscosity sensing,we further attempted to measure the mechanical properties of hydrogels using synthesized viscosity sensors.The hydrogels were fabricated straightforwardly by cooling the ddH2O solution of low-melting point agarose with varied concentrations(0.20%,0.30%,0.40%,0.50% and 0.60%)below 37°C.The mechanical properties of hydrogels were first characterized.The mechanical properties were first measured using a rheometer.The viscosity and storage modulus(G′)of the corresponding hydrogels were in positive relationship with the concentration of agarose.The viscosity of the hydrogel reduced with increase of shear rate,showing a pseudo-plastic behavior.

    We next addedEandZ-TPE(10 μmol/L)during the fabrication of these hydrogels,respectively.The hydrogels showed fluorescence emission centered around 490 nm,indicating existence of AIE effect in the hydrogels.As shown in Figs.6a and d,theG′ and viscosity of hydrogels was correlated with the fluorescent emission intensity centered around 490 nm.The logarithmic fluorescence intensity ofE-TPE containing hydrogel was displayed good linear relationship with logarithmic value of bothG′ and viscosity(R2=0.9487 and 0.9622,respectively,Figs.6b and c).Similarly,logarithmic fluorescence intensity ofZ-TPE containing hydrogel also showed good linear relationship with logarithmic value ofG′ and viscosity(R2=0.9912 and 0.9891,respectively,Figs.6e and f).The viscosity andG′ of the corresponding hydrogels were in positive relationship with the concentration of agarose.The fluorescence emission intensity of both TPE isomers increased with the concentration of agarose indicated the fluorescence intensity could reflect its mechanical properties.Given the fact that agarose constitutes the network structure inside hydrogels,increased concentration of agarose contributes to the enhanced viscosity andG′ of hydrogels.In the presence of more agarose,the grid size would become smaller.The liquid inside each grid might become less mobile and more viscous due to more hydrogen bond interactions.This might explain the enhancement of fluorescent intensity in the presence of more agarose loading.Finally,the two sensors displayed low cellular toxicity in mouse fibroblast cell line(L929)within the concentration range of 2–10 μmol/L.This promised their feasibility of future biomedical applications(Fig.S4 in Supporting information).

    Fig.6.Fluorescence emission spectra of E-TPE(a)and Z-TPE(d)in hydrogels composed of different concentration of agarose(0.20%–0.60%).[E/Z-TPE]=10 μmol/L,excitation wavelength was 340 nm.Plots of natural logarithmic fluorescent intensity of E-TPE(b)and Z-TPE(e) vs. natural logarithmic storage modulus(G′)of hydrogel.Plots of natural logarithmic fluorescent intensity of E-TPE(c)and Z-TPE(f) vs. natural logarithmic viscosity of hydrogel.[E/Z-TPE]=10 μmol/L,excitation wavelength was 340 nm.

    In conclusion,two oligoethylene glycol bearing TPE isomers(E-TPE andZ-TPE)have been synthesized and characterized.The fluorescent intensity of both compounds was in positive relationship with viscosity of liquid within the range of 31–690 cp(R2=0.9953 and 0.9935 forEandZ-TPE,respectively).In details,Z-TPE was more sensitive in viscosity sensing in comparison withE-TPE(around 1.80 times).Computational simulation suggests the rotational energy barriers for the two compounds are practically identical.Addition of high concentration of acid in viscous medium afford similar fluorescent enhancing ratio of two compounds,indicating the different hydrogen bond interacting strength might be the reason for different viscosity sensing performance.Furthermore,mechanical parameters(viscosity and storage modulus G′)of hydrogel were also in positive relationship with the fluorescent intensity of both TPE isomers.The reason was believed to be restricted intramolecular rotation effect as well.Finally,both compounds displayed neglectable cellular toxicity.These results allowed them to be potentially used as promising sensors of liquid viscosity and hydrogel mechanical parameters in biological and biomedical fields.

    Declaration of competing interest

    The authors declare no confliction of interest.

    Acknowledgments

    The authors thank National Natural Science Foundation of China(Nos.21375116,21978251,22073080),Nature Science Foundation of Jiangsu Province(Nos.BK20190903,BK20190905),and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions for financial support.H.Chong acknowledges The open funds of the Ministry of Education Key Lab for Avian Preventive Medicine(No.YF202020).Y.Wang.acknowledges the Thousand Talents Plan for Young Professionals of China.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.092.

    国产精品国产三级专区第一集| 亚洲,欧美,日韩| 国产成人午夜福利电影在线观看| 免费看光身美女| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av二区三区四区| 永久网站在线| 2021天堂中文幕一二区在线观| 97人妻精品一区二区三区麻豆| 久久精品夜夜夜夜夜久久蜜豆| 美女xxoo啪啪120秒动态图| 2021少妇久久久久久久久久久| 国产乱人偷精品视频| 日韩,欧美,国产一区二区三区 | 欧美一区二区亚洲| 色视频www国产| 欧美潮喷喷水| 纵有疾风起免费观看全集完整版 | 一边亲一边摸免费视频| 国内精品宾馆在线| 中文欧美无线码| 国产一级毛片七仙女欲春2| 日本黄大片高清| 村上凉子中文字幕在线| a级毛片免费高清观看在线播放| 色播亚洲综合网| 能在线免费观看的黄片| 乱码一卡2卡4卡精品| 热99re8久久精品国产| 老司机福利观看| 亚洲人成网站高清观看| 黄色一级大片看看| 欧美又色又爽又黄视频| 国产一区二区在线观看日韩| 亚洲av成人av| 一边亲一边摸免费视频| 一夜夜www| 精品欧美国产一区二区三| 国产69精品久久久久777片| 91精品伊人久久大香线蕉| 亚洲国产色片| 免费黄网站久久成人精品| 秋霞伦理黄片| 日本免费在线观看一区| 美女大奶头视频| 国产亚洲91精品色在线| 春色校园在线视频观看| av线在线观看网站| 天天一区二区日本电影三级| 汤姆久久久久久久影院中文字幕 | 波野结衣二区三区在线| 午夜福利在线在线| 国产精品一及| 18禁在线播放成人免费| 午夜福利视频1000在线观看| 简卡轻食公司| 日本欧美国产在线视频| 国产成人精品一,二区| 国产午夜精品论理片| 国产精品.久久久| 精品人妻偷拍中文字幕| 亚洲真实伦在线观看| 日韩中字成人| 中文字幕熟女人妻在线| 人妻少妇偷人精品九色| 男女那种视频在线观看| 最近中文字幕2019免费版| 男人舔奶头视频| 久久99蜜桃精品久久| 亚洲欧洲国产日韩| 精品免费久久久久久久清纯| 韩国av在线不卡| 国产乱人偷精品视频| 亚洲av中文字字幕乱码综合| 免费观看在线日韩| 亚洲欧洲国产日韩| 亚洲欧美日韩卡通动漫| 免费观看的影片在线观看| 一卡2卡三卡四卡精品乱码亚洲| 精品国内亚洲2022精品成人| h日本视频在线播放| h日本视频在线播放| 亚洲激情五月婷婷啪啪| www.色视频.com| 舔av片在线| 一级毛片我不卡| 国产单亲对白刺激| 国产激情偷乱视频一区二区| 国产免费一级a男人的天堂| 久久精品夜夜夜夜夜久久蜜豆| 中国国产av一级| 最后的刺客免费高清国语| 男人狂女人下面高潮的视频| 国产久久久一区二区三区| 国产伦理片在线播放av一区| 欧美精品一区二区大全| 国内少妇人妻偷人精品xxx网站| 搡女人真爽免费视频火全软件| 亚洲成人中文字幕在线播放| 久久久久久久久大av| 一级毛片久久久久久久久女| 狂野欧美白嫩少妇大欣赏| 级片在线观看| 亚洲色图av天堂| 只有这里有精品99| 久久精品久久久久久噜噜老黄 | av国产久精品久网站免费入址| 亚洲欧美中文字幕日韩二区| 久久人妻av系列| 天天一区二区日本电影三级| av免费观看日本| 国产精品爽爽va在线观看网站| 欧美一区二区国产精品久久精品| 亚洲最大成人手机在线| 中文字幕免费在线视频6| 久久久久久久久中文| av.在线天堂| 村上凉子中文字幕在线| 久久精品夜夜夜夜夜久久蜜豆| 国产精品一及| 欧美性感艳星| 99热6这里只有精品| 久久精品久久久久久久性| 成人鲁丝片一二三区免费| 久久精品熟女亚洲av麻豆精品 | 中文字幕亚洲精品专区| 少妇的逼水好多| 全区人妻精品视频| 亚洲成人中文字幕在线播放| 国产精品女同一区二区软件| 桃色一区二区三区在线观看| 亚洲国产日韩欧美精品在线观看| 日本免费一区二区三区高清不卡| 嫩草影院新地址| 亚洲av电影不卡..在线观看| 一级二级三级毛片免费看| 国产一区亚洲一区在线观看| 久久久久网色| 午夜免费男女啪啪视频观看| 中文字幕av成人在线电影| 91久久精品国产一区二区三区| 久久久久性生活片| 久久鲁丝午夜福利片| 久久婷婷人人爽人人干人人爱| 午夜福利视频1000在线观看| 国产精品人妻久久久久久| 亚洲欧美精品专区久久| 美女内射精品一级片tv| av专区在线播放| 一区二区三区高清视频在线| 日韩大片免费观看网站 | 午夜视频国产福利| 精华霜和精华液先用哪个| 精品久久久久久久久av| 一本一本综合久久| 看片在线看免费视频| 国产探花极品一区二区| 最新中文字幕久久久久| 日韩高清综合在线| av专区在线播放| 久久99蜜桃精品久久| 国产精品久久久久久av不卡| 久久久精品大字幕| 亚洲精品久久久久久婷婷小说 | 麻豆一二三区av精品| 亚洲精品自拍成人| 国产黄色小视频在线观看| 国产91av在线免费观看| 精品国产露脸久久av麻豆 | 国产精品女同一区二区软件| 国产亚洲av片在线观看秒播厂 | 国产午夜精品久久久久久一区二区三区| 日本av手机在线免费观看| 直男gayav资源| 成年女人看的毛片在线观看| 99九九线精品视频在线观看视频| 在线播放国产精品三级| 国产免费福利视频在线观看| 少妇裸体淫交视频免费看高清| 成人亚洲精品av一区二区| 在线a可以看的网站| 亚洲国产欧洲综合997久久,| 男人狂女人下面高潮的视频| 国产熟女欧美一区二区| 我要看日韩黄色一级片| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品aⅴ在线观看| 国产亚洲最大av| 欧美丝袜亚洲另类| 九九在线视频观看精品| 舔av片在线| 欧美高清性xxxxhd video| 欧美区成人在线视频| 男女边吃奶边做爰视频| 成人鲁丝片一二三区免费| 免费av不卡在线播放| 久久精品影院6| 人妻系列 视频| 九草在线视频观看| 日本猛色少妇xxxxx猛交久久| 久久99热6这里只有精品| 大香蕉久久网| 五月玫瑰六月丁香| 欧美另类亚洲清纯唯美| 久久久久久九九精品二区国产| 嫩草影院新地址| 久久久a久久爽久久v久久| 在线观看av片永久免费下载| 狠狠狠狠99中文字幕| 午夜久久久久精精品| 22中文网久久字幕| 能在线免费看毛片的网站| 欧美潮喷喷水| 搡女人真爽免费视频火全软件| 欧美色视频一区免费| 欧美人与善性xxx| 成人国产麻豆网| 久久国内精品自在自线图片| 免费看光身美女| 国产精品,欧美在线| 久久精品夜色国产| 小说图片视频综合网站| 99在线人妻在线中文字幕| 在线免费十八禁| 可以在线观看毛片的网站| 日日啪夜夜撸| 校园人妻丝袜中文字幕| 天堂影院成人在线观看| 免费看a级黄色片| av在线播放精品| 国产在视频线在精品| 国产乱人视频| 免费观看性生交大片5| av黄色大香蕉| 亚洲精品日韩在线中文字幕| 午夜免费激情av| 精品久久久久久久人妻蜜臀av| 亚洲精品成人久久久久久| 国产亚洲av嫩草精品影院| 亚洲欧美成人精品一区二区| 色吧在线观看| 晚上一个人看的免费电影| 亚洲中文字幕日韩| 日本免费a在线| 精品久久久久久久久久久久久| 永久免费av网站大全| 99九九线精品视频在线观看视频| 国产乱人偷精品视频| 午夜福利在线在线| 国产淫片久久久久久久久| 伊人久久精品亚洲午夜| 美女黄网站色视频| 免费黄色在线免费观看| 人体艺术视频欧美日本| 久久久久久大精品| 日本一本二区三区精品| 国产真实伦视频高清在线观看| 18禁裸乳无遮挡免费网站照片| a级一级毛片免费在线观看| 精华霜和精华液先用哪个| 日韩欧美精品免费久久| 色5月婷婷丁香| 亚洲国产精品专区欧美| 午夜激情福利司机影院| 99视频精品全部免费 在线| 丰满乱子伦码专区| 天堂影院成人在线观看| 哪个播放器可以免费观看大片| 久久久久九九精品影院| 免费av观看视频| 日本wwww免费看| 国产精品麻豆人妻色哟哟久久 | 欧美一区二区国产精品久久精品| 国产精品蜜桃在线观看| 亚洲中文字幕一区二区三区有码在线看| 免费大片18禁| 欧美一级a爱片免费观看看| 91av网一区二区| 2021少妇久久久久久久久久久| 国产伦理片在线播放av一区| 五月玫瑰六月丁香| 成年av动漫网址| 精品国产一区二区三区久久久樱花 | 久久久久久国产a免费观看| 女的被弄到高潮叫床怎么办| 久久欧美精品欧美久久欧美| 插阴视频在线观看视频| 国产精品一区二区三区四区免费观看| 久久久久久大精品| 成人综合一区亚洲| 精华霜和精华液先用哪个| 亚洲欧美中文字幕日韩二区| 成年女人看的毛片在线观看| av卡一久久| 久久久久免费精品人妻一区二区| 一边亲一边摸免费视频| 亚洲av成人精品一区久久| 男女下面进入的视频免费午夜| 秋霞在线观看毛片| 一区二区三区高清视频在线| 在现免费观看毛片| 大香蕉久久网| 日本免费a在线| 波多野结衣巨乳人妻| 国产成人免费观看mmmm| 国产v大片淫在线免费观看| 我的老师免费观看完整版| 久久韩国三级中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 国产一区二区亚洲精品在线观看| 国产日韩欧美在线精品| 最新中文字幕久久久久| a级毛色黄片| 国产女主播在线喷水免费视频网站 | 日韩av在线大香蕉| 国产伦一二天堂av在线观看| 国产精品三级大全| 乱码一卡2卡4卡精品| 亚洲精品成人久久久久久| 国产美女午夜福利| 人妻夜夜爽99麻豆av| av视频在线观看入口| 人人妻人人看人人澡| 爱豆传媒免费全集在线观看| 直男gayav资源| 精华霜和精华液先用哪个| 99热6这里只有精品| 欧美三级亚洲精品| 色播亚洲综合网| 国产伦精品一区二区三区四那| 久久99热这里只有精品18| 在线免费观看不下载黄p国产| 亚洲成色77777| 中国国产av一级| 真实男女啪啪啪动态图| 26uuu在线亚洲综合色| 麻豆乱淫一区二区| 91午夜精品亚洲一区二区三区| 国产成人a∨麻豆精品| 麻豆一二三区av精品| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产精品久久男人天堂| 3wmmmm亚洲av在线观看| 久久精品国产亚洲网站| 久久精品人妻少妇| 大香蕉97超碰在线| 亚洲中文字幕一区二区三区有码在线看| av在线播放精品| 欧美高清成人免费视频www| 久久久久久久久久黄片| 国产又黄又爽又无遮挡在线| www.色视频.com| 亚洲欧美精品综合久久99| 欧美又色又爽又黄视频| 久久精品夜色国产| 亚洲精品日韩在线中文字幕| 国产精品美女特级片免费视频播放器| 麻豆久久精品国产亚洲av| 毛片一级片免费看久久久久| 成年版毛片免费区| 国产高清有码在线观看视频| 国产伦一二天堂av在线观看| 国产精品精品国产色婷婷| 啦啦啦观看免费观看视频高清| 久久久久久久久大av| 中文字幕免费在线视频6| 国产午夜精品久久久久久一区二区三区| 能在线免费观看的黄片| 男的添女的下面高潮视频| 禁无遮挡网站| 精品国产露脸久久av麻豆 | 国产亚洲av嫩草精品影院| 亚洲成色77777| 亚洲aⅴ乱码一区二区在线播放| 国产成人freesex在线| 偷拍熟女少妇极品色| 亚洲人成网站在线观看播放| 欧美一区二区国产精品久久精品| 人人妻人人看人人澡| 国产精品三级大全| 午夜免费男女啪啪视频观看| 中国国产av一级| 午夜视频国产福利| 淫秽高清视频在线观看| 日日摸夜夜添夜夜添av毛片| 久久精品影院6| 国产精品久久久久久久久免| 2022亚洲国产成人精品| 麻豆av噜噜一区二区三区| 波多野结衣高清无吗| 国产精品美女特级片免费视频播放器| 日韩精品青青久久久久久| 国产麻豆成人av免费视频| 日韩人妻高清精品专区| 亚洲人与动物交配视频| 日本五十路高清| 国产精品国产三级国产专区5o | 欧美成人免费av一区二区三区| av免费观看日本| 国产精品蜜桃在线观看| 热99在线观看视频| 亚洲国产精品国产精品| 97超视频在线观看视频| 国产色爽女视频免费观看| 爱豆传媒免费全集在线观看| 国产探花在线观看一区二区| 国产一区二区在线av高清观看| 欧美97在线视频| 亚洲国产欧洲综合997久久,| 成人午夜精彩视频在线观看| 亚洲av电影在线观看一区二区三区 | 久久久色成人| 国产高潮美女av| 久久久久网色| 午夜福利在线观看免费完整高清在| 一边摸一边抽搐一进一小说| 1000部很黄的大片| 午夜爱爱视频在线播放| 午夜日本视频在线| 女人被狂操c到高潮| 国产av在哪里看| 干丝袜人妻中文字幕| 黄片无遮挡物在线观看| 欧美极品一区二区三区四区| 草草在线视频免费看| 丝袜喷水一区| 天堂√8在线中文| 成人美女网站在线观看视频| 97在线视频观看| 亚洲无线观看免费| 亚洲欧美日韩卡通动漫| 国产精品久久久久久久电影| 在线免费十八禁| 边亲边吃奶的免费视频| 秋霞在线观看毛片| 日本色播在线视频| 蜜桃久久精品国产亚洲av| www.色视频.com| 国产高清三级在线| 亚洲国产欧美人成| 国产成人一区二区在线| 一区二区三区四区激情视频| 网址你懂的国产日韩在线| 亚洲精品影视一区二区三区av| 人人妻人人澡人人爽人人夜夜 | 99热精品在线国产| 嫩草影院精品99| 色5月婷婷丁香| 日韩一本色道免费dvd| 美女cb高潮喷水在线观看| 亚洲欧美精品自产自拍| 免费黄色在线免费观看| av免费观看日本| 久久精品国产亚洲av天美| 久久久久久伊人网av| 国产精品永久免费网站| 亚州av有码| 青春草视频在线免费观看| 99在线人妻在线中文字幕| av专区在线播放| 嫩草影院精品99| 少妇熟女aⅴ在线视频| 91精品伊人久久大香线蕉| 三级男女做爰猛烈吃奶摸视频| 亚洲综合精品二区| 天堂中文最新版在线下载 | 免费观看在线日韩| 国产精品久久久久久精品电影小说 | 看非洲黑人一级黄片| 婷婷色av中文字幕| 国产午夜精品久久久久久一区二区三区| 午夜爱爱视频在线播放| 日本免费在线观看一区| 久99久视频精品免费| 欧美又色又爽又黄视频| 欧美3d第一页| 亚洲国产精品专区欧美| 麻豆一二三区av精品| 亚洲av一区综合| 亚洲色图av天堂| 99久久精品国产国产毛片| 国产乱人视频| 亚洲av电影不卡..在线观看| 九九久久精品国产亚洲av麻豆| 最近最新中文字幕大全电影3| 国产男人的电影天堂91| 日韩欧美在线乱码| 丝袜美腿在线中文| 国产成人精品久久久久久| 久99久视频精品免费| 国产午夜精品久久久久久一区二区三区| 特大巨黑吊av在线直播| 亚洲av.av天堂| 国产欧美日韩精品一区二区| 一级二级三级毛片免费看| 女人久久www免费人成看片 | 只有这里有精品99| 亚洲国产精品久久男人天堂| 国产黄a三级三级三级人| 亚洲欧美成人精品一区二区| 男女视频在线观看网站免费| 日本-黄色视频高清免费观看| 狂野欧美白嫩少妇大欣赏| 欧美bdsm另类| 午夜精品一区二区三区免费看| 久久久精品94久久精品| 欧美激情久久久久久爽电影| 男人的好看免费观看在线视频| 日韩av不卡免费在线播放| 干丝袜人妻中文字幕| www.色视频.com| 99热精品在线国产| 一夜夜www| 国产熟女欧美一区二区| 狂野欧美白嫩少妇大欣赏| www日本黄色视频网| 乱码一卡2卡4卡精品| 久久久精品94久久精品| 伦理电影大哥的女人| 美女cb高潮喷水在线观看| 91午夜精品亚洲一区二区三区| 极品教师在线视频| 五月玫瑰六月丁香| 亚洲,欧美,日韩| 最后的刺客免费高清国语| 日韩av不卡免费在线播放| 国产一级毛片在线| 99久久中文字幕三级久久日本| 欧美变态另类bdsm刘玥| 岛国在线免费视频观看| 国产一级毛片七仙女欲春2| 建设人人有责人人尽责人人享有的 | 成人漫画全彩无遮挡| 国产精品1区2区在线观看.| 国产人妻一区二区三区在| 欧美日韩在线观看h| 色尼玛亚洲综合影院| 国产成人福利小说| 欧美激情久久久久久爽电影| 99久久精品国产国产毛片| 免费看a级黄色片| 级片在线观看| 久久精品综合一区二区三区| 一个人看视频在线观看www免费| 国模一区二区三区四区视频| 日本免费一区二区三区高清不卡| 国产v大片淫在线免费观看| 国产精品久久久久久精品电影| 国产欧美日韩精品一区二区| 最近中文字幕高清免费大全6| 精品国产露脸久久av麻豆 | 亚洲av不卡在线观看| 我的女老师完整版在线观看| 国产成人午夜福利电影在线观看| 国产免费视频播放在线视频 | 国产私拍福利视频在线观看| 在线播放无遮挡| 一区二区三区乱码不卡18| 91午夜精品亚洲一区二区三区| 国产精品蜜桃在线观看| 色吧在线观看| 国产成人一区二区在线| 一区二区三区乱码不卡18| av在线观看视频网站免费| 成年av动漫网址| АⅤ资源中文在线天堂| 伦精品一区二区三区| 久久国内精品自在自线图片| 自拍偷自拍亚洲精品老妇| 欧美成人午夜免费资源| 久久久久久国产a免费观看| 国内精品一区二区在线观看| 国产精品嫩草影院av在线观看| 日日啪夜夜撸| 久久精品国产鲁丝片午夜精品| 国产精品久久久久久久久免| 高清av免费在线| 欧美不卡视频在线免费观看| 非洲黑人性xxxx精品又粗又长| 日本wwww免费看| 麻豆一二三区av精品| 卡戴珊不雅视频在线播放| ponron亚洲| 久久精品国产亚洲av天美| 久久久久久久午夜电影| 大香蕉久久网| 午夜爱爱视频在线播放| 草草在线视频免费看| 色5月婷婷丁香| 亚洲四区av| 成人三级黄色视频| 最近最新中文字幕大全电影3| 一级毛片久久久久久久久女| 欧美日韩一区二区视频在线观看视频在线 | 自拍偷自拍亚洲精品老妇| 中文字幕人妻熟人妻熟丝袜美| 欧美性感艳星| 日本黄色视频三级网站网址| 欧美3d第一页| av又黄又爽大尺度在线免费看 | 天堂√8在线中文| 女人久久www免费人成看片 | 久久精品久久久久久噜噜老黄 | 一区二区三区四区激情视频| 男的添女的下面高潮视频| 成年av动漫网址| 久久久久久久午夜电影| 国产老妇女一区| 日本黄色片子视频| 亚洲av免费在线观看| 亚洲性久久影院| 久久久久网色| 国产精品久久久久久精品电影| 亚洲欧美成人精品一区二区| 久久国内精品自在自线图片|