• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    TPE based aggregation induced emission fluorescent sensors for viscosity of liquid and mechanical properties of hydrogel

    2022-03-14 09:28:12WngHngYoQiToJingSunHoYngWngChengChengZhouHongyingFnHongxiShoAijinQinDweiSuChenyinWngHuiChong
    Chinese Chemical Letters 2022年1期

    N Wng,Hng Yo,?,Qi To,Jing Sun,Ho M,Yng Wng,ChengCheng Zhou,Hongying Fn,Hongxi Sho,Aijin Qin,Dwei Su,Chenyin Wng,?,Hui Chong,?

    aSchool of Chemistry and Chemical Engineering,Yangzhou University,Yangzhou 225009,China

    bTesting center of Yangzhou University,Yangzhou 225009,China

    cMinistry of Education Key Lab for Avian Preventive Medicine,Key Laboratory of Jiangsu Preventive Veterinary Medicine,College of Veterinary Medicine,Yangzhou University,Yangzhou 225009,China

    dCenter for Clean Energy Technology,School of Mathematical and Physical Science,Faculty of Science,University of Technology Sydney,Sydney NSW 2000,Australia

    1These two authors contribute equally to this manuscript

    ABSTRACT Two amphiphilic TPE E/Z isomers with aggregation induced emission(AIE)property have been synthesized and characterized.The logarithmic fluorescent intensity of the two molecules was in positive relationship with logarithmic viscosity of liquid.To note,the Z-TPE isomer exhibited more sensitivity in the viscosity of liquid sensing in comparison with the corresponding E-TPE counterpart(around 1.80 folds).Furthermore,two molecules could be used as fluorescent sensors for mechanical properties(viscosity and storage modulus)of hydrogel as well.In addition,two sensors displayed low cytotoxicity in normal tissue cell line(L929)within the concentration range of 2–10 μmol/L.These results potentially promised their applications as fluorescent sensors for mechanical properties in the fields of biological and biomedical.

    Keywords:TPE AIE Viscosity of liquid Mechanical property of hydrogel Fluorescent sensing

    Tetraphenyl ethylene(TPE)and the derivates were distinguished with their aggregation induced emission(AIE)property,which allowed fluorescent emission in aggregating state[1-2].The reason was documented to be restricted intramolecular rotation(RIR)effect[3].In solution,non-emissive decay pathway of TPE in excited state privileged and almost no fluorescence would be observed[4].Upon aggregation or in solid state,rotation of phenyl rings was blocked and TPE would regain its fluorescent emission[5].Due to this unique fluorescent property,various TPE derivates have been widely applied in the fields of fluorescent imaging,fluorescent sensing,disease diagnosis and organic optoelectronics[6-17].Currently,TPE has been recognized as versatile building block of functional materials with fluorescent property[18].

    The mechanical property of cellular microenvironment and extracellular matrix(ECM)has been reported to influence a plethora of biological behaviors[19-23].For instance,the nano-viscosity of fluid could influence enzyme catalyzed DNA cleavage rate[24].ECM stiffness was reported to affect intracellular rheology of cancer cells and was related to cancer metastasis[25-28].Currently,biocompatible 3D hydrogels were regarded as one of promising systems for mimickingin vivoECM of cancer cell[29-31].Therefore,a probe for viscosity of liquid and mechanical parameters of hydrogel is of great significance in biological and biomedical fields.In this aspect,fluorescent molecular rotors have been applied as efficient liquid viscosity sensor[32-33].Yet,these probes generally require complicated synthetical procedures and expensive fluorescence life imaging microscope(FLIM)[34].Liquid viscosity could affect intramolecular rotation of phenyl rings on TPE core.Therefore,fluorescence intensity of TPE was in positive relationship with the viscosity of surrounding liquid[35].A handful TPE based liquid viscosity sensors with cellular organelle targeting capabilities have been synthesized and succeeded in revealing the relationship of viscosity and cellular function[11-36].These TPE based probes advanced in simple synthetical procedure and avoidance of expensive instruments.On top of the fluid viscosity sensing,TPE derivates were applied in the description of hydrogel degradation[37].In principle,the viscosity of fluid confined to micro network inside hydrogel could also be sensed by TPE derivates.To some extent,this micro fluid viscosity could reflect the macro mechanical properties of hydrogel[38].On base of that,TPE could potentially be applied in mechanical property sensing of hydrogel.

    Fig.1.Synthetical route for E-TPE and Z-TPE.

    Herein,we wish to report the syntheses of TPE based sensors for fluid viscosity and mechanical parameters of hydrogel.The resultingE/Z-TPE isomers succeeded in fluid viscosity and hydrogel mechanical parameters sensing.Noticeability,Z-TPE showed more sensitivity in viscosity of fluid sensing in comparison with the correspondingE-TPE(1.8 times).To best of our knowledge,this is the first report of TPE based sensor for both fluid viscosity and mechanical parameters of hydrogel.

    As shown in Fig.1,we employed a straight-forward synthetical route for compoundsE/Z-TPE.Mixed precursors 1 and 2 were afforded in the yield of 80% through typical titanium tetrachloride catalyzed Mcmurry reaction by using 4-hydroxybenzophenone as starting material.The mixture was subsequently reacted with tosyl activated oligoethylene glycol to afford desired productEandZ-TPE.After carefully purification using silica chromatography,the yield forEandZ-TPE amounted to 51% and 52%,respectively.The detailed synthetical procedures and corresponding1H NMR,13C NMR and high-resolution mass spectroscopies were shown in supporting information(Figs.S5-S12 in Supporting information).The structures ofEandZ-TPE were confirmed by1H NMR.As shown in Fig.2,doublets of protons of substituted phenyl ring(Ha,Hb,Ha′ and Hb′)indicated pureEandZisomers.In case of a mixture,the protons would be triplets.Haand HbinE-TPE slightly upfield shifted in comparison with that of Ha′ and Hb′ inZ-TPE(Δδ=?0.03 ppm).On the contrary,Hc,Hdand HeinE-TPE were observed to slightly downfield shift in comparison with that of Hc′,Hd′ and He′ inZ-TPE.The resonance signal pattern of individualE/Z-TPE isomer matched previously TPE isomers[39].

    The photophysical properties were investigated.Both compounds displayed UV–vis absorption with maxima absorbance centered at 260 and 338 nm in ddH2O(Fig.S1 in Supporting information).These absorbances should be assigned toπ-π?electronic transition of TPE[40].The amphiphilic nature of the two molecules facilitate self-assembling in water(10 μmol/L),thus a typical TPE fluorescent emission(centered at 491 nm,Fig.S1)has been observed.

    TPE derivates were reported to be sensitive towards microenvironment,e.g.,fluid viscosity[10].Yet,the impact of configuration on sensitivity remained to be investigated.The currentE-andZTPE isomers(10 μmol/L)displayed different fluorescent emission intensity in relatively low viscous liquid(pure ethylene glycol,31 cp).In details,the fluorescent quantum yield ofE-TPE was around two times than that ofZ-TPE(data not shown).Tang reported similar oligoethylene glycol bearing TPE withZ-configuration has slightly lower fluorescent quantum yield in comparison with theE-configuration isomer due to different assembling behavior[41].In our case,E-TPE(10 μmol/L)showed an amorphous morphology(Fig.3a)andZ-TPE(10 μmol/L)was in a micelle-like morphology(Fig.3b)as characterized by TEM.The different assembly behavior together with fluorescent quantum yields in water was in good agreement with previous result,indicating the assembling behavior could be the reason for varied fluorescent emission properties of the isomers[41].

    Fig.2.Partial 1H NMR spectra of E-TPE and Z-TPE(CDCl3,300 MHz).

    Fig.3.TEM images of E-TPE(a)and Z-TPE(b).Scale bar=500 nm.Acc.voltage was 100 kV.Magnificence for(a)and(b)were 25.0 K and 30.0 K.

    Fig.4.Fluorescence emission spectra of E-TPE(a)and Z-TPE(c)in mixture of ethylene glycol and glycerol with different fraction of glycerol(0-99.90%).Plots of logarithmic fluorescent intensity(Log I)of E-TPE(b)and Z-TPE(d) vs. logarithmic mixture viscosity(Log η).[E/Z-TPE]=10 μmol/L,excitation wavelength was 340 nm.

    We tuned viscosity of liquid by changing glycerol fraction in ethylene glycol.Both isomers displayed viscosity dependent fluorescent increase.As shown in Fig.4a,E-TPE showed an approximately 11 fold increase of fluorescence intensity in 99.90% glycerol solution(609 cp)in comparison to the condition of pure ethylene glycol(37 cp).The logarithmic fluorescent emission intensity ofE-TPE displayed excellent linear relationship(R2=0.9953)with logarithmic viscosity of the testing solvent(Fig.4b).The enhanced emission intensity should be due to fluid viscosity induced restriction of phenyl ring on TPE that block the non-radioactive decay pathway[39].In addition,the fluorescence maxima ofE-TPE displayed a slightly blue shift in high viscous medium(around 12 nm in 99.90% glycerol).Similar phenomena were observed in other TPE based viscosity sensor,and was supposed to be the influence of vibrational energy level in viscous solution[34].Z-TPE was found to be more sensitive towards microenvironment viscosity.As shown in Fig.4c,increasing glycerol fraction to 99.90% resulted a 19.82-folds enhancement of the fluorescent intensity(around 1.8 times sensitive towards viscosity in comparison toE-TPE).The logarithmic fluorescent emission intensity ofZ-TPE also displayed excellent linear relationship(R2=0.9935)with logarithmic viscosity of the testing solvent(Fig.4d).The fluorescence from the agarose has been ruled out according to the spectra of hydrogel with different agarose concentration(Fig.S2 in Supporting information).

    Fig.5.Fluorescence emission spectra of E-TPE(a)and Z-TPE(b)in mixture of ethylene glycol and glycerol with different fraction of glycerol(0-99.9%)in the presence of 1 mol/L acetic acid.[E/Z-TPE]=10 μmol/L,excitation wavelength was 340 nm.

    Since the restriction of intramolecular rotation(RIR)effect contributes to fluorescence emission of TPE molecules,we suspectedE- andZ-TPE may have different rotational energy barriers.According to DFT calculations(Supporting information),only slight difference in rotational barrier is observed between the two isomers;the Gibbs free energy barriers at room temperature and ambient pressure are from 8.4 kcal/mol to 9.7 kcal/mol for both isomers(Fig.S3 in Supporting information),in good agreement with those for similar compounds[37].This suggests that there should be other reasons for the different sensitivity.Alternatively,we suspect hydrogen bonds between solvent and the oligoethylene glycol side-chains on TPE could serve as an external factor that influencing the rotation of the phenyl rings.In the situation ofZ-TPE,which the oligoethylene glycol side chains stay in close distance,a successive hydrogen bonds bridge mediated by solvent molecules may form between the two side chains.This successive hydrogen bonds bridge might produce extra rotational energy barrier of the phenyl rings.Whereas the oligoethylene glycol chains stay relative far apart inE-TPE,the corresponding successive hydrogen bonds bridge would be less stable or even hard to form.Therefore,E-TPE was supposed to be less sensitive towards hydrogen bond formation solvent molecules in contrast toZ-TPE.

    In order to verify this hypothesis,we measured the fluorescent spectra of the two TPE isomers in solvents composed of different ratio of ethylene glycol and glycerol in the presence of 1 mol/L acetic acid to eliminate potential hydrogen bonds interactions.Both TPE isomers displayed fluorescence enhancement with increasing of glycerol in acidic solution.In 99.90% percentage of glycerol,E(Fig.5a)andZ-TPE(Fig.5b)showed 13.74- and 14.20-folds increase of fluorescence intensity enhancement,respectively.The similar fluorescence enhancement ratio in the presence of acid suggests hydrogen bond indeed played partial role in the RIR effect dominated fluorescence enhancement.

    On top of liquid viscosity sensing,we further attempted to measure the mechanical properties of hydrogels using synthesized viscosity sensors.The hydrogels were fabricated straightforwardly by cooling the ddH2O solution of low-melting point agarose with varied concentrations(0.20%,0.30%,0.40%,0.50% and 0.60%)below 37°C.The mechanical properties of hydrogels were first characterized.The mechanical properties were first measured using a rheometer.The viscosity and storage modulus(G′)of the corresponding hydrogels were in positive relationship with the concentration of agarose.The viscosity of the hydrogel reduced with increase of shear rate,showing a pseudo-plastic behavior.

    We next addedEandZ-TPE(10 μmol/L)during the fabrication of these hydrogels,respectively.The hydrogels showed fluorescence emission centered around 490 nm,indicating existence of AIE effect in the hydrogels.As shown in Figs.6a and d,theG′ and viscosity of hydrogels was correlated with the fluorescent emission intensity centered around 490 nm.The logarithmic fluorescence intensity ofE-TPE containing hydrogel was displayed good linear relationship with logarithmic value of bothG′ and viscosity(R2=0.9487 and 0.9622,respectively,Figs.6b and c).Similarly,logarithmic fluorescence intensity ofZ-TPE containing hydrogel also showed good linear relationship with logarithmic value ofG′ and viscosity(R2=0.9912 and 0.9891,respectively,Figs.6e and f).The viscosity andG′ of the corresponding hydrogels were in positive relationship with the concentration of agarose.The fluorescence emission intensity of both TPE isomers increased with the concentration of agarose indicated the fluorescence intensity could reflect its mechanical properties.Given the fact that agarose constitutes the network structure inside hydrogels,increased concentration of agarose contributes to the enhanced viscosity andG′ of hydrogels.In the presence of more agarose,the grid size would become smaller.The liquid inside each grid might become less mobile and more viscous due to more hydrogen bond interactions.This might explain the enhancement of fluorescent intensity in the presence of more agarose loading.Finally,the two sensors displayed low cellular toxicity in mouse fibroblast cell line(L929)within the concentration range of 2–10 μmol/L.This promised their feasibility of future biomedical applications(Fig.S4 in Supporting information).

    Fig.6.Fluorescence emission spectra of E-TPE(a)and Z-TPE(d)in hydrogels composed of different concentration of agarose(0.20%–0.60%).[E/Z-TPE]=10 μmol/L,excitation wavelength was 340 nm.Plots of natural logarithmic fluorescent intensity of E-TPE(b)and Z-TPE(e) vs. natural logarithmic storage modulus(G′)of hydrogel.Plots of natural logarithmic fluorescent intensity of E-TPE(c)and Z-TPE(f) vs. natural logarithmic viscosity of hydrogel.[E/Z-TPE]=10 μmol/L,excitation wavelength was 340 nm.

    In conclusion,two oligoethylene glycol bearing TPE isomers(E-TPE andZ-TPE)have been synthesized and characterized.The fluorescent intensity of both compounds was in positive relationship with viscosity of liquid within the range of 31–690 cp(R2=0.9953 and 0.9935 forEandZ-TPE,respectively).In details,Z-TPE was more sensitive in viscosity sensing in comparison withE-TPE(around 1.80 times).Computational simulation suggests the rotational energy barriers for the two compounds are practically identical.Addition of high concentration of acid in viscous medium afford similar fluorescent enhancing ratio of two compounds,indicating the different hydrogen bond interacting strength might be the reason for different viscosity sensing performance.Furthermore,mechanical parameters(viscosity and storage modulus G′)of hydrogel were also in positive relationship with the fluorescent intensity of both TPE isomers.The reason was believed to be restricted intramolecular rotation effect as well.Finally,both compounds displayed neglectable cellular toxicity.These results allowed them to be potentially used as promising sensors of liquid viscosity and hydrogel mechanical parameters in biological and biomedical fields.

    Declaration of competing interest

    The authors declare no confliction of interest.

    Acknowledgments

    The authors thank National Natural Science Foundation of China(Nos.21375116,21978251,22073080),Nature Science Foundation of Jiangsu Province(Nos.BK20190903,BK20190905),and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions for financial support.H.Chong acknowledges The open funds of the Ministry of Education Key Lab for Avian Preventive Medicine(No.YF202020).Y.Wang.acknowledges the Thousand Talents Plan for Young Professionals of China.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.092.

    成年人黄色毛片网站| 免费在线观看视频国产中文字幕亚洲| 手机成人av网站| 老司机靠b影院| 色在线成人网| 国产一区二区三区在线臀色熟女| 欧美黑人巨大hd| aaaaa片日本免费| 看免费av毛片| 亚洲中文字幕日韩| 免费在线观看完整版高清| 母亲3免费完整高清在线观看| 成年人黄色毛片网站| 正在播放国产对白刺激| 久久香蕉精品热| 久久狼人影院| 叶爱在线成人免费视频播放| 最近最新免费中文字幕在线| 99riav亚洲国产免费| 成人手机av| 人人妻人人澡人人看| 97超级碰碰碰精品色视频在线观看| 国产成人av教育| 亚洲国产日韩欧美精品在线观看 | 美国免费a级毛片| 久久国产亚洲av麻豆专区| 成人精品一区二区免费| 白带黄色成豆腐渣| 精华霜和精华液先用哪个| 成在线人永久免费视频| 老司机午夜十八禁免费视频| 男男h啪啪无遮挡| 少妇粗大呻吟视频| 欧美日韩中文字幕国产精品一区二区三区| 久久性视频一级片| 日本一本二区三区精品| 不卡一级毛片| 久久精品国产亚洲av香蕉五月| 亚洲激情在线av| 国产av不卡久久| 露出奶头的视频| 亚洲九九香蕉| 老鸭窝网址在线观看| 国产av又大| 国产精品亚洲av一区麻豆| 91大片在线观看| 一级毛片精品| 美女 人体艺术 gogo| 女警被强在线播放| www.熟女人妻精品国产| 窝窝影院91人妻| 岛国在线观看网站| ponron亚洲| av在线播放免费不卡| 19禁男女啪啪无遮挡网站| 亚洲精品久久国产高清桃花| 91国产中文字幕| 丰满的人妻完整版| 999久久久精品免费观看国产| 久久香蕉精品热| 国产精品综合久久久久久久免费| 欧美亚洲日本最大视频资源| 日韩欧美 国产精品| 男女午夜视频在线观看| 人人妻人人澡欧美一区二区| 久久精品国产清高在天天线| tocl精华| 人妻丰满熟妇av一区二区三区| 美女国产高潮福利片在线看| 欧美黑人精品巨大| 色播亚洲综合网| 精品日产1卡2卡| 在线十欧美十亚洲十日本专区| 黄色 视频免费看| 岛国视频午夜一区免费看| 午夜免费激情av| 欧美久久黑人一区二区| 亚洲av成人不卡在线观看播放网| 午夜福利免费观看在线| 国产精品亚洲av一区麻豆| 日韩国内少妇激情av| 丁香欧美五月| 日日干狠狠操夜夜爽| 成人三级做爰电影| 中文亚洲av片在线观看爽| 国产私拍福利视频在线观看| 国产欧美日韩一区二区精品| 又黄又粗又硬又大视频| 国产真人三级小视频在线观看| 美女高潮到喷水免费观看| 99精品久久久久人妻精品| 麻豆一二三区av精品| 国产精品影院久久| 亚洲黑人精品在线| 黄片播放在线免费| 一二三四在线观看免费中文在| 久久久久久免费高清国产稀缺| 亚洲人成网站在线播放欧美日韩| 久久国产精品影院| 999久久久国产精品视频| 97人妻精品一区二区三区麻豆 | 一个人观看的视频www高清免费观看 | 国产99白浆流出| 啦啦啦免费观看视频1| 波多野结衣高清作品| 成人亚洲精品一区在线观看| 国产精品自产拍在线观看55亚洲| 俄罗斯特黄特色一大片| 午夜福利在线观看吧| 夜夜夜夜夜久久久久| 亚洲自偷自拍图片 自拍| 男女下面进入的视频免费午夜 | 两个人看的免费小视频| 日韩国内少妇激情av| 变态另类成人亚洲欧美熟女| 不卡一级毛片| 午夜福利欧美成人| 亚洲av成人av| 免费观看人在逋| 18禁黄网站禁片午夜丰满| 久久国产精品人妻蜜桃| 国产精品国产高清国产av| 两个人免费观看高清视频| 18美女黄网站色大片免费观看| 午夜福利成人在线免费观看| 动漫黄色视频在线观看| videosex国产| 午夜福利成人在线免费观看| 久久久久久免费高清国产稀缺| 他把我摸到了高潮在线观看| 99国产综合亚洲精品| 国产单亲对白刺激| 国产伦在线观看视频一区| 国产不卡一卡二| 又大又爽又粗| 国产亚洲精品av在线| 国产精品久久久av美女十八| 一个人观看的视频www高清免费观看 | 免费女性裸体啪啪无遮挡网站| 久久这里只有精品19| 看黄色毛片网站| 久久国产乱子伦精品免费另类| 亚洲九九香蕉| √禁漫天堂资源中文www| 黄网站色视频无遮挡免费观看| 午夜免费成人在线视频| 日本精品一区二区三区蜜桃| 中亚洲国语对白在线视频| 热99re8久久精品国产| 日本在线视频免费播放| 91九色精品人成在线观看| 免费在线观看影片大全网站| 一区福利在线观看| 亚洲无线在线观看| 久久久久精品国产欧美久久久| 黄网站色视频无遮挡免费观看| 男女床上黄色一级片免费看| 久久草成人影院| 国产亚洲av高清不卡| 国产精品九九99| 亚洲成国产人片在线观看| 婷婷精品国产亚洲av| 国产精品二区激情视频| xxxwww97欧美| 亚洲 欧美 日韩 在线 免费| 亚洲精品中文字幕一二三四区| 午夜久久久在线观看| 精品国产超薄肉色丝袜足j| 成人亚洲精品一区在线观看| 久久伊人香网站| 丝袜在线中文字幕| 国产亚洲精品久久久久5区| 国产人伦9x9x在线观看| 国产野战对白在线观看| 91国产中文字幕| 国产亚洲精品av在线| 久热这里只有精品99| 后天国语完整版免费观看| netflix在线观看网站| 国内揄拍国产精品人妻在线 | 人妻丰满熟妇av一区二区三区| 国产亚洲精品综合一区在线观看 | 欧美成狂野欧美在线观看| 美女扒开内裤让男人捅视频| 成年版毛片免费区| 日韩欧美一区视频在线观看| 男女视频在线观看网站免费 | 日日爽夜夜爽网站| 老熟妇仑乱视频hdxx| 一二三四社区在线视频社区8| 91av网站免费观看| 久久久国产成人免费| 成人18禁在线播放| 天天一区二区日本电影三级| 国产在线观看jvid| 1024手机看黄色片| 国产伦在线观看视频一区| 91麻豆精品激情在线观看国产| 成年人黄色毛片网站| 国产成+人综合+亚洲专区| 他把我摸到了高潮在线观看| 老司机午夜十八禁免费视频| 身体一侧抽搐| 国产高清有码在线观看视频 | 欧美最黄视频在线播放免费| 最好的美女福利视频网| 日韩视频一区二区在线观看| 久久久国产成人免费| 观看免费一级毛片| 亚洲五月色婷婷综合| 日本 av在线| 欧美成人性av电影在线观看| 国产区一区二久久| 国产免费男女视频| 亚洲av美国av| svipshipincom国产片| 91字幕亚洲| 午夜福利在线观看吧| netflix在线观看网站| 国产欧美日韩一区二区三| 美女 人体艺术 gogo| 久久国产精品影院| 亚洲一码二码三码区别大吗| 中文资源天堂在线| 在线天堂中文资源库| 特大巨黑吊av在线直播 | 国产国语露脸激情在线看| 色婷婷久久久亚洲欧美| 久久久久久大精品| 午夜免费鲁丝| 午夜福利欧美成人| 久久久久久亚洲精品国产蜜桃av| 不卡一级毛片| 国产成人精品无人区| 亚洲av电影不卡..在线观看| 麻豆成人午夜福利视频| 三级毛片av免费| 久久久久久久久免费视频了| 亚洲真实伦在线观看| 国产精品久久视频播放| 亚洲国产精品合色在线| 女性生殖器流出的白浆| 国产高清videossex| 人人妻人人澡欧美一区二区| 一进一出抽搐动态| 黄色 视频免费看| 人成视频在线观看免费观看| 在线国产一区二区在线| 免费高清视频大片| 天堂影院成人在线观看| 久久亚洲精品不卡| 狂野欧美激情性xxxx| 每晚都被弄得嗷嗷叫到高潮| 青草久久国产| 一边摸一边做爽爽视频免费| 丝袜美腿诱惑在线| 欧美最黄视频在线播放免费| 岛国视频午夜一区免费看| 午夜福利成人在线免费观看| 欧美av亚洲av综合av国产av| 精品无人区乱码1区二区| 国产精品亚洲一级av第二区| 性色av乱码一区二区三区2| 99精品在免费线老司机午夜| 国产精品二区激情视频| 中文在线观看免费www的网站 | 一级a爱片免费观看的视频| 亚洲一卡2卡3卡4卡5卡精品中文| 成年版毛片免费区| 国产高清有码在线观看视频 | 国产成+人综合+亚洲专区| 哪里可以看免费的av片| 50天的宝宝边吃奶边哭怎么回事| 国产主播在线观看一区二区| 免费看日本二区| 久久精品人妻少妇| 别揉我奶头~嗯~啊~动态视频| 色婷婷久久久亚洲欧美| 波多野结衣高清无吗| 国产精品久久视频播放| 免费无遮挡裸体视频| 嫩草影院精品99| 免费在线观看日本一区| 亚洲男人天堂网一区| 精品日产1卡2卡| 国产av在哪里看| 1024手机看黄色片| 国产一区二区三区视频了| 一级片免费观看大全| 午夜日韩欧美国产| 中文字幕人妻丝袜一区二区| 久久久国产成人精品二区| 久久久久久人人人人人| 久9热在线精品视频| 在线观看66精品国产| 亚洲av第一区精品v没综合| 看黄色毛片网站| 国产欧美日韩精品亚洲av| 久久久久精品国产欧美久久久| 午夜影院日韩av| 女警被强在线播放| 欧美不卡视频在线免费观看 | 国产精品久久久久久人妻精品电影| 国产v大片淫在线免费观看| 不卡一级毛片| 国产精品 国内视频| 精品第一国产精品| 精品电影一区二区在线| 中文字幕另类日韩欧美亚洲嫩草| 两个人看的免费小视频| 国产私拍福利视频在线观看| 亚洲天堂国产精品一区在线| 色综合亚洲欧美另类图片| 成人三级做爰电影| 精品国产一区二区三区四区第35| av片东京热男人的天堂| 久久欧美精品欧美久久欧美| 很黄的视频免费| 国产高清视频在线播放一区| 1024手机看黄色片| 精品国产亚洲在线| 国产亚洲av嫩草精品影院| 欧美精品亚洲一区二区| 久久久久久久精品吃奶| 曰老女人黄片| 啪啪无遮挡十八禁网站| 亚洲va日本ⅴa欧美va伊人久久| 色综合站精品国产| 成人精品一区二区免费| 露出奶头的视频| 国产激情偷乱视频一区二区| 欧美激情极品国产一区二区三区| 91老司机精品| 18禁国产床啪视频网站| 亚洲天堂国产精品一区在线| 1024香蕉在线观看| 国产aⅴ精品一区二区三区波| 午夜影院日韩av| 午夜免费激情av| 欧美绝顶高潮抽搐喷水| 国产一区在线观看成人免费| 桃红色精品国产亚洲av| 精品国内亚洲2022精品成人| 精品人妻1区二区| cao死你这个sao货| xxx96com| 91字幕亚洲| 色播亚洲综合网| 看黄色毛片网站| 国产一区二区激情短视频| 人妻丰满熟妇av一区二区三区| 婷婷六月久久综合丁香| 日本三级黄在线观看| 黄色丝袜av网址大全| 免费在线观看日本一区| 久久久久亚洲av毛片大全| 亚洲黑人精品在线| 国产伦一二天堂av在线观看| 国产精品日韩av在线免费观看| 中文字幕人妻熟女乱码| 在线观看免费视频日本深夜| 亚洲av电影在线进入| 亚洲一区高清亚洲精品| 久久婷婷成人综合色麻豆| 亚洲精品中文字幕一二三四区| 亚洲欧美日韩高清在线视频| 一区二区日韩欧美中文字幕| 在线看三级毛片| 一级黄色大片毛片| 国产精品爽爽va在线观看网站 | 亚洲av片天天在线观看| 欧美黑人欧美精品刺激| 久久草成人影院| 久久精品91蜜桃| 少妇裸体淫交视频免费看高清 | 久99久视频精品免费| 精品少妇一区二区三区视频日本电影| 亚洲狠狠婷婷综合久久图片| 正在播放国产对白刺激| 国产又色又爽无遮挡免费看| xxxwww97欧美| 亚洲熟女毛片儿| 少妇裸体淫交视频免费看高清 | 欧美中文综合在线视频| 国产精品二区激情视频| 国产精品 欧美亚洲| 欧美在线黄色| 免费在线观看亚洲国产| 久久久久久人人人人人| 久久九九热精品免费| 国产亚洲av高清不卡| cao死你这个sao货| 国产免费男女视频| 欧美性猛交╳xxx乱大交人| 久久 成人 亚洲| 久久精品国产清高在天天线| 欧美日韩一级在线毛片| 欧美绝顶高潮抽搐喷水| 久久久久久国产a免费观看| 成熟少妇高潮喷水视频| 日韩欧美国产一区二区入口| 国产精品久久视频播放| 人人妻人人看人人澡| 久久天堂一区二区三区四区| 欧洲精品卡2卡3卡4卡5卡区| 美女免费视频网站| 欧美黄色淫秽网站| 亚洲精品国产区一区二| or卡值多少钱| 免费一级毛片在线播放高清视频| 亚洲国产精品sss在线观看| 青草久久国产| 国产伦一二天堂av在线观看| 久久久水蜜桃国产精品网| 国产aⅴ精品一区二区三区波| 无遮挡黄片免费观看| 国产97色在线日韩免费| 国产爱豆传媒在线观看 | 母亲3免费完整高清在线观看| 中文资源天堂在线| 天天添夜夜摸| 黑人操中国人逼视频| 久久久国产精品麻豆| 国产又黄又爽又无遮挡在线| 日本五十路高清| 制服诱惑二区| 日韩中文字幕欧美一区二区| 91av网站免费观看| 看片在线看免费视频| 哪里可以看免费的av片| 国产99久久九九免费精品| 老汉色av国产亚洲站长工具| 正在播放国产对白刺激| 亚洲国产精品999在线| 日本一区二区免费在线视频| 亚洲成人久久性| 国产熟女午夜一区二区三区| 国产精品98久久久久久宅男小说| 久久久久久国产a免费观看| 精品一区二区三区av网在线观看| 亚洲国产毛片av蜜桃av| 黄色片一级片一级黄色片| 精品久久蜜臀av无| 国产亚洲精品久久久久久毛片| 最近最新中文字幕大全免费视频| 日本熟妇午夜| 1024视频免费在线观看| 国产一区二区三区视频了| 国产麻豆成人av免费视频| 久久人人精品亚洲av| 亚洲avbb在线观看| 国产91精品成人一区二区三区| 欧美久久黑人一区二区| 欧美性猛交黑人性爽| 又黄又粗又硬又大视频| 日本 欧美在线| 妹子高潮喷水视频| 久久久精品国产亚洲av高清涩受| 午夜免费成人在线视频| 亚洲精品国产一区二区精华液| 国产高清激情床上av| 久久热在线av| 国产精品日韩av在线免费观看| 亚洲av成人一区二区三| 久久久久久久精品吃奶| 妹子高潮喷水视频| 在线看三级毛片| 国产精品香港三级国产av潘金莲| 在线播放国产精品三级| 哪里可以看免费的av片| 国产成+人综合+亚洲专区| a级毛片在线看网站| 欧美日韩黄片免| x7x7x7水蜜桃| 国产主播在线观看一区二区| 高潮久久久久久久久久久不卡| 日韩三级视频一区二区三区| 国产免费男女视频| 十八禁人妻一区二区| 男人舔女人的私密视频| 欧美中文日本在线观看视频| 他把我摸到了高潮在线观看| 亚洲av中文字字幕乱码综合 | 黄色成人免费大全| 午夜精品在线福利| 最好的美女福利视频网| www.熟女人妻精品国产| 国产一区二区激情短视频| 国产免费男女视频| 午夜免费激情av| 欧美+亚洲+日韩+国产| 人妻久久中文字幕网| 深夜精品福利| 在线观看舔阴道视频| 一个人观看的视频www高清免费观看 | 欧美成人一区二区免费高清观看 | 757午夜福利合集在线观看| 黄片大片在线免费观看| 欧美+亚洲+日韩+国产| 成熟少妇高潮喷水视频| 久久精品影院6| 欧美乱色亚洲激情| 黄片大片在线免费观看| 亚洲精品一区av在线观看| 久久伊人香网站| 在线天堂中文资源库| 老司机深夜福利视频在线观看| 国产精品久久久久久人妻精品电影| 国产亚洲av高清不卡| 热99re8久久精品国产| 日韩精品免费视频一区二区三区| 亚洲天堂国产精品一区在线| 国产av不卡久久| 免费在线观看视频国产中文字幕亚洲| 中亚洲国语对白在线视频| 精品电影一区二区在线| 亚洲男人的天堂狠狠| 国产黄a三级三级三级人| 亚洲最大成人中文| 1024手机看黄色片| 啦啦啦免费观看视频1| 亚洲欧美日韩高清在线视频| 精品免费久久久久久久清纯| 不卡一级毛片| 欧美一级毛片孕妇| АⅤ资源中文在线天堂| 亚洲国产精品合色在线| 别揉我奶头~嗯~啊~动态视频| 国产野战对白在线观看| 午夜久久久久精精品| 久久久国产精品麻豆| av免费在线观看网站| 人人妻人人澡人人看| 国产高清激情床上av| 亚洲av中文字字幕乱码综合 | 在线观看www视频免费| 欧美色欧美亚洲另类二区| 一进一出好大好爽视频| 久久精品国产综合久久久| 老鸭窝网址在线观看| 好男人电影高清在线观看| 亚洲男人的天堂狠狠| 国产三级黄色录像| 老司机在亚洲福利影院| 黄色片一级片一级黄色片| 久热这里只有精品99| 精品高清国产在线一区| 中国美女看黄片| 午夜免费成人在线视频| 久久国产精品人妻蜜桃| 国产伦人伦偷精品视频| 丝袜在线中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 日本精品一区二区三区蜜桃| 国产精品乱码一区二三区的特点| 俺也久久电影网| 村上凉子中文字幕在线| 欧美久久黑人一区二区| 亚洲欧美一区二区三区黑人| 丝袜在线中文字幕| 校园春色视频在线观看| 亚洲精品粉嫩美女一区| 亚洲精品一卡2卡三卡4卡5卡| 操出白浆在线播放| 国产免费av片在线观看野外av| 亚洲 欧美一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 免费高清视频大片| 欧美不卡视频在线免费观看 | 日日摸夜夜添夜夜添小说| 日本 欧美在线| 精品人妻1区二区| 黑人欧美特级aaaaaa片| 日本a在线网址| 午夜视频精品福利| 成人18禁在线播放| 国产精品av久久久久免费| 亚洲精品在线美女| 欧美日韩亚洲国产一区二区在线观看| 久久精品国产综合久久久| 色播亚洲综合网| 波多野结衣高清无吗| 观看免费一级毛片| 久久精品国产亚洲av高清一级| 啦啦啦免费观看视频1| 免费观看精品视频网站| 一级片免费观看大全| 国产精品久久久久久亚洲av鲁大| 国产精品久久电影中文字幕| 久久久精品欧美日韩精品| 精品国产亚洲在线| 91麻豆av在线| 亚洲精品国产精品久久久不卡| 欧美日韩瑟瑟在线播放| 在线观看免费午夜福利视频| 免费av毛片视频| 欧美 亚洲 国产 日韩一| 男人操女人黄网站| 婷婷六月久久综合丁香| av电影中文网址| 别揉我奶头~嗯~啊~动态视频| 亚洲国产看品久久| 久久青草综合色| 男女视频在线观看网站免费 | 淫秽高清视频在线观看| 黄网站色视频无遮挡免费观看| 亚洲免费av在线视频| 国产欧美日韩精品亚洲av| 国产精品免费视频内射| 桃色一区二区三区在线观看| 天堂√8在线中文| 一二三四在线观看免费中文在| 国内精品久久久久久久电影| 亚洲国产欧洲综合997久久, | 露出奶头的视频|