• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis,characterization and reactivity of thiolate-bridged cobalt-iron and ruthenium-iron complexes

    2022-03-14 09:27:52ChoGuoLinnSuDweiYngBominWngJingpingQu
    Chinese Chemical Letters 2022年1期

    Cho Guo,Linn Su,?,Dwei Yng,Bomin Wng,Jingping Qu,b

    aState Key Laboratory of Fine Chemicals,Dalian University of Technology,Dalian 116024,China

    bState Key Laboratory of Bioreactor Engineering,Shanghai Collaborative Innovation Centre for Biomanufacturing,Frontiers Science Center for Materiobiology and Dynamic Chemistry,East China University of Science and Technology,Shanghai 200237,China

    ABSTRACT Thiolate-bridged hetero-bimetallic complexes[Cp?M(MeCN)N2S2FeCl][PF6](2,M=Ru;3,M=Co,Cp?= η5-C5Me5,N2S2= N,N’-dimethyl-3,6-diazanonane-1,8-dithiolate)were prepared by self-assembly of dimer[N2S2Fe]2 with mononuclear precursor[Cp?Ru(MeCN)3][PF6]or[Cp?Co(MeCN)3][PF6]2 in the presence of CHCl3 as a chloride donor.Complexes 2 and 3 exhibit obviously different redox behaviors investigated by cyclic voltammetry and spin density distributions supported by DFT calculations.Notably,iron-cobalt complex 3 possesses versatile reactivities that cannot be achieved for complex 2.In the presence of CoCp2,complex 3 can undergo one-electron reduction to generate a stable formally CoIIFeII complex[Cp?CoN2S2FeCl](4).Besides,the terminal chloride on the iron center in 3 can be removed by dehalogenation agent AgPF6 or exchanged with azide to afford the corresponding complexes[Cp?Co(MeCN)N2S2Fe(MeCN)][PF6]2(5)and[Cp?Co(MeCN)N2S2Fe(N3)][PF6](6).In addition,complexes 2,3 and 4 show distinct catalytic reactivity toward the disproportionation of hydrazine into ammonia.These results may be helpful to understand the vital role of the heterometal in some catalytic transformations promoted by heteromultinuclear complexes.

    Keywords:Metallic cooperativity Heterobinuclear complex Hydrazine disproportionation Metallothiolate ligand Metal-sulfur cluster

    The cooperativity of different transition metals is widely adopted in metalloenzymes,such as Mo/V-dependent nitrogenase,[NiFe]-hydrogenase and carbon monoxide dehydrogenase,which employ heteromultinuclear metal-sulfur clusters as their active centers[1-3].Inspired by these natural synthetic systems,artificial heteromultinuclear catalysts are synthesized and proved to display unique catalytic properties.For these catalysts,different transition metals in close proximity may activate substrates simultaneously or consecutively,while such activation modes are hard to achieve by mononuclear or even homodinuclear complexes[4-8].Furthermore,incorporating another different metal into a monometallic species is likely to modulate its stability,electrochemical properties and reactivity.Therefore,understanding the mutual influence of different metals assumes great significance in uncovering the mechanism of the abovementioned metalloenzymes and designing efficient catalysts.

    Although many heteromultinuclear complexes have been developed for homogeneous catalysis applications[9-16],for example,selective hydroformylation by the Pd/Co mixed catalyst reported by Hidaiet al.[15]and alkyne silylformylation by the Co/Rh catalyst reported by Nakamuraet al.[16],the cooperative effect of transition metals is,however,still far from being fully understood at a molecular level until now.From a practical standpoint,heterobinuclear complexes would serve as more ideal models to probe into the influence between two different active sites in catalysts[17-21].However,the coordination environment of reported heterobinuclear complexes makes it difficult to directly evaluate the cooperativity of metals without considering the impact of auxiliary ligands.Therefore,heterobinuclear complexes with the same coordinated sphere are specially needed.

    In our previous work,bimetallic cooperativity was adopted to synthesize a series of thiolate-bridged homo-[22-24]and heterodinuclear complexes[25-29]for small molecule activation and transformation.Recently,we reported the synthesis of a thiolatebridged homobinuclear complex[Cp?Fe(MeCN)N2S2FeCl][PF6](1)through the assembly of[N2S2Fe]2(N2S2=N,N’-dimethyl-3,6-diazanonane-1,8-dithiolate)[30]and[Cp?FeII(MeCN)3][PF6](Cp?=η5-C5Me5)promoted by C?Cl bond cleavage of CHCl3[31].As a further extension of this strategy,[N2S2Fe]2may also serve as a good precursor for the synthesis of heterobinuclear complexes featuring a mononuclear reaction moiety {N2S2FeCl}.Herein,we report the synthesis and characterization of novel thiolate-bridged iron-ruthenium and iron-cobalt complexes.Experimental results and theoretical analysis reveal the differences in redox properties and spin distributions between the two heterobinuclear complexes,which may have a significant impact on their reactivity.

    As outlined in Scheme 1,treatment of the dimeric iron complex[N2S2Fe]2with 2 equiv.of mononuclear ruthenium complex[Cp?Ru(MeCN)3][PF6][32]in MeCN/CHCl3(10:1)at room temperature resulted in the dissociation and recombination to generate a thiolate-bridged iron-ruthenium complex[Cp?Ru(MeCN)N2S2FeCl][PF6](2)in 62% yield as a blue powder.Similarly,thiolate-bridged iron-cobalt complex[Cp?Co(MeCN)N2S2FeCl][PF6](3)can also be facilely synthesized as a dark red powder by using[Cp?Co(MeCN)3][PF6]2[33]as the mononuclear precursor.From simple charge balance consideration,the formal oxidation states of the two metallic centers in these two complexes are +2 and +3 valences.However,compared to 2,the formation of 3 does not need additional oxidant or reductant since the two precursors are in +2 and +3 oxidation states,respectively.

    Scheme 1.Synthesis of complexes 1,2 and 3.

    Scheme 2.The reactivity of complex 3.

    The electrospray ionization high-resolution mass spectrometry(ESI-HRMS)of 2 shows a molecular ion peak atm/z534.0168(calcd.534.0169)for[2?MeCN?PF6]+.The ESI-HRMS analysis of 3 exhibits a molecular ion peak atm/z491.0456(calcd.491.0456)for[3?MeCN?PF6]+.The appropriate isotopic distributions confirm the existence of ruthenium and cobalt in 2 and 3,respectively.The1H NMR spectrum of 2 shows two characteristic broad peaks atδ15.69 and 9.68 ppm,which exhibit obviously strong paramagnetic shift.Differently,the1H NMR spectrum of 3 shows only one relatively weak broad peak atδ0.65 ppm.We preliminarily assign these resonances to the proton signals of the Cp?ligand in 2 and 3.However,further accurate assignments for these signals are difficult due to their paramagnetism.Subsequently,the magnetic susceptibility measurements of 2 and 3 in solution were conducted by the Evans’method[34].The values of effective magnetic moments(μeff)of 2 and 3 are 5.69 and 5.18μB,respectively,which indicate 2 and 3 are in anS=5/2 and 2 ground spin states at room temperature.

    Fig.1.ORTEP(ellipsoids at 50% probability)diagrams of complexes 2(a)and 3(b).All hydrogen atoms and the PF6?anion are omitted for clarity.

    Fig.2.(a)Spin density analyses of 2 and 3,spin up is shown in blue,and spin down is shown in green(Isosurface=0.02).(b)Cyclic voltammograms of 2(green)and 3(blue),measured in 0.1 mol/L nBu4NPF6 in CH2Cl2 at 100 mV/s and internally referenced to Fc+/Fc.

    Furthermore,complexes 2 and 3 were identified by X-ray crystallographic characterization.The molecular structures of 2 and 3 are shown in Fig.1 and the main bond lengths and angles are listed in Table 1.Their overall geometric configurations resemble their diiron analogue 1 very closely.Complexes 2 and 3 both possess a distorted square pyramid moiety with the Fe atom embedding in the N2S2plane and the chloride atom locating in the apical position.Differently,the Ru and Co cores are both in a three-legged piano-stool coordination geometry with one MeCN molecule and two sulfur atoms of the N2S2ligand.Although Ru atom has larger atomic radius than the first row Fe and Co,interestingly,the Ru1···Fe1 distance(2.9883(7)?A)in 2 is significantly shorter than Fe1···Fe2(3.115(1)?A)in 1 and Fe1···Co1(3.437(3)?A)in 3.Additionally,the Ru1···Fe1 distance in 2 is longer than those of other reported thiolate-bridged iron-ruthenium complexes(2.564(1)to 2.691(2)?A)[35-38].In sharp contrast,the Co1···Fe1 distance in 2 is remarkably longer than those of previously reported thiolate-bridged iron-cobalt complexes(2.398(1)to 2.796(1)?A)[27,28,38-40],even one possessing a similar coordination sphere(3.136(2)?A)[41].The obvious difference of bimetallic distance among these complexes may indicate different redox properties and reactivity.

    Table 1 Selected bond lengths[?A]and bond angles[°]of complexes 1,2 and 3.

    With the molecular structures of these bimetallic complexes as starting points,geometry optimized models were generated from DFT calculation at the TPSSTPSS/LanL2DZ/6–31G(d)level of theory,which indicates 2 and 3 are in anS=5/2 and 2 ground spin states,respectively(Table S8 in Supporting information).The computed key geometric parameters match those determined by X-ray crystallography well,which validate the computational methodology(Tables S9 and S10 in Supporting information).The spin density distribution for complexes 2 and 3 is depicted in Fig.2a,and it shows a significant amount of spin is located on the Fe1(spin up)of both the two complexes.The similar Mulliken spin populations(3.90 and 3.81)indicate the same +2 oxidation state of Fe1 in 2 and 3.Based on these results,we assume that the spin state of Fe1 is mainly determined by its coordination configuration and less affected by the other metal core.In addition,a moderate amount of spin is located on the Ru core in 2(0.30)and the bridging S atoms,while the spin located on the Co core in 3 has the opposite sign(?0.41)and there is barely no spin located on the S atoms in 2.

    The redox behaviors of complexes 2 and 3 were also investigated by cyclic voltammetry in dichloromethane solution(Fig.2b).According to the cyclic voltammograms of reported bimetallic complexes with similar coordination spheres[42,43],we attribute the first irreversible redox event(green)at reduction peak potentialEpa=?0.89 Vvs.ferrocene(Fc)+/0to the {N2S2FeCl}II/Iredox couple of 2,which shows a remarkable positive shift of 250 mV compared to that of 1(Epa=?1.14 V)[31].The results imply a greater ease of reduction at the {N2S2FeCl} moiety modulated by the {Cp?Ru} moiety.Likewise,complex 3 also undergoes an irreversible {N2S2FeCl}II/Ireduction event atEpa=?0.98 V(blue),which is onlyca.90 mV more negative than that of 2.The second reversible redox wave of 2(green)at half-wave potentialE1/2=?0.05 V is assigned to the {Cp?Ru}III/IIredox couple,which shows a negative shift of 180 mV with respect to that of 1(E1/2=0.13 V).Differently,complex 3 shows a quasi-reversible{Cp?Co}III/IIoxidation event atEc=0.23 V(blue),which probably corresponds to the easy oxidative degradation of the{Cp?Co} moiety.

    With the synthesis and characterization of 2 and 3 being achieved,we next investigated the reactivity of the two heterobinuclear complexes.Firstly,we probed into the possibility of their one-electron reduction as predicted by electrochemical studies.Upon interaction of 2 in CH2Cl2with one-electron reductant cobaltocene(CoCp2),insoluble species immediately formed and its poor solubility in common solvents limited further characterization.This experimental fact suggests the reduced product is very unstable and cannot maintain its bimetallic framework.In sharp contrast,one-electron reduction of 3 conducted in similar conditions exhibits completely different reaction phenomenon(Scheme 2).Crystallographic analysis clearly reveals the final product is a neutral formally FeIICoIIcomplex[Cp?CoN2S2FeCl](4).As shown in Fig.3a,the acetonitrile ligand is removed after reduction and the Co1···Fe1 distance of 3.109(2)?A isca.0.33 ?A shorter than that of its precursor 3.The Fe1?Cl1 distance(2.2762(12)?A)in 4 is slightly longer than those of 1(2.238(1)?A),2(2.2355(14)?A)and 3(2.2561(13)?A),which indicates the electron-rich {Cp?Co} moiety may increase the lability of the chloride,thus affecting the reactivity of {N2S2FeCl}moiety.The1H NMR spectrum of 4 also reveals its paramagnetic nature and shows a broad singlet atδ?2.17 ppm in the higher field compared with its precursor 3.Theμeffvalue of 4 is 5.87μB,indicating 4 is also in anS=5/2 ground spin state at room temperature.

    Fig.3.ORTEP(ellipsoids at 50% probability)diagrams of complexes 4(a)and 6′(b).All hydrogen atoms and the BPh4?anion of 6′ are omitted for clarity.

    In order to open the potential reaction site,we next attempted to remove the chloride group.As illustrated in Scheme 2,treatment of 3 with 1 equiv.of AgPF6in CH2Cl2at room temperature afforded a new heterobinuclear complex[Cp?Co(MeCN)N2S2Fe(MeCN)][PF6]2(5).The1H NMR spectroscopic analysis at room temperature shows a broad paramagnetic signal appears atδ?0.87 ppm.In the infrared(IR)spectrum of 5,a diagnostic weak absorption band at 2283 cm?1is observed,which is attributed to the C≡N stretch vibration of the MeCN ligands.Crystallographic analysis reveals the replacement of the terminal chloride by a MeCN molecule and there are two MeCN ligands separately bound to the Co and Fe centers in atransarrangement(Fig.S4 in Supporting information).The Co1···Fe1 distance of 3.3545(2)?A is onlyca.0.08 ?A shorter than that of 3.In addition,two PF6?anions are located in the same unit cell,which confirms complex 5 is a dicationic species.Unfortunately,in the presence of AgPF6,complex 2 cannot transform to the RuFe analogue of 5,but fast decomposed into unknown insoluble species.

    Subsequently,we examined the reactivity of complex 3 toward ligand exchange with sodium azide(NaN3).Treatment of 3 with NaN3in acetonitrile at room temperature gave an iron-cobalt azido complex[Cp?Co(MeCN)N2S2Fe(N3)][PF6](6)in a moderate yield,which is different from the reaction of zero-valent iron species with organic azide to give an imido complex[44].The ESI-HRMS of 6 shows an expected molecular ion peak atm/z498.0856(calcd.498.0859)for[6?MeCN?PF6]+.Similarly,the1H NMR spectroscopic analysis of 6 also displays a characteristic broad signal atδ0.51 ppm,which suggests 6 should also be a paramagnetic species.In the IR spectrum of 6,a very strong absorption band at 2069 cm?1is attributed to the stretching vibration of azide,which is very close to those of sulfide- or thiolate-bridged iron-containing complexes with the azido ligand in an end-on terminally coordinated fashion[45,46].In order to obtain the single-crystals suitable for X-ray diffraction analysis,we performed the facile counterion exchange reaction of 6 with NaBPh4at room temperature to afford an analogous complex[Cp?Co(MeCN)N2S2Fe(N3)][BPh4](6′).

    The solid-state structure of 6′was confirmed by single-crystal X-ray diffraction analysis(Fig.3b).The Fe–N3 bond length of 1.993(4)?A in 6′is obviously longer than those of some monoiron azido complexes(1.859(5)–1.934(7)?A)[45,47,48].Unexpectedly,complex 2 cannot react with NaN3even under heating.These experimental results demonstrated that another different metal could be an important factor to the reactivity of the {N2S2FeCl}moiety.

    One step further,we also explored the catalytic hydrazine disproportionation to ammonia using 2,3 and 4 as catalysts.Treat-ment of a CH3CN solution of 2 with 20 equiv.of hydrazine at room temperature afforded ammonia in 35% yield(Table 2,entry 1),which is comparable to other thiolate-bridged RuFe complexes[37].Reaction of 3 with hydrazine was also performed under the same conditions and ammonia was obtained in 5% yield(Table 2,entry 2),which reveals that complex 3 can only convert hydrazine to ammonia stoichiometrically.In addition,complex 4 exhibited no catalytic activity towards hydrazine disproportionation and only a trace amount of ammonia was detected(Table 2,entry 3).Given that the initial electrons for N?N bond cleavage of hydrazine are provided by the complex itself,we speculate that the obviously different performance in converting the hydrazine to ammonia between the RuFe and CoFe complexes is likely attributed to the stability under oxidation,which is consistent with the results of electrochemical studies.

    Table 2 Catalytic disproportionation of hydrazine by 2,3 and 4.a

    In conclusion,we synthesized and characterized two ironcobalt and iron-ruthenium complexes with the same coordination sphere as the diiron complex[Cp?Fe(MeCN)N2S2FeCl][PF6].The electrochemical and DFT analyses of the two heterobinuclear complexes suggested the redox properties and spin distributions of the {N2S2FeCl} moiety were obviously affected by another metallic center.When reacting with reducing agent in CH2Cl2,CoFe complex can keep its integral framework without decomposing,compared with its FeFe and RuFe analogues.Furthermore,only CoFe complex can accomplish the ligand exchange reaction of the labile chloride with inorganic salts such as AgPF6or NaN3.In addition,RuFe complex shows better catalytic reactivity toward the disproportionation of hydrazine into ammonia.Further studies on the design and synthesis of new heterobinuclear complexes and their catalytic properties are underway.

    Declaration of competing interest

    The authors declare no competing financial interests.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(Nos.21690064,22001031),the key laboratory of Bio-based Chemicals of Liaoning Province of China,the “111”project of the Ministry of Education of China and the Fundamental Research Funds for the Central Universities(No.DUT19RC(3)013).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.070.

    欧美日韩黄片免| 久久婷婷人人爽人人干人人爱| 国产熟女xx| 国产极品精品免费视频能看的| 97人妻精品一区二区三区麻豆| 久久久成人免费电影| 国产一区二区三区在线臀色熟女| 亚洲成人久久爱视频| 国内久久婷婷六月综合欲色啪| 久久久久免费精品人妻一区二区| 亚洲成人久久性| 亚洲激情在线av| 亚洲七黄色美女视频| 国产成人aa在线观看| 欧美大码av| 国产精品一区二区三区四区免费观看 | 1024手机看黄色片| 亚洲人成网站高清观看| av福利片在线观看| 精品久久久久久,| 99在线人妻在线中文字幕| 中国美女看黄片| 亚洲精品美女久久久久99蜜臀| 国产精品av久久久久免费| 欧美日韩福利视频一区二区| 黑人欧美特级aaaaaa片| 亚洲电影在线观看av| 国产三级在线视频| 国内毛片毛片毛片毛片毛片| 国产97色在线日韩免费| 亚洲专区字幕在线| 美女大奶头视频| 嫩草影院精品99| 午夜精品久久久久久毛片777| av黄色大香蕉| 全区人妻精品视频| 国产精品久久久av美女十八| 日日干狠狠操夜夜爽| 国内精品久久久久久久电影| 日韩大尺度精品在线看网址| 悠悠久久av| 欧美黄色片欧美黄色片| 男插女下体视频免费在线播放| 国产成人啪精品午夜网站| 特级一级黄色大片| 中文字幕人成人乱码亚洲影| cao死你这个sao货| 日本在线视频免费播放| 一级黄色大片毛片| 在线免费观看的www视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲一区高清亚洲精品| 免费看光身美女| 亚洲真实伦在线观看| 欧美日韩中文字幕国产精品一区二区三区| 美女 人体艺术 gogo| 成人欧美大片| 久久欧美精品欧美久久欧美| 亚洲性夜色夜夜综合| 午夜激情欧美在线| 又黄又粗又硬又大视频| 国产一区在线观看成人免费| 男女视频在线观看网站免费| 制服人妻中文乱码| 麻豆久久精品国产亚洲av| 丰满人妻一区二区三区视频av | 麻豆av在线久日| 成人亚洲精品av一区二区| 搞女人的毛片| 亚洲片人在线观看| 久久久久九九精品影院| 久久久精品大字幕| 18禁观看日本| 国产精品精品国产色婷婷| 狂野欧美白嫩少妇大欣赏| 成人欧美大片| 午夜福利18| 久久中文字幕一级| 一卡2卡三卡四卡精品乱码亚洲| 亚洲自偷自拍图片 自拍| 午夜影院日韩av| 叶爱在线成人免费视频播放| 色av中文字幕| 又紧又爽又黄一区二区| 亚洲av成人av| 国产日本99.免费观看| 色综合婷婷激情| 亚洲av成人不卡在线观看播放网| 日本免费a在线| 欧美丝袜亚洲另类 | 欧美成人性av电影在线观看| 法律面前人人平等表现在哪些方面| 亚洲最大成人中文| 午夜免费观看网址| 国产淫片久久久久久久久 | 成人av在线播放网站| 国内精品久久久久精免费| 身体一侧抽搐| 一个人免费在线观看的高清视频| 国产v大片淫在线免费观看| 天天一区二区日本电影三级| 国产蜜桃级精品一区二区三区| 18美女黄网站色大片免费观看| 黄色丝袜av网址大全| av天堂中文字幕网| 日韩三级视频一区二区三区| 欧美丝袜亚洲另类 | 成年人黄色毛片网站| 免费在线观看日本一区| 女人高潮潮喷娇喘18禁视频| 精品久久久久久久末码| 可以在线观看毛片的网站| 成人国产一区最新在线观看| 最近最新中文字幕大全免费视频| 男女那种视频在线观看| 女人高潮潮喷娇喘18禁视频| 欧美成人一区二区免费高清观看 | 久久久精品欧美日韩精品| 最新在线观看一区二区三区| 成年版毛片免费区| 精品国产三级普通话版| 一本一本综合久久| 一级毛片精品| 无遮挡黄片免费观看| 国产高清激情床上av| 在线观看一区二区三区| 精品一区二区三区视频在线观看免费| 老熟妇乱子伦视频在线观看| 亚洲精品一区av在线观看| 久久久成人免费电影| 中文字幕人妻丝袜一区二区| 欧美性猛交黑人性爽| 在线观看美女被高潮喷水网站 | www.熟女人妻精品国产| 小说图片视频综合网站| 哪里可以看免费的av片| bbb黄色大片| 国产亚洲精品av在线| 18禁黄网站禁片免费观看直播| 男女视频在线观看网站免费| 一级毛片高清免费大全| 亚洲片人在线观看| av女优亚洲男人天堂 | 又大又爽又粗| 亚洲成av人片在线播放无| 啦啦啦免费观看视频1| 日本精品一区二区三区蜜桃| 黄色片一级片一级黄色片| 无限看片的www在线观看| 久久精品夜夜夜夜夜久久蜜豆| 久久久久九九精品影院| 欧美高清成人免费视频www| 国产不卡一卡二| 亚洲欧美一区二区三区黑人| 真实男女啪啪啪动态图| 日韩精品青青久久久久久| 性色av乱码一区二区三区2| 国产精品永久免费网站| 日韩欧美国产一区二区入口| 变态另类丝袜制服| 99精品久久久久人妻精品| 搡老熟女国产l中国老女人| 久久精品aⅴ一区二区三区四区| 亚洲色图 男人天堂 中文字幕| 99久久99久久久精品蜜桃| 一级a爱片免费观看的视频| 国产精品久久视频播放| 99久久99久久久精品蜜桃| 最新中文字幕久久久久 | 国产精品国产高清国产av| 国产私拍福利视频在线观看| 免费在线观看亚洲国产| 午夜两性在线视频| 亚洲精品中文字幕一二三四区| 中文字幕最新亚洲高清| 久久久国产欧美日韩av| 最近在线观看免费完整版| 亚洲中文日韩欧美视频| 免费电影在线观看免费观看| 久久草成人影院| 午夜两性在线视频| av视频在线观看入口| 亚洲天堂国产精品一区在线| 少妇人妻一区二区三区视频| 在线观看免费午夜福利视频| 免费av不卡在线播放| 亚洲精品国产精品久久久不卡| 国产成人av教育| 亚洲av中文字字幕乱码综合| 国产高清视频在线播放一区| 国产精品久久久久久精品电影| 男人和女人高潮做爰伦理| 国产伦在线观看视频一区| 国产伦精品一区二区三区视频9 | 法律面前人人平等表现在哪些方面| 免费在线观看影片大全网站| 性色av乱码一区二区三区2| 久久国产精品人妻蜜桃| 午夜福利欧美成人| 国内精品久久久久久久电影| 久久香蕉精品热| 淫秽高清视频在线观看| 久久人妻av系列| 欧美又色又爽又黄视频| 久久九九热精品免费| 国产伦在线观看视频一区| 国产精品免费一区二区三区在线| 99久久综合精品五月天人人| 男人舔奶头视频| 天天躁日日操中文字幕| 黑人操中国人逼视频| 免费av毛片视频| x7x7x7水蜜桃| 亚洲一区二区三区色噜噜| 久久中文字幕一级| 国产伦精品一区二区三区四那| 少妇丰满av| 亚洲国产色片| 黑人巨大精品欧美一区二区mp4| 欧美日韩中文字幕国产精品一区二区三区| 国产久久久一区二区三区| 欧美+亚洲+日韩+国产| 麻豆av在线久日| 久久精品国产综合久久久| 久久精品国产清高在天天线| 亚洲欧美精品综合久久99| 12—13女人毛片做爰片一| 日韩av在线大香蕉| 搡老熟女国产l中国老女人| 精品乱码久久久久久99久播| 欧美中文日本在线观看视频| 999久久久国产精品视频| 99久久无色码亚洲精品果冻| 又黄又粗又硬又大视频| 一个人免费在线观看的高清视频| 人妻丰满熟妇av一区二区三区| 国产精品久久久av美女十八| 老司机午夜十八禁免费视频| 一区二区三区高清视频在线| 俺也久久电影网| 国产熟女xx| 99精品欧美一区二区三区四区| 狂野欧美激情性xxxx| 不卡一级毛片| 色精品久久人妻99蜜桃| www日本在线高清视频| 19禁男女啪啪无遮挡网站| 欧美中文综合在线视频| 色在线成人网| 久久久久性生活片| 国产一区二区三区视频了| 欧美在线一区亚洲| 亚洲国产日韩欧美精品在线观看 | 亚洲成av人片免费观看| 亚洲最大成人中文| 香蕉丝袜av| 中文字幕久久专区| 他把我摸到了高潮在线观看| 人妻久久中文字幕网| 日韩免费av在线播放| 欧美xxxx黑人xx丫x性爽| 久久久久免费精品人妻一区二区| 久久久久久久午夜电影| 久久热在线av| 亚洲国产看品久久| 三级毛片av免费| 亚洲中文字幕日韩| a级毛片在线看网站| 一本综合久久免费| 久久久久久久午夜电影| 亚洲 欧美一区二区三区| 久久这里只有精品中国| 亚洲av电影不卡..在线观看| 日本五十路高清| 日韩av在线大香蕉| 日韩欧美在线乱码| 国产亚洲欧美在线一区二区| 精品国内亚洲2022精品成人| 亚洲,欧美精品.| 老司机午夜福利在线观看视频| 国产乱人视频| 欧美日韩福利视频一区二区| 每晚都被弄得嗷嗷叫到高潮| 欧美成狂野欧美在线观看| 成人国产综合亚洲| 一夜夜www| 啦啦啦韩国在线观看视频| 2021天堂中文幕一二区在线观| 国产成年人精品一区二区| 变态另类丝袜制服| 亚洲精品久久国产高清桃花| 欧美最黄视频在线播放免费| 身体一侧抽搐| 十八禁网站免费在线| av女优亚洲男人天堂 | 老汉色av国产亚洲站长工具| 在线看三级毛片| 日韩精品中文字幕看吧| 99久久精品热视频| 成年人黄色毛片网站| 在线国产一区二区在线| 婷婷精品国产亚洲av| 18禁国产床啪视频网站| 国产真实乱freesex| 欧美日韩国产亚洲二区| 国产蜜桃级精品一区二区三区| 精品一区二区三区视频在线 | 久久久久国产精品人妻aⅴ院| 国产一区在线观看成人免费| 久久精品91无色码中文字幕| 久久久久免费精品人妻一区二区| 最近视频中文字幕2019在线8| 脱女人内裤的视频| 美女黄网站色视频| 精品久久久久久久久久久久久| 91av网一区二区| 非洲黑人性xxxx精品又粗又长| av在线蜜桃| 高清毛片免费观看视频网站| 中文亚洲av片在线观看爽| cao死你这个sao货| 亚洲色图av天堂| 免费看美女性在线毛片视频| 久久精品亚洲精品国产色婷小说| 制服丝袜大香蕉在线| 真人做人爱边吃奶动态| 琪琪午夜伦伦电影理论片6080| 男女那种视频在线观看| 亚洲18禁久久av| 最近最新中文字幕大全电影3| 国产高清激情床上av| 欧美一级毛片孕妇| 国产一区在线观看成人免费| 人妻久久中文字幕网| 亚洲国产精品999在线| 桃色一区二区三区在线观看| 亚洲成人精品中文字幕电影| 美女高潮的动态| 欧美又色又爽又黄视频| 两人在一起打扑克的视频| 此物有八面人人有两片| 免费在线观看亚洲国产| 亚洲精品一区av在线观看| 中文字幕精品亚洲无线码一区| 一进一出抽搐gif免费好疼| 欧美成狂野欧美在线观看| 日韩中文字幕欧美一区二区| 色播亚洲综合网| 亚洲国产欧美网| 久久久久久久久久黄片| 99久久国产精品久久久| 免费av不卡在线播放| 免费看美女性在线毛片视频| 99精品在免费线老司机午夜| 国产蜜桃级精品一区二区三区| 午夜激情福利司机影院| 亚洲成人免费电影在线观看| 国产成人福利小说| 啦啦啦观看免费观看视频高清| 亚洲激情在线av| 久久久久精品国产欧美久久久| 久久久成人免费电影| 亚洲国产精品久久男人天堂| 1024香蕉在线观看| 久久热在线av| 男女床上黄色一级片免费看| 美女被艹到高潮喷水动态| 国产成人福利小说| 亚洲av成人一区二区三| 听说在线观看完整版免费高清| 亚洲午夜理论影院| 国产精品精品国产色婷婷| 久久久久久久久中文| 九九热线精品视视频播放| 看黄色毛片网站| 亚洲狠狠婷婷综合久久图片| 久久精品亚洲精品国产色婷小说| 最近最新中文字幕大全免费视频| 国产精品98久久久久久宅男小说| 久久久久九九精品影院| 两个人的视频大全免费| 99久久国产精品久久久| 色在线成人网| 一卡2卡三卡四卡精品乱码亚洲| 午夜a级毛片| 欧美另类亚洲清纯唯美| 久久久成人免费电影| 国产人伦9x9x在线观看| 国产高清视频在线观看网站| 看片在线看免费视频| 视频区欧美日本亚洲| 国产激情偷乱视频一区二区| 叶爱在线成人免费视频播放| 国产毛片a区久久久久| 天天躁日日操中文字幕| 一区二区三区激情视频| 1024手机看黄色片| 欧美又色又爽又黄视频| 99久久综合精品五月天人人| 国产蜜桃级精品一区二区三区| 中文字幕最新亚洲高清| 亚洲精品美女久久av网站| 可以在线观看毛片的网站| 色综合站精品国产| 久久精品亚洲精品国产色婷小说| 91久久精品国产一区二区成人 | 每晚都被弄得嗷嗷叫到高潮| 在线免费观看不下载黄p国产 | 99久久成人亚洲精品观看| 色综合亚洲欧美另类图片| 久久午夜综合久久蜜桃| 床上黄色一级片| 国产成人精品久久二区二区免费| 国产黄色小视频在线观看| 欧美激情久久久久久爽电影| 嫩草影院入口| 老汉色∧v一级毛片| 亚洲国产色片| 2021天堂中文幕一二区在线观| 久久久久国产一级毛片高清牌| 一a级毛片在线观看| 国产成人啪精品午夜网站| 午夜免费观看网址| 可以在线观看毛片的网站| 噜噜噜噜噜久久久久久91| 欧美绝顶高潮抽搐喷水| 亚洲五月天丁香| 亚洲 欧美 日韩 在线 免费| 欧美日韩福利视频一区二区| 亚洲成人精品中文字幕电影| 精品久久久久久成人av| 免费人成视频x8x8入口观看| 黄色日韩在线| 毛片女人毛片| www.自偷自拍.com| 精品久久蜜臀av无| 他把我摸到了高潮在线观看| 国产激情欧美一区二区| 91av网站免费观看| 在线观看66精品国产| 两性夫妻黄色片| 午夜福利高清视频| 女人被狂操c到高潮| av欧美777| 久久热在线av| or卡值多少钱| 成年版毛片免费区| 亚洲色图 男人天堂 中文字幕| 男人舔女人的私密视频| 中出人妻视频一区二区| 久久精品国产清高在天天线| 亚洲av中文字字幕乱码综合| 日日干狠狠操夜夜爽| 在线观看免费视频日本深夜| 一级作爱视频免费观看| 色在线成人网| 日韩欧美国产在线观看| 国产三级黄色录像| 99国产精品一区二区三区| 中国美女看黄片| 我的老师免费观看完整版| 亚洲欧美激情综合另类| 在线观看一区二区三区| 高潮久久久久久久久久久不卡| 精品久久久久久久毛片微露脸| 成人高潮视频无遮挡免费网站| 又大又爽又粗| 国产三级中文精品| 99热这里只有精品一区 | 欧洲精品卡2卡3卡4卡5卡区| 免费高清视频大片| 国产伦一二天堂av在线观看| 91在线精品国自产拍蜜月 | 国产精品,欧美在线| 91老司机精品| 天堂√8在线中文| 免费观看精品视频网站| 国产亚洲精品综合一区在线观看| 国内少妇人妻偷人精品xxx网站 | 国产免费男女视频| 亚洲,欧美精品.| www.熟女人妻精品国产| 精品国产三级普通话版| 欧美一级毛片孕妇| 男女下面进入的视频免费午夜| 欧美日韩亚洲国产一区二区在线观看| 热99在线观看视频| 99久久成人亚洲精品观看| 久久久成人免费电影| 亚洲人成网站高清观看| 国产成人福利小说| 黑人操中国人逼视频| 免费观看人在逋| 国产亚洲精品一区二区www| 制服丝袜大香蕉在线| 又黄又粗又硬又大视频| 偷拍熟女少妇极品色| 亚洲va日本ⅴa欧美va伊人久久| 久久精品综合一区二区三区| 中文字幕av在线有码专区| 一个人免费在线观看的高清视频| 国产午夜精品论理片| 一个人免费在线观看电影 | 天堂√8在线中文| 中文在线观看免费www的网站| 亚洲精品色激情综合| 国产1区2区3区精品| 90打野战视频偷拍视频| 亚洲国产日韩欧美精品在线观看 | 国产淫片久久久久久久久 | 欧美丝袜亚洲另类 | 久久精品91无色码中文字幕| 精品国产亚洲在线| 欧美日韩福利视频一区二区| 午夜福利在线在线| 亚洲欧美激情综合另类| www日本黄色视频网| 精品99又大又爽又粗少妇毛片 | 午夜激情福利司机影院| 亚洲美女黄片视频| 99久国产av精品| 国产主播在线观看一区二区| svipshipincom国产片| 久久这里只有精品中国| 亚洲欧洲精品一区二区精品久久久| 日韩欧美一区二区三区在线观看| 国产高清三级在线| 天堂√8在线中文| 久久久久久久久中文| 在线观看美女被高潮喷水网站 | 午夜福利在线在线| 在线观看免费午夜福利视频| 黄色 视频免费看| 午夜精品在线福利| 国产午夜福利久久久久久| 18禁裸乳无遮挡免费网站照片| 欧美不卡视频在线免费观看| 搡老妇女老女人老熟妇| 成人永久免费在线观看视频| 最近视频中文字幕2019在线8| 丁香六月欧美| 麻豆国产97在线/欧美| 免费一级毛片在线播放高清视频| 国产一区二区三区在线臀色熟女| 亚洲av中文字字幕乱码综合| 午夜亚洲福利在线播放| 亚洲欧美日韩东京热| 日本 欧美在线| 一级黄色大片毛片| 俺也久久电影网| 精品一区二区三区视频在线观看免费| 精品欧美国产一区二区三| 日韩人妻高清精品专区| 国产成人欧美在线观看| 丰满的人妻完整版| 一本综合久久免费| tocl精华| 国内揄拍国产精品人妻在线| 在线国产一区二区在线| 高清毛片免费观看视频网站| 美女大奶头视频| 99精品在免费线老司机午夜| 欧美黑人巨大hd| 亚洲精品在线观看二区| 天堂影院成人在线观看| 在线观看美女被高潮喷水网站 | 精品国内亚洲2022精品成人| 夜夜爽天天搞| 久久久久亚洲av毛片大全| 久久午夜综合久久蜜桃| 黄频高清免费视频| 久久久久久九九精品二区国产| 日本在线视频免费播放| 国产精品精品国产色婷婷| 精品一区二区三区视频在线观看免费| 欧美成人免费av一区二区三区| 亚洲中文av在线| 精品不卡国产一区二区三区| 女人被狂操c到高潮| АⅤ资源中文在线天堂| 亚洲精品一卡2卡三卡4卡5卡| av片东京热男人的天堂| 十八禁网站免费在线| 亚洲av五月六月丁香网| aaaaa片日本免费| 亚洲av美国av| 国产精品国产高清国产av| 精品一区二区三区四区五区乱码| 97超视频在线观看视频| 又黄又爽又免费观看的视频| 99热6这里只有精品| 99热只有精品国产| 亚洲最大成人中文| 三级毛片av免费| 99热只有精品国产| 成人国产综合亚洲| 国产日本99.免费观看| 亚洲熟妇中文字幕五十中出| 老司机在亚洲福利影院| 桃色一区二区三区在线观看| 哪里可以看免费的av片| 三级男女做爰猛烈吃奶摸视频| 久久久国产成人精品二区| 亚洲精品国产精品久久久不卡| 精品不卡国产一区二区三区| 中出人妻视频一区二区| 欧美日韩中文字幕国产精品一区二区三区| 亚洲成人免费电影在线观看| 成人亚洲精品av一区二区| 亚洲狠狠婷婷综合久久图片| 国内精品美女久久久久久| 色尼玛亚洲综合影院| 国内毛片毛片毛片毛片毛片| 老熟妇仑乱视频hdxx| 伦理电影免费视频|