700 nm)aza-BODIPYs by freezing the rotation of the aryl groups"/>
  • <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Near-infrared absorbing(>700 nm)aza-BODIPYs by freezing the rotation of the aryl groups

    2022-03-14 09:27:10YanyanWangDongxiangZhangKangmingXiongRongShangXinDongJiang
    Chinese Chemical Letters 2022年1期

    Yanyan Wang,Dongxiang Zhang,Kangming Xiong,Rong Shang,Xin-Dong Jiang

    aShenyang Key Laboratory of Functional Dye and Pigment,Shenyang University of Chemical Technology,Shenyang 110142,China

    bCAS Key Laboratory of Separation Science for Analytical Chemistry,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China

    cDepartment of Chemistry,Graduate School of Science,Hiroshima University,Higashi-Hiroshima 7398526,Japan

    1These authors contributed equally to this work.

    ABSTRACT The typical aza-BODIPYs in the dye family are known for bright fluorescence,excellent stability,and tunable absorption wavelengths.Hence,these dyes are attracting the increasing attention.Aza-BODIPYs having the maxima absorption in the near-infrared(NIR)region(650–900 nm)are very favorable for bioimaging in vivo due to the less photo-damage,deeper tissue penetration,and less interference from background auto-fluorescence by biomolecules in the living systems.Many strategies have been employed to modify the structures of the aza-BODIPY core to provide the NIR absorbing dyes.Among these,the most effective method is the fusion of the aromatic rings in aza-BODIPY system.This review allsidedly summarizes the recent development of ring-fused aza-BODIPY dyes(λabs > 700 nm)focusing on the design,synthesis,and potential applications in the NIR region since 2002.

    Keywords:Aza-BODIPY NIR Ring-fused Red shift Freezing rotation

    1.Introduction

    Near-infrared(NIR)absorbing(λabs>650 nm)dyes are found to have many especial applications.For example,fluorescence imaging techniques are widely used for visualizing and analyzing the localization of ions,cations and biomolecules[1].However,excitation wavelengths(λex<650 nm)have low-grade tissue penetration,and therefore,are applicable for superficial structures or small animal imaging.Fluorophores requiring excitation at about 600 nm results in excessive autofluorescence because the bulk of naturally occurring endogenous fluorophores,mostly hemoglobin and related molecules,are also excited in the same region.Therefore,the optimal excitation wavelength(λex>650 nm)for a fluorophore is advocated,due to the combined virtues of deep tissue penetration,minimum photo-damage to biological samples,and low autofluorescence[2].On the other hand,organic solar cells(OSCs)play an important role in the increase of the energy demand.However,one of the disadvantages of OSCs is the lack of light-harvesting in the NIR region beyond 700 nm,behaving 43%of the total energy flux[3].

    Aza-borondipyrromethenes(aza-BODIPYs)in the dye family have long-wavelength absorption(λabs≥650 nm),high molar extinction coefficient,high fluorescent quantum yield,and narrow absorption and emission peaks[4].So,aza-BODIPY dyes can satisfy the essential requirements of an ideal NIR fluorophore.Therefore,aza-BODIPYs can be extensively applied to chemosensors[5,6],biological imaging[7–10],organic light-emitting[11],photosensitizers for photodynamic therapy[12–16]and other fluorescent functional dyes[17,18].Compared to the traditional BODIPY dye,by the introduction of an imine replacing a methene in BODIPY system to effectively narrow the HOMO-LUMO gap one gives aza-BODIPY that are well-known to be an attractive dye to achieve the NIR absorption[19,20].Importantly,π-πconjugated extension and freezing the rotation of the aryl groups in aza-BODIPY system are particularly promising and can effectively achieve the significant bathochromic-shift of absorption and emission bands into the NIR region[21,22].For instance,photoacoustic(PA)dyes,absorbing the NIR light to provide ultrasonic signals,can be probed at centimeter depths in tissues by fluorescence-based methods[23,24].Therefore,NIR absorbing(λabs>700 nm)aza-BODIPYs have received widespread attention over the last decade[25].

    Recently,our group summarized the three syntheticisms for aza-BODIPYs firstly(Scheme 1)[26].Killoranet al.have explored novel routes to synthesize aza-BODIPYs by 1,3-diaryl-4-nitrobutanone or 3-methyl-4-nitro-1-arylbutan-one(Scheme 1a),which can smoothly synthesize the symmetric/asymmetric construction of aza-BODIPYs widespreadly[27].Aryl-fused aza-BODIPYs reported by Donyaginaet al.were prepared in one-pot reaction by the reaction of an aryl magnesium bromide with a phthalonitrile(Scheme 1b)[28].Utilizing 2,4-diaryl pyrrole or aryl-fused 2,4-diaryl pyrrole,Zhao and Carreira showed an efficient route of symmetric/asymmetric aza-BODIPYs(Scheme 1c)[29].Compared to the product yields of O’Shea’s and Lukyanets’methods,the product yield of Carreira’s method is higher(beyond 40%).Moreover,compared to O’Shea’s molecular structures,Lukyanets’and Carreira’s molecular structures have larger conjugated surface of the parent molecules.In the past decade,our group focused on the design of aza-BODIPYs bearing the restricted rotation of the aryl groups in order to obtain NIR absorbing aza-BODIPYs.Very recently,Shiet al.reported a review paper from the perspective of rational structural design about bioapplications of micromolecule aza-BODIPYs derivated by O’Shea’s method[30].However,the design and synthesis of ring-fused aza-BODIPY dyes(λabs>700 nm)were not systematically introduced in those review papers.By the strategy of freezing the free rotation of the aryl groups,we concluded design and synthesis of ring-fused aza-BODIPYs in this review.We also described the detailed spectral and photophysical data to provide the meaningful guidance for further design of NIR organic fluorescent materials.

    Scheme 1.Synthetic methods of the aza-BODIPYs.

    Since the typical tetraphenyl-based aza-BODIPY 1 possessed a NIR absorption(λabs=650 nm)and emission spectra,the strategies by restricting the rotation of the aryl groups could directly achieve a longer wavelength(λabs>700 nm)for aza-BODIPYs(Scheme 2).Six kinds of synthetic strategies of the ring-fused aza-BODIPYs are shown in Schemes 2.For example,aza-BODIPY containing the phenyl-fused groups at 1,2/6,7-positions has a NIR absorbing spectra(λabs≥710 nm)(aza-BODIPY 3c)[28],and aza-BODIPY bearing the aryl-fused groups at 2,3/5,6-positions shows the maximum absorption beyond 700 nm(aza-BODIPY 18)[29].Moreover,the NIR fluorescent aza-BODIPY bearing all aryl-fused groups at 1,2,3/5,6,7-positions(aza-BODIPY 49)[31],even possesses a NIR absorbing spectra at 882 nm.The details are as follows.

    Scheme 2.Strategies for the NIR absorbing(λabs > 700 nm)aza-BODIPYs.

    2.Ring-fused aza-BODIPYs

    2.1.The upper aryl-fused aza-BODIPYs

    Fig.1.Molecular structures,absorption spectra and single crystal.(a)Structures of dyes 2a–3f.(b)Absorption spectra of 3a–f.(c)X-ray analysis of 3f.Reproduced with permission[34].Copyright 2011,John Wiley and Sons.

    Owing to the direct fusion of the upper aryl-group with the pyrrole of aza-BODIPY core to extendπ-πconjugation(patha,Scheme 2),the upper aryl-fused aza-BODIPYs possess longer wavelength absorption in NIR region.In comparison with the typical dye aza-BODIPY 1,the upper aryl-fused aza-BODIPYs were found to have an apparent advantage of the longer absorption wavelengths(Fig.1 and Table 1)[32,33].In 2011,Gresseret al.reported that the precursors 2a–f and aza-BODIPYs 3a–f were obtained by reduce reaction and complex reaction with Grignard reagent and BF3.OEt2(Fig.1)[34].The corresponding aza-BODIPYs 3 show a weak absorption in the visible region and the maxima absorption are bathochromic-shift into the NIR region beyond 790 nm,leading to a transparent window in the NIR region.Molecular orbital(MO)calculations clearly confirmed that the bathochromic-shift in aza-BODIPYs 3a–f was caused by an increase of the HOMO levels.Based on the X-ray analysis of 3f,the coplane of the aza-BODIPY core was confirmed.

    Viathe substitute of the fluorine atom in aza-BODIPY 3c(Fig.1),the functional aza-BODIPY derivatives 4 and 5 were developed to satisfy the practical applications of fluorescent dyes[32,34].Due to a highly thermal stability,CN-substituted aza-BODIPYs can be successfully purified by vacuum sublimation.This upgrades thin film of high purity and quality,suggesting them suitable as candidates for vacuum-processed NIR organic electronic devices(Fig.2b and Table 1).

    In 2017,Liet al.extended theπ-πconjugated structures by introducing the heterocyclic moieties and synthesized the NIR aza-BODIPYsviathe heterocyclic organolithium reagents(Fig.3 and Table 1)[33].Then,aza-BODIPYs were further modified to re-place one of the fluorine atoms with a cyanide which has the strong electron-withdrawing effect.As the NIR absorbing dyes,these dyes present high molar extinction coefficients(65,100–104,500 L mol?1cm?1)with absorption maxima in the NIR region between 762 and 797 nm.Based on the vacuum-deposited thin films,the absorption bands are red-shifted,peaking at 830–849 nm and broadened,giving the NIR donor materials for the vacuum-processed solar cells(Fig.3b).Cyclic voltammetry(CV)measurements and MO calculations indicate that the HOMO-LUMO orbital levels are suited as donor materials in the solar cells while combined with the C60compound as an acceptor.

    Table 1 Dyes and their optical properties.

    Fig.2.Molecular structures and absorption spectra.(a)Aza-BODIPYs with bearing the–CN group.(b)Absorption spectra of 3c,4 and 5 in CH2Cl2 solution and in film.Reproduced with permission[32].Copyright 2017,John Wiley and Sons.

    In 2020,Diaz-Rodriguezet al.prepared Cl-aza-BODIPY 9 and pH-aza-BODIPY 10(Fig.4)[35].Cl-aza-BODIPY scaffold 9 facilitates the substitutions at the boron atom to provide 10 by the treatment with phenyl Grignard reagent.pH-aza-BODIPY 10 was found to have a lower quantum yield,and this is mainly due to effi-cient non-radiative relaxation pathways offered by the free rotation of the numerous phenyl groups,particularly of the B-phenyl moieties.The maxima absorption of the pyrazine-fused aza-BODIPY 11 is 685 nm[36],which blue-shifts 24 nm,compared to that of 3c.The hypochromatic-shift is mainly attributed to the higher electronegativity of the nitrogen atoms in pyrazine,which enhances the HOMO-LUMO band gap.Aza-BODIPY 11 can be applied for a colorimetric and fluorometric sensor for NH4+(Fig.4 and Table 2).

    Fig.3.Molecular structures and absorption spectra.(a)Structures of dyes 6–8.(b)Absorption spectra of 6a–c(i),7a–c(ii)and 8a–c(iii)in CH2Cl2(1 × 10?5 mol/L)and(iv)the absorption spectra in solid state as 50 nm thin film on glass.Reproduced with permission[33].Copyright 2017,Royal Society of Chemistry.

    Fig.4.Structures of aza-BODIPYs 9–11.

    Table 2 Dyes 9–14 and their optical properties.

    In 2017,Zhenget al.showed the novel aza-BODIPY 12 from phthalonitrile int-BuOK solution in a facile manner on large scale(Fig.5)[37–39].The asymmetric aza-BODIPY 12 prompts the weak B-N bond breakage in the presence of TFA,giving a sharp color change from red to colorless(Fig.5c and Table 2).

    Table 3 Dyes 15–17 and their optical properties.

    Fig.5.Molecular structures,single crystal and absorption change.(a)Benzo-fused aza-BODIPY 12 and(b)X-ray analysis of dye 12.(c)Absorption spectra of aza-BODIPY 12 with TFA.Reproduced with permission[37].Copyright 2015,John Wiley and Sons.

    Fig.6.Structures of aza-BODIPYs 13 and 14.

    The introduction of 1,2-naphtho-fused rings to produce dye 13 leads to a 25 nm bathochromic-shift of the maxima absorption relative to that of the parent dye 3c(Fig.6 and Table 2),along with a slight change in other optical properties[40,41].Majumdaret al.reported a NIR absorbing acenaphthalene-fused aza-BODIPY dye 14,which broad absorption band at the red terminal of the visible region,providing possibilities for the application in the field of solar cells[42].

    2.2.The upper alkyl-fused aza-BODIPYs

    By the interlinkage of theσsingle bond(pathb,Scheme 2),a new substitution pattern of aza-BODIPYs were synthesized by the upper phenanthrene fusion by a key Pd-catalyzed intramolecular C–H activation reaction(Figs.7a and b)[31].Such phenanthrenefused aza-BODIPYs have strong red-shifted NIR absorptions and high fluorescent quantum yields(Table 3).Aza-BODIPY 15a has a planar structure of the phenanthrene-fused aza-BODIPY core by Xray analysis(Fig.7c).Aza-BODIPY 15a having low cytotoxicity,can stain the HepG2 cells,indicating a bright NIR bioimaging nature(Fig.7d and Table 3).

    Fig.7.Structures of(a)aza-BODIPY 15a and(b)aza-BODIPY 15b.(c)X-ray analysis of 15a.(d1)Fluorescence images of HepG2 cells stained with 15a(5.0 μmol/L)and DAPI(1.67 μg/mL),d2)DAPI fluorescence,(d3)15a fluorescence,and(d4)merged images of parts d2 and d3.Reproduced with permission[31].Copyright 2017,American Chemical Society.

    Fig.8.Structures of the upper phenyl-restricted aza-BODIPY 16 and 17.

    Zhouet al.reported a restricted aza-BODIPY 16 for the NO probe with enhanced photoacoustic properties(Fig.8),by utilizing the upper phenyl-fused pyrrole with the -CH2-CH2- alkyl chain for the first time(pathb,Scheme 2)[43].Compared to 3c,aza-BODIPY 16 formed by connecting the 1,7-positions of the phenyl groups with the 2,6-positions of aza-BODIPY by the alkyl chain can further improve the spectral properties.To restrict the free rotation of the phenyl group in 1,7-positions similar to the molecule 16,aza-BODIPY 17 with two phenyl groups linked by oligoethylene glycol chains was synthesized and applied for intracellular imaging for HepG2 cells(Fig.8 and Table 3)[44].

    2.3.The bottom alkyl-fused aza-BODIPYs

    Zhao and Carreira reported the novel NIR conformational restricted aza-BODIPYs 18–29(Fig.9)prepared by an efficient process in 2006 for the first time(pathc,Scheme 2)[29,45].By tunable substitution and restriction,the bottom alkyl-fused aza-BODIPY dyes have the long-wavelengh fluorescence at 700–900 nm,high fluorescence quantum yield,narrow full width at half maximum and remarkable photostability(Table 4)[46–51].The morpholine-containing aza-BODIPY 29 as a probe can detect the pH value.Additionally,aza-BODIPY with the sulfur atom 21 as a photosensitizer(PS)could generate the single oxygen.

    In 2018,Jianget al.prepared five-membered-ring fused aza-BODIPY 30(Fig.10)[52].Such aza-BODIPY has long absorption/emission wavelength,high molar extinction coefficient,and narrow excitation/emission peak.However,the planar structure of 30 could not obviously enhance the optical properties than these of six-membered-ring fused aza-BODIPY.In 2015,Jianget al.reported the symmetric pyrene-containing aza-BODIPY 31 in the NIR region(λabs=746 nm,λem=762 nm),based on the combined effect of the extension of theπ-πconjugation and the rigidization(Fig.10)[53].Restricting the free rotation and extending the conjugation by introducing the pyrenyl substituent in 31 effectively promote bathochromic-shift(110 nm),comparing to that of 1.The decrease in the HOMO-LUMO band gap for the lowest energy absorption bands was observed in the pyrene-fused aza-BODIPY(Table 4).

    Fig.9.Structures of aza-BODIPY dyes 18–29.

    Fig.10.Five-membered-ring fused aza-BODIPY 30 and pyrene-containing aza-BODIPY 31.

    In 2012,Jianget al.synthesized a turn-on aza-BODIPY-based NIR fluorescent probe 32(Fig.11)[54].The maxima absorption and emission of probe 32 were 717 nm(ε=48,000 L mol?1cm?1)and 734 nm,respectively.Dye 32 displayed weakly fluorescent(Φf=0.03)(the solid curve in Fig.11c).When adding cysteine,the maxima absorption and emission wavelengths were bathochromicshifted to 735 nm and 755 nm,respectively,and markable enhanced quantum yield(Φf=0.14)was achieved(Fig.11 and Table 4).

    In 2016,Jianget al.reported aza-BODIPY 34 containing the thiophene groups(Fig.12a)[55].Aza-BODIPY 34 has absorption/emission wavelengths of 760/782 nm in the NIR region.Aza-BODIPY 34 as a typical NIR chemical sensor is highly selective toHg2+.The mechanism of fluorescence quenching is the transfer of electrons from thiophene groups to the aza-BODIPY core by binding to Hg2+(Fig.12b and Table 4).

    Table 4 Dyes 18–40 and their optical properties.

    Fig.11.Reaction mechanism and spectral variation.(a)Reaction of aza-BODIPY with RSH.(b)Absorption and(c)Emission spectra(λex=670 nm)of probe 32 before(solid curve)and after(dashed curve)the addition of cysteine.Reproduced with permission[54].Copyright 2012,Royal Society of Chemistry.

    In 2014,the styryl-containing asymmetric aza-BODIPYs 35 by Jianget al.were prepared in the NIR region for the first time,which was bright enough for labeling the living cells for fluorescence imaging assays(Fig.13 and Table 4)[56].In short,the asymmetric aza-BODIPYs enrich the quantities and categories of aza-BODIPYs which can be used to meet the purpose of the application.Compared to symmetrical aza-BODIPYs,asymmetric aza-BODIPYs are not easily synthesized,with lower yield.

    In 2019,Zhouet al.developed aza-BODIPYs with the -CH2–CH2-alkyl chain and investigated their absorbance,fluorescence,and photoacoustic(PA)properties(Fig.14)[43,57].All conformationally restricted aza-BODIPYs 36–40 had the promotion in the molar absorptivity owing to the increased complanarity between the aza-BODIPY core and the aryl groups.MO studies indicated that the aryl groups at 3,5-positions in aza-BODIPY system efficiently enhance the HOMO levels than those at 1,7-positions(Fig.14).It was found that the free rotation of the aryl-groups was important to maximizingΔλ,while restriction of the aryl-groups was found to enhance the PA signal by increasing the extinction coefficient without promoting quantum yield markedly(Table 4).

    Fig.12.Spectral changes of(a)absorption spectrum of NIR fluorescent probe 34 with Hg2+.(b)Emission spectra of NIR fluorescent probe 34 with Hg2+.Reproduced with permission[55].Copyright 2015,Elsevier.

    Fig.13.Molecular structures and cell staining.(a)Styryl-containing aza-BODIPYs 35.(b)Image of living cells stained by dye 35b.Reproduced with permission[56].Copyright 2014,Royal Society of Chemistry.

    Fig.14.Restricted-aryl aza-BODIPY dyes 36–40.Reproduced with permission[43].Copyright 2019,American Chemical Society.

    Fig.15.Molecular structures and optical spectra.(a)Thiophenyl-fused aza-BODIPYs 41.(b)Normalized UV?vis and(c)fluorescence spectra of aza-BODIPYs 41a(black),41b(red),41c(blue),41d(magenta)in chloroform.Reproduced with permission[58].Copyright 2014,American Chemical Society(For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.).

    Table 5 Dyes 41a–41d and their optical properties.

    2.4.The bottom aryl-fused aza-BODIPYs

    To the direct fusion of the bottom aryl-group in 2,3/5,6-posions in aza-BODIPY system,in 2014 Kamkaewet al.reported a series of the bottom thiophenyl-fused aza-BODIPYs 41(pathd,Scheme 2)[44,58].Aza-BODIPYs 41 with the stronger and sharper absorption above 800 nm,absorbing weaker in the visible spectrum region from 380 nm to 700 nm were obviously observed(Fig.15 and Table 5).The excellent optical properties and simple synthesis of aza-BODIPYs 41 have led to further application in biotechnology and material science.

    2.5.B atom-fused aza-BODIPYs

    Linking the ortho-positions of the phenyl groups to the central atom B can establish aza-BODIPYs 43 and 44 with the six-member heterocyclic ring(pathe,Scheme 2,Fig.16)[59,60].Comparing to aza-BODIPY 42,the restricted dye 43 displays obviously absorption and emission bathochromic-shift of up to 86/58 nm(Table 6).The favorable emission wavelength and fluorescent quantum yield are strongly indicative of the future applications in biotechnology.

    Table 6 Dyes 42–46 and their optical properties.

    Table 7 Dyes 47–49 and their optical properties.

    Fig.16.B,O–chelated aza-BODIPYs.

    Fig.17.Molecular structures and cell staining.(a)Methylpyrrolyl-containing aza-BODIPYs.(b)Image of living cells stained by dye 46.Reproduced with permission[61].Copyright 2016,John Wiley and Sons.

    To excavate the steric hindrance effect similar to aza-BODIPYs 42–43 with the six-member heterocyclic ring,in 2016 Jianget al.reported aza-BODIPY dyes bearing 1-methyl-1H-pyrrolyl groups at 3,5-positions(Fig.17 and Table 6)[61].Aza-BODIPY 45 absorbs at 721 nm and emits at 751 nm,respectively.However,aza-BODIPY 46 has long wavelengths of absorption and emission(λabs=754 nm,λem=803 nm)than these of the corresponding aza-BODIPY 45.Comparing to aza-BODIPY 45,the rotation of the pyrrolic group in 46 is be slowed or prohibited,due to the steric hindrance between the pyrrolic group and the fluorine atom at the boron center.These reveal the favourable consistency with the discrepant optical contrast between the restricted aza-BODIPY caused by the B-O bonds and its precursor by Burgess and O’Sheaet al.Aza-BODIPY 45 could stand pH 12 and is more stable than dye 1,and was suitable for labeling the living cells for fluorescence imaging assay in the NIR region.

    2.6.All ring-fused aza-BODIPYs

    In 2018,Shenget al.synthesized NIR fluorescent aza-BODIPYs 47,48 and 49 containing the aryl-fused group at 1,2,3/5,6,7-positions using FeCl3(pathf,Scheme 2,Fig.18a)[62].These aza-BODIPYs have unique structures(Fig.18b)and excellent optical properties with the NIR absorption and emission,high extinction coefficient up to 4.5 × 105L mol?1cm?1and good photostability(Table 7).These dyes reveal their potential applications in the construction of organic fluorescent clusters based on annular fused nitrogen-hetero-specific groups for the first time.Theoretically,all aryl-fused structures have the longest absorption maxima,however the complex molecular design and difficult synthesis limit their application.Therefore,for all ring-fused aza-BODIPYs,more convenient synthesis method and extensive applications are forward to be explored.

    Fig.18.Molecular structures and single crystal.(a)Aza-BODIPYs 47,48 and 49.(b)X-ray crystal structures 47 and 49.Reproduced with permission[62].Copyright 2018,American Chemical Society.

    3.Summary

    Compared with the classical aza-BODIPY 1(λabs=650 nm),ring-fused aza-BODIPYs(Scheme 2)possess higher molar absorption coefficient,longer wavelength of absorption spectra(λabs>700 nm)in the NIR region.Aza-BODIPYs with the aryl-fused groups at 1,2/6,7-positions or 2,3/5,6-positions,aza-BODIPYs bearing the -CH2- link to the aryl group at the upper or bottom position,and B-fused aza-BODIPYs with the six-member heterocyclic ring at 4-position have the NIR absorbing spectra between 700 and 800 nm.Moreover,aza-BODIPYs bearing all ring-fused groups at 1,2,3/5,6,7-positions even possess an absorption maxima beyond 800 nm.The ring-fused aza-BODIPYs presented in this review are expected to give a useful guidance for further developing the efficient NIR organic fluorophores with suitable properties for biomedical and material applications and so forth.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(Nos.22078201,U1908202),“Chunhui Program” cooperative research project of Education Ministry,Liaoning BaiQianWan Talents Program,Serving local project of Education Department of Liaoning Province(No.LZ2020005)and the Distinguished Professor Project Liaoning Province(No.20183532).

    国产免费av片在线观看野外av| 最近在线观看免费完整版| 99久久精品国产亚洲精品| 日韩大尺度精品在线看网址| 黄色成人免费大全| 欧美黑人精品巨大| 国产高清有码在线观看视频 | 中文字幕另类日韩欧美亚洲嫩草| 欧美丝袜亚洲另类 | 午夜久久久在线观看| 国产伦在线观看视频一区| 国产午夜福利久久久久久| 国产主播在线观看一区二区| 国产精品 国内视频| 亚洲成a人片在线一区二区| 久久国产亚洲av麻豆专区| 国产精品一区二区精品视频观看| 免费av毛片视频| 人成视频在线观看免费观看| 法律面前人人平等表现在哪些方面| 亚洲专区字幕在线| 国产真人三级小视频在线观看| 啦啦啦 在线观看视频| 一区二区三区精品91| 国产精品永久免费网站| 一二三四在线观看免费中文在| 国产精品久久久av美女十八| 人成视频在线观看免费观看| 中文字幕最新亚洲高清| 精品国产亚洲在线| 日韩三级视频一区二区三区| 非洲黑人性xxxx精品又粗又长| 窝窝影院91人妻| 999精品在线视频| 岛国视频午夜一区免费看| 午夜福利在线观看吧| 亚洲国产中文字幕在线视频| 亚洲人成网站在线播放欧美日韩| 99精品欧美一区二区三区四区| 99riav亚洲国产免费| 日韩欧美在线二视频| 国产精品国产高清国产av| 久久国产精品男人的天堂亚洲| 香蕉丝袜av| 国产视频内射| 亚洲国产精品合色在线| 一a级毛片在线观看| 男女之事视频高清在线观看| 直男gayav资源| 婷婷精品国产亚洲av| 成人国产麻豆网| 久久韩国三级中文字幕| 99热这里只有精品一区| 小说图片视频综合网站| 日韩制服骚丝袜av| 日本一二三区视频观看| 亚洲丝袜综合中文字幕| 国产精品久久久久久亚洲av鲁大| 中国国产av一级| 午夜激情欧美在线| 午夜日韩欧美国产| 亚洲精品日韩av片在线观看| 国产精品久久视频播放| 欧美一级a爱片免费观看看| 亚洲电影在线观看av| 亚州av有码| 在现免费观看毛片| 小蜜桃在线观看免费完整版高清| 午夜福利18| 国内精品宾馆在线| 精品久久久久久久久久久久久| 亚洲经典国产精华液单| 日韩三级伦理在线观看| 国产美女午夜福利| 天天一区二区日本电影三级| 亚洲精品成人久久久久久| 观看美女的网站| 国产精品久久久久久久久免| 免费无遮挡裸体视频| 男女下面进入的视频免费午夜| 免费搜索国产男女视频| 日本一本二区三区精品| 我的老师免费观看完整版| 少妇的逼好多水| 乱系列少妇在线播放| 亚洲av中文字字幕乱码综合| 欧美日韩在线观看h| 综合色丁香网| 久久精品国产鲁丝片午夜精品| 女同久久另类99精品国产91| 国产男人的电影天堂91| 国产中年淑女户外野战色| 国产亚洲精品av在线| 欧美日本亚洲视频在线播放| av卡一久久| 久久久久久久久久久丰满| 精品不卡国产一区二区三区| 99热只有精品国产| 国产精品美女特级片免费视频播放器| 国产成人freesex在线 | 真人做人爱边吃奶动态| 日本色播在线视频| 午夜免费激情av| 欧美一级a爱片免费观看看| 22中文网久久字幕| 美女xxoo啪啪120秒动态图| 干丝袜人妻中文字幕| 欧美激情国产日韩精品一区| 久久久久久久久大av| 性色avwww在线观看| 国产大屁股一区二区在线视频| 亚洲中文字幕日韩| 狂野欧美激情性xxxx在线观看| 麻豆乱淫一区二区| 免费无遮挡裸体视频| 我的女老师完整版在线观看| 午夜爱爱视频在线播放| 日韩,欧美,国产一区二区三区 | 午夜福利18| 国产黄色小视频在线观看| 欧美另类亚洲清纯唯美| 1000部很黄的大片| 校园人妻丝袜中文字幕| 观看免费一级毛片| 婷婷精品国产亚洲av在线| 一个人免费在线观看电影| 欧美极品一区二区三区四区| .国产精品久久| 亚洲自偷自拍三级| 免费看日本二区| 亚洲av二区三区四区| 五月玫瑰六月丁香| 国产精品久久久久久久久免| 国产精品一区二区性色av| 色综合站精品国产| 欧美国产日韩亚洲一区| 亚洲精品亚洲一区二区| 夜夜爽天天搞| 国产精品电影一区二区三区| 欧美日韩精品成人综合77777| 亚洲五月天丁香| 99热这里只有是精品50| 亚洲成人精品中文字幕电影| 给我免费播放毛片高清在线观看| 人人妻人人看人人澡| 亚洲国产精品sss在线观看| 日韩av在线大香蕉| 成人欧美大片| 一区福利在线观看| 熟女人妻精品中文字幕| 亚洲最大成人中文| 日本色播在线视频| 精品免费久久久久久久清纯| 国产精品亚洲一级av第二区| 日产精品乱码卡一卡2卡三| 久久99热这里只有精品18| 精品乱码久久久久久99久播| 狠狠狠狠99中文字幕| 精品日产1卡2卡| 尾随美女入室| 无遮挡黄片免费观看| 99在线人妻在线中文字幕| 国产淫片久久久久久久久| 国产aⅴ精品一区二区三区波| 看免费成人av毛片| 深夜a级毛片| 免费搜索国产男女视频| 欧美极品一区二区三区四区| 欧美激情国产日韩精品一区| 搡老岳熟女国产| 日日干狠狠操夜夜爽| 又爽又黄无遮挡网站| 亚洲人成网站在线观看播放| 日韩,欧美,国产一区二区三区 | 亚洲av成人av| 嫩草影院入口| 国产精品伦人一区二区| 免费人成在线观看视频色| 熟女电影av网| 在线观看一区二区三区| 我要看日韩黄色一级片| 国产真实乱freesex| 亚洲第一电影网av| 国产毛片a区久久久久| 蜜臀久久99精品久久宅男| 国产黄a三级三级三级人| 国产精华一区二区三区| 久久久a久久爽久久v久久| 插逼视频在线观看| 午夜亚洲福利在线播放| 国产aⅴ精品一区二区三区波| 免费在线观看影片大全网站| 国产av不卡久久| 老司机影院成人| 亚洲精品456在线播放app| 淫妇啪啪啪对白视频| 夜夜看夜夜爽夜夜摸| 久久人人爽人人爽人人片va| 成人av在线播放网站| 亚洲精华国产精华液的使用体验 | 黑人高潮一二区| 日韩强制内射视频| 春色校园在线视频观看| 一级毛片aaaaaa免费看小| 三级国产精品欧美在线观看| 五月玫瑰六月丁香| 亚洲国产色片| 国产色爽女视频免费观看| 国内精品一区二区在线观看| 色在线成人网| 成人漫画全彩无遮挡| 麻豆av噜噜一区二区三区| 亚洲精华国产精华液的使用体验 | 免费在线观看影片大全网站| 亚洲av美国av| 亚洲人与动物交配视频| 久久久久久久亚洲中文字幕| 1000部很黄的大片| 亚洲av美国av| 亚洲欧美日韩高清专用| 欧美极品一区二区三区四区| 婷婷精品国产亚洲av| 久久国产乱子免费精品| 久久久久久久午夜电影| 亚洲欧美中文字幕日韩二区| 久久精品国产鲁丝片午夜精品| 伦理电影大哥的女人| 寂寞人妻少妇视频99o| 日本 av在线| 日本a在线网址| 性欧美人与动物交配| 久久久欧美国产精品| 国产精品亚洲一级av第二区| 久久亚洲精品不卡| 中国美女看黄片| 干丝袜人妻中文字幕| 亚洲欧美成人精品一区二区| 欧美日韩综合久久久久久| 精品人妻视频免费看| 国产一区二区三区在线臀色熟女| 国产亚洲av嫩草精品影院| 欧美极品一区二区三区四区| 免费人成在线观看视频色| 精品一区二区三区人妻视频| 我的女老师完整版在线观看| 日本一二三区视频观看| 成人综合一区亚洲| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美一区二区三区在线观看| 两个人视频免费观看高清| 女的被弄到高潮叫床怎么办| 在线国产一区二区在线| 你懂的网址亚洲精品在线观看 | 少妇的逼水好多| 寂寞人妻少妇视频99o| 亚洲熟妇中文字幕五十中出| 97热精品久久久久久| 九九爱精品视频在线观看| 亚洲中文日韩欧美视频| 国内少妇人妻偷人精品xxx网站| 免费不卡的大黄色大毛片视频在线观看 | 精品一区二区三区视频在线观看免费| 丰满的人妻完整版| 哪里可以看免费的av片| 午夜免费激情av| 99热这里只有是精品50| 日本黄大片高清| 变态另类丝袜制服| 99热6这里只有精品| 看免费成人av毛片| 国产成人91sexporn| 免费观看人在逋| 午夜免费激情av| 色av中文字幕| 伦理电影大哥的女人| 国产一区二区在线观看日韩| 亚洲最大成人av| 成人亚洲精品av一区二区| 亚洲av二区三区四区| 国产精品国产三级国产av玫瑰| 好男人在线观看高清免费视频| 久久久久久久久中文| 国产一区二区三区av在线 | 丝袜美腿在线中文| 日本三级黄在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产精品久久久久久精品电影| 亚洲av一区综合| 国产精品一二三区在线看| 在线播放无遮挡| 又粗又爽又猛毛片免费看| 女生性感内裤真人,穿戴方法视频| 麻豆国产av国片精品| 免费人成在线观看视频色| 欧美+亚洲+日韩+国产| 亚洲av第一区精品v没综合| 午夜福利成人在线免费观看| 亚洲一区二区三区色噜噜| 黄色视频,在线免费观看| 亚洲人成网站在线播| 亚洲电影在线观看av| 一级毛片电影观看 | 日日摸夜夜添夜夜添小说| 亚洲精品一区av在线观看| 六月丁香七月| 国产av麻豆久久久久久久| 美女免费视频网站| 久久久久国内视频| 男女那种视频在线观看| 波多野结衣高清无吗| 最近中文字幕高清免费大全6| 日本在线视频免费播放| 中文亚洲av片在线观看爽| 精品国产三级普通话版| 欧美xxxx黑人xx丫x性爽| 中文字幕人妻熟人妻熟丝袜美| 国产一级毛片七仙女欲春2| 国国产精品蜜臀av免费| 中文字幕精品亚洲无线码一区| 亚洲精华国产精华液的使用体验 | 欧美bdsm另类| 我的女老师完整版在线观看| 国产精品爽爽va在线观看网站| 亚洲一区高清亚洲精品| 伦精品一区二区三区| 少妇人妻一区二区三区视频| 99久久无色码亚洲精品果冻| 日本黄色片子视频| 一个人看的www免费观看视频| 精品乱码久久久久久99久播| 日本欧美国产在线视频| 亚洲国产精品国产精品| 悠悠久久av| 天堂√8在线中文| 成人鲁丝片一二三区免费| 高清午夜精品一区二区三区 | 亚洲精品粉嫩美女一区| 桃色一区二区三区在线观看| 久久久久国产精品人妻aⅴ院| 欧美精品国产亚洲| 国产69精品久久久久777片| 日本-黄色视频高清免费观看| 乱人视频在线观看| 国产精品久久电影中文字幕| 日本成人三级电影网站| 国产精品久久久久久精品电影| 老司机影院成人| 国产精品一区二区三区四区免费观看 | 日韩成人av中文字幕在线观看 | 免费av毛片视频| 国模一区二区三区四区视频| 大又大粗又爽又黄少妇毛片口| 我的老师免费观看完整版| 国产黄色小视频在线观看| 老司机福利观看| 成人亚洲欧美一区二区av| 亚洲国产欧美人成| 成熟少妇高潮喷水视频| 九九在线视频观看精品| 听说在线观看完整版免费高清| 午夜福利成人在线免费观看| 国内精品美女久久久久久| 美女xxoo啪啪120秒动态图| 又黄又爽又刺激的免费视频.| 日韩欧美精品v在线| 一区二区三区免费毛片| 青春草视频在线免费观看| 亚洲欧美日韩无卡精品| 久久久色成人| 免费看光身美女| 亚洲自偷自拍三级| 久久精品国产亚洲网站| 色综合色国产| 黑人高潮一二区| 国产单亲对白刺激| 成人毛片a级毛片在线播放| 国产精品爽爽va在线观看网站| 老司机福利观看| 国产男靠女视频免费网站| 男插女下体视频免费在线播放| 欧美高清成人免费视频www| 草草在线视频免费看| 成人av在线播放网站| 久久久久国产网址| 亚洲av成人av| 成人二区视频| 精品人妻偷拍中文字幕| 搡老妇女老女人老熟妇| 老女人水多毛片| 99国产极品粉嫩在线观看| 亚洲国产精品成人综合色| 欧美潮喷喷水| 精品一区二区免费观看| 国产91av在线免费观看| 搡老岳熟女国产| 免费看av在线观看网站| 免费看a级黄色片| 少妇熟女欧美另类| 大型黄色视频在线免费观看| 午夜福利视频1000在线观看| 欧美区成人在线视频| 国产精品久久视频播放| 国产白丝娇喘喷水9色精品| 嫩草影院新地址| 国产精品99久久久久久久久| 乱人视频在线观看| 欧美高清成人免费视频www| 色综合站精品国产| 国产精品野战在线观看| 国产av不卡久久| 人妻丰满熟妇av一区二区三区| 美女黄网站色视频| 特大巨黑吊av在线直播| 国产精品久久久久久久电影| 日韩制服骚丝袜av| 国产淫片久久久久久久久| 搡老熟女国产l中国老女人| 国产一级毛片七仙女欲春2| 欧美性感艳星| 日韩大尺度精品在线看网址| 日本 av在线| 欧美丝袜亚洲另类| 一级黄色大片毛片| 一级毛片久久久久久久久女| 99热这里只有是精品50| 婷婷色综合大香蕉| 国产真实乱freesex| 小说图片视频综合网站| 丝袜美腿在线中文| 夜夜看夜夜爽夜夜摸| 精品一区二区三区视频在线| av在线观看视频网站免费| 免费看日本二区| 久久这里只有精品中国| 亚洲欧美日韩高清在线视频| 舔av片在线| 伊人久久精品亚洲午夜| 久久午夜福利片| 亚洲第一区二区三区不卡| 成人性生交大片免费视频hd| 亚洲美女黄片视频| 直男gayav资源| 五月玫瑰六月丁香| 欧美日本视频| 丝袜美腿在线中文| 国产成人精品久久久久久| 国产美女午夜福利| av国产免费在线观看| 99久久成人亚洲精品观看| 深夜精品福利| 亚洲精华国产精华液的使用体验 | 最新在线观看一区二区三区| 久久久久国产精品人妻aⅴ院| 六月丁香七月| 国产女主播在线喷水免费视频网站 | 亚洲欧美日韩东京热| 国产精品久久久久久av不卡| 我的老师免费观看完整版| 久久久久性生活片| 国产高清激情床上av| 亚洲av成人精品一区久久| 亚洲精品国产成人久久av| 日韩,欧美,国产一区二区三区 | 大型黄色视频在线免费观看| 中出人妻视频一区二区| 亚洲一级一片aⅴ在线观看| 天堂av国产一区二区熟女人妻| 免费观看人在逋| 欧美最新免费一区二区三区| 熟女人妻精品中文字幕| 亚洲经典国产精华液单| 日本一二三区视频观看| 人人妻,人人澡人人爽秒播| 亚洲av不卡在线观看| 精品乱码久久久久久99久播| 97超碰精品成人国产| 免费人成视频x8x8入口观看| 亚洲一区二区三区色噜噜| a级毛色黄片| 亚洲欧美成人综合另类久久久 | 国内久久婷婷六月综合欲色啪| 日本精品一区二区三区蜜桃| 国产伦在线观看视频一区| 亚洲五月天丁香| 成人毛片a级毛片在线播放| 久久精品国产99精品国产亚洲性色| 亚洲美女黄片视频| 久久99热6这里只有精品| 亚洲精品一区av在线观看| 亚洲自偷自拍三级| 69人妻影院| 看十八女毛片水多多多| 91久久精品国产一区二区三区| 黑人高潮一二区| 国产精品一区www在线观看| 国产女主播在线喷水免费视频网站 | 91狼人影院| videossex国产| 一进一出抽搐gif免费好疼| 国产精品一二三区在线看| 精品一区二区免费观看| 午夜免费男女啪啪视频观看 | 国产高清视频在线播放一区| 女的被弄到高潮叫床怎么办| 长腿黑丝高跟| 亚洲国产精品合色在线| 亚洲欧美日韩高清专用| 97人妻精品一区二区三区麻豆| 真实男女啪啪啪动态图| 免费大片18禁| 亚洲第一区二区三区不卡| 色视频www国产| 久久99热这里只有精品18| 真人做人爱边吃奶动态| 欧美成人a在线观看| 在线观看av片永久免费下载| 免费黄网站久久成人精品| 99在线人妻在线中文字幕| 日本熟妇午夜| 亚洲国产精品成人久久小说 | 男女视频在线观看网站免费| 成人av一区二区三区在线看| 女的被弄到高潮叫床怎么办| 九色成人免费人妻av| 黄色配什么色好看| 国产片特级美女逼逼视频| av国产免费在线观看| 亚洲欧美日韩高清在线视频| 91在线精品国自产拍蜜月| 国产精品一区二区性色av| 91精品国产九色| 国产精品一区二区三区四区久久| 精品少妇黑人巨大在线播放 | 在线观看午夜福利视频| 日本五十路高清| 亚洲天堂国产精品一区在线| 黄色视频,在线免费观看| 熟女电影av网| 性欧美人与动物交配| 亚洲自偷自拍三级| 日本熟妇午夜| 在线免费十八禁| 婷婷色综合大香蕉| 美女被艹到高潮喷水动态| 免费搜索国产男女视频| 日本免费一区二区三区高清不卡| 亚洲精品乱码久久久v下载方式| 久久久精品94久久精品| 成人亚洲欧美一区二区av| a级毛色黄片| 久久久久久久久久黄片| 天天一区二区日本电影三级| 成人性生交大片免费视频hd| 婷婷六月久久综合丁香| 91在线观看av| 一本久久中文字幕| 91av网一区二区| 中文字幕久久专区| 亚洲国产精品成人综合色| 91午夜精品亚洲一区二区三区| 色尼玛亚洲综合影院| 国产一区二区三区在线臀色熟女| 全区人妻精品视频| 老司机午夜福利在线观看视频| 亚洲熟妇中文字幕五十中出| 欧美不卡视频在线免费观看| 99热6这里只有精品| 免费电影在线观看免费观看| 精品少妇黑人巨大在线播放 | 国产亚洲av嫩草精品影院| 国产午夜精品久久久久久一区二区三区 | 全区人妻精品视频| 一级av片app| 哪里可以看免费的av片| 波野结衣二区三区在线| 久久99热6这里只有精品| 精品午夜福利在线看| 老熟妇乱子伦视频在线观看| 一级黄片播放器| 久久精品国产清高在天天线| 久久精品国产亚洲av涩爱 | 国产精品人妻久久久久久| 99riav亚洲国产免费| 成人三级黄色视频| 日韩一区二区视频免费看| 97热精品久久久久久| 国产一区二区三区av在线 | 97碰自拍视频| 十八禁国产超污无遮挡网站| 嫩草影院新地址| 大型黄色视频在线免费观看| 国产aⅴ精品一区二区三区波| 亚洲av第一区精品v没综合| 日韩人妻高清精品专区| 老女人水多毛片| 欧美zozozo另类| av天堂在线播放| 成人综合一区亚洲| 18禁在线无遮挡免费观看视频 | 老女人水多毛片| av视频在线观看入口| 午夜福利在线在线| 国产色婷婷99| videossex国产| 国产 一区精品| 国产伦精品一区二区三区四那| 性色avwww在线观看| eeuss影院久久| 免费av观看视频| 男人和女人高潮做爰伦理| 日韩精品有码人妻一区| 国产亚洲精品av在线| av女优亚洲男人天堂| 亚洲av.av天堂| 黄色配什么色好看|