• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Selective N-terminal modification of peptides and proteins:Recent progresses and applications

    2022-03-14 09:26:58HongfeiJiangWujunChenJieWangRenshuaiZhang
    Chinese Chemical Letters 2022年1期

    Hongfei Jiang,Wujun Chen,Jie Wang,Renshuai Zhang

    The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute,Qingdao 266071,China

    ABSTRACT Numerous strategies for linking desired chemical probes with target peptides and proteins have been developed and applied in the field of biological chemistry.Approaches for site-specific modification of native amino acid residues in test tubes and biological contexts represent novel biological tools for understanding the role of peptides and proteins.Selective N-terminal modification strategies have been broadly studied especially in the last 10 years,as N-terminal positions are typically solvent exposed and provide chemically distinct sites for many peptide and protein targets,making N terminus distinct from other functional groups.A growing number of chemical and enzymatic techniques have been developed to modify N-terminal amino acids,and those techniques have the potential in the fields of medicine,basic research and applied materials science.This review focuses on appraising modification methodologies with the potential for biological applications from the past 10 years.

    Keywords:N-terminal modification N-terminal ligation Terminus modification Peptide modification Protein modification

    1.Introduction

    Selective peptide and protein modification techniques are gaining great significance in the fields of medical diagnostics[1],biopharmaceutical conjugates(e.g.,PEGylation,lipidation,and antibody–drug conjugates)[2],bioimaging[3],and material sciences[4].Selective modification strategies targeting the side chain of lysine[5–7]and cysteine[8–11]are widely studied,thus the preparation of high-quality and well-defined bioconjugates mainly rely on those strategies up to now.Tyrosine modification has been achieved by using chemical reagents targeting the aromatic hydroxyl group or phenyl ring on the side chain and metal catalysts are widely used to increase their selectivity[12-15].Histidine and tryptophan can be selectively modifiedviavisible-light-promoted C?H alkylation method and biomimetic electron transfer process separately[16,17].Lin and Taylor’s studies for selective methionine modification are very promising,and they used oxaziridine-based reagents to produce protein conjugates that can serve as a platform for the development of visible-light-mediated bioorthogonal protein functionalization processes and enable precise addition of payloads to proteins for identification of hyperreactive methionine residues in whole proteomes[18,19].Those in-chain residue modification techniques enable a marked increase in their functional diversity and structure analysis and approaches for termini modification are still required to expand the protein functionalization toolbox.

    N terminus and C terminus modification techniques also aroused widespread interests of researchers.Terminus modifications of proteins have the potential to be more generally applicable,since the majority of protein termini are accessible and have chemical environments distinct from remainder of the protein.A significant advantage of terminal amino acid residues is they are structurally unique in peptides and proteins and single-chain peptides and proteins possess only one N- and C-terminal residue,moreover,they usually have no vital impact on their biological activities,and the widely used protein tags for protein purification and structure characterization are located in protein N or C terminus[20].Up to now,C terminus modification techniques are very few,visible-light-mediated single-electron transfer(SET)method reported by the MacMillan group to perform decarboxylative alkylation at C-terminal residues for selective C terminus modification is very appealing[21].By contrast,there are quite a few choices for selective N terminus modification[22].Theα-amine group of N terminus stands out as a uniquely reactive site,and they are typically solvent exposed and provide chemically distinct sites for many protein targets.A large number of site-specific modification techniques targeting proteinα-amine position with applications in chemical biology.This review focuses on appraising modification methodologies from about the past 10 years as well as novel bi-ological applications of the strategies.Table 1 gives an overview of selective N-terminal modification method components and key features of them.

    Table 1 Overview of N-terminal modification method components and key features.

    Table 2 Summary of partial N-terminal modification strategies’conversions of 20 N-terminal amino acid residues.

    2.Selective N-terminal modification under catalyst-free conditions

    When considering N-terminal modification,the first point is how to make a distinction between N-terminallα-amine and inchain lysineε-amine.It is gratifying that the N-terminalα-amine has pKa~6–8,while the in-chain lysineε-amine has pKa~10,which makes the different reactivity of them[23].Consequently,by careful control of solvent pH,the N-terminalα-amine will be more nucleophilic than lysineε-amine.In addition,N-terminalα-amine and in-chain lysineε-amine are structurally different,therefore,Nterminalα-amine can be selectively modified by unique side chain participation strategies.

    N-Hydroxysuccinimide(NHS)esters directly react with Nterminal amine under acidic conditions(pH 4.5–6.5)to form amide bonds,however,the conversion and selectivity are not satisfactory.Ketenes are discovered to be much more efficient than NHS esters for selective N-terminal modification in the aspects of N-terminal selectivity(500 equiv.ketenes,12 h,37 °C,pH 6.3–9.2,Fig.1A),and ketenes can react with N-terminalα-amine under mild condition through acylation of the amino group[24].Proteins including insulin,lysozyme,RNaseA,and a therapeutic protein BCArg are selectively N-terminally modified at room temperature using ketenes.Whereas,the ketene strategy only has moderate conversions(<50% for 17 N-terminal amino acid residues),ketenes can be further modified to improve their universal N-terminal amino acid residues compatibility.

    Oxidation of peptides and proteins is a complex biological process involving the attack of reactive oxygen species on amino acid residues.The use of oxidizing agents for modification of peptides and proteins still remains limited due to the formation of complicated oxidized productsviauncontrolled oxidation.Through screening of common bench-top oxidizing reagents,Wong and co-workers discovered an efficient method using oxone(2KHSO5·KHSO4·K2SO4)as the convenient and chemoselective reagent for selective N-terminalα-amine modification through an oxime formation–exchange reaction(2 equiv.oxones,1 h,25 °C,pH 8.3,40%–99% conversion,Fig.1B).The technique uses oxone for selective oxidation of N-terminal amine of peptides to oximes followed by transoximation withO-substituted hydroxylamines[25].However,oxones also oxidize thioether group of methionine,thiol group of cysteine and indole of tryptophan,thus this strategy has great limitations for protein N-terminal modification.In addition,the Wong group has reported N-terminal modification of peptides and proteins by using 2-ethynylbenzaldehydes(2EBAs)for the production of well defined bioconjugates with moderate to good conversions[26].A therapeutic recombinant Bacillus caldovelox arginase mutant(BCArg mutant),ribonuclease A and lysozyme are N-terminally modified using alkyne- and fluorescein-linked 2EBA(20 equiv.2EBAs,16 h,37 °C,pH 6.5–7.4,10%–84% conversion,Fig.1C).

    Francis and co-workers reported a simple,one-step method suitable for modifying single N-terminalα-amine on a broad scope of structurally and chemically varied proteins by use of 2-pyridinecarboxyaldehydes(400 equiv.2PCAs,16 h,37 °C,pH 7.5,33%–99% conversion,Fig.1D)[27].This method has become a widely used technique in the field of chemical biology for selective N-terminal amine ligation.Notably,a small amount(<10%)of a second addition is seen in the case of the N-terminal glycine peptide.Several modified 2PCAs have been reported and applied for selective N-terminus modification[28–31].

    Francis and co-workers applied the 2PCA strategy to intracellular protein delivery.2PCA linked to amphiphilic polymer can react with N-terminal amine under physical condition for siteselectively attaching amphiphilic polymer to the N-terminal positions of proteins[32].This ligation is simple under mild,aqueous conditions with no required genetic engineering of the proteins.Polymer?protein conjugates can be delivered into the cytosol,likely through a membrane fusion mechanism(Fig.2A).The internalization of the GFP?polymer conjugates is investigated using the HeLa cell line to test the protein?polymer intracellular uptake efficiency.Confocal microscopy analysis demonstrates that the GFP molecules conjugated to amphiphilic polymer are efficiently delivered into the cytosolic compartment,whereas GFP alone is not detected(Fig.2B).

    Mass spectrometry sensitive probes are of great significance to their biological applications[33].The azolation strategy for siteand chemo-selective labeling of N-terminus of proteins(50 equiv.azolines,3 h,37 °C,pH 7.5°,50%–99% conversion,Fig.1E)is able to enhance the mass detection sensitivity of the bioconjugates.Azoles as mass sensitivity probes can selectively modify N-terminal amine under physiological conditions[34].The conversions of azolation strategy are at moderate to excellent levels(50%–99%).Current strategies using chemical tag to enhance protein detection by multiple orders would lead to the unambiguous analysis of the resulting bioconjugates[35],whereas,azolation presented a singlestep,versatile strategy for the selective modification of protein Ntermini with mass boosters.

    Fig.1.Selective modification of protein N termini under catalyst-free conditions.Methods include acylation using ketenes(A);condensation with 2-ethynylbenzaldehydes(2EBAs)(B);oxidation with(i)oxone followed by(ii)oxime exchange by functionalized hydroxylamines(C);imidazolidinone formation with 2-pyridinecarboxaldehyde(2PCA)derivatives(D);azolation with azolines(E).

    3.Chemical catalysts driven N-terminal modification

    Catalyst-triggered,especially metal-catalyzed or metal-directed,reactions are widely applied in chemoselective peptides and proteins modification[36–38].Cross-coupling methods,typically mediated by transition metal complexes,are becoming important tools for N–C bond formation and they have become an interesting approach for selective N-terminal amine modification of peptides and proteins.Plenty of chemo-selective approaches targeting cysteine[12,39]or tyrosine[40,41]with a variety of transition metal catalysts have been developed.Whereas,cross-coupling at amine groups in native peptides and proteins are limited.Ball and co-workers described a copper-mediated amine arylation method with the utilization of boronic acid reagents bearing certaino-electron withdrawing groups for selective N-terminalαamine modification of polypeptides under mild conditions in primarily aqueous solution(20 equiv.boronic acid reagents,0.5 equiv.Cu(OAc)2,18 h,37 °C,pH 7.0,<5%–97% conversion,Fig.3A).The method shows complete selectivity for N-terminus in the presence of lysine side chains[42],however,20%–30% organic solvents(acetonitrile,tetrafluoroethylene or DMSO)are required to facilitate the dissolution of boronic acid reagents,which is adverse for its protein labeling applications.Hung-Chieh Chou and co-workers applied reductive alkylation reaction in selective N-terminal modification(2 equiv.aldehydes,5 equiv.NaBH3CN,24 h,37 °C,pH 6.1–6.2,30%–95% conversion,Fig.3B).The scope of the aldehydes are broadly expanded to various aldehyde derivatives including 2PCAs,benzaldehyde derivatives,alkylaldehyde derivatives,even glucose and maltose[43].NaBH3CN mediated reductive alkylation technique for peptides N-terminal modification has been discovered to produce 1%–18% di-modified peptides(both on N-terminus)as byproduct,whereas the N-terminal selectivity is encouraging(>99%).

    4.Enzymes catalyzed N-terminal modification

    Enzymatic protein labeling techniques are powerful tools for site-specific peptides and proteins modification.While chemical reaction directed peptides and proteins modification methods often yield heterogeneously modified products,enzymatic protein labeling techniques are highly efficient and produce single products under mild reaction conditions.Significant progresses have been made during the last few years in the field of enzymatic protein N-terminal labeling with broad applications[44–48].

    Fig.2.2PCA-polymer strategy for protein delivery.(A)Schematic illustration of protein?polymer conjugate preparation using 2PCA for N-terminal modification.(B)Confocal microscopy images are shown for HeLa cells after exposure to GFP or GFP?polymer conjugates,nuclear and cytoplasmic stains are performed on fixed cells using DAPI and ActinRed,respectively.Scale bars represent 20 μm.Reproduced with permission[32].Copyright 2019,American Chemical Society.

    Fig.3.Selective modification of protein N termini using chemical catalysts.Methods include copper-mediated peptide arylation with boronic acids(A),alkylation by reductive amination with aldehydes(B).

    Sortase A(SrtA),a transpeptidase fromStaphylococcus aureus,can recognize the LPXTG(known as a sortag)sequence and cleave the amide bond between threonine and glycine residues,forming a new threonine-glycine peptide bond with N-terminal amine of an oligoglycine-terminating peptide[49–51].Sortase A has been broadly applied in the N-terminal modification of proteins.Several Sortase A variants are commercially available.While most of sortase classes showed negligible activityin vitro,Sortase A can be used in the non-natural environment.Sortase A variants R159G and D165Q/D186G/K196V have increased resistance(2.2-fold)and catalytic efficiency(6.3-fold)in 45%(v/v)dimethylsulfoxide(0.01 equiv.SortaseA,5 equiv.substrate,14 h,25 °C,cosolvents,Fig.4A).Moreover,D165Q/D186G/K196V also show increased activity for the conjugation of hydrophobic peptides in normal organic co-solvents(ethanol,methanol,ACN,DMF,and DMSO)[52].Low catalytic efficiency represents major disadvantage of SortaseA,hence,comparably high enzyme concentrations are required.Ca2+-independent Sortase A variants are prepared with obviously enhanced(up to140-fold)catalytic activity[51].Immobilized sortases are developed and utilized to further improve the catalytic efficiency,and they enable large scale reactions and are recyclable.Francis and co-workers reported a proline variant of the evolved sortase A named SrtA 7M which is labeled with lithocholic acid(LA)at N-terminal,LA exhibits strong binding toβ-cyclodextrin(β-CD)for its further immobilization on resin.The SrtA 7M-resin conjugate is scalable and retained full enzymatic activity even after multiple rounds of recycling[53].

    Fig.4.Enzyme-mediated N-terminal modification.(A)Sortase A(SrtA)-catalyzed transpeptidation of an LPXTG peptide derivative for attachment to an H2N-(G)n-protein.(B)Attachment of a glycolate ester substrate mediated by subtiligase.(C)N-terminal acetylation with an Asn/Asp-thiodepsipeptide using butelase 1.

    Fig.5.Subtiligase-catalyzed strategy for rAb bioconjugation.(A)Azide-bearing peptide ester reacted with DBCOs,providing a convenient route for modular protein labeling.(B)ESI mass spectra of DBCO-biotin-rAb.(C)ESI mass spectra of DBCO-Cy3-rAb.(D)Cy3-α-GFP rAb staining of a HEK293T cell line modified for Dox-inducible expression of cell surface GFP.Reproduced with permission[57].Copyright 2017,Springer Nature.

    Fig.6.Modification of specific amino acids:N-terminal cysteine(NCys).(A)Methods include(from top)nucleobase-involved native chemical ligation(NbCL)with oxanine nucleobases;TzB(thiazolidine boronate)-mediated conjugation;NHS-ester transformation with mercaptoethanesulfonate(MESNA)modified NHS esters;2-aryl-4,5-dihydrothiazole(ADT)formation with 2-((alkylthio)(aryl)methylene)malononitriles(TAMMs).(B)NCL-based ligation using the(Lys)6 tag methodology.

    Fig.7.Modification of specific amino acids:(A)N-terminal proline and(B)N-terminal glycine.(A)Methods include(from top)tyrosinase mediated site-selective oxidative coupling reactions for the modification of N-terminal proline using phenols;secondary amine selective Petasis(SASP)reaction for selective bioconjugation at N-terminal proline with aldehydes,(B)selective N-terminal glycine modification using aldehydes through the formation of aminoalcohol.

    N-Myristoyltransferase(NMT)is widely spread in eukaryotes that catalyzes the co- and post-translational,irreversible attachment of myristic acid to protein N-terminal amine.However,recent work demonstrates that NMT is also a lysine myristoyltransferase[54]indicating that NMT strategy is not a highly N-terminal selective modification technique.Worthwhile,subtiligase mediated strategy is an appealing method for N-terminal amine modification because ligation occurs with complete chemoselectivity for the peptides and proteins N terminus over lysineε-amines without the requirement for a particular amino acid sequence tag[55–57].The efficiency of ligation depends mainly on the accessibility and ability of subtiligase substrate N-terminal sequence to be modified(Fig.4B).Introduction of extended N-terminal sequences,for example AFA sequence,has been employed as a useful strategy for achieving high modification conversions and short reaction time[58].

    Wells and co-workers have identified a family of 72 mutant subtiligases with N-terminal modification activity and characterized the ligation efficiency for more than 25,000 enzyme-substrate pairs of peptides.The subtiligase specificity mutant Y217K is applied for high-yield protein bioconjugation to recombinant antibodies(rAbs).A bioconjugation protocol by using subtiligase to incorporate a bio-orthogonal azide group at rAb N-terminus has been developed(Fig.5A).This azide can be modified through click chemistry with dibenzyocyclooctyne(DBCO)derivatives(biotin-DBCO,Cy3-DBCOetc.).The target modified rAbs,DBCO-biotin-rAb and DBCO-Cy3-rAb have been detected by ESI mass(Figs.5B and C).The strategy also has utility in biological context,a HEK-293T cell line is modified for doxycycline(Dox)-inducible expression of cell-surface GFP in combination with Cy3–anti-GFP antibody(α-GFP).The Dox-induced cells are observed Cy3–α-GFP binding and colocalization of the Cy3 and GFP signals.Whereas,no binding of Cy3–α-GFP is observed in un-induced cells(Fig.5D).These results indicate that subtiligase-catalyzed N-terminal modification strategy can be applied in incorporating probes into proteins without affecting their biological functions[57].

    Butelase 1 belongs to the C13 subfamily of asparaginyl endopeptidase(AEP)and has been applied as a peptide and protein transpeptidation catalyst,it acts as a ligase under nearneutral conditions to catalyze amide bond formation.Butelase 1 catalyzes the ligation of N-terminal amine and C-terminal Asx(Asp and Asn)-His-Val-motif forming an Asx-Xaa-peptide bond either intra- or inter-molecularly(Fig.4C)[59,60].Butelase 1 has broad tolerance for nearly any N-terminal amino acids Xaa,it is a highly efficient Asx-Xaa-ligase with a catalytic efficiency of up to 1.34 × 106L mol?1s?1[61]and have utility in live cell labeling[62].James P.Tam and co-workers demonstrate an improved asparaginyl-ligase-catalyzed transpeptidation strategy,metal-complexation based strategy,to increase AEP(including butelase 1)catalyzed N-terminal modification conversions[63].A major obstacle of butelase 1 is its availability,currently,butelase 1 can only be obtained from C.ternateaviaa laborious extraction and theyield is 5 mg/kg of fresh plant.While the recombinant expression of butelase 1 has not been successful[46].

    5.Selective N-terminal modification on specific amino acid residues

    The unique labeling strategies for specific amino acid residues including serine,threonine,tryptophan,cysteine,proline and glycine at protein N-terminal positions have been reported[22].While very few studies focus on N-terminal serine,threonine and tryptophan modification recently,quite a few novel strategies for selective N-terminal cysteine,proline and glycine modification have been reported.

    Biocompatible strategies for selective N-terminal cysteine modification are sought after by researchers.Native chemical ligation(NCL)[64–66],hydrazide-based native chemical ligation[67–69]as well as the 2-cyanobenzothiazole(CBT)[70,71]condensation reactions represent the major strategies for N-terminal cysteine modification previously.Unfortunately,these reactions are less ideal for biological applications due to slow kinetics and/or suboptimal N-terminal cysteine selectivity.Pack and co-workers report nucleobase-involved native chemical ligation(NbCL)that allows a site-specific oligonucleotide–peptide conjugationviaa new S–N acyl transfer reaction between an oxanine nucleobase and Nterminal cysteine(Fig.6A-a).NbCL(2 h)strategy is much faster than NCL strategy(48 h),however,NbCL strategy is performed at 310 K,which should greatly limit its applications especially on proteins[72].Alternatively,2-formylphenylboronic acid(2FPBA)mediated N-terminal cysteine modification strategies with the production of a thiazolidino boronate(TzB)complex are reported by the Gao group[73]and the Gois group[74]independently in 2016.However,the TzB formation is dynamic,with the conjugate dissociating over an hour.Recently,the Gao group further optimized this strategy through a TzB-mediated acylation reaction of N-terminal cysteine that gives rise to stable conjugates while retaining the fast kinetics and high selectivity(Fig.6A-b)[75].NHS-esters are known to have applications for peptide and protein amine group labeling,however,selectivity of NHS-esters is the principle problem.Cole and co-workers have discovered that commercially available NHS ester can be efficiently transesterified with mercaptoethanesulfonate(MESNA).This newly modified NHSester can then be used to specifically label N-terminal amine of recombinant proteins possessing free N-cysteine residues(Fig.6A-c)[76].2-((Alkylthio)(aryl)methylene)malononitrile(TAMM)has been reported to react specifically and rapidly with the N-terminal cysteine under biocompatible conditions through a unique mechanism involving thiol-vinyl sulfide exchange,cyclization,and elimination of dicyanomethanide to form 2-aryl-4,5-dihydrothiazole(ADT)as a stable unit(Fig.6A-d).TAMM is also applied to cyclize peptides and proteins containing both an N-terminal and an internal cysteine residue to generate phage-based ADT-cyclic peptide libraries without reducing phage infectivity[77].Poor solubility of peptide segments is an obvious bottleneck for the chemical synthesis of proteins using NCL.Aucagne and co-workers developed a(Lys)6tag mediated methodology based on the introduction of an oligolysine tag through a disulfide linkage with the N-terminal cysteine residue to overcome solubility challenges(Fig.6B).(Lys)6tag can be cleaved within seconds under NCL conditions to generatein situthe reactive free cysteine for the later ligation reaction[78].

    Different from other N-terminal residues,the N-terminal proline has a secondary amine group,this feature provides chances for selective N-terminal proline amine modification.Tyrosinase enzyme isolated from Agaricus bisporus(abTYR)can oxidize phenols or catechols to highly reactiveo-quinone intermediates that then couple to N-terminal proline residues in high yield under the air condition(Fig.7A-a)[79].K3Fe(CN)6can replace abTYR as a tool for coupling of ortho-aminophenols and N-terminal proline[80],however,free thiols of proteinc ysteines also react rapidly withortho-aminophenols and should therefore be protected before the modification.In addition,a secondary amine selective Petasis(SASP)bioconjugation method involving a Petasis threecomponent coupling reaction between proline amine,aldehyde and organoboron reagent has been developed(Fig.7A-b).The key advantage of the SASP method includes its high chemoselective and stereoselective(>99% de)nature,moreover,it affords labeled proteins in one pot with broad substrate scope[81].In addition,aldehydes have been discovered to have application in the site-specificlabeling of natural or easy-to-engineer N-terminus glycine in proteins with remarkable efficiency and selectivity(Fig.7B).The strategy generates a latent nucleophile from N-terminus imine which can react with aldehydes to deliver aminoalcohols under physiological conditions.The mild reaction conditions do not alter the structure and function of the insulin[82].

    6.Labeling efficiency(conversion)screening on N-terminal amino acid residues

    N-Terminalα-amine pKa(6–8)varies from amino acid residues,indicating the different basicity as well as the reactivity.This characteristic results in the N-terminal modification conversion to differ from N-terminal amino acid residues.Table 2 summarized the conversion of partial N-terminal modification strategies in this review.Among the 20 amino acid residues,the N-terminal Gln- and Glu- tend to have relatively higher conversions(average conversion of Gln- and Glu- are 95% and 83% separately)and N-terminalαamino group selectivity,while N-terminal Thr- and Trp- are more difficult to be modified(average conversion of Thr- and Trp- are 54.3% and 54.5% separately).

    7.Conclusion and outlook

    Site-specific modification of N-terminus has been attracting significant attention.An increasing number of site-specific modification approaches targeting theα-amine of the N terminus for applications in chemical biology have been developed.However,there is still room for improvement in the existing N-terminal modification strategies.As compared to other bioconjugation strategies,the specific impact of N-terminal modification strategies is their ability to functionalize a wide range of proteins at a single location,which remains challenging in other instances.Alternatively,a single time modification of protein N-terminal location leads to protein less modified especially in protein fluorescence labeling studies,more powerful strategies similar to N-terminal PEGylation and polymerization can represent new aspects of N-terminal modification.Novel N-terminus modification strategies among which the bioconjugation reaction is fast,selective,operates at low-micromolar concentrations and is complementary to existing bioconjugation strategies should be considered for deeper investigation.Another consideration is the accessibility of the reagents used for the Ntermini modification.Reagents that are commercially available or can be prepared in simple synthetic steps from commercially available building blocks will have a great vogue.Continued efforts are poised to develop more powerful techniques for N-terminal modification to shed light on critical information of protein profiling and modulating as well as their biological applications.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This study was supported by Shandong Provincial Natural Science Foundation,China(No.ZR2020QC081,H.Jiang),and Youth Innovation Team Talent Introduction Program of Shandong Province(No.20190164,R.Zhang and H.Jiang).

    亚洲成a人片在线一区二区| 日韩欧美在线二视频| 九色国产91popny在线| 欧美绝顶高潮抽搐喷水| 99国产极品粉嫩在线观看| 亚洲av美国av| 久久久久久久久久久久大奶| 成人亚洲精品av一区二区| 久久精品国产综合久久久| 成人av一区二区三区在线看| 中文字幕人妻丝袜一区二区| 99精品久久久久人妻精品| 高清在线国产一区| 欧美成人午夜精品| 欧美老熟妇乱子伦牲交| 一区二区三区精品91| 午夜久久久在线观看| 少妇熟女aⅴ在线视频| 亚洲精品一区av在线观看| 国产亚洲欧美在线一区二区| 非洲黑人性xxxx精品又粗又长| 日韩大尺度精品在线看网址 | 日韩av在线大香蕉| 欧美丝袜亚洲另类 | 欧美日韩乱码在线| 亚洲第一欧美日韩一区二区三区| 美女国产高潮福利片在线看| 婷婷六月久久综合丁香| 免费搜索国产男女视频| 正在播放国产对白刺激| 色哟哟哟哟哟哟| 岛国视频午夜一区免费看| 日韩高清综合在线| 夜夜躁狠狠躁天天躁| 亚洲熟女毛片儿| 男人舔女人下体高潮全视频| a级毛片在线看网站| 精品久久久久久成人av| 中文亚洲av片在线观看爽| 亚洲激情在线av| 最近最新免费中文字幕在线| 国产精品一区二区免费欧美| 一区二区三区高清视频在线| 免费高清在线观看日韩| 一级作爱视频免费观看| 啦啦啦观看免费观看视频高清 | 很黄的视频免费| 日日摸夜夜添夜夜添小说| 一区二区三区高清视频在线| av在线天堂中文字幕| 亚洲成a人片在线一区二区| netflix在线观看网站| 97碰自拍视频| 亚洲第一青青草原| 精品乱码久久久久久99久播| 男男h啪啪无遮挡| 女人爽到高潮嗷嗷叫在线视频| 国产乱人伦免费视频| 男女午夜视频在线观看| 十八禁网站免费在线| 男女之事视频高清在线观看| 精品国产一区二区久久| 午夜免费鲁丝| 一边摸一边抽搐一进一出视频| 天天躁夜夜躁狠狠躁躁| 精品国产美女av久久久久小说| 亚洲精品国产精品久久久不卡| 极品教师在线免费播放| 国产精品精品国产色婷婷| 亚洲成av片中文字幕在线观看| 国产一区二区激情短视频| 精品久久久久久久毛片微露脸| 一个人观看的视频www高清免费观看 | 色婷婷久久久亚洲欧美| 国产亚洲av高清不卡| 好男人电影高清在线观看| 少妇被粗大的猛进出69影院| 免费观看人在逋| 少妇的丰满在线观看| 又黄又粗又硬又大视频| 他把我摸到了高潮在线观看| 99精品久久久久人妻精品| 一区二区三区国产精品乱码| 97碰自拍视频| 欧美在线一区亚洲| 亚洲欧洲精品一区二区精品久久久| 国产精品亚洲一级av第二区| 久久久水蜜桃国产精品网| 精品熟女少妇八av免费久了| 99国产精品一区二区三区| 婷婷精品国产亚洲av在线| 久久婷婷人人爽人人干人人爱 | 一进一出抽搐gif免费好疼| aaaaa片日本免费| 久久午夜亚洲精品久久| 一级作爱视频免费观看| 亚洲专区字幕在线| 国产又色又爽无遮挡免费看| 两性夫妻黄色片| 亚洲欧美日韩高清在线视频| 亚洲精品一区av在线观看| 亚洲精品中文字幕一二三四区| 亚洲男人的天堂狠狠| 久久久国产欧美日韩av| 久久久久久久精品吃奶| 免费观看精品视频网站| 国产一区在线观看成人免费| 午夜免费激情av| 看免费av毛片| 乱人伦中国视频| 国产亚洲精品久久久久5区| 人妻久久中文字幕网| 国产精品1区2区在线观看.| 久久中文看片网| 国产欧美日韩一区二区精品| 亚洲午夜理论影院| 日韩欧美一区二区三区在线观看| 欧美成狂野欧美在线观看| 可以在线观看毛片的网站| 国产精品影院久久| 1024视频免费在线观看| 99国产精品99久久久久| 午夜a级毛片| 久久久久九九精品影院| 啦啦啦韩国在线观看视频| 亚洲av成人不卡在线观看播放网| 国产伦人伦偷精品视频| 最新美女视频免费是黄的| 麻豆久久精品国产亚洲av| 色综合站精品国产| 欧美另类亚洲清纯唯美| 成人av一区二区三区在线看| cao死你这个sao货| 日日爽夜夜爽网站| 亚洲片人在线观看| 99久久国产精品久久久| 一级a爱视频在线免费观看| 午夜福利,免费看| 精品熟女少妇八av免费久了| 国产乱人伦免费视频| 国产成年人精品一区二区| 99久久国产精品久久久| 久久国产精品影院| 黑丝袜美女国产一区| 欧美一级毛片孕妇| 每晚都被弄得嗷嗷叫到高潮| 亚洲av熟女| www.熟女人妻精品国产| 亚洲伊人色综图| 免费人成视频x8x8入口观看| 窝窝影院91人妻| 亚洲美女黄片视频| 18禁裸乳无遮挡免费网站照片 | 香蕉久久夜色| 男女做爰动态图高潮gif福利片 | 成人av一区二区三区在线看| 夜夜爽天天搞| 国产99久久九九免费精品| 午夜福利高清视频| 1024视频免费在线观看| 午夜福利影视在线免费观看| 国产成年人精品一区二区| 国产麻豆69| 曰老女人黄片| 变态另类丝袜制服| 老司机午夜福利在线观看视频| 国产精品亚洲一级av第二区| 久久人妻熟女aⅴ| 久久久久精品国产欧美久久久| 少妇粗大呻吟视频| 国产精品久久视频播放| 韩国av一区二区三区四区| 两个人免费观看高清视频| 久久午夜亚洲精品久久| 欧美日韩精品网址| 一个人免费在线观看的高清视频| 午夜久久久在线观看| 老汉色∧v一级毛片| 日韩视频一区二区在线观看| 午夜久久久在线观看| 精品一区二区三区视频在线观看免费| 亚洲av第一区精品v没综合| 久久国产精品人妻蜜桃| 国产男靠女视频免费网站| 色精品久久人妻99蜜桃| 精品久久久精品久久久| 国产欧美日韩精品亚洲av| 最新在线观看一区二区三区| 国产亚洲av高清不卡| 91成年电影在线观看| 校园春色视频在线观看| 欧美+亚洲+日韩+国产| 国产精品久久久久久人妻精品电影| 免费观看精品视频网站| 久久婷婷人人爽人人干人人爱 | av在线播放免费不卡| 欧美乱妇无乱码| 国产亚洲精品av在线| 精品人妻在线不人妻| av福利片在线| 欧美成人午夜精品| 99国产精品一区二区蜜桃av| 亚洲国产欧美网| 久久狼人影院| 无人区码免费观看不卡| 一级a爱视频在线免费观看| 成人亚洲精品一区在线观看| 久久国产精品人妻蜜桃| 国产精品香港三级国产av潘金莲| 午夜老司机福利片| 国产一级毛片七仙女欲春2 | 多毛熟女@视频| 女人被躁到高潮嗷嗷叫费观| 久久人妻熟女aⅴ| 最近最新中文字幕大全电影3 | ponron亚洲| 午夜福利一区二区在线看| 亚洲全国av大片| 黄片小视频在线播放| 香蕉国产在线看| 免费在线观看日本一区| 成人av一区二区三区在线看| 19禁男女啪啪无遮挡网站| 桃红色精品国产亚洲av| 9色porny在线观看| 在线观看免费视频日本深夜| 久久天堂一区二区三区四区| 人成视频在线观看免费观看| 成人国语在线视频| 好看av亚洲va欧美ⅴa在| 亚洲三区欧美一区| 久久国产精品男人的天堂亚洲| 亚洲性夜色夜夜综合| 老司机午夜十八禁免费视频| 国产1区2区3区精品| 悠悠久久av| 国产黄a三级三级三级人| 一区在线观看完整版| 淫妇啪啪啪对白视频| 一进一出抽搐gif免费好疼| 女性生殖器流出的白浆| 欧美丝袜亚洲另类 | 久久久国产欧美日韩av| 午夜免费成人在线视频| 国产成人精品在线电影| 人妻丰满熟妇av一区二区三区| 中文字幕人成人乱码亚洲影| 首页视频小说图片口味搜索| 亚洲精品在线观看二区| 操出白浆在线播放| 国产午夜福利久久久久久| 高清黄色对白视频在线免费看| 精品久久久久久久人妻蜜臀av | aaaaa片日本免费| 精品国产超薄肉色丝袜足j| 日本免费a在线| 看免费av毛片| 深夜精品福利| 亚洲天堂国产精品一区在线| 精品人妻在线不人妻| 亚洲免费av在线视频| 亚洲国产欧美日韩在线播放| 一区二区三区精品91| 国产精品乱码一区二三区的特点 | 亚洲最大成人中文| 大陆偷拍与自拍| 制服人妻中文乱码| 日韩欧美一区视频在线观看| 性少妇av在线| 一边摸一边抽搐一进一出视频| 99精品欧美一区二区三区四区| 操美女的视频在线观看| 精品福利观看| 久久中文字幕一级| 成人欧美大片| 老汉色av国产亚洲站长工具| 九色国产91popny在线| 国产精品香港三级国产av潘金莲| 久久久久国产一级毛片高清牌| 天天躁夜夜躁狠狠躁躁| 精品熟女少妇八av免费久了| 亚洲国产欧美日韩在线播放| 亚洲色图 男人天堂 中文字幕| 午夜激情av网站| 免费看美女性在线毛片视频| 91九色精品人成在线观看| 变态另类丝袜制服| 国产精品一区二区在线不卡| 国产蜜桃级精品一区二区三区| 可以免费在线观看a视频的电影网站| 欧美+亚洲+日韩+国产| 欧美乱妇无乱码| 国产精品免费视频内射| 免费搜索国产男女视频| 欧美性长视频在线观看| 搡老妇女老女人老熟妇| 久久精品亚洲精品国产色婷小说| 亚洲九九香蕉| 国产成人精品久久二区二区免费| 成人免费观看视频高清| 中文字幕色久视频| 九色亚洲精品在线播放| www.999成人在线观看| 国产亚洲欧美98| 成人av一区二区三区在线看| 午夜精品久久久久久毛片777| 精品少妇一区二区三区视频日本电影| 欧美成人性av电影在线观看| 天天一区二区日本电影三级 | 国产乱人伦免费视频| 免费观看人在逋| 亚洲av片天天在线观看| 免费高清在线观看日韩| 久久精品国产综合久久久| 啦啦啦 在线观看视频| 久久久久久久久免费视频了| 深夜精品福利| 久久热在线av| 中文字幕人妻丝袜一区二区| 午夜免费鲁丝| 欧美日本中文国产一区发布| 高潮久久久久久久久久久不卡| 精品国产美女av久久久久小说| 亚洲精品国产一区二区精华液| 成人三级黄色视频| 精品欧美一区二区三区在线| 久久国产精品男人的天堂亚洲| 亚洲免费av在线视频| 97碰自拍视频| 欧美色欧美亚洲另类二区 | 欧美另类亚洲清纯唯美| 国产精品香港三级国产av潘金莲| www.精华液| 搡老岳熟女国产| 欧美黄色淫秽网站| 亚洲国产精品999在线| 久久这里只有精品19| 大型黄色视频在线免费观看| 非洲黑人性xxxx精品又粗又长| 午夜精品国产一区二区电影| 久99久视频精品免费| 老司机靠b影院| 久久九九热精品免费| 又紧又爽又黄一区二区| 久久久久国内视频| 一区二区三区激情视频| 精品欧美国产一区二区三| 亚洲成人免费电影在线观看| 成人手机av| 在线观看免费视频日本深夜| 国产精品久久视频播放| 久热爱精品视频在线9| 狠狠狠狠99中文字幕| 久久热在线av| 在线观看66精品国产| 97碰自拍视频| 在线观看免费日韩欧美大片| 国产伦一二天堂av在线观看| 精品国产美女av久久久久小说| 在线av久久热| 国产一级毛片七仙女欲春2 | 国产91精品成人一区二区三区| 国产欧美日韩综合在线一区二区| 亚洲自偷自拍图片 自拍| 久热这里只有精品99| 好男人在线观看高清免费视频 | 又紧又爽又黄一区二区| 国产一区二区三区在线臀色熟女| 国产高清videossex| 亚洲自拍偷在线| 好男人在线观看高清免费视频 | 国产99白浆流出| 欧美在线一区亚洲| 日日夜夜操网爽| 国产欧美日韩一区二区三| 99久久精品国产亚洲精品| 亚洲成人免费电影在线观看| 国产精品久久久久久人妻精品电影| 午夜福利影视在线免费观看| 国产一区二区激情短视频| 人人澡人人妻人| 国产欧美日韩一区二区三| 欧美中文日本在线观看视频| 亚洲中文字幕一区二区三区有码在线看 | 91麻豆精品激情在线观看国产| 国产麻豆成人av免费视频| 国产精品1区2区在线观看.| 精品久久久久久久毛片微露脸| 国产激情欧美一区二区| 91成年电影在线观看| 热re99久久国产66热| 久久精品人人爽人人爽视色| 韩国av一区二区三区四区| 国内毛片毛片毛片毛片毛片| 一级毛片精品| 亚洲性夜色夜夜综合| 午夜福利影视在线免费观看| av视频在线观看入口| 精品福利观看| 久久久久九九精品影院| 黄色 视频免费看| 亚洲人成电影免费在线| 亚洲精品一区av在线观看| 久久久国产成人精品二区| 日本欧美视频一区| 国产精品 欧美亚洲| 1024香蕉在线观看| 国产99久久九九免费精品| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品国产区一区二| 中文字幕人妻丝袜一区二区| 黄色毛片三级朝国网站| 俄罗斯特黄特色一大片| 亚洲一区中文字幕在线| 最近最新免费中文字幕在线| 亚洲 欧美 日韩 在线 免费| 日本一区二区免费在线视频| 精品久久久久久,| 成人三级做爰电影| 亚洲成人国产一区在线观看| 成人欧美大片| 少妇裸体淫交视频免费看高清 | 欧美另类亚洲清纯唯美| 宅男免费午夜| 欧美最黄视频在线播放免费| 俄罗斯特黄特色一大片| 亚洲色图av天堂| www.www免费av| 久久精品91蜜桃| 制服诱惑二区| 97碰自拍视频| 精品日产1卡2卡| 精品人妻在线不人妻| 精品第一国产精品| 亚洲无线在线观看| 搞女人的毛片| 18美女黄网站色大片免费观看| 精品国产超薄肉色丝袜足j| av福利片在线| 欧美av亚洲av综合av国产av| 国产片内射在线| 亚洲熟妇中文字幕五十中出| 91在线观看av| 母亲3免费完整高清在线观看| 在线观看免费视频日本深夜| 在线观看免费午夜福利视频| 亚洲国产精品999在线| 日韩欧美在线二视频| 免费在线观看完整版高清| 国产精品野战在线观看| 亚洲天堂国产精品一区在线| 免费高清视频大片| 精品国产国语对白av| а√天堂www在线а√下载| 国产精品免费视频内射| www.www免费av| 又紧又爽又黄一区二区| 亚洲国产欧美一区二区综合| 成人永久免费在线观看视频| 一个人免费在线观看的高清视频| 久久这里只有精品19| 人妻丰满熟妇av一区二区三区| av欧美777| 成年女人毛片免费观看观看9| 乱人伦中国视频| 亚洲人成电影免费在线| 国产一级毛片七仙女欲春2 | 18禁美女被吸乳视频| 国产精品1区2区在线观看.| 香蕉国产在线看| 日韩欧美国产一区二区入口| 校园春色视频在线观看| 一二三四社区在线视频社区8| 国产亚洲精品av在线| 免费人成视频x8x8入口观看| 中文亚洲av片在线观看爽| 欧美成人一区二区免费高清观看 | 久久久久久久久久久久大奶| 国产精品一区二区免费欧美| 国产在线观看jvid| 自拍欧美九色日韩亚洲蝌蚪91| 一a级毛片在线观看| 老司机福利观看| 十分钟在线观看高清视频www| 国产成人一区二区三区免费视频网站| 啦啦啦免费观看视频1| 亚洲天堂国产精品一区在线| 欧美日韩中文字幕国产精品一区二区三区 | 成人手机av| 精品熟女少妇八av免费久了| 国产精品亚洲一级av第二区| 老鸭窝网址在线观看| 在线十欧美十亚洲十日本专区| 丝袜美腿诱惑在线| 女人爽到高潮嗷嗷叫在线视频| 免费看美女性在线毛片视频| 午夜福利影视在线免费观看| 久久人妻熟女aⅴ| 国产成+人综合+亚洲专区| 国产精品日韩av在线免费观看 | 波多野结衣高清无吗| 国产精品美女特级片免费视频播放器 | 久久国产精品影院| 亚洲国产精品成人综合色| 不卡av一区二区三区| 国产精品av久久久久免费| 精品国内亚洲2022精品成人| 深夜精品福利| 久久影院123| 一a级毛片在线观看| 老司机福利观看| 国产精品久久久av美女十八| www国产在线视频色| 91成人精品电影| 首页视频小说图片口味搜索| 亚洲成人精品中文字幕电影| 97超级碰碰碰精品色视频在线观看| 亚洲精品一区av在线观看| 色在线成人网| 欧美黑人精品巨大| 美女 人体艺术 gogo| 男人舔女人的私密视频| 国产欧美日韩综合在线一区二区| 一区二区三区激情视频| 大陆偷拍与自拍| 男男h啪啪无遮挡| 色综合站精品国产| 国产精品野战在线观看| 亚洲无线在线观看| 日日干狠狠操夜夜爽| 天天一区二区日本电影三级 | 婷婷精品国产亚洲av在线| 国产色视频综合| 日本黄色视频三级网站网址| 国产精华一区二区三区| 妹子高潮喷水视频| 久久香蕉激情| 变态另类成人亚洲欧美熟女 | 国产精品一区二区精品视频观看| 一级,二级,三级黄色视频| 中文字幕久久专区| 天堂√8在线中文| 在线观看舔阴道视频| 亚洲欧美一区二区三区黑人| 国产乱人伦免费视频| 69av精品久久久久久| 国产精品乱码一区二三区的特点 | 在线国产一区二区在线| 午夜福利免费观看在线| 国产熟女xx| 叶爱在线成人免费视频播放| 中文字幕久久专区| 男女做爰动态图高潮gif福利片 | 久久久久久人人人人人| www.精华液| 91成年电影在线观看| 岛国在线观看网站| 日韩有码中文字幕| 在线永久观看黄色视频| netflix在线观看网站| 国产成人影院久久av| 乱人伦中国视频| 国产精品一区二区在线不卡| 制服丝袜大香蕉在线| 亚洲精品中文字幕在线视频| 人妻久久中文字幕网| 国产三级黄色录像| 久久国产精品影院| 欧美黄色淫秽网站| 亚洲精品美女久久av网站| 欧美激情久久久久久爽电影 | 久久国产精品男人的天堂亚洲| 可以在线观看毛片的网站| 欧美在线一区亚洲| 日韩欧美国产一区二区入口| 最近最新中文字幕大全电影3 | 亚洲精华国产精华精| 亚洲伊人色综图| 亚洲情色 制服丝袜| 久久人妻熟女aⅴ| 午夜福利高清视频| 久久久久精品国产欧美久久久| 亚洲九九香蕉| 每晚都被弄得嗷嗷叫到高潮| 欧美国产日韩亚洲一区| 国产精品av久久久久免费| 欧美亚洲日本最大视频资源| 亚洲avbb在线观看| 成人亚洲精品一区在线观看| 日本黄色视频三级网站网址| 色综合欧美亚洲国产小说| 久久精品人人爽人人爽视色| 黄网站色视频无遮挡免费观看| 91麻豆av在线| 在线天堂中文资源库| 又紧又爽又黄一区二区| 狂野欧美激情性xxxx| 国产一区二区激情短视频| 在线观看免费视频日本深夜| 大码成人一级视频| 视频区欧美日本亚洲| 日本黄色视频三级网站网址| 午夜福利成人在线免费观看| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲美女黄片视频| 99精品在免费线老司机午夜| 色精品久久人妻99蜜桃| 日韩成人在线观看一区二区三区| 一级毛片精品| 十八禁人妻一区二区| 日韩 欧美 亚洲 中文字幕| 亚洲午夜理论影院| 欧美色视频一区免费| 丰满的人妻完整版| 咕卡用的链子|