• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides

    2022-03-12 07:49:20DongYan嚴(yán)冬LingyongZeng曾令勇YijieZeng曾宜杰YishiLin林一石JunjieYin殷俊杰MengWang王猛YihuaWang王熠華DaoxinYao姚道新andHuixiaLuo羅惠霞
    Chinese Physics B 2022年3期
    關(guān)鍵詞:王猛嚴(yán)冬俊杰

    Dong Yan(嚴(yán)冬) Lingyong Zeng(曾令勇) Yijie Zeng(曾宜杰) Yishi Lin(林一石) Junjie Yin(殷俊杰)Meng Wang(王猛) Yihua Wang(王熠華) Daoxin Yao(姚道新) and Huixia Luo(羅惠霞)

    1School of Materials Science and Engineering,State Key Laboratory of Optoelectronic Materials and Technologies,Key aboratory of Polymer Composite&Functional Materials,Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices,Sun Yat-Sen University,Guangzhou 510275,China

    2Center for Neuron Science and Technology,School of Physics,Sun Yat-Sen University,Guangzhou 510275,China

    3State Key Laboratory of Surface Physics and Department of Physics,Fudan University,Shanghai 200433,China

    4Shanghai Research Center for Quantum Sciences,Shanghai 201315,China

    5Key Laboratory of Functional Molecular Solids,Ministry of Education,College of Chemistry and Materials Science,Anhui Normal University,Wuhu 241002,China

    6College of Science,Hangzhou Dianzi University,Hangzhou 310018,China

    Keywords: layered telluride chalcogenide,superconductivity,charge-density-wave,CuIr2-xAlxTe4

    1. Introduction

    The continuous suppression of metal-insulator(MI)transition, charge-density-wave (CDW) transition, magnetism,etc. leading to the occurrence of superconductivity (SC) in the proximity of such quantum states has garnered great interest and widespread study in solid-state physics.[1-4]The phase diagrams of unconventional high-temperature (high-Tc)cuprates and iron-based superconductors exemplified such phenomena.[5-11]Nevertheless, how SC emerges in these high-Tcsuperconductors is intricate and remains extremely puzzling. It is still essential to sort out the interplay between the SC and the other quantum states,promoting further understanding of the mechanism of high-Tcsuperconductors.

    Low-dimensional layered transition metal dichalcogenides(TMDs)are other opportune material platforms for the exploration of various quantum instabilities,[12-21]especially the interplay between SC and CDW,in which the CDW order refers to condensate with periodic modulations of the crystalline lattice and conduction electron density in real space.Typically,the SC can be induced and a dome-shape superconducting phase diagram is formed upon suppressing the CDW order,[22-27]which is highly similar to the phase diagrams of unconventional high-Tccuprates and iron-based superconductors. Despite overall phase diagram similarities, there are significant differences especially between their mechanisms,

    where unconventional high-TcFe-based and cuprate superconductors cannot be well explained by Bardeen-Cooper-Schrieffer(BCS)theory but most of the TMD superconductors can be explained by BCS theory. It has been generally considered that the collapse of CDW state accompanied by the improvement of superconducting transition temperature(Tc)is in reference to the abrupt enhancement of density of states(DOS)around the Fermi levelN(EF) in the conventional superconductors owning to CDW state gaps out some regions of the Fermi surface.[1,2]The formation of CuxTiSe2(0 ≤x≤0.1)from intercalating the Cu into 1T-TiSe2exemplified a vivid phase diagram in the TMDs family,[2]and further evoked the continuous interest in searching for new superconductors in TMD materials by gating, adding physical pressures, chemical doping or point contact method.[22-38]For example, Cuintercalation 2H-TaS2forms CuxTaS2(0 ≤x≤0.12)and displays an enhancement ofTcfrom 0.8 K (x= 0) to 4.5 K(x=0.04).[34]In addition, experiments show that theTcof WTe2can be increased to 7 K under an applied physical pressure of 16.8 GPa.[35]Moreover, manifold phase transitions from MI to metal show in 1T-TaS2thin flakes with collapses of CDWs,and finally SC are induced by ionic gating.[36]

    Currently, CuIr2Te4, adopting a NiAs defected structure of trigonal symmetry with the space groupP-3m1, has been found to exhibit the coexistence of the CDW-like transition(TCDW= 250 K on heating and 186 K on cooling) and SC(Tc= 2.5 K). Besides, recent electronic structure calculations have unveiled that the Fermi energy is mostly derived from Ir 5d and Te 5p orbitals.[39]More recently, experiments have documented that both CDW and SC performances of CuIr2Te4can be modified via 3d, 4d transition metals (e.g.,Ti and Ru) and 4p, 5p dopants (e.g., Se and I). Dome-shape phase diagrams with respect toTcvs. doping amount associated with the suppression of CDW have been found in the CuIr2-xRuxTe4and CuIr2-xTixTe4systems, but dome-shape diagrams crowded in the middle doping region with two CDW regions at two sides in Se- and I-doped systems.[40-43]Furthermore, the non-magnetic element Al is usually selected as the dopant because Al3+ion has a closed shell electron configuration and a clear oxidation state. The transport properties of Al-doped high-Tccopper-based superconductors (e.g.,SmBa2Cu3-xAlxO6+δ, YBa2Cu3-xAlxO7) have been widely studied.[44,45]And nano Al has been used to improve the critical current in MgB2superconductor.[46]Therefore,it will be interesting to explore the effect of 3s dopants(e.g.,Al)on the CDW and SC in CuIr2Te4.

    In this work,we prepared polycrystalline CuIr2-xAlxTe4(0 ≤x≤0.2) compounds successfully by a solid-state reaction method. Our results demonstrate that the CDW order can be completely suppressed within a fine-tuned Al-doped content as a result of the improvement ofTc.Tcinitially increases with the rise of doping amount untilx=0.075 and reaches the highest value of 2.75 K, eventually forming a dome-phase like electronic phase diagram. The acquisition of the CuIr2-xAlxTe4(0 ≤x≤0.2)system also provides some enlightenment for the search of new superconductors.

    2. Experimental methods

    Synthesis Polycrystalline specimens of CuIr2-xAlxTe4(0 ≤x≤0.2) were prepared through the classical solidstate phase reaction. First, the Cu (99%, Alfa Aesar), Ir(99.9%, Macklin), and Al (99.95%, Aladdin) powder, and Te lump (99.999%, Alfa Aesar) with an element ratio of Cu:Ir:Al:Te=1:2-x:x:4.05 were sealed in quartz tubes,then they were put in a muffle furnace with the ramping rate of 1°C/min to 850°C and the furnace temperature was maintained for 5 days. The resulting samples were annealed at 850°C for 4 days with a heating rate of 1°C/min.

    Instruments Powder x-ray diffraction(PXRD)MiniFlex,Rigaku with CuKα1radiation was used to examine the crystal structure and phase purity of the CuIr2-xAlxTe4(0 ≤x≤0.2)compounds.FULLPROF software suite was used to determine the cell parameters based on Thompson-Cox-Hastings pseudo-Voigt peak shapes model. Measurements of the temperaturedependence of electrical resistivity, specific heat, and magnetic susceptibilities (M(T,H)) were performed by a Dyna-Cool Quantum Design physical property measurement system(PPMS,Quantum Design,Inc.).

    3. Results and discussion

    The PXRD patterns of the CuIr2-xAlxTe4compounds are presented in Fig. 1(a). PXRD analysis shows that Al concentration is limited up to 0.2 since Al2Te3impurity is found with further increasing Al content. As Al doping content increases, the (001) peak moves to the right,which can be verified by the decrease of lattice constantsaandcwith increasingx(Fig. 1(c)), reflecting the compression of the CuIr2Te4unit cell. As illustrated in Fig. 1(c)clearly, both lattice constants (aandc) andc/asingly reduce with increasing Al concentration. It is found thataandcreduce from 3.9397(5) °A and 5.3965 (3) °A for the pristine sample to 3.9264(1) °A and 5.3757(2) °A (x= 0.2) in CuIr2-xAlxTe4, respectively. The detailed refinement of the selected sample CuIr1.925Al0.075Te4is displayed in Fig. 2(a).Most of the diffraction peaks have been indexed in terms of trigonal symmetry with a space groupP-3m1 (No. 164)and some small peaks indexed for tiny unreacted Ir are also detected. The illustration shows that the disordered trigonal structure, in which the Cu is inserted between twodimensional(2D)IrTe2layers,Ir partial substituting by Al simultaneously(see Figs.2(b)and 2(c)).

    Fig.1. (a)and(b)PXRD patterns of the CuIr2-xAlxTe4 (0 ≤x ≤0.2)compounds. (c)The evolution of lattice constants for CuIr2-xAlxTe4 (0 ≤x ≤0.2).

    Fig.2. (a)Refinements of CuIr1.925Al0.075Te4 polycrystalline sample. (b)and(c)The crystal structure of CuIr2-xAlxTe4 in different direction views.

    Fig. 3. (a) Temperature-dependence of resistivity for the polycrystalline CuIr2-xAlxTe4 (0 ≤x ≤0.2) compounds. (b) The superconducting transition at 1.6-3.0 K for the polycrystalline CuIr2-xAlxTe4 (0 ≤x ≤0.2) compounds. (c) Temperature dependences of resistivity for the polycrystalline CuIr1.925Al0.075Te4 sample under various applied magnetic fields. (d)Temperature dependence of Hc2 for the polycrystalline CuIr1.925Al0.075Te4 sample.

    The temperature-dependent normalized resistivity(ρ/ρ300K) of the CuIr2-xAlxTe4(0 ≤x≤0.2) compounds is exhibited in Fig. 3(a). Besides, our previous finding indicates that there is no structure transition for the pristine sample. Thus,we propose that the normalized resistivity with cooling and heating exhibits a distinct hysteresis associated with the formation of CDW-like transition for the pristine CuIr2Te4sample. It is worth mentioning that no signature of the abnormal hump can be observed aboveTcinρ/ρ300Kof the Al doping samples CuIr2-xAlxTe4(0<x≤0.2), indicating the CDW-like transition can be suppressed with subtle Al substitution for Ir,companying with the increment ofTc. The resistivity data for Al-doped samples show a metallic behavior.We can observe sharp drops ofρ(T) for the CuIr2-xAlxTe4(0 ≤x≤0.15) below 3.0 K (see Fig. 3(b)), which represent the outset of the superconducting state. The transition width of the Al-doped compounds is much narrower than that of the pristine CuIr2Te4. TheTcand residual resistivity ratio (RRR=R(300 K)/R(3 K))of the CuIr2-xAlxTe4(0 ≤x≤0.2)samples are summarized in Table 1. As the Al content increases,bothTcand RRR increase to the highest value atx=0.075,then decrease for further Al doping. For 0.075 ≤x≤0.5,the RRR sharply decreases form 4.44 forx=0.075 to 2.342 forx=2.34. This phenomenon indicates that high Al content induces significant disorder in the polycrystalline CuIr2-xAlxTe4series.

    Table 1. The Tc and RRR of CuIr2-xAlxTe4 (0 ≤x ≤0.2)compounds.The Tc is determined by using 50%normal state resistance criterion.

    Table 2. Comparison of physical properties of CuIr2Te4-based superconductors.

    The superconducting transition has also been confirmed by the magnetic susceptibility data(Fig.4(a))with strong diamagnetic signals under zero-field-cooling (ZFC) mode. The superconducting volume fraction of the CuIr2-xAlxTe4(0 ≤x≤0.15) compounds can be calculated around 95%, which manifests high purity of the polycrystalline CuIr2-xAlxTe4samples. Next, we examine the lower critical fields (μHc1)by the field-dependent magnetic susceptibilityM(H)measurements in a temperature range of 2-2.6 K.Figure 4(b)presents the magnetization(M-H)curves at different temperatures belowTcof the representative CuIr1.925Al0.075Te4. As shown by the purple line in Fig. 4(b), theM(H) isotherms show a linear relationship with the magnetic field (H) at low magnetic fields,indicating that it is a type-II superconductor.We can extract the demagnetization factor(N)following the expressionN=4πχV+1, whereχV= dM/dHrepresents the linearly fitted slope. The calculatedNfor CuIr1.925Al0.075Te4is about 0.53. We can use the expressionMfit=m+nHto fit the experimental data at low magnetic fields,wheremrepresents the intercept andnstands for the slope of linear fitting from the low magnetic fieldM(H)data. The inset of Fig.4(c)displays the (M-Mfit) data vs.H. Then, we can fit theμHc1(T) by the expressionμ0Hc1(T)=μ0H*c1(T)/(1-N), whereμ0H*c1is the intersection point between theM-Mfitvs.Hcurves and the field (purple line in the inset of Fig. 4(c)), which deviates by~1% above the fitted data (Mfit) as customary. The temperature dependence ofμ0Hc1(T) for CuIr1.925Al0.075Te4is displayed in the main panel of Fig. 4(c). Consequently,we can further acquire theμ0Hc1(T) using the equationμ0Hc1(T)=μ0Hc1(0)(1-(T/Tc)2). The estimatedμ0Hc1(0)at zero temperature of CuIr1.925Al0.075Te4sample is 0.060 T,which is larger than that of the undoped parent sample (see in Table 2).

    Fig. 4. (a) Magnetic susceptibility for CuIr2-xAlxTe4 (0 ≤x ≤0.2) compounds under 30 Oe magnetic field with zero-field-cooling (ZFC) mode.(b) The magnetization M(H) in a temperature range of 2-2.6 K for CuIr1.925Al0.075Te4. (c) Temperature dependence of Hc1. Inset: Difference between M and MFit in a temperature range of 2-2.6 K for CuIr1.925Al0.075Te4.

    Fig. 5. (a) The specific heat data plotted as a function of T2 for CuIr1.925Al0.075Te4. (b) The electronic part of the specific heat in CuIr1.925Al0.075Te4.

    To further convince that SC is an essential feature of the highestTccompound CuIr1.925Al0.075Te4,we also perform the temperature-dependent specific heat measurement. Figure 5 illustrates the detailed characterization of the superconducting transition in the highestTccomposition CuIr1.925Al0.075Te4through specific heat measurements under the absence of magnetic field. The dataCp/Tvs.T2can be fitted by the equationCp=γT+βT3above theTcto acquire the values ofβandγbeing 2.20 mJ·mol-1·K-4and 12.12 mJ·mol-1·K-2for CuIr1.925Al0.075Te4,respectively,whereγTrepresents the sum of electron contributions(Cel.)to the specific heat andβT3is the sum of phonon contributions(Cph.). Figure 5(b)shows the sum of electron contribution to the specific heat at the temperature near theTcunder 0 T, whereCel.is easily derived from deducting the phonon part,Cel.=Cp-βT3. Apparently, a sharp specific heat jump occurs in our representative CuIr1.925Al0.075Te4, characteristic of bulk SC. TheTcfurther can be determined to be 2.70 K using the common equal-area entropy construction method,which agrees well with those observed in magnetization and resistivity tests. Based on theTcandγvalues, we can determine ΔCel./(γTc)=1.53, which is slightly larger than the value of 1.43 forecasted by the BCS theory,revealing its superconducting nature. The Debye temperature obtained using the equationΘD=(12π4nR/(5β))1/3is 183.5(1)K,whereRrepresents the gas constant,nexpresses the number of atoms per formula unit. The resultant electronphonon coupling constantλepvalue further estimated by introducing theΘDnumber into the inverted McMillan equation[49]

    Finally, to further understand the effect of Al dopant on the CDW and SC of CuIr2Te4, the electronic phase diagrams plotted asTcversus Al-contentxhave been established (see Fig.6).All theTcvalues were obtained from the resistivity and magnetization tests.From Fig.6,we can find that the CDW order is immediately suppressed whileTcincreases with increasing Al content up tox=0.075 and rises towards the highest value 2.75 K atx=0.075. From this,we find that despite subtle Al is substituted for Ir,it has a strong impact on the SC and CDW. Besides, in contrast to our previously reported Ru/Tidoped CuIr2Te4system,the similarity is the destabilization of CDW upon small amount doping concentration no matter Ru,Ti,or Al as dopants and formation of dome-shape like superconducting phase diagrams.[32,33]Despite overall similarities,there are significant differences between the CuIr2-xRuxTe4,CuIr2-xTixTe4,and CuIr2-xAlxTe4systems. Substitution of Ir by Ru or Ti in CuIr2Te4corresponds to a“hole”(p-type)doping of the IrTe2layers, while partial doping Al into Ir site in CuIr2Te4is an electron (n-type) doping. As for the high-Tccuprate superconductors,where the competition between antiferromagnetism and SC develops as a function of chemical doping,the evolving balance between competing electronic orders in CDW/SC systems is one of their most fundamentally tempting properties. In our case, the bands in the neighborhood of the Fermi energyEFof the pristine sample CuIr2Te4mostly come from Ir d and Te p orbitals and locate at a flat plateau,in which Al doping acts as a chemical pressure,closing the gap on the Fermi surface that usually leads to rapid suppression of CDW.On the other hand,the increase of band filling of the Fermi surface under chemical pressure could be the mechanism of the promotion of SC.But further study and evidence need to be collected to find out the competition between CDW and SC.

    Fig. 6. The electronic phase diagram of polycrystalline CuIr2-xAlxTe4(0 ≤x ≤0.2)series.

    4. Conclusion and perspectives

    In conclusion, we have successfully synthesized a series of polycrystalline CuIr2-xAlxTe4(0 ≤x≤0.2) samples via a solid-state method and systemically studied the effect of Al doping on the structure and electronic properties of CuIr2Te4. The ΔCel./(γTc)=1.53 for the highestTcsample CuIr1.925Al0.075Te4is slightly larger than 1.43 (BCS value),proving its bulk superconducting nature. We recognize that the CDW order is suppressed immediately whileTcincreases as Al doping amountxrises and achieves a maximumTc=2.75 K with Al doping content of 0.075. Our systematic study of CuIr2-xAlxTe4(0 ≤x≤0.2) not only extends the family of the TMD superconductors but also provides a platform for further research on the relationship between the CDW and SC.

    Acknowledgments

    H. X. Luo acknowledges the financial support by the National Natural Science Foundation of China (Grant No. 11922415), Guangdong Basic and Applied Basic Research Foundation, China (Grants No. 2019A1515011718),and the Pearl River Scholarship Program of Guangdong Province Universities and Colleges (Grants No. 20191001).Y. Zeng and D. X. Yao are supported by the National Natural Science Foundation of China (Grants No. 11974432)and the National Key R&D Program of China (Grant Nos. 2018YFA0306001 and 2017YFA0206203). D. Yan acknowledges the financial support by the National Key Laboratory Development Fund (No. 20190030). Y. H. Wang would like to acknowledge partial support by the National Key R&D Program of China (Grant No. 2017YFA0303000), National Natural Science Foundation of China (Grant No. 11827805),and Shanghai Municipal Science and Technology Major Project, China (Grant No. 2019SHZDZX01). M. Wang was supported by the National Natural Science Foundation of China(Grant Nos.11904414 and 12174454)and the National Key R&D Program of China(Grant No.2019YFA0705702).

    猜你喜歡
    王猛嚴(yán)冬俊杰
    決戰(zhàn)嚴(yán)冬
    A NON-LOCAL DIFFUSION EQUATION FOR NOISE REMOVAL*
    嚴(yán)冬過盡綻春蕾——致公黨連云港市委會(huì)齊心協(xié)力戰(zhàn)疫情
    Holism in Education
    嚴(yán)冬海獵
    俊杰印象
    海峽姐妹(2019年11期)2019-12-23 08:42:18
    王猛仁作品
    詩潮(2019年3期)2019-03-25 05:36:16
    表演大師
    我的同桌
    胸懷寬廣才能走好官場(chǎng)路
    免费日韩欧美在线观看| 人体艺术视频欧美日本| 国产精品亚洲av一区麻豆 | 各种免费的搞黄视频| 黄片无遮挡物在线观看| 在线观看免费日韩欧美大片| 91aial.com中文字幕在线观看| 亚洲欧美成人综合另类久久久| 久久久久精品国产欧美久久久 | 日本午夜av视频| 久久免费观看电影| 啦啦啦 在线观看视频| 日韩熟女老妇一区二区性免费视频| 亚洲av欧美aⅴ国产| 成人国产麻豆网| 在线观看三级黄色| 国产精品熟女久久久久浪| 亚洲专区中文字幕在线 | 9191精品国产免费久久| 久久久久久久大尺度免费视频| 蜜桃在线观看..| 久久精品国产亚洲av高清一级| 精品久久久久久电影网| 精品国产国语对白av| 老汉色∧v一级毛片| 亚洲第一青青草原| 十八禁人妻一区二区| 欧美中文综合在线视频| 九色亚洲精品在线播放| 亚洲人成网站在线观看播放| 男女之事视频高清在线观看 | www.熟女人妻精品国产| 最近的中文字幕免费完整| 日韩电影二区| 母亲3免费完整高清在线观看| 国产成人欧美在线观看 | 国产爽快片一区二区三区| 十八禁网站网址无遮挡| 九草在线视频观看| 女的被弄到高潮叫床怎么办| 操出白浆在线播放| 在线天堂中文资源库| 十八禁网站网址无遮挡| 成人亚洲欧美一区二区av| 国产女主播在线喷水免费视频网站| 日韩伦理黄色片| 色视频在线一区二区三区| 麻豆乱淫一区二区| 丁香六月天网| 少妇 在线观看| 一本—道久久a久久精品蜜桃钙片| 免费人妻精品一区二区三区视频| 日本午夜av视频| 可以免费在线观看a视频的电影网站 | 性少妇av在线| 久久精品国产综合久久久| 欧美日韩亚洲高清精品| 无遮挡黄片免费观看| 久久人人97超碰香蕉20202| 777久久人妻少妇嫩草av网站| 亚洲欧美一区二区三区国产| 亚洲av综合色区一区| 97在线人人人人妻| 1024香蕉在线观看| 90打野战视频偷拍视频| 国产成人免费观看mmmm| 国产精品熟女久久久久浪| 国产日韩欧美在线精品| 国产精品久久久久久人妻精品电影 | 少妇人妻精品综合一区二区| 热99久久久久精品小说推荐| 香蕉国产在线看| 精品第一国产精品| 亚洲熟女毛片儿| 黄片小视频在线播放| 久久99精品国语久久久| 精品第一国产精品| 九九爱精品视频在线观看| 国产在线免费精品| 久久这里只有精品19| 99久久99久久久精品蜜桃| 丝瓜视频免费看黄片| 成人免费观看视频高清| 爱豆传媒免费全集在线观看| 久久久久精品性色| 涩涩av久久男人的天堂| h视频一区二区三区| 亚洲av日韩在线播放| xxx大片免费视频| 日韩免费高清中文字幕av| 亚洲伊人色综图| 亚洲成人av在线免费| 69精品国产乱码久久久| 精品国产乱码久久久久久小说| 视频在线观看一区二区三区| 婷婷成人精品国产| 少妇猛男粗大的猛烈进出视频| 国产成人精品久久二区二区91 | 色网站视频免费| 一级片免费观看大全| 日本午夜av视频| 男女边吃奶边做爰视频| a 毛片基地| 国产又色又爽无遮挡免| 日韩伦理黄色片| 国产免费一区二区三区四区乱码| 在线观看免费视频网站a站| 亚洲av欧美aⅴ国产| 国产亚洲午夜精品一区二区久久| 男女国产视频网站| 精品少妇久久久久久888优播| 国产成人a∨麻豆精品| 久久人人爽人人片av| 1024香蕉在线观看| av福利片在线| 国产精品嫩草影院av在线观看| 久久狼人影院| 69精品国产乱码久久久| 老司机深夜福利视频在线观看 | 久久人人97超碰香蕉20202| 欧美最新免费一区二区三区| bbb黄色大片| 9191精品国产免费久久| 国产精品久久久人人做人人爽| 最新的欧美精品一区二区| 久久影院123| 丰满饥渴人妻一区二区三| h视频一区二区三区| 成年美女黄网站色视频大全免费| 肉色欧美久久久久久久蜜桃| 国产av一区二区精品久久| 最近中文字幕2019免费版| 在线观看免费午夜福利视频| 夫妻午夜视频| 日韩免费高清中文字幕av| 午夜精品国产一区二区电影| 亚洲成人国产一区在线观看 | 成人亚洲欧美一区二区av| 大香蕉久久成人网| 精品一区在线观看国产| 五月天丁香电影| 日韩视频在线欧美| 伦理电影大哥的女人| 国产免费福利视频在线观看| 欧美在线一区亚洲| 午夜福利网站1000一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 精品人妻熟女毛片av久久网站| 免费看不卡的av| 天天躁狠狠躁夜夜躁狠狠躁| 老司机靠b影院| 国产黄色视频一区二区在线观看| 免费在线观看视频国产中文字幕亚洲 | 中文欧美无线码| 人成视频在线观看免费观看| 人人妻人人澡人人爽人人夜夜| 国产成人精品在线电影| 午夜福利免费观看在线| 在线观看免费日韩欧美大片| 男女国产视频网站| 狂野欧美激情性bbbbbb| 欧美av亚洲av综合av国产av | 一区二区三区四区激情视频| 国产精品一区二区精品视频观看| 亚洲欧美色中文字幕在线| 色网站视频免费| 最黄视频免费看| 搡老乐熟女国产| 午夜激情av网站| 考比视频在线观看| 男女下面插进去视频免费观看| 中文字幕色久视频| 最近手机中文字幕大全| 亚洲欧美精品综合一区二区三区| 女的被弄到高潮叫床怎么办| 在线观看免费视频网站a站| www.av在线官网国产| 色精品久久人妻99蜜桃| 国产97色在线日韩免费| 啦啦啦视频在线资源免费观看| 999精品在线视频| 1024香蕉在线观看| 亚洲av欧美aⅴ国产| 18禁裸乳无遮挡动漫免费视频| 99久久综合免费| 国产精品一二三区在线看| 亚洲欧美色中文字幕在线| 精品酒店卫生间| 日本av免费视频播放| 精品午夜福利在线看| 丰满少妇做爰视频| 亚洲三区欧美一区| 新久久久久国产一级毛片| 久久av网站| 精品国产乱码久久久久久小说| 啦啦啦 在线观看视频| 看非洲黑人一级黄片| 最近手机中文字幕大全| 日韩,欧美,国产一区二区三区| 又大又黄又爽视频免费| 可以免费在线观看a视频的电影网站 | 人人妻人人澡人人爽人人夜夜| 免费女性裸体啪啪无遮挡网站| 欧美精品一区二区免费开放| 美女主播在线视频| 黑人欧美特级aaaaaa片| 亚洲欧美精品综合一区二区三区| 婷婷色av中文字幕| 2018国产大陆天天弄谢| 久久 成人 亚洲| 国产精品国产三级国产专区5o| av在线老鸭窝| www.av在线官网国产| 国产熟女午夜一区二区三区| 9色porny在线观看| 在线观看www视频免费| 男女床上黄色一级片免费看| 亚洲av男天堂| 激情视频va一区二区三区| 最近中文字幕2019免费版| 国产亚洲最大av| 99久久人妻综合| 一级片免费观看大全| 卡戴珊不雅视频在线播放| 巨乳人妻的诱惑在线观看| 制服诱惑二区| 少妇人妻精品综合一区二区| 黄频高清免费视频| 在线观看免费高清a一片| 久久精品aⅴ一区二区三区四区| 一区在线观看完整版| 国产在视频线精品| 国产精品.久久久| 国产精品免费大片| 97在线人人人人妻| 最黄视频免费看| av女优亚洲男人天堂| 日本黄色日本黄色录像| 欧美少妇被猛烈插入视频| 韩国精品一区二区三区| 亚洲美女黄色视频免费看| 人妻人人澡人人爽人人| 亚洲国产日韩一区二区| svipshipincom国产片| 日韩制服丝袜自拍偷拍| 日韩av在线免费看完整版不卡| 男男h啪啪无遮挡| 久久精品熟女亚洲av麻豆精品| 久久精品久久久久久噜噜老黄| 国产黄色视频一区二区在线观看| 亚洲成人av在线免费| 国产一区二区 视频在线| 精品亚洲成a人片在线观看| 一区二区三区精品91| 美国免费a级毛片| 国产成人一区二区在线| 国产精品欧美亚洲77777| 久久久久久人妻| 亚洲国产欧美一区二区综合| 美国免费a级毛片| 亚洲久久久国产精品| 国产男人的电影天堂91| 18禁动态无遮挡网站| 国产成人精品无人区| 亚洲,一卡二卡三卡| 久久精品熟女亚洲av麻豆精品| 午夜老司机福利片| 飞空精品影院首页| 亚洲av国产av综合av卡| av不卡在线播放| 美女高潮到喷水免费观看| 国产视频首页在线观看| 欧美在线黄色| 最近最新中文字幕免费大全7| 丝袜在线中文字幕| 久久久久久久久久久久大奶| 欧美国产精品va在线观看不卡| 尾随美女入室| 观看av在线不卡| 最黄视频免费看| 天堂中文最新版在线下载| 少妇人妻久久综合中文| 日日摸夜夜添夜夜爱| 一级黄片播放器| 国产午夜精品一二区理论片| 日韩大码丰满熟妇| 在线观看国产h片| 一区二区三区激情视频| 你懂的网址亚洲精品在线观看| 亚洲国产精品一区三区| 亚洲精品一区蜜桃| 老鸭窝网址在线观看| 高清不卡的av网站| 人妻一区二区av| 一边亲一边摸免费视频| 欧美日韩亚洲高清精品| 午夜日本视频在线| 五月天丁香电影| 国产高清不卡午夜福利| 丝袜美足系列| 精品少妇黑人巨大在线播放| 国产一区二区在线观看av| 最近最新中文字幕大全免费视频 | 国产一区二区三区综合在线观看| 国产精品无大码| av在线播放精品| 伊人久久国产一区二区| 男女免费视频国产| 色播在线永久视频| 成人免费观看视频高清| 一二三四中文在线观看免费高清| 国产一区二区三区综合在线观看| 日本av手机在线免费观看| 热99久久久久精品小说推荐| svipshipincom国产片| 国产精品麻豆人妻色哟哟久久| 看非洲黑人一级黄片| 韩国高清视频一区二区三区| 欧美日韩成人在线一区二区| 日韩一区二区三区影片| 亚洲精品自拍成人| 一级a爱视频在线免费观看| 肉色欧美久久久久久久蜜桃| 夜夜骑夜夜射夜夜干| www.av在线官网国产| 国产一区二区 视频在线| 两个人免费观看高清视频| 777米奇影视久久| 老熟女久久久| 日韩一卡2卡3卡4卡2021年| 欧美 日韩 精品 国产| 只有这里有精品99| 亚洲精品成人av观看孕妇| 亚洲欧美一区二区三区黑人| 在现免费观看毛片| 亚洲av日韩在线播放| 欧美乱码精品一区二区三区| 黑丝袜美女国产一区| 少妇猛男粗大的猛烈进出视频| 99国产精品免费福利视频| 国产高清国产精品国产三级| 亚洲精品一二三| 色综合欧美亚洲国产小说| 涩涩av久久男人的天堂| 最近最新中文字幕免费大全7| 日韩制服丝袜自拍偷拍| 久久这里只有精品19| 纯流量卡能插随身wifi吗| 亚洲,欧美精品.| 久久久久精品久久久久真实原创| 日韩 亚洲 欧美在线| 国产一区二区三区综合在线观看| 大片电影免费在线观看免费| 悠悠久久av| 久久人妻熟女aⅴ| 久久ye,这里只有精品| 熟妇人妻不卡中文字幕| 一级,二级,三级黄色视频| 成人国语在线视频| 亚洲,一卡二卡三卡| 男女边摸边吃奶| 99精国产麻豆久久婷婷| 亚洲人成电影观看| 精品午夜福利在线看| av卡一久久| 午夜精品国产一区二区电影| 中文字幕人妻丝袜一区二区 | 欧美日韩亚洲国产一区二区在线观看 | 色综合欧美亚洲国产小说| 国产精品麻豆人妻色哟哟久久| 成人国语在线视频| 精品一区二区三卡| 免费av中文字幕在线| 午夜福利乱码中文字幕| 国产人伦9x9x在线观看| 久久天堂一区二区三区四区| 两个人看的免费小视频| 亚洲久久久国产精品| 精品一区二区三区av网在线观看 | 日韩大片免费观看网站| 国产又爽黄色视频| 国产亚洲午夜精品一区二区久久| 国产成人午夜福利电影在线观看| 精品第一国产精品| 看免费成人av毛片| av卡一久久| 夫妻性生交免费视频一级片| 国产精品久久久久成人av| 欧美xxⅹ黑人| 老司机在亚洲福利影院| 日韩一本色道免费dvd| 少妇人妻精品综合一区二区| 两性夫妻黄色片| 美女视频免费永久观看网站| 亚洲av成人精品一二三区| 九九爱精品视频在线观看| 国产一区二区在线观看av| 十八禁高潮呻吟视频| av片东京热男人的天堂| 欧美97在线视频| www.精华液| 久久精品aⅴ一区二区三区四区| 黑人猛操日本美女一级片| 免费看不卡的av| 国产一区二区 视频在线| 欧美人与善性xxx| 亚洲 欧美一区二区三区| 黄色一级大片看看| 精品卡一卡二卡四卡免费| 波野结衣二区三区在线| 超碰成人久久| 日韩av在线免费看完整版不卡| 欧美成人午夜精品| 制服诱惑二区| 国产在线一区二区三区精| 成人国产av品久久久| 免费不卡黄色视频| 国产色婷婷99| 国产片内射在线| 人妻一区二区av| 国精品久久久久久国模美| 色94色欧美一区二区| av电影中文网址| 高清黄色对白视频在线免费看| 国产精品99久久99久久久不卡 | 韩国精品一区二区三区| 成年女人毛片免费观看观看9 | 免费在线观看完整版高清| 人人澡人人妻人| 人妻一区二区av| 久久97久久精品| 国产男女超爽视频在线观看| 日本欧美国产在线视频| 亚洲精品视频女| 欧美日韩精品网址| 男女免费视频国产| 最近手机中文字幕大全| 黑丝袜美女国产一区| 亚洲 欧美一区二区三区| 蜜桃在线观看..| 久久久国产一区二区| 新久久久久国产一级毛片| 欧美日韩一级在线毛片| 久久久久久免费高清国产稀缺| 亚洲av欧美aⅴ国产| 高清欧美精品videossex| 五月开心婷婷网| 亚洲欧洲精品一区二区精品久久久 | 精品国产一区二区三区四区第35| 女人精品久久久久毛片| 亚洲精品一区蜜桃| 亚洲av成人精品一二三区| 美女视频免费永久观看网站| 国产欧美亚洲国产| 18禁观看日本| 免费高清在线观看视频在线观看| 97人妻天天添夜夜摸| 99国产综合亚洲精品| 黄色怎么调成土黄色| 色94色欧美一区二区| 2021少妇久久久久久久久久久| 亚洲国产欧美一区二区综合| 亚洲精品国产区一区二| 亚洲伊人久久精品综合| avwww免费| 两个人看的免费小视频| 亚洲成色77777| av不卡在线播放| 麻豆av在线久日| 日韩中文字幕欧美一区二区 | 可以免费在线观看a视频的电影网站 | 久久久久久久国产电影| 极品人妻少妇av视频| 亚洲国产毛片av蜜桃av| 丰满乱子伦码专区| 亚洲在久久综合| netflix在线观看网站| 亚洲七黄色美女视频| 99热全是精品| 精品国产一区二区久久| 亚洲精品一区蜜桃| 亚洲欧美成人综合另类久久久| 久热爱精品视频在线9| 美女视频免费永久观看网站| 日韩一本色道免费dvd| 久久精品国产综合久久久| 99国产精品免费福利视频| 搡老乐熟女国产| 熟妇人妻不卡中文字幕| 国产精品 国内视频| 99久国产av精品国产电影| 深夜精品福利| 亚洲欧洲精品一区二区精品久久久 | 搡老乐熟女国产| 啦啦啦 在线观看视频| 最近手机中文字幕大全| 亚洲精品久久久久久婷婷小说| 久久久久久久国产电影| 国产亚洲欧美精品永久| 亚洲,欧美,日韩| 精品少妇内射三级| 母亲3免费完整高清在线观看| 一二三四在线观看免费中文在| 欧美精品人与动牲交sv欧美| 亚洲自偷自拍图片 自拍| 九九爱精品视频在线观看| 久久国产精品男人的天堂亚洲| 色吧在线观看| videos熟女内射| 丝袜人妻中文字幕| 免费高清在线观看视频在线观看| 午夜福利影视在线免费观看| 伦理电影大哥的女人| 国产av国产精品国产| 高清视频免费观看一区二区| 欧美日韩视频高清一区二区三区二| 国产精品国产av在线观看| 国产成人系列免费观看| 69精品国产乱码久久久| 另类精品久久| 亚洲人成电影观看| 秋霞在线观看毛片| 又大又爽又粗| 国产精品国产三级国产专区5o| 最新的欧美精品一区二区| 一级黄片播放器| 久久99精品国语久久久| 一区二区三区激情视频| 91国产中文字幕| 一区二区三区激情视频| 国产成人91sexporn| 少妇被粗大的猛进出69影院| 丝袜美足系列| 国产黄色免费在线视频| 国产乱人偷精品视频| 国产片内射在线| 波野结衣二区三区在线| 少妇 在线观看| 亚洲国产av影院在线观看| 考比视频在线观看| 好男人视频免费观看在线| 视频在线观看一区二区三区| 国产乱人偷精品视频| 久久ye,这里只有精品| 国产高清不卡午夜福利| 国产乱来视频区| 菩萨蛮人人尽说江南好唐韦庄| 成年动漫av网址| 国产1区2区3区精品| 欧美精品人与动牲交sv欧美| 久久久久久人妻| 欧美少妇被猛烈插入视频| 亚洲成色77777| 精品少妇一区二区三区视频日本电影 | 精品一区二区三区四区五区乱码 | 九草在线视频观看| 久久久久精品性色| 亚洲一卡2卡3卡4卡5卡精品中文| 精品视频人人做人人爽| 久久国产亚洲av麻豆专区| 国产成人精品无人区| 如何舔出高潮| 国产成人啪精品午夜网站| 久久久久久久久久久免费av| 少妇人妻精品综合一区二区| 色婷婷av一区二区三区视频| 黄片小视频在线播放| 日韩免费高清中文字幕av| 日韩一本色道免费dvd| 激情视频va一区二区三区| 一级片免费观看大全| 婷婷色综合www| 久久久久精品性色| 黑人巨大精品欧美一区二区蜜桃| 中文天堂在线官网| 国产av国产精品国产| 日韩精品免费视频一区二区三区| 欧美人与性动交α欧美精品济南到| 热99国产精品久久久久久7| 国产精品.久久久| 久久综合国产亚洲精品| 男女无遮挡免费网站观看| 国产成人免费观看mmmm| 亚洲国产成人一精品久久久| 久久免费观看电影| 国产精品99久久99久久久不卡 | 精品久久久精品久久久| 亚洲一码二码三码区别大吗| 国产精品一二三区在线看| 日韩不卡一区二区三区视频在线| av在线老鸭窝| 亚洲精品国产色婷婷电影| 精品人妻熟女毛片av久久网站| 一级毛片我不卡| 日韩一本色道免费dvd| 熟妇人妻不卡中文字幕| 精品第一国产精品| 成人毛片60女人毛片免费| 国产在线一区二区三区精| 国产成人av激情在线播放| 男女免费视频国产| av线在线观看网站| 天堂8中文在线网| 欧美精品一区二区大全| 亚洲av成人不卡在线观看播放网 | 一级片'在线观看视频| 欧美最新免费一区二区三区| 久久久久久免费高清国产稀缺| 国产男女内射视频| 亚洲成人av在线免费| 欧美 日韩 精品 国产| 国产亚洲最大av| 亚洲欧美一区二区三区黑人| 日韩制服丝袜自拍偷拍| 综合色丁香网|