• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal

    2022-03-12 07:45:02YongZhang張勇XinliangHuang黃新亮JingleiZhang張警蕾WenshuaiGao高文帥XiangdeZhu朱相德andLiPi皮靂
    Chinese Physics B 2022年3期
    關(guān)鍵詞:張勇

    Yong Zhang(張勇) Xinliang Huang(黃新亮) Jinglei Zhang(張警蕾)Wenshuai Gao(高文帥) Xiangde Zhu(朱相德) and Li Pi(皮靂)

    1Institutes of Physical Science and Information Technology,Anhui University,Hefei 230601,China

    2Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions,High Magnetic Field Laboratory of the Chinese Academy of Sciences,Hefei 230031,China

    Keywords: binary pnictide semimetals,vanadium vacancy,flat band,weak anti-localization

    1. Introduction

    Topological insulators have attracted significant attention as they possess helical surface states protected by time reversal symmetry.[1-5]Due to the topological origin and Dirac fermion nature of the topological surface states,the topological insulators are expected to perform excellently in transport behaviors.[6,7]After the discovery of fascinating topological insulators,the binary pnictide semimetalsXPm2(X=V,Nb,Ta;Pm=As,Sb)[8](listed in Table 1)have also become a focus of attention in the field of condensed matter physics. The electronic structures of such materials are protected by an interplay of symmetry and topology. Electronic transport shows many novel quantum phenomena such as large non-saturation magnetoresistance (MR),[9-15]ultrahigh carrier mobility,[16]negativeMR.[17-19]These multifunctional characteristics not only provide us a promising platform for fundamental physical research but also open up a new route for exploring the potential spintronic applications which is one of the most important reasons why these materials have stimulated unprecedented research.[20]

    Table 1. Property of binary pnictide semimetals XPm2.

    VSb2has long been known as a thermoelectric material.[21]It has been recognized that this type of material is one of the candidates for diffusion barriers or electrodes in thermoelectric devices based on skutterudites.[22]Interestingly, VSb2crystallizes in tetragonal crystal structure, rather than the monoclinic one for other binary pnictides VAs2,[16]NbAs2,[19,23]and TaAs2.[13]So far,there are a few researches on VSb2single crystal.[21]In this work,we successfully grow the large size and high-quality single crystals of V1-δSb2.We systematically characterize its crystal structure, electrical transport, magnetism properties, specific heat, and calculated its band structure.

    2. Experimental details

    The high-quality V1-δSb2single crystals were synthesized by self-flux method.[24]V dendritic crystals (4N) and Sb(4N)pieces with V:Sb molar ratio of 1:30 were mixed and held in an alumina crucible,and sealed in an evacuated quartz tube. The quartz tube was heated to 1100°C in 10 hours.After holding at this temperature for 20 hours, the tube was slowly cooled to 700°C at a rate of 3°C/h. The tube was then removed from the furnace and inverted into a centrifuge to remove the excess molten antimony. The resulting metallic luster single crystals with several millimeters size were collected from the crucible. The typical dimensions of the V1-δSb2single crystals are 1 mm×1 mm×0.5 mm and show no signs of instability or degradation when exposed to air. The compositions and elemental stoichiometry of the crystals were determined by energy-dispersive spectrometer (EDS) on Oxford X-MAX electron spectrometer equipped on the focused SEM/FIB dual beam system(Helios Nanolab600i,FEI Inc.).

    A single crystal was selected and data were collected on a Bruker D8 Quest diffractometer with a detector using a CuKαradiation source(λ=1.54184 °A)from a rotating anode in a range of 10°-90°. Magnetization data were obtained from a Quantum Design magnetic property measurement system(MPMS-7) magnetometer with a 7-T superconducting magnet.The magnetization measurements of V1-δSb2single crystal were performed with zero-field cooling (ZFC) process on MPMS.

    Electrode was made by spot welding using 25-μm gold wire, and electrical transport measurements were carried out by the four-probe method upon a physical property measurement system(Quantum Design, PPMS-14T)at a temperature range from 1.8 K to 300 K.During the measurements,a model 372 (AC) resistance bridge and temperature controller were used for the measurement of resistance with applied current of 3.16 mA.The low-temperature specific heat measurements were carried out upon a 16-T physical properties measurement system(Quantum Design,PPMS-16T)using the standard thermal relaxation method.

    The preliminary first-principles band structure calculations were performed based on the density functional theory (DFT), and use the projector augmented wave method as implemented in the Viennaab initiosimulations package(VASP).[25]The generalized gradient approximation with the Perdew-Burke-Ernzerhof (PBE)[26]realization was adopted for the exchange-correlation functional. The cutoff energy was set as 400 eV.The energy and force convergence criteria were set to be 106eV and-0.05 eV/°A,respectively.

    3. Results and discussion

    According to the previous report,[27]CuAl2-type structure V1-δSb2crystallizes in the tetragonalI4/mcmspace group(No.#140). Figures 1(a)and(b)show the crystal structure of V1-δSb2,which can be regarded as alternating stacking layers of V and Sb atoms by ABAB sequence along thecaxis.Each V atom is octahedrally coordinated by Sb atoms with a bond distance of 2.484(8) °A.[28]

    Figure 1(c) shows the EDS spectrum for V1-δSb2, the measurements were performed at different positions on the polished surface of the crystal. The average chemical composition ratio of V:Sb was established to be 31.45%:68.55%,which confirms the existence of V atoms vacancies in the V1-δSb2single crystal withδ ≈0.08. This value is approximately in accordance with previous phase diagram studies(V0.9Sb2[29]and V0.97Sb2[21,22]). This means that V1-δSb2phase with V vacancy is more stable at ambient pressure,while VSb2with the same space groupC12/m1 as NbAs2may be stabilized under high pressure.

    Figure 1(d)shows the single crystal XRD pattern for the V1-δSb2at room temperature. Two sharp diffraction peaks that represent (00l) plane can be observed. The inset shows the rocking curve of the(002)diffraction peak,the full width at half-maximum(FWHM)is estimated to be Δθ ≈0.05°. Such a narrow FWHM indicates the high quality of the single crystal without twin crystal.

    Fig. 1. (a) and (b) Crystal structure of the V1-δ Sb2 single crystal. The red sphere represents vanadium atoms,the green sphere represents antimony atoms.(c)The topical energy dispersive spectrometer(EDS)for single crystal V1-δ Sb2. (d) X-ray diffraction pattern of V1-δ Sb2 single crystal with the corresponding Miller indices (00L) in parentheses. The inset shows a corresponding rocking curve.

    Fig.2. (a)The temperature dependence of longitudinal ρxx from 1.8 K to 300 K at the zero magnetic field. The value of RRR is 10.7. Upper inset shows a photograph of V1-δ Sb2 single crystal on millimeter-grid paper. (b)The ρxx at different magnetic fields. (c)The normalized MR at temperature ranging from 1.8 K to 300 K.

    Figure 2(a) exhibits the temperature dependence of longitudinal resistivityρxxfor V1-δSb2single crystal in the temperature range of 300 K-1.8 K without magnetic field. The inset displays the typical view of a V1-δSb2single crystal placed on a millimeter grid with the preferential orientation along the[001]zone axis. The residual resistance ratio(RRR),RRR=ρxx(300 K)/ρxx(2 K)=10.8, is relatively lower than that of VAs2(12),[16]NbAs2(150),[23]and NbSb2(~200).[30]This value is still larger than the reported value of~3.0 in Ref. [22]. Such relatively low value ofRRRfor V1-δSb2should origin from the intrinsic V vacancy,which provides additional scattering centers.

    When the temperature decreases from 300 K to 1.8 K,theρxxexhibits metallic behavior. Figure 2(b)plots the temperature dependence of resistivity under different magnetic fields.The electric current is parallel to thebaxis,and the magnetic field is perpendicular to theabplane. When a magnetic field is applied to the V1-δSb2single crystal, theρxxcurves are enhanced obviously with increased magnetic and another important fact observed is thatρxx(T) also increases 18.2% at 12 T at room temperature (300 K). Moreover, the V1-δSb2still holds metallic behavior even at high field of 12 T without any sign of metal-insulator transition,which is quite different from the observation of insulator-like behavior in other binary pnictide semimetals.[12,13,30-32]

    Figure 2(c)shows the normalizedMRcurves measured at different temperatures and the magnetic field is applied perpendicular to the(001)plane. TheMRis defined as

    Hereρxx(H) andρxx(0) are longitudinal resistivities with and without magnetic field,respectively. The normalizedMRcurves are symmetrized viaMR(B)=[MR(B)+MR(-B)]/2 to remove the contribution of Hall resistance. AtT=1.8 K,V1-δSb2single crystal exhibits a largeMRof 447% atB=12 T.With the increase of temperature,MRis suppressed significantly but still remain about 18.2%at 300 K.The classical carrier compensation mechanism was used to explain the large and non-saturating quadraticMR, such as that of in WP2[33]and Nb3Sb.[34]Based on the band structure calculation in Fig. 5, although we observed the electron and hole pockets fromΓtoXpoint, such a mechanism seemed to be invalid because the field dependence ofMRin V1-δSb2single crystal was of significant deviation from quadratic behavior. On the other hand, similar largeMRbehavior had been observed in nonmagnetic half-Heusler ScPtBi single crystals.[35]Therefore,the largeMRfor V1-δSb2single crystal could be understood as the WAL effect makes resistance increase steeply near zero fields. Remarkably, we observed that theMRincreases sharply in the low field region under 20 K, and a largeMRof 180% is obtained in a magnetic field of 1 T at 1.8 K. TheMRin V1-δSb2single crystal is much larger than many other nonmagnetic compounds,such as ScPdBi,[36]LuPtSb,[37]and Bi2Te3.[38]This distinctMRdip near zero magnetic field can be associated with the weak antilocalization (WAL) effect.The WAL effect is generally expected to originate from the topologically protected surface state,[39-41]or strong spinorbit coupling.[42]At zero magnetic field,backscattering gains the minimum due to the time-reversal symmetry. As the magnetic field increases,the time-reversal symmetry is broken and the backscattering increases, which leads to a sharp increase ofMR. It has been widely observed in topological insulators (Bi-Se-Te[43-45]) and topological superconductors (Al-InAs[46]and LuPdBi[47]). Furthermore, such phenomenon has also been reported in systems with strong spin-orbit couplings,such as LuPtSb[37]and YPdBi.[48]

    In order to deeply understand the WAL effect in V1-δSb2single crystal, we fit the corresponding magnetoconductivity Δσxx(B) =σxx(B)-σxx(0) using the Hikami-Larkin-Nagaoka(HLN)formula[49]

    whereeand ˉhare electron charge and reduced Planck constant;ψis digamma function;αandLφare the prefactor and phase coherence length, respectively. The prefactorαdenotes the number of conduction channels, which is experimentally found to be-0.5 for each conductive channel in two-dimensional (2D) topological insulator. Figure 3(a) displays the low-field magnetoconductivity Δσxx(B)from-0.3 T to 0.3 T at temperatures ranging from 1.8 K to 20 K, and all the curves can be well fitted by the HLN model. The obtained phase coherence lengthLφas a function of temperature are shown in Figure 3(b), and the inset displays the temperature dependence of parametersα. Remarkably, the value ofαwith an order of 105is larger than the theoretical 2D electron system, hinting that the WAL effect is mainly originate from the strong spin-orbit coupling of the three-dimensional(3D) bulk state in the V1-δSb2single crystal. In addition,we measure the angle-dependent Δσxx(B)at 1.8 K under low magnetic fields from-1 T to 1 T, as shown in Fig. 3(c). In the 2D topological insulator, the Δσxx versus Bsinθcurves should converge to one curve. The Δσxx versus Bsinθcurves in V1-δSb2are separate from each other, which further confirms the 3D feature of the WAL effect. All the results reveal that the WAL effect in V1-δSb2is resulted from strong spin-orbit coupling (SOC) destructive quantum interference between time-reversed loops formed by scattering trajectories,leading to the conductivity enhanced with decreasing temperature in the 3D bulk transport.[41]

    Fig.3. (a)The normalized magnetoconductance(Δσxx)at different temperatures(color hollow circle)and the black line is corresponding fitting curve.(b)Temperature dependence of the fitting parameter Lφ phase coherence length deduced from the WAL fit. The inset shows the temperature dependence of α. (c) The Δσxx plotted in the perpendicular magnetic field component of the magnetic field, Bsinθ, at 1.8 K. Inset, schematic diagram of the measurement setup where θ indicates the angle between the direction of the magnetic field and(001)plane.

    In addition,we measured the anisotropic magnetic properties of the V1-δSb2single crystal. Figure 4(a) shows the magnetic susceptibilityχ-Tcurve with applied magnetic field parallel and perpendicular to(001)plane,respectively. Obviously, the temperature-dependent paramagnetic susceptibility curves show typical paramagnetic behavior with nonnegligible anisotropic, and theχcis relatively larger thanχab. Both curves can be well fitted with the Curie-Weiss lawχ=χ0+C/(T-θ),[50]whereχ0is the temperature-dependent paramagnetic susceptibility from the electron contribution near the Fermi level,Cis Curie constant,θis the Weiss temperature.For both curves, the determinedCandθare almost identical with the values of about 0.0174(9) emu·mol-1·Oe-1·K-1(1 Oe=79.5775 A/m)and-183.7(3)K,respectively. The effective momentum was determined to be 0.3741μB/V atom.The negativeθvalue indicates the existence of antiferromagnetic coupling between V atoms or vacancy. By subtracting the Curie-Weiss part,theχ0part can be obtained and is shown in the inset of Fig. 4(a). Apparently,χ0forH||cremains in whole temperature range down to 4 K with a small curie tail,whileχ0forH||abstarts to increase suddenly with decreasing temperature below 15 K.Such a sudden increase ofχ0forH||abmay not come from magnetic order, since the antiferromagnetic coupling. Figure 4(b) shows the typical paramagnetic behaviors forH||c,and the magnetization is extremely small at 2 K,which confirmed that an abrupt increase of theχ0part is not induced by the magnetic order.On the other hand,if we attribute the abrupt magnetization increment ΔMbetween 2 K and 20 K(3.4×10-2emu·mol-1)to the ferromagnetic impurity,we can obtain a concentration with 10-6order for magnetic impurity. In classic condensed matter physics, theχ0is proportional to the density of Fermi level with small magnetic fieldHwith relation of[51]

    wheremis the mass of free electrons,his the Planck constant,Vis the volume per mole. Theoretically,an abrupt increase ofNat low temperature is expected to yield an abrupt increase ofγin specific heat.

    Heat capacity was measured between 2 K to 10 K and no phase transition was observed. The total heat capacity of normal metal material at low temperature can be described as the sum ofC=Ce+Cp=γT+βT3,[52]whereCpis the phonon contribution,γandβare the free electron part coefficient and phonon part coefficient. To obtain theγpart,C/T versus T2curve is plotted in Fig. 4(c). By linear fitting of the curve,phonon part coefficientβ= 0.16529 mJ·mol-1·K-4can be obtained. As shown in Fig. 4(c), theC/T-T2deviates from the simple model for a normal metal below 7 K.As mentioned above, the estimated low concentration of ferromagnetic impurity is of 10-6order, which cannot explain the heat capacity change below 7 K. After subtracting the phonon part, the temperature dependence ofγcan be obtained,as displayed in Fig. 4(d). We propose that theγfree electron part suddenly increases under 7 K,which means that the abrupt increase ofγinduced by the abrupt increase ofNat low temperature. To figure out the physics origin,band structure calculations were made.

    Fig.4. (a)The magnetic susceptibility of V1-δ Sb2 single crystal with under zero field cooling(ZFC)for field of 0.2 T applied parallel to c axis and perpendicular to ab plane. The brown line is fitting with the Curie-Weiss law and the inset shows a temperature-dependent paramagnetic susceptibility gained by magnetic susceptibility subtracted the Curie-Weiss part. (b)Field-dependent magnetization at 2 K,10 K,respectively.(c)C(T)/T versus T2 of V1-δ Sb2 single crystal from 2 K to 10 K.(d)The free electron part coefficient γ(C/T-βT2)versus temperature T,where β is determined from the linear fitting(blue solid line).

    Fig.5. (a)The Brillouin zones. (b)Band structures calculated with considering spin-orbit coupling(SOC)and the total density of states(DOS)for VSb2.(c)The Fermi surfaces of VSb2 crystals from first-principle calculations. Left is total Fermi surface for VSb2,right is Fermi surface with along Γ-X.

    We first calculated the band structures with SOC.The obtained results are plotted in Fig.5(b). Then,the Fermi surface was calculated by the VASPKIT.[25]The software of XcrySDen was used to plot the Fermi surface in Fig. 5(c). Figure 5(a) shows the first Brillouin zone in momentum space for the primitive unit cell. The metallic character can be shown by the high density of states (DOS) at the Fermi level and the presence of electron and hole-bands. The DOS of VSb2shows that the region close to Fermi level is dominated by fully occupied V-3d states with a small contribution of Sb-3p states and that conduction bands are dominated strongly by this hybridization.[27]The left of Fig.5(c)reveals the total Fermi surface include the six bands crossing Fermi level. The right picture shows a flat band, that crosses the Fermi surface alongΓ-Xpoint,consists of hole-and electronpockets. The electron-pocket encompasses theΓpoint. The hole-pockets, located on theXpoint, which is in the center of the hexagonal plane of Brillouin zone. According to the previous research, from 300 K to 10 K, V0.97Sb2single crystal has a relatively large linear coefficient of thermal expansionα1= 14.1×10-6K-1, which value is higher than the reported value for NbSb2(8.4×10-6K-1) and TaSb2(7.5×10-6K-1).[22]With the decrease of temperature, the structure of V1-δSb2single crystal is distorted and the flat band gradually approached the Fermi surface. When the temperature falls below 7 K, the flat band is closer to the Fermi surface and produces a large density of states. This is the reason why the magnetic susceptibility and theCeincrease at low temperatures.

    4. Conclusions

    High-quality V1-δSb2single crystals were grown via flux method. Due to VSb2possesses a narrow homogeneity range,the vanadium compound possesses a V deficiency and is better described as V1-δSb2(δ ≈0.08).We have calculated the electronic structure with SOC and measured the longitudinal resistivity, specific heat, and magnetic susceptibility of V1-δSb2.Transport experiments demonstrated that V1-δSb2performs metallic behavior with positive largeMRreached 447%. More intriguingly, we observed an obvious WAL effect fromMRbelow 20 K in the low-field region. The extremely largeαand the angle dependence of Δσxxsuggest that the WAL effect in V1-δSb2single-crystal originates from the contribution of strong 3D bulk spin-orbital coupling. In addition, we observed the abruptly increase of theχ0part andCepart under the 7 K.We propose that these phenomena are signatures of the flat band, which indicates V1-δSb2is likely to display fantastic electronic behaviors at extremely low temperatures.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. U2032214, U2032163, and 11904002), the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2017483), and the Natural Science Foundation of Anhui Province,China(Grant No.1908085QA15).

    猜你喜歡
    張勇
    A new global potential energy surface of the ground state of SiH+2(X2A1)system and dynamics calculations of the Si++H2(v0=2,j0=0)→SiH++H reaction
    Design of a low-frequency miniaturized piezoelectric antenna based on acoustically actuated principle
    Photon blockade in a cavity–atom optomechanical system
    跟曾國藩學(xué)修身
    做人與處世(2022年6期)2022-05-26 10:26:35
    傅山的“四寧四毋”
    做人與處世(2022年4期)2022-05-26 04:43:14
    關(guān)于組合和式的Dwork類型超同余式
    張勇
    書香兩岸(2020年3期)2020-06-29 12:33:45
    《家務(wù)機(jī)器人》等
    在體驗中走向共生
    Wind Estimation for UAV Based on Multi-sensor Information Fusion
    99久久综合精品五月天人人| 欧美激情极品国产一区二区三区| 咕卡用的链子| av超薄肉色丝袜交足视频| 涩涩av久久男人的天堂| 人妻丰满熟妇av一区二区三区 | 免费人成视频x8x8入口观看| 国产在线一区二区三区精| 啦啦啦在线免费观看视频4| 亚洲人成电影免费在线| 岛国毛片在线播放| 日本欧美视频一区| 下体分泌物呈黄色| 伦理电影免费视频| 一本综合久久免费| 18禁裸乳无遮挡免费网站照片 | 亚洲精品久久午夜乱码| 波多野结衣一区麻豆| 日韩熟女老妇一区二区性免费视频| av天堂在线播放| 又黄又爽又免费观看的视频| 高清av免费在线| 满18在线观看网站| a级片在线免费高清观看视频| 一边摸一边抽搐一进一出视频| 国产高清国产精品国产三级| 操出白浆在线播放| 国产一区二区三区在线臀色熟女 | 女同久久另类99精品国产91| 丰满人妻熟妇乱又伦精品不卡| 桃红色精品国产亚洲av| 天天添夜夜摸| 他把我摸到了高潮在线观看| 亚洲av成人不卡在线观看播放网| 97人妻天天添夜夜摸| 久久国产亚洲av麻豆专区| 国产成人啪精品午夜网站| 欧美人与性动交α欧美精品济南到| 日韩三级视频一区二区三区| 女人高潮潮喷娇喘18禁视频| 亚洲精品中文字幕在线视频| 欧美精品啪啪一区二区三区| 9色porny在线观看| 欧美中文综合在线视频| 一区二区三区精品91| 日韩欧美免费精品| 男女床上黄色一级片免费看| 日韩成人在线观看一区二区三区| 麻豆乱淫一区二区| 天天躁日日躁夜夜躁夜夜| 国产高清国产精品国产三级| 欧美日韩福利视频一区二区| 久久久久久久久久久久大奶| 国产一区二区三区综合在线观看| avwww免费| 亚洲专区中文字幕在线| 在线观看66精品国产| 99久久99久久久精品蜜桃| 国产高清国产精品国产三级| 美女 人体艺术 gogo| 中亚洲国语对白在线视频| 久久人妻福利社区极品人妻图片| 久久久久精品人妻al黑| 日韩欧美一区视频在线观看| 大型黄色视频在线免费观看| 咕卡用的链子| 多毛熟女@视频| 成年人黄色毛片网站| 亚洲精品国产精品久久久不卡| 极品少妇高潮喷水抽搐| 国产精品免费视频内射| 真人做人爱边吃奶动态| e午夜精品久久久久久久| 男女免费视频国产| 99re6热这里在线精品视频| 国产精品久久久av美女十八| 亚洲成人免费电影在线观看| 正在播放国产对白刺激| 久99久视频精品免费| 夜夜爽天天搞| 亚洲熟妇熟女久久| 日本欧美视频一区| 老熟妇仑乱视频hdxx| 好看av亚洲va欧美ⅴa在| 成人18禁高潮啪啪吃奶动态图| 午夜老司机福利片| 午夜福利在线观看吧| 黄色女人牲交| 日韩制服丝袜自拍偷拍| 一本大道久久a久久精品| 黄色丝袜av网址大全| 久久久久视频综合| 很黄的视频免费| 久99久视频精品免费| tocl精华| 久久久久国内视频| 最近最新中文字幕大全免费视频| 高清视频免费观看一区二区| 国产91精品成人一区二区三区| 午夜两性在线视频| 人人妻人人添人人爽欧美一区卜| 国产精品免费大片| 国产区一区二久久| 99香蕉大伊视频| 久久性视频一级片| 黄片大片在线免费观看| 电影成人av| 日韩欧美免费精品| 日韩欧美免费精品| www.999成人在线观看| 国产一卡二卡三卡精品| 国产亚洲精品第一综合不卡| 亚洲专区中文字幕在线| 中文字幕制服av| 精品电影一区二区在线| 999久久久精品免费观看国产| 欧美日韩av久久| 国产亚洲精品一区二区www | 天天影视国产精品| 侵犯人妻中文字幕一二三四区| 一本大道久久a久久精品| 日日摸夜夜添夜夜添小说| 国产成人av激情在线播放| 国产片内射在线| 精品一区二区三区av网在线观看| 两个人看的免费小视频| 成人影院久久| 欧美另类亚洲清纯唯美| 操美女的视频在线观看| 欧美日韩福利视频一区二区| 国产精品美女特级片免费视频播放器 | 久久香蕉精品热| 亚洲av片天天在线观看| 免费观看精品视频网站| 国产精品一区二区免费欧美| 美女扒开内裤让男人捅视频| 亚洲一区高清亚洲精品| 精品无人区乱码1区二区| 女警被强在线播放| tocl精华| 久9热在线精品视频| 麻豆国产av国片精品| 亚洲熟女精品中文字幕| 高清黄色对白视频在线免费看| 老司机影院毛片| 国产精品.久久久| 人妻一区二区av| 成年动漫av网址| 免费看a级黄色片| 丝瓜视频免费看黄片| 国产精品98久久久久久宅男小说| 9191精品国产免费久久| 精品国产乱子伦一区二区三区| 午夜成年电影在线免费观看| 国产精品免费大片| 别揉我奶头~嗯~啊~动态视频| 日韩欧美一区二区三区在线观看 | 亚洲精品久久成人aⅴ小说| 国产高清国产精品国产三级| 在线永久观看黄色视频| 国产欧美日韩一区二区三区在线| 美国免费a级毛片| 精品卡一卡二卡四卡免费| 亚洲在线自拍视频| 久久午夜综合久久蜜桃| 久久国产精品人妻蜜桃| 黑人猛操日本美女一级片| 国产片内射在线| 成人影院久久| 人人妻人人添人人爽欧美一区卜| 国产精品一区二区免费欧美| 成人影院久久| 高清在线国产一区| 欧美久久黑人一区二区| 制服人妻中文乱码| 久久国产精品人妻蜜桃| 国产在线精品亚洲第一网站| 91精品国产国语对白视频| 久久热在线av| 啦啦啦在线免费观看视频4| 香蕉久久夜色| 成年版毛片免费区| 热re99久久精品国产66热6| 老熟妇仑乱视频hdxx| 老熟女久久久| 国产精品香港三级国产av潘金莲| 在线观看免费视频网站a站| 人人妻人人爽人人添夜夜欢视频| 日韩熟女老妇一区二区性免费视频| 狠狠婷婷综合久久久久久88av| 久久中文字幕人妻熟女| av有码第一页| 久久久久久久精品吃奶| 国产黄色免费在线视频| 国产精品偷伦视频观看了| 久99久视频精品免费| 精品无人区乱码1区二区| 精品一区二区三区四区五区乱码| 国产97色在线日韩免费| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产精品一区二区三区在线| 久久亚洲真实| 十八禁人妻一区二区| 国产熟女午夜一区二区三区| 老司机午夜十八禁免费视频| 老司机福利观看| 人人澡人人妻人| 国产1区2区3区精品| 美女福利国产在线| 在线十欧美十亚洲十日本专区| 欧美乱码精品一区二区三区| 天天躁日日躁夜夜躁夜夜| 国产精品一区二区精品视频观看| 亚洲精品在线美女| 欧美av亚洲av综合av国产av| 日韩精品免费视频一区二区三区| 国产av一区二区精品久久| 亚洲精品久久成人aⅴ小说| 99精品欧美一区二区三区四区| 国产午夜精品久久久久久| 一个人免费在线观看的高清视频| 91av网站免费观看| 老鸭窝网址在线观看| 99香蕉大伊视频| 久久人妻av系列| 国产免费男女视频| 国产99白浆流出| 亚洲片人在线观看| 99国产综合亚洲精品| 成人手机av| 国产精品秋霞免费鲁丝片| 欧美中文综合在线视频| 热re99久久国产66热| 欧美日韩av久久| 韩国精品一区二区三区| 久久精品熟女亚洲av麻豆精品| 十八禁网站免费在线| 丝袜美腿诱惑在线| 亚洲熟女精品中文字幕| 99热网站在线观看| 国产精品一区二区在线不卡| 欧美乱码精品一区二区三区| 久久久精品区二区三区| 亚洲欧美色中文字幕在线| 亚洲中文av在线| 久久精品91无色码中文字幕| 18禁黄网站禁片午夜丰满| 校园春色视频在线观看| 国产1区2区3区精品| 手机成人av网站| 亚洲全国av大片| 欧美激情 高清一区二区三区| 国产精品国产av在线观看| 女性生殖器流出的白浆| 18禁裸乳无遮挡免费网站照片 | 亚洲精品美女久久av网站| 中文字幕人妻丝袜制服| 欧美乱妇无乱码| 亚洲国产精品一区二区三区在线| 久久九九热精品免费| 国产精品久久视频播放| 99香蕉大伊视频| 夫妻午夜视频| 老司机深夜福利视频在线观看| 国产亚洲精品久久久久久毛片 | 青草久久国产| 中出人妻视频一区二区| 男男h啪啪无遮挡| 黄网站色视频无遮挡免费观看| 欧美av亚洲av综合av国产av| 亚洲熟妇熟女久久| 欧美精品人与动牲交sv欧美| 99热网站在线观看| 久久久久久久久免费视频了| 国产精品国产高清国产av | 高清毛片免费观看视频网站 | 女性生殖器流出的白浆| 在线观看午夜福利视频| 亚洲第一欧美日韩一区二区三区| 成人精品一区二区免费| 欧美亚洲日本最大视频资源| 在线观看免费视频网站a站| 亚洲九九香蕉| 中文字幕人妻熟女乱码| 制服人妻中文乱码| 成年人午夜在线观看视频| 男女午夜视频在线观看| av有码第一页| 国产精品久久视频播放| 99久久综合精品五月天人人| 久久精品国产综合久久久| 中文字幕制服av| 午夜成年电影在线免费观看| 在线国产一区二区在线| 999久久久精品免费观看国产| 欧美黄色片欧美黄色片| 黄片大片在线免费观看| 制服人妻中文乱码| 亚洲三区欧美一区| 午夜福利一区二区在线看| 亚洲欧美一区二区三区黑人| 别揉我奶头~嗯~啊~动态视频| 国产激情久久老熟女| 看免费av毛片| 激情视频va一区二区三区| 欧美在线黄色| а√天堂www在线а√下载 | 久久香蕉精品热| tube8黄色片| 亚洲九九香蕉| 久久久精品国产亚洲av高清涩受| 窝窝影院91人妻| 午夜视频精品福利| 一二三四社区在线视频社区8| 老鸭窝网址在线观看| 日本撒尿小便嘘嘘汇集6| 国产aⅴ精品一区二区三区波| av不卡在线播放| 极品少妇高潮喷水抽搐| 日韩视频一区二区在线观看| 午夜精品在线福利| 国内久久婷婷六月综合欲色啪| 成年版毛片免费区| 午夜福利视频在线观看免费| 老司机影院毛片| 宅男免费午夜| 日韩精品免费视频一区二区三区| 啦啦啦 在线观看视频| 18在线观看网站| 亚洲成a人片在线一区二区| 啦啦啦视频在线资源免费观看| 黄网站色视频无遮挡免费观看| 日韩欧美一区视频在线观看| 亚洲精品中文字幕一二三四区| 国产成人欧美在线观看 | 国产午夜精品久久久久久| 亚洲黑人精品在线| 亚洲成国产人片在线观看| 真人做人爱边吃奶动态| 身体一侧抽搐| 久久中文看片网| 欧美日韩成人在线一区二区| 国产亚洲欧美精品永久| 色播在线永久视频| 日本黄色视频三级网站网址 | 99热国产这里只有精品6| 久久国产精品人妻蜜桃| 午夜两性在线视频| a级片在线免费高清观看视频| 亚洲aⅴ乱码一区二区在线播放 | 不卡av一区二区三区| 国产成人系列免费观看| 免费高清在线观看日韩| 在线观看免费午夜福利视频| 亚洲 欧美一区二区三区| 成人av一区二区三区在线看| 大香蕉久久网| 欧美日韩视频精品一区| 精品久久久久久久久久免费视频 | 69精品国产乱码久久久| 亚洲精品久久午夜乱码| 每晚都被弄得嗷嗷叫到高潮| 欧美黑人欧美精品刺激| 亚洲五月婷婷丁香| 久久国产精品人妻蜜桃| 在线观看www视频免费| 午夜福利,免费看| 男人的好看免费观看在线视频 | 无遮挡黄片免费观看| 岛国毛片在线播放| 18禁黄网站禁片午夜丰满| 国产精品一区二区免费欧美| 精品国产超薄肉色丝袜足j| 80岁老熟妇乱子伦牲交| 免费人成视频x8x8入口观看| 中出人妻视频一区二区| 国产免费男女视频| 在线观看一区二区三区激情| 少妇裸体淫交视频免费看高清 | 最新美女视频免费是黄的| 国产亚洲av高清不卡| 男女床上黄色一级片免费看| 男人的好看免费观看在线视频 | 国产不卡一卡二| 亚洲性夜色夜夜综合| 国产国语露脸激情在线看| 国产精品电影一区二区三区 | 中国美女看黄片| 多毛熟女@视频| 亚洲三区欧美一区| 久久久久精品人妻al黑| 后天国语完整版免费观看| 久久人妻av系列| 12—13女人毛片做爰片一| 久久久水蜜桃国产精品网| 18禁黄网站禁片午夜丰满| 国产激情欧美一区二区| 欧美亚洲日本最大视频资源| 人人妻人人爽人人添夜夜欢视频| 亚洲精品成人av观看孕妇| 80岁老熟妇乱子伦牲交| 日韩人妻精品一区2区三区| 国产日韩一区二区三区精品不卡| 日韩中文字幕欧美一区二区| 久久久久精品人妻al黑| 18禁黄网站禁片午夜丰满| av电影中文网址| av中文乱码字幕在线| 高清黄色对白视频在线免费看| 国产高清国产精品国产三级| 身体一侧抽搐| 大陆偷拍与自拍| 91麻豆av在线| 一级a爱视频在线免费观看| 天堂动漫精品| 欧美日韩一级在线毛片| 亚洲av成人一区二区三| 一区二区日韩欧美中文字幕| 欧美亚洲 丝袜 人妻 在线| 亚洲精品av麻豆狂野| 国产又爽黄色视频| 丝袜人妻中文字幕| 91精品国产国语对白视频| 国产日韩欧美亚洲二区| 99国产精品一区二区蜜桃av | 极品少妇高潮喷水抽搐| 啪啪无遮挡十八禁网站| 亚洲情色 制服丝袜| 欧美 日韩 精品 国产| 欧美日韩亚洲综合一区二区三区_| 丰满人妻熟妇乱又伦精品不卡| 丝袜在线中文字幕| 叶爱在线成人免费视频播放| 亚洲精品国产色婷婷电影| 久久久精品区二区三区| 国产一区二区三区在线臀色熟女 | 一级作爱视频免费观看| 午夜福利影视在线免费观看| 亚洲在线自拍视频| 757午夜福利合集在线观看| 国产淫语在线视频| 亚洲精品中文字幕一二三四区| 99久久国产精品久久久| 9色porny在线观看| 妹子高潮喷水视频| 免费高清在线观看日韩| 欧美另类亚洲清纯唯美| 欧美日韩黄片免| 91av网站免费观看| 国产aⅴ精品一区二区三区波| 天天躁夜夜躁狠狠躁躁| av网站免费在线观看视频| 国产精品一区二区免费欧美| av线在线观看网站| 亚洲精品自拍成人| 免费一级毛片在线播放高清视频 | 国产亚洲欧美98| 成年版毛片免费区| 美女高潮到喷水免费观看| 18禁裸乳无遮挡动漫免费视频| 岛国在线观看网站| 亚洲精品美女久久久久99蜜臀| 极品人妻少妇av视频| 久久久久国产精品人妻aⅴ院 | 婷婷丁香在线五月| 妹子高潮喷水视频| 一夜夜www| 高潮久久久久久久久久久不卡| 免费看a级黄色片| 大香蕉久久成人网| 国产亚洲精品一区二区www | 91麻豆av在线| 每晚都被弄得嗷嗷叫到高潮| 亚洲七黄色美女视频| 50天的宝宝边吃奶边哭怎么回事| 乱人伦中国视频| 黄片大片在线免费观看| 午夜日韩欧美国产| 黄片小视频在线播放| 久久久久久亚洲精品国产蜜桃av| 天堂俺去俺来也www色官网| 国产一区二区三区在线臀色熟女 | 精品久久久久久电影网| 久热爱精品视频在线9| 久久精品人人爽人人爽视色| 国产高清国产精品国产三级| 午夜福利视频在线观看免费| tocl精华| 不卡av一区二区三区| 亚洲熟妇熟女久久| www.熟女人妻精品国产| 午夜免费成人在线视频| 成人手机av| 国产亚洲精品一区二区www | av一本久久久久| videos熟女内射| 大香蕉久久成人网| 两性午夜刺激爽爽歪歪视频在线观看 | 黄频高清免费视频| 国产成人av激情在线播放| 久久亚洲精品不卡| 亚洲免费av在线视频| 美女视频免费永久观看网站| 国产成人精品无人区| 一区二区三区国产精品乱码| 黄片小视频在线播放| 成人国语在线视频| 欧美+亚洲+日韩+国产| 亚洲人成电影观看| 老司机亚洲免费影院| 大香蕉久久网| 高清在线国产一区| 欧美av亚洲av综合av国产av| 国产极品粉嫩免费观看在线| 亚洲中文字幕日韩| 在线看a的网站| 少妇猛男粗大的猛烈进出视频| 欧美午夜高清在线| 欧美一级毛片孕妇| 久久人人97超碰香蕉20202| 久久午夜亚洲精品久久| 又紧又爽又黄一区二区| 满18在线观看网站| 国产亚洲精品一区二区www | 久久久久视频综合| 日韩制服丝袜自拍偷拍| tocl精华| 国产亚洲精品久久久久久毛片 | 美女高潮到喷水免费观看| 丰满迷人的少妇在线观看| 亚洲精品久久成人aⅴ小说| 久久久久久亚洲精品国产蜜桃av| 在线观看www视频免费| 免费人成视频x8x8入口观看| 黑人操中国人逼视频| 亚洲男人天堂网一区| 91麻豆av在线| 国产精品影院久久| 欧美日韩视频精品一区| 水蜜桃什么品种好| 一夜夜www| 中文字幕高清在线视频| 日韩三级视频一区二区三区| 国产高清国产精品国产三级| 午夜福利乱码中文字幕| 大码成人一级视频| 亚洲精品在线观看二区| av福利片在线| 国产精品久久久久久精品古装| 高清毛片免费观看视频网站 | 亚洲成国产人片在线观看| 欧美+亚洲+日韩+国产| 欧美色视频一区免费| 国产99白浆流出| 一区二区三区精品91| av免费在线观看网站| 亚洲av日韩在线播放| 搡老熟女国产l中国老女人| 国产一区二区激情短视频| 久久青草综合色| 日本黄色日本黄色录像| 久久国产精品人妻蜜桃| 国产91精品成人一区二区三区| 色尼玛亚洲综合影院| 成年动漫av网址| 夫妻午夜视频| 久热这里只有精品99| 熟女少妇亚洲综合色aaa.| 在线观看一区二区三区激情| 国产成人欧美在线观看 | 日韩有码中文字幕| 久久久久久免费高清国产稀缺| 青草久久国产| 12—13女人毛片做爰片一| 男人操女人黄网站| 欧美亚洲日本最大视频资源| 国产熟女午夜一区二区三区| 丰满饥渴人妻一区二区三| 欧美日韩成人在线一区二区| 精品一区二区三区视频在线观看免费 | 色综合婷婷激情| 国产精品自产拍在线观看55亚洲 | 99国产精品免费福利视频| 成人18禁高潮啪啪吃奶动态图| 另类亚洲欧美激情| 亚洲精品国产色婷婷电影| 一进一出好大好爽视频| 高清在线国产一区| 精品国产一区二区三区四区第35| 亚洲avbb在线观看| 亚洲视频免费观看视频| 国产区一区二久久| 精品一区二区三卡| 欧美另类亚洲清纯唯美| av视频免费观看在线观看| 在线播放国产精品三级| 国产不卡av网站在线观看| www.熟女人妻精品国产| 久热这里只有精品99| 成人18禁在线播放| 在线观看免费视频网站a站| 久久久国产一区二区| 国产精品香港三级国产av潘金莲| 免费久久久久久久精品成人欧美视频| 国产精品香港三级国产av潘金莲| 午夜久久久在线观看| 国产主播在线观看一区二区| 夫妻午夜视频| 国产不卡av网站在线观看| 91大片在线观看| 亚洲视频免费观看视频| 欧美久久黑人一区二区| 99re6热这里在线精品视频| 亚洲色图综合在线观看| 久久精品人人爽人人爽视色|