• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Color-image encryption scheme based on channel fusion and spherical diffraction

    2022-03-12 07:44:22JunWang王君YuanXiZhang張沅熙FanWang王凡RenJieNi倪仁杰andYuHengHu胡玉衡
    Chinese Physics B 2022年3期
    關鍵詞:王君

    Jun Wang(王君) Yuan-Xi Zhang(張沅熙) Fan Wang(王凡) Ren-Jie Ni(倪仁杰) and Yu-Heng Hu(胡玉衡)

    1Sichuan University,School of Electronics and Information Engineering,Chengdu 610065,China

    2Department of Electrical and Computer Engineering,University of Wisconsin-Madison,Madison,WI 53706,USA

    Keywords: channel fusion,hyper-chaotic system,asymmetric encryption,spherical diffraction

    1. Introduction

    In the past few decades, information security has been widely discussed in the military field and civilian field. As one of the most common information carriers, encryption research on the image has always been a concern of scientific researchers. Unlike traditional digital encryption, optical encryption has attracted more and more attention due to its high-speed transmission,parallel processing,and large capacity. The earliest optical encryption system can be traced back to the double random phase encryption scheme proposed by Refregier and Javadi in 1995,[1]which can encrypt the image into stationary white noise in the 4f optical system. However, this symmetry system was later proved to be vulnerable to known-plaintext[2]and chosen-plaintext attacks.[3]To overcome the shortcoming,the fractional Fourier transform,[4,5]fractional Mellin transform,[6,7]phase-shifting interferometry,[8,9]Fresnel transform,[10]ghost image,[11]and cylindrical diffraction[12,13]have been proposed. Moreover,as an important branch of image encryption,a lot of colorful image encryption schemes[14-20]have been proposed based on previous researches.

    Nevertheless, most of color image optical encryption schemes at present which convert color plaintext into color ciphertext suffer the problem of information leakage.[21-23]The red-green-blue (RGB) channels of the color image are encrypted independently first in these encryption schemes.Then,encrypted channels are fused into a color image again. In this case, the attacker only needs to know part of the ciphertext and private key to obtain most of the partial information of the plaintext image. There are two feasible schemes to solve this problem. One is to reduce the strong correlation between separate RGB channels and the color image,[24-26]such as changing the pixel values or position of one channel through another channel.[24]However, like the parallel processing scheme, this scheme usually requires optical modulations more than once to obtain the ciphertext. Moreover,since the existing hardware usually discretizes the image,this scheme will lead to more errors in optical encryption and reduce the quality of the decrypted image. Therefore, researchers proposed another scheme[27-29]whose idea is similar to multi-image encryption.[30]Dissimilarly, the second scheme tries to transform a color image into a grayscale image. A common method to transform a color image into a single channel image is to perform the convolution operation on all three channels together.[28,29]Compared with the first scheme, the second scheme is more suitable for optical encryption. However, the second scheme usually requires more private keys to separate the merged images during decryption.And the second scheme does not solve the problem of information leakage well since the attackers can still obtain the complete information about a particular channel if they know the full ciphertext and part of the private keys. Therefore, considering the problems of existing schemes, it is necessary to develop a more secure and efficient color image encryption scheme. The proposed encryption scheme should integrate the advantages of first and second schemes and avoid their disadvantages.

    In this paper, a color-image encryption scheme based on channel fusion and spherical diffraction is proposed. In this scheme, a color image is first transformed into a grayscale image by channel fusion technology based on a hyperchaotic system and discrete wavelet transform (DWT). Here, the hyperchaotic system is to reduce the correlation between the RGB channels and colorful original image, and the DWT is to transform the color image into a grayscale image. Then,the grayscale image is modulated by a mask generated by the hyperchaotic system. The modulation result is input into an asymmetric spherical diffraction system which is more secure than the symmetric system. Finally, the improved equal module decomposition (IEMD) is used to hide the complexvalued result of diffraction into two real-values masks which are more valuable for the actual data transmission. The proposed scheme can solve the problem of information leakage well in optical encryption. The simulation results and safety analysis prove the effectiveness of our scheme.

    2. Principle of encryption and decryption

    Here in this section, some basic principles related to our proposed scheme are introduced.

    2.1. Encryption in spherical diffraction domain

    Owing to the asymmetric property of spherical diffraction, the shortcomings of symmetry of the plane diffraction encryption schemes can be overcome. Therefore,it can resist ciphertext attack, plaintext attack, and phase-retrieval attack.Meanwhile, the diffraction parameter can also be used as a private key to improve the security of the encryption scheme.

    According to spherical holographic theory,[31-35]the object surface and observation surface of spherical diffraction are the surfaces of concentric spheres with radii ofrandR.Hence,there are two propagation models which are inside-tooutside propagation(IOP)model and outside-to-inside propagation(OIP)model as shown in Figs.1(a)and 1(b).

    Fig.1. Spherical diffraction of(a)inside-to-outside propagation model and(b)outside-to-inside propagation model.

    For the IOP model,Qr(θr,φr)andPR(θR,φR)represent the object point and observation point in the spherical coordinate,respectively. For the OIP model,QR(θR,φR)andPr(θr,φr)denote the object point and observation point in the spherical coordinate,respectively. TheθrandθRare in a range from-πtoπ,andφRandφrare in a range from-π/2 toπ/2. If we denote the diffraction distributions on inner surfaces and outer surfaces asur(θr,φr)anduR(θR,φR),the diffraction integral equations based on the Rayleigh-Sommerfeld integral equation of the two models can be written as

    whereCis a constant andkdenotes the wavenumber of the incident light,drepresents the distance between the observation pointPand the object pointQ, andsrefers to the object surface.

    2.2. Improved equal module decomposition

    In conventional equal module decomposition(EMD),[36]a complex amplitudeUcan be represented by two equal module masksP1andP2. The new distribution of complex amplitude can be rewritten as

    whereAis the amplitude ofU, andβis the phase ofU. If a random phase mask (RPM) (in the following text, RPM is denoted byR)distributed uniformly in the interval[0,2π],R2is expressed as

    where rand(M×N)means a random number matrix ofMrows andNcolumns,and the value range of element is[0,1]. Here,P1will be gained byA,andP2byβandR2.

    However,P1andP2are expressed as two complex-valued masks and they are not convenient to transmit. Therefore,an IEMD scheme is used[37]to solve the problem. Here in the IEMD the output ofP1andP2are replaced byCandPKwhich are both real valued. Under the IEMD,the decomposition equation of complex amplitudeUis as follows:

    U=C·[exp(iR2)+exp(iPK)],

    C=0.5A·[cos(β-R2)]-1, PK=2β-R2=arg(P2),(6)

    whereCis ciphertext, andPKis the private key. In our scheme,R2is generated from the hyperchaotic system controlled by private key. Therefore, it is not necessary to transmitR2. Hence,Uis hidden into two real-valued masks [C,PK]successfully.

    3. Proposed scheme

    3.1. Encryption process

    Step 1 First, we need to generate several sequences or masks. In this step, Chenet al.’s four-dimensional (4D) hyperchaotic system[38]is used to generate the sequences and masks for subsequent encryption. The hyperchaotic system is as follows:

    Here, the parameters of the system are set to bea=80,b=45,c=22,d=5,e=21,f=8,andr=78,and they are broadcasted as public keys.

    The initial conditions used as private keys are determined by different plaintexts. The initial value ofx,y,z, andware determined by variance and mean of the color plaintext, respectively. The generated four sequences are used as key1,key2,R1,andR2for subsequent encryption. The key1 and key2 are used in the channel fusion process.R1is a random phase mask which forms a complex amplitude with the fused image in spherical diffraction.R2is the random mask in IEMD.

    In the actual transmission,the only private keys we need to transmit are the initial values of the hyperchaotic system.

    Step 2 In this step, the color plaintext is processed by channel fusion based on DWT and the keys generated by the hyperchaotic system. The channel fusion will change the distribution and values of the plaintext pixels through key1 and key2 and finally resulting in a grayscale image.

    Firstly,the RGB channels of colorful image are separated,and they are processed by as follows:

    whereIR,IG, andIBrepresent the corresponding RGB channels of the original image,FL[·]denotes the progress of transforming a two-dimensional (2D) image matrix into a onedimensional(1D)pixel sequence,°refers to the matrix splicing operation,andSis the spliced sequence.

    Secondly, the sequenceSis diffused and permuted by key1 and key2 which are obtained in step 1, and expressed as

    where Per(a,b) denotes usingbto permutea, and⊕is the operation of XOR.

    After that,S1is reshaped from a sequence to three matrices. Each of the three matrices contains part of the information about the three RGB channels, which means that the strong correlation between the RGB channels is weakened. In this way, the corresponding color plaintext cannot be recovered well while missing any matrix.After reshaping the fusion sequence back to three gray-scale images, they will perform inverse DWT[39]together with the interfering image to finally get a grayscale image

    where IDWT[·]is the inverse discrete wavelet transform,Re(·)is the operator of reshaping.Itis the interfering image, andf(x,y) is the grayscale image after fusion. The process of channel fusion is shown in Fig.2,and the intermediate and the final results of channel fusion are shown in Fig.3. The size of final fused image is four times that of the original image.

    Fig.2. Channel fusion process.

    Fig.3. Channel fusion results,showing(a)original image,(b)interfering image,IDWT without(c)and with(d)permutation and diffusion,and(e)fusion image.

    Step 3 After the channels are fused, the phase mask RPM(x,y)=exp(jR1) generated by the hyperchaotic system andf(x,y) together form the complex amplitude distribution to be diffracted.

    According to the theory of Eq.(1),the result of diffraction in IOP mode is expressed as a complex distribution

    Step 4 Owing to the fact that the result of spherical diffraction is a complex distribution, it is necessary to make it more convenient to the actual data transmission. Compared with the traditional EMD, the IEMD can hide complex amplitude into two real-value masks while improving security.According to Eq.(6),the result of spherical diffraction can be rewritten as

    The whole encryption progress is shown in Fig.4.

    Fig.4. Encryption process.

    3.2. Decryption progress

    Step 1 Firstly,according to Eq.(12),we can obtain the complex amplitudeU. TheUis modulated by RPM*after spherical diffraction. The fused imagef(x,y)can be obtained from

    where LH corresponds to the red channel, HL denotes the green channel,and HH refers to the blue channel. The correspondence between subbands and channels will be determined by the encryption process.

    Step 3 Then,S2is inversely permuted and inversely diffused to restoreS. According to Eqs. (8) and (15), the onedimensional sequenceSwith complete RGB three-channel information is then reshaped into three two-dimensional matrices corresponding to RGB. Finally, the RGB channels are merged and the colorful plaintext is restored as shown below:

    where Per(a,b)-1is the inverse process of Per(a,b), and merge{·}means RGB channels’mergence.

    4. Simulation results

    4.1. Encryption and decryption result

    The simulation is performed with Python 3.8.2 to analyze the performance of the proposed scheme on a 64-bit computer. In the simulation, the radius of the outer sphereR, the radius of the inner spherer, and the wavelengthλare set to be 500 mm,50 mm,and 0.25 mm. According to the spherical holographic sampling theory,[34,35]the above parameters require that the number of sampling points in the horizontal and vertical directions of the image should be at least 2513 pixels and 1257 pixels. However, if we select only 1/5 of the sphere surface, the minimum number of sampling points required will be 503 pixels and 252 pixels in the corresponding direction. To achieve this goal, the size of the original image is select as 256×256×3, and the corresponding size of the ciphertext is 512×512. Figure 5 shows the result of encryption and decryption with plaintext ‘baboon’. The parameters related to spherical diffraction and the hyperchaotic system are listed in Table 1.

    Fig.5. Encryption and decryption results,showing(a)original image,(b)cipher-text,(c)private key PK,(d)decryption result with correct PK,and(e)decryption result with the wrong PK.

    Table 1. Parameters of spherical diffraction and Chen’s 4D hyperchaotic system.

    To better evaluate the quality of encryption and decryption,we introduce PSNR and SSIM as reference indexes. The corresponding equation is as follows:

    whereμIoandμIdrepresent the mean values of the original image and the decryption result image respectively;σIo,σId,σIoIdrepresent the variance of the original image and the decrypted image and the co-variance between them,respectively;c1andc2are constants to avoid division by 0;Ldenotes the dynamic range of pixel values. Usually,k1=0.01 andk2=0.03.

    4.2. Histogram

    The histogram shows the effectiveness and security of the encryption scheme.The histograms of ciphertext and plaintext should be completely different in the ideal encryption scheme.Figure 6 shows the histograms corresponding to RGB channels of color images‘a(chǎn)irplane’and‘baboon’,and their respective ciphertext histograms,which shows that the histogram of the ciphertext is different from that of any channel.

    Fig. 6. (a)-(c) RGB channels’ histograms of ‘a(chǎn)irplane’, (d) ciphertext histogram of ‘a(chǎn)irplane’, (e)-(g) RGB channels’ histograms of ‘baboon’, and (h)ciphertext histogram of‘baboon’.

    4.3. Key sensitivity and key space analysis

    Key sensitivity is usually used to test the reliability of an encryption scheme. Figures 7(a)and 7(b)show the sensitivity sensitivities of spherical diffraction parameters and initial values of hyperchaotic systems, respectively. Here, ‘baboon’ is selected as the plaintext.

    The dependence of SSIM on the change ofr,R,λare shown in Fig. 7(a). Whenr,R, andλchange 1% , 1%, 3%,the SSIM value would change dramatically.

    The initial condition of the chaotic sequence is also used as a private key. Figure 7(b) shows the decryption effects of changes in initial conditions, indicating that the initial condition changing by 0.25% will have a significant influence on the decryption result when the initial condition is 4 decimal places. With the increase of the decimal places of the initial condition,the spatial sensitivity of the initial condition becomes stronger.

    Fig.7. (a)Key sensitivity of spherical diffraction,and(b)key sensitivity of initial conditions of 4D hyperchaotic system.

    4.4. Noise and occlusion attacks

    Usually, the ciphertext may be polluted during transmission. Therefore,it is very important to ensure that the encryption scheme is robust to noise attack. In this part, multiplicative Gaussian noise is used to test the anti-noise performance of the image.The additive Gaussian noise model is as follows:

    wherePandP′represent ciphertext and ciphertext with noise,respectively,Gdenotes the Gaussian noise with a mean value of 0 and a standard deviation of 0.01,andkrefers to the signalto-noise ratio.Figures 8(a)-8(d)show the decryption results of the plaintext‘baboon’under different strengths of multiplicative Gaussian noise attack. The strengths of the four images arek=0.01,0.05,0.1,and 0.5,and the corresponding PSNR values are 28.16 dB, 21.58 dB, 18.51 dB, and 11.45 dB, respectively.

    In the process of transmission, the occlusion of ciphertext is also one of the possible pollutions. Figure 9 shows the decryption effects under different occlusion ratios: 50×50 pixels (1%), 100×100 pixels (4%), 150×150 pixels (8%),and 200×200 pixels(15%),respectively. The corresponding PSNR values are 17.79 dB,14.68 dB,12.81 dB,and 11.61 dB,respectively. Table 2 shows the decryption quality of the proposed scheme and Ref.[36]under the same clipping ratio. It shows that the proposed scheme is more resistant to ciphertext occlusion than the counterpart in Ref.[36].

    Fig.8. Decryption results of encryption image with noise strengths: k=0.01(a),0.05(b),0.1(c),and 0.5(d).

    Fig.9. Decryption results of encryption image with occlusion of(a)50×50 pixels(1%),(b)100×100 pixels(4%),(c)150×150 pixels(8%),and(d)200×200 pixels(15%).

    Table 2. Comparison of t ability to resistocclusion between Ref.[36]and proposed scheme,with‘baboon’chosen as plaintext.

    4.5. Error analysis of spatial light modulator

    Since spatial light modulator carries out the numerical quantization of the image on the target plane,quantization errors are regarded as a main error in optical encryption.To simulate an actual optical decryption,we will test this error to approach to the simulation results of real optical experiments.[40]

    Figures 10(a)-10(d) show the decryption effects of the images at different quantization levels: 22levels, 24levels,28levels, 216levels, and the corresponding PSNR values are 10.25 dB,15.28 dB,26.34 dB,and 29.02 dB,respectively.Under the introduction of this error,the proposed scheme is better than Ref.[21].Figure 11 shows the difference between the two schemes. The corresponding PSNR values are 11.54 dB and 27.63 dB,and SSIM values are 0.69 and 0.79,respectively.

    Fig.10. Decryption results at(a)22,(b)24,(c)28,and(d)216 quantization levels.

    Fig.11. Decryption results with quantization level 28,showing(a)original image,(b)decryption result of Ref.[21],and(c)decryption result of the proposed scheme.

    4.6. Resisting information leakage

    The current partial color image encryption adopts three channels parallel processing method,[21-23]which has the risk of information leakage in the process of transmission. Unlike these schemes,the single-channel grayscale ciphertext and the low correlation among the three channels in our scheme can significantly reduce the possibility of information leakage during transmission. To test the ability to resist information leakage, we assume that the information leakage has occurred.That is, the attacker has obtained the information about one of the three RGB channels,which means that for our scheme,the attacker has obtained a subband completely. Meanwhile,we assume that the attacker knows all the private keys and the encryption scheme.

    Figure 12 shows the comparison of the decryption effect between the two schemes under the condition of only knowing channel B information,taking the result in Ref.[23]as the comparison. The corresponding SSIM values of Figs. 10(c),10(g),10(d),and 10(h)are 0.99,0.99,0.09,and 0.09,respectively, showing that the ciphertext security of our scheme is much higher than the parallel processing scheme.

    Fig.12.Comparison of anti-information leakage ability between the literature and the proposed scheme,with channel B taken for example,displaying((a),(e))plaintext,((b),(f))B channel of plaintext,((c),(g))decryption result of Ref.[23],((d),(h))decryption of the proposed scheme.

    4.7. Potential attack analysis

    Phase iterative attack is a common way to attack optical encryption.[41]Here,we compare the resistance to phase iterative attack between Ref. [23] and our scheme. To compare the result better, the black edge is padded around the image.Figure 13 shows the phase recovery of the image after 500 iterations,and figure 14 shows the relation between the number of iterations and the SSIM of the recovered image.

    Fig.13. Result of phase iterative attack: (a)plaintext,(b)result of Ref.[23],(c)result of the proposed scheme.

    Fig.14. Comparison of phase attack results between Ref.[23]and the proposed scheme.

    Compared with linear optical system, nonlinear optical system has better resistance to phase attack. And since spherical diffraction is just one kind of nonlinear optical system,our scheme has a better performance against phase attack.

    An encryption system with high security should be able to resist differential attacks. In general, the number of pixel change rate (NPCR) and unified average changing intensity(UACI)are used to evaluate the ability to resist differential attacks,and defined as

    whereEandE′represent the ciphertext and the ciphertext with only one pixel changed,respectively.

    The corresponding NPCR and UACI values under different plaintexts are shown in Table 3 as compared with those in Refs. [24,42-44]. The result from the characteristics of chaotic systems shows that the difference in result caused by small changes in initial values is widely divergent. And since the initial value is determined by the colorful plaintext,a small change in the plaintext will make the key completely different.Therefore it has a strong ability to resist differential attacks.

    Table 3. Values of NPCR and UACI of different schemes.

    5. Conclusions

    In this paper,an efficient and secure color image encryption scheme based on channel fusion and spherical diffraction is proposed. Especially,channel fusion technology can effectively solve the problem of information leakage in color image encryption and reduce the loss of encryption. Compared with the symmetric system, the asymmetric spherical diffraction system used in this paper can significantly improve the antiattack ability and security of the scheme. Besides,the IEMD also solves the problem that the diffraction result is complexvalued. The simulation results and the comparison show the high security and robustness of the proposed scheme. Therefore,the proposed scheme may be used as a reference to resisting the risk of information leakage in color image encryption.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. U1933132) and the Chengdu Science and Technology Program, Sichuan Province, China(Grant No.2019-GH02-00070-HZ).

    猜你喜歡
    王君
    王君作品
    雨花(2023年11期)2023-11-18 13:02:58
    弟弟
    參花(下)(2021年8期)2021-08-25 18:37:55
    捏活人
    讓句式多樣化的四種方法
    海洋火鍋
    視野(2016年22期)2016-11-11 04:47:28
    蘆芽又短
    視野(2016年14期)2016-09-28 10:48:32
    漂流記
    從公務員到修車工
    瞄準目標放低身段 公務員變身修車店老板
    捏活人
    故事會(2013年9期)2013-05-14 15:24:07
    99久久精品一区二区三区| 99在线人妻在线中文字幕| 欧美又色又爽又黄视频| 国产高清视频在线播放一区| 精品人妻偷拍中文字幕| 亚洲精品亚洲一区二区| 色在线成人网| 黄片wwwwww| 日韩中字成人| 18禁黄网站禁片免费观看直播| 无遮挡黄片免费观看| 一级a爱片免费观看的视频| 日韩欧美精品v在线| 精品国产三级普通话版| 国产成人91sexporn| 日韩欧美一区二区三区在线观看| 91午夜精品亚洲一区二区三区| 三级国产精品欧美在线观看| 精品一区二区三区视频在线观看免费| 亚洲电影在线观看av| 免费观看在线日韩| 三级国产精品欧美在线观看| 欧美精品一区二区大全| 亚洲av欧美aⅴ国产| 日本-黄色视频高清免费观看| 亚洲成色77777| 国产高清不卡午夜福利| 久久国产精品大桥未久av | √禁漫天堂资源中文www| 免费看光身美女| 91精品国产九色| 欧美精品亚洲一区二区| 51国产日韩欧美| 99久久综合免费| 啦啦啦视频在线资源免费观看| 亚洲高清免费不卡视频| 久久久久网色| 春色校园在线视频观看| 色婷婷久久久亚洲欧美| 少妇熟女欧美另类| 一级av片app| av在线app专区| 午夜影院在线不卡| 久久精品熟女亚洲av麻豆精品| 国产午夜精品一二区理论片| 亚洲精品一二三| 欧美激情极品国产一区二区三区 | 在线观看免费高清a一片| 国产成人a∨麻豆精品| 午夜福利视频精品| 一本一本综合久久| 性色av一级| 狠狠精品人妻久久久久久综合| 啦啦啦啦在线视频资源| 晚上一个人看的免费电影| 老熟女久久久| 国产色婷婷99| 18+在线观看网站| 秋霞伦理黄片| 尾随美女入室| 国产成人精品福利久久| 女人久久www免费人成看片| 黑丝袜美女国产一区| 黑丝袜美女国产一区| av.在线天堂| 日韩欧美 国产精品| 亚洲精品,欧美精品| 亚洲欧美成人综合另类久久久| 桃花免费在线播放| 久久ye,这里只有精品| 91久久精品国产一区二区三区| 亚洲国产精品一区三区| 久久国产亚洲av麻豆专区| 大香蕉97超碰在线| 欧美丝袜亚洲另类| 青春草国产在线视频| 亚洲精品国产av蜜桃| 欧美精品高潮呻吟av久久| 日韩欧美一区视频在线观看 | 亚洲欧洲日产国产| 高清不卡的av网站| 亚洲综合精品二区| 日韩 亚洲 欧美在线| 丰满饥渴人妻一区二区三| 欧美 日韩 精品 国产| 精品人妻一区二区三区麻豆| a级一级毛片免费在线观看| 精品酒店卫生间| 中文天堂在线官网| 一区在线观看完整版| 亚洲自偷自拍三级| 偷拍熟女少妇极品色| 中文字幕精品免费在线观看视频 | 久久久午夜欧美精品| 99热国产这里只有精品6| 国产亚洲91精品色在线| 人人妻人人添人人爽欧美一区卜| 99久国产av精品国产电影| 一级毛片我不卡| 久久99热这里只频精品6学生| 亚洲高清免费不卡视频| 国产黄色视频一区二区在线观看| 久久久久久久大尺度免费视频| 涩涩av久久男人的天堂| 午夜免费男女啪啪视频观看| 伦精品一区二区三区| 女人久久www免费人成看片| 交换朋友夫妻互换小说| 成人黄色视频免费在线看| 久久久久视频综合| 日韩成人av中文字幕在线观看| 国内精品宾馆在线| 秋霞在线观看毛片| 观看免费一级毛片| 免费大片黄手机在线观看| 久久热精品热| 菩萨蛮人人尽说江南好唐韦庄| 99九九线精品视频在线观看视频| 能在线免费看毛片的网站| 国产美女午夜福利| 国产深夜福利视频在线观看| 一个人免费看片子| 国产一区二区三区综合在线观看 | 中文字幕亚洲精品专区| 丁香六月天网| 免费看光身美女| 日韩人妻高清精品专区| 人人妻人人澡人人看| 日本黄色日本黄色录像| 精品国产露脸久久av麻豆| 欧美日韩视频精品一区| 亚洲美女视频黄频| 久久影院123| 我要看黄色一级片免费的| 日本黄色片子视频| 丁香六月天网| 亚洲欧美日韩东京热| 亚洲精品乱码久久久久久按摩| 99热国产这里只有精品6| 伦理电影免费视频| 日韩欧美精品免费久久| 久久人人爽人人片av| 久久久久久久久久久丰满| 免费人成在线观看视频色| 久久女婷五月综合色啪小说| 国产午夜精品久久久久久一区二区三区| 黑人高潮一二区| 少妇猛男粗大的猛烈进出视频| 国产中年淑女户外野战色| 久久精品国产鲁丝片午夜精品| 久热这里只有精品99| 波野结衣二区三区在线| 国产精品国产三级专区第一集| 久久久久视频综合| 最近中文字幕高清免费大全6| 成人特级av手机在线观看| 国产高清有码在线观看视频| 美女cb高潮喷水在线观看| 国产精品久久久久久久久免| 久久这里有精品视频免费| 亚洲经典国产精华液单| 亚洲av国产av综合av卡| 97超视频在线观看视频| 久久精品久久精品一区二区三区| 麻豆成人午夜福利视频| 亚洲国产精品国产精品| 欧美+日韩+精品| 中文天堂在线官网| 99久久中文字幕三级久久日本| 免费观看无遮挡的男女| 丰满饥渴人妻一区二区三| 免费人成在线观看视频色| 波野结衣二区三区在线| 欧美亚洲 丝袜 人妻 在线| xxx大片免费视频| 日日爽夜夜爽网站| 日本黄色片子视频| 欧美变态另类bdsm刘玥| av.在线天堂| 搡女人真爽免费视频火全软件| 在线观看美女被高潮喷水网站| 曰老女人黄片| 免费黄网站久久成人精品| 国产成人精品福利久久| 亚洲av中文av极速乱| 在线观看三级黄色| 欧美日韩国产mv在线观看视频| 特大巨黑吊av在线直播| 久久亚洲国产成人精品v| 午夜福利网站1000一区二区三区| 国产伦精品一区二区三区视频9| 国产综合精华液| 黄色视频在线播放观看不卡| av线在线观看网站| 十八禁网站网址无遮挡 | 下体分泌物呈黄色| 老女人水多毛片| 国产精品.久久久| 日本av免费视频播放| 久久久精品94久久精品| 老司机亚洲免费影院| 狠狠精品人妻久久久久久综合| 国产毛片在线视频| av网站免费在线观看视频| 亚洲自偷自拍三级| 夜夜骑夜夜射夜夜干| 国产爽快片一区二区三区| 欧美人与善性xxx| 亚洲av国产av综合av卡| 午夜激情久久久久久久| 王馨瑶露胸无遮挡在线观看| 妹子高潮喷水视频| 国产色爽女视频免费观看| 岛国毛片在线播放| 日韩av不卡免费在线播放| av免费在线看不卡| 99久久综合免费| 欧美丝袜亚洲另类| 80岁老熟妇乱子伦牲交| 亚洲第一区二区三区不卡| 一区二区av电影网| 视频中文字幕在线观看| 青春草国产在线视频| 亚洲精华国产精华液的使用体验| 日本黄大片高清| 精品午夜福利在线看| 免费观看无遮挡的男女| 少妇人妻精品综合一区二区| 久久国产精品男人的天堂亚洲 | 日本欧美国产在线视频| 精品亚洲成国产av| 欧美最新免费一区二区三区| av免费观看日本| 91久久精品国产一区二区三区| 精品人妻熟女av久视频| 青春草视频在线免费观看| 久久人妻熟女aⅴ| 爱豆传媒免费全集在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲av在线观看美女高潮| 精品酒店卫生间| 精品久久久久久久久亚洲| 嫩草影院新地址| 国产亚洲一区二区精品| 亚洲精品一二三| 久久久亚洲精品成人影院| 久久精品久久久久久噜噜老黄| 最黄视频免费看| 亚洲精品久久午夜乱码| 亚洲精品中文字幕在线视频 | 熟女电影av网| 十分钟在线观看高清视频www | 老女人水多毛片| 国产男女超爽视频在线观看| 99热国产这里只有精品6| 日日爽夜夜爽网站| 亚洲精品成人av观看孕妇| 欧美一级a爱片免费观看看| av.在线天堂| 女人精品久久久久毛片| 久久午夜福利片| 91成人精品电影| 久久人妻熟女aⅴ| 国产成人免费观看mmmm| videossex国产| 丁香六月天网| 国产精品久久久久久久电影| 日韩中文字幕视频在线看片| 王馨瑶露胸无遮挡在线观看| 国产日韩欧美亚洲二区| 色94色欧美一区二区| 一区二区av电影网| 国产精品久久久久久av不卡| 九九爱精品视频在线观看| www.av在线官网国产| 亚洲天堂av无毛| 国精品久久久久久国模美| 又爽又黄a免费视频| 你懂的网址亚洲精品在线观看| 国产亚洲91精品色在线| 国产黄色视频一区二区在线观看| 少妇被粗大的猛进出69影院 | 免费观看在线日韩| 国产熟女午夜一区二区三区 | 街头女战士在线观看网站| √禁漫天堂资源中文www| 国产精品一区www在线观看| 国产精品国产av在线观看| 如日韩欧美国产精品一区二区三区 | 国产精品国产三级国产专区5o| 久久精品国产亚洲av涩爱| 久久精品久久久久久噜噜老黄| 热re99久久国产66热| av在线app专区| 久久人妻熟女aⅴ| 夫妻午夜视频| 久久精品久久久久久久性| 欧美激情极品国产一区二区三区 | 国产精品不卡视频一区二区| 亚洲真实伦在线观看| 免费观看性生交大片5| 亚洲美女搞黄在线观看| 欧美日韩综合久久久久久| 国产成人精品婷婷| 下体分泌物呈黄色| 久久精品熟女亚洲av麻豆精品| 男女边摸边吃奶| 亚洲情色 制服丝袜| 欧美成人精品欧美一级黄| 波野结衣二区三区在线| 爱豆传媒免费全集在线观看| 水蜜桃什么品种好| 欧美+日韩+精品| 搡女人真爽免费视频火全软件| 欧美日韩国产mv在线观看视频| 日韩视频在线欧美| 伊人亚洲综合成人网| 国产日韩一区二区三区精品不卡 | av国产精品久久久久影院| 亚洲精品乱码久久久v下载方式| 国产精品久久久久久久电影| 国产男女内射视频| 免费看日本二区| 九草在线视频观看| 黑人高潮一二区| 99热这里只有是精品在线观看| 日韩精品免费视频一区二区三区 | 大片免费播放器 马上看| 精品一品国产午夜福利视频| 久久精品久久久久久噜噜老黄| 日韩免费高清中文字幕av| 成人美女网站在线观看视频| 2022亚洲国产成人精品| 91久久精品国产一区二区成人| 夜夜爽夜夜爽视频| 日本与韩国留学比较| 在线观看免费高清a一片| 少妇精品久久久久久久| 日日啪夜夜撸| 久久韩国三级中文字幕| 久久国产精品男人的天堂亚洲 | 日韩欧美一区视频在线观看 | 欧美日韩亚洲高清精品| 在线看a的网站| 久久久久人妻精品一区果冻| 亚洲美女搞黄在线观看| 边亲边吃奶的免费视频| 久久精品久久精品一区二区三区| 亚洲国产毛片av蜜桃av| 亚洲精品自拍成人| 毛片一级片免费看久久久久| 大又大粗又爽又黄少妇毛片口| 午夜av观看不卡| 精品久久久精品久久久| 蜜桃在线观看..| 亚洲av成人精品一二三区| 下体分泌物呈黄色| 亚洲欧美日韩东京热| 久久久久视频综合| a级毛色黄片| 人体艺术视频欧美日本| 欧美另类一区| 中文字幕制服av| 久久久久精品性色| 国产成人一区二区在线| 色网站视频免费| 国国产精品蜜臀av免费| 久久久久久久大尺度免费视频| 成人亚洲欧美一区二区av| 精品一区在线观看国产| 丝瓜视频免费看黄片| a级毛片在线看网站| 美女内射精品一级片tv| 99久久精品一区二区三区| 日韩伦理黄色片| 五月天丁香电影| 免费大片黄手机在线观看| 欧美精品国产亚洲| 成人二区视频| 我的老师免费观看完整版| 亚洲精品久久午夜乱码| 欧美日本中文国产一区发布| 日韩中文字幕视频在线看片| 国产精品久久久久久精品古装| 日本-黄色视频高清免费观看| 搡老乐熟女国产| 乱码一卡2卡4卡精品| 免费人妻精品一区二区三区视频| 国语对白做爰xxxⅹ性视频网站| 久久亚洲国产成人精品v| 美女国产视频在线观看| 在线免费观看不下载黄p国产| 国产av精品麻豆| 国产精品欧美亚洲77777| 亚洲美女搞黄在线观看| 男人舔奶头视频| 精品卡一卡二卡四卡免费| av视频免费观看在线观看| 亚洲国产精品专区欧美| 天堂俺去俺来也www色官网| 寂寞人妻少妇视频99o| av在线播放精品| 少妇的逼水好多| 精品久久久久久电影网| 国产日韩欧美视频二区| 精品国产露脸久久av麻豆| 青青草视频在线视频观看| 美女中出高潮动态图| 日韩不卡一区二区三区视频在线| 国产亚洲精品久久久com| 欧美日本中文国产一区发布| 九色成人免费人妻av| 国产精品蜜桃在线观看| 男的添女的下面高潮视频| 精品少妇内射三级| 18+在线观看网站| 各种免费的搞黄视频| 久久久久久久大尺度免费视频| 久久久久久久久久久久大奶| 精品国产国语对白av| 一个人看视频在线观看www免费| 一边亲一边摸免费视频| 老熟女久久久| 免费高清在线观看视频在线观看| 亚洲四区av| 看十八女毛片水多多多| 日韩大片免费观看网站| 成人二区视频| 日韩一本色道免费dvd| 日韩免费高清中文字幕av| 十八禁网站网址无遮挡 | 纯流量卡能插随身wifi吗| 婷婷色麻豆天堂久久| 免费观看的影片在线观看| 亚洲欧美日韩东京热| 亚洲欧洲日产国产| av在线app专区| 国产 一区精品| 水蜜桃什么品种好| 国产熟女欧美一区二区| 一区二区三区四区激情视频| 18+在线观看网站| 最近最新中文字幕免费大全7| 免费看日本二区| 亚洲精品自拍成人| 免费观看的影片在线观看| 国产在线免费精品| 国产精品女同一区二区软件| 日韩视频在线欧美| 菩萨蛮人人尽说江南好唐韦庄| 欧美丝袜亚洲另类| 美女大奶头黄色视频| 夜夜骑夜夜射夜夜干| 性高湖久久久久久久久免费观看| 黑人猛操日本美女一级片| av黄色大香蕉| 亚洲美女黄色视频免费看| 国产美女午夜福利| 熟女电影av网| 美女福利国产在线| 午夜福利,免费看| av天堂久久9| 欧美97在线视频| 亚洲国产精品专区欧美| 美女视频免费永久观看网站| 国内少妇人妻偷人精品xxx网站| 亚洲国产最新在线播放| 中文字幕亚洲精品专区| 人妻一区二区av| 欧美精品国产亚洲| 亚洲不卡免费看| 精华霜和精华液先用哪个| 建设人人有责人人尽责人人享有的| 亚洲av欧美aⅴ国产| 久久国内精品自在自线图片| 波野结衣二区三区在线| 国产高清有码在线观看视频| kizo精华| 国产精品欧美亚洲77777| 久久久a久久爽久久v久久| 搡女人真爽免费视频火全软件| 热re99久久精品国产66热6| 男女边摸边吃奶| 美女cb高潮喷水在线观看| 99re6热这里在线精品视频| 日本猛色少妇xxxxx猛交久久| 97在线人人人人妻| 欧美日韩精品成人综合77777| 99热这里只有是精品在线观看| 男的添女的下面高潮视频| 2021少妇久久久久久久久久久| 色94色欧美一区二区| 久久99热这里只频精品6学生| 免费看不卡的av| 午夜激情久久久久久久| 伊人久久国产一区二区| 精品久久久久久久久亚洲| 妹子高潮喷水视频| 男人舔奶头视频| 免费黄色在线免费观看| 成人毛片60女人毛片免费| 春色校园在线视频观看| 性高湖久久久久久久久免费观看| 久久久久久久精品精品| 国产伦理片在线播放av一区| 丰满乱子伦码专区| 人人妻人人澡人人爽人人夜夜| 久久6这里有精品| 99re6热这里在线精品视频| 青春草亚洲视频在线观看| 亚洲人成网站在线观看播放| 久久人人爽人人爽人人片va| 在线观看一区二区三区激情| 色婷婷av一区二区三区视频| 晚上一个人看的免费电影| 午夜av观看不卡| 男人狂女人下面高潮的视频| 如日韩欧美国产精品一区二区三区 | 性高湖久久久久久久久免费观看| 在线观看国产h片| 国产精品久久久久久精品古装| 亚洲美女黄色视频免费看| 欧美3d第一页| 美女主播在线视频| 中文字幕亚洲精品专区| 美女主播在线视频| 三级国产精品片| 国产极品天堂在线| 久久人人爽人人片av| 最新的欧美精品一区二区| 丝袜脚勾引网站| 欧美精品人与动牲交sv欧美| 久久久久网色| 永久免费av网站大全| 2021少妇久久久久久久久久久| 全区人妻精品视频| 久久午夜福利片| 人人妻人人澡人人爽人人夜夜| 91久久精品国产一区二区成人| 少妇高潮的动态图| 黄色毛片三级朝国网站 | 日本av手机在线免费观看| 蜜桃在线观看..| 搡老乐熟女国产| a级片在线免费高清观看视频| 一级毛片电影观看| 亚洲精华国产精华液的使用体验| 成人影院久久| 中国美白少妇内射xxxbb| 国产日韩一区二区三区精品不卡 | 51国产日韩欧美| 精品人妻熟女毛片av久久网站| 18禁裸乳无遮挡动漫免费视频| 国产片特级美女逼逼视频| 亚洲精华国产精华液的使用体验| 在线观看免费日韩欧美大片 | 免费av不卡在线播放| 日本wwww免费看| 成人无遮挡网站| 在线观看一区二区三区激情| 国产 一区精品| 免费黄色在线免费观看| 一级,二级,三级黄色视频| 少妇 在线观看| 街头女战士在线观看网站| 晚上一个人看的免费电影| 国内揄拍国产精品人妻在线| 国产乱人偷精品视频| 丰满人妻一区二区三区视频av| 老女人水多毛片| xxx大片免费视频| 秋霞伦理黄片| 国产精品女同一区二区软件| 九草在线视频观看| 一区二区三区乱码不卡18| 国产av码专区亚洲av| 热99国产精品久久久久久7| 久久久久久久久久久久大奶| 免费在线观看成人毛片| 亚洲天堂av无毛| 亚洲av在线观看美女高潮| 丰满人妻一区二区三区视频av| 日韩电影二区| 国产精品一区二区在线不卡| 国产毛片在线视频| 日日爽夜夜爽网站| av天堂中文字幕网| 男人和女人高潮做爰伦理| 国产永久视频网站| 国产乱来视频区| 国产熟女午夜一区二区三区 | 亚洲av在线观看美女高潮| 亚州av有码| 欧美变态另类bdsm刘玥| 一级毛片久久久久久久久女| 日本黄色日本黄色录像| 亚洲婷婷狠狠爱综合网| 永久网站在线| a 毛片基地| 久久99精品国语久久久| 国产爽快片一区二区三区| 桃花免费在线播放| 青春草视频在线免费观看| 精品一区在线观看国产| 麻豆成人av视频| 中文字幕av电影在线播放| 一级毛片黄色毛片免费观看视频| 丝袜脚勾引网站| 国产黄频视频在线观看| 亚洲国产欧美日韩在线播放 | 高清在线视频一区二区三区| 啦啦啦在线观看免费高清www| 久久久欧美国产精品| 高清不卡的av网站| 九九在线视频观看精品|