• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Alternative non-Gaussianity measures for quantum states based on quantum fidelity

    2022-03-12 07:47:28ChengXiang向成ShanShanLi李珊珊ShaShaWen文莎莎andShaoHuaXiang向少華
    Chinese Physics B 2022年3期
    關(guān)鍵詞:少華

    Cheng Xiang(向成) Shan-Shan Li(李珊珊) Sha-Sha Wen(文莎莎) and Shao-Hua Xiang(向少華)

    1College of Electrical and Information Engineering,Huaihua University,Huaihua 418008,China

    2Hunan Provincial Key Laboratory of Ecological Agriculture Intelligent Control Technology,Huaihua 418008,China

    Keywords: non-Gaussianity,quantum fidelity,non-Gaussian states,sine metric

    1. Introduction

    Non-Gaussianity of quantum states is a useful resource in quantum information schemes with continuous variables since such a property can be exploited to improve their performances, including quantum teleportation,[1-3]quantum cloning,[4]entanglement distillation,[5,6]quantum secure communication,[7]and estimation problem.[8]To quantify non-Gaussianity,some metrics have been introduced over the past ten years. For example, Genoniet al.proposed the Hilbert-Schmidt[9]and the relative entropy measures[10]of non-Gaussianity for quantum states. Ivanet al.defined another non-Gaussianity measure by means of the Wehrl entropy.[11]Very recently, Fuet al.introduced a novel measure for non-Gaussianity of bosonic field states in terms of the Wigner-Yanase skew information.[12]According to the metric axioms,[13]one sees that all such metrics do not satisfy the symmetry and except the Hilbert-Schmidt metric, all the other ones are boundless,thus giving rise to a huge challenge of measuring it experimentally. Therefore, it is highly desirable to look for a plausible measure of non-Gaussianity.

    In quantum information theory, non-Gaussianity quantifies a departure of a given quantum state from its reference Gaussian state. When talking about the issue of discriminating two different quantum states, we focus naturally on quantum fidelity, which provides a quantification of the degree of similarity of a pair of quantum states and has many attractive properties.[14]The fidelity was originally defined as Uhlmann’s transition probability.[15]When one of two quantum states is pure, the fidelity is easily computable and reduces to their overlap. However, for an arbitrary pair of mixed states, the fidelity involves successive computation of the square roots of Hermitian matrices, which is in general hard to compute analytically. In order to avoid this difficulty, Wanget al.introduced an alternative fidelity for two mixed quantum states,[16]which satisfies Jozsa’s four axioms up to a normalization factor[14]and is relatively easy to be calculated. As is well known, quantum fidelity is not a metric, but can easily be used to define many metrics on the space of quantum states such as the sine distance,[13]the Bures angle,[17]and the Bures distance.[18]For convenience,we shall refer these metrics as the fidelity-based ones,which have been widely used to quantify the non-classicality,[19]quantum entanglement,[20]and quantum discord of quantum states.[21]Motivated by these ideas,in this paper,we would like to quantify the non-Gaussianity of quantum states using these fidelitybased metrics together with quantum fidelity introduced by Wang.[16]To the best of our knowledge, there are currently few studies examining this problem.

    The paper is organized as follows.In Section 2 we review some known quantum fidelities as well as fidelity-based metrics,and elucidate their fundamental properties. We introduce our measures for non-Gaussianity. Using these measures, we assess the non-Gaussianity of some relevant single-mode and two-mode quantum states in Section 3. At the same time,we analyze the consistency of these fidelity-based measures. In Section 4,we devote attention to a comparison between all the known metrics for non-Gaussianity in the literature and discuss their legitimacy according to the metric axioms. Finally,we summarize our main results in Section 5.

    2. Non-Gaussianity measures based on fidelity

    Let us consider the fidelity, which is of importance in quantum information science[17]and other fields such as quantum chaos[22]and quantum phase transitions.[23,24]According to Uhlmann,[15]the fidelity of any two quantum statesρa(bǔ)ndσis defined as

    As a metricδ(ρ,σ)defined on quantum states,it should satisfy the basic properties: (i) non-negativity:δ(ρ,σ)≥0,andδ(ρ,σ)=0 if and only ifρ=σ, (ii) symmetry under swapping of the two states:δ(ρ,σ)=δ(σ,ρ), and triangle inequality:δ(ρ,σ)+δ(τ,σ)≥δ(ρ,τ) for all statesρ,σandτ. It has been shown in Ref. [25] that for the Uhlmann-Jozsa fidelity, these three metrics are genuine ones. For the super-fidelity,C(ρ,σ) preserves the metric properties, while bothA(ρ,σ) andB(ρ,σ) do not always satisfy the triangle inequality. Hence, one needs to study whether or not these measures obey the above-mentioned metric conditions with Wang’s quantum fidelityFW(ρ,σ)given by Eq.(4). It can be easily seen that the above-mentioned metrics share naturally the first two properties. Thus, we shall prove separately their triangle inequalities.

    Theorem 1 Letρ,σ, andτbe the density matrices of any three quantum states. The following triangle inequality for Bures angle holds:

    To prove inequality(15),we consider two cases:

    Note that for an arbitrary quantum operation described by a completely positive trace-preserving (CPTP) mapε:(ρ),we haveF(ε(ρ),ε(σ))≥F(ρ,σ).[17]Hence,our introduced non-Gaussianities monotonically decrease under Gaussian quantum channels,that is,δNG(εGρ)≤δNG(ρ).

    Lemma 3 Consider a bipartite factorized stateρ=ρ1?ρ2. Ifρ2is a Gaussian state,thenδNG(ρ1?ρ2)=δNG(ρ1).

    Proof For a bipartite factorized stateρ12=ρ1?ρ2, its reference Gaussian state can be written asρ12,rG=ρ1,rG ?ρ2,rG. According to the definition of the purity of a quantum state,we have

    which concludes the proof.

    Lemma 4 Our non-Gaussianities satisfy the symmetry under the swapping of arbitrary two quantum statesρa(bǔ)ndσ:δNG(ρ,σ)=δNG(σ,ρ).

    Proof As a matter of fact,the proof follows easily from the definition ofFW(σ,ρ),which also has the exchange symmetry.

    3. Examples

    In this section,by means of the quantum fidelity given by Eq. (4), we use the mentioned-above metrics to evaluate the non-Gaussianity of some relevant single-mode and two-mode non-Gaussian states,e.g.,single-mode mixture of Fock states,Schr¨odinger-cat-like states (SCLSs), and two-mode Bell-like states,by which we investigate the consistency between these non-Gaussianity measures and discuss their success.

    3.1. Single-mode mixture of Fock states

    We begin by considering a special family of single-mode non-Gaussian mixed states: statistical mixtures of the vacuum state andn-photon Fock state defined by

    SubstitutingFWinto Eqs.(5)-(7),we finally evaluate the non-Gaussianity of single-mode mixture of Fock states. The results are reported in Fig. 1 as a function ofpand for different values of photon numbern. From the plots, all of the above three non-Gaussianity metricsδNGare naturally null fornp=0, corresponding to vacuum state, as is expected. One can also see that the three non-Gaussianity measures exhibit a monotonically increasing behavior with the number of photonsnand the parametersp.For a case ofnp ?1,they present

    Fig.1. Non-Gaussianity δNG of mixtures of the vacuum and n-photon Fock states as a function of n and p: (a) n=2, (b) n=400000. The dashed line corresponds to A(ρ,σ), the solid line to B(ρ,σ), and the dash-dotted line to C(ρ,σ).

    3.2. Single-mode photon-added thermal states

    The photon addition and subtraction are an important technique for generating quantum non-Gaussian state. Here we consider another family of single-mode non-Gaussian mixed states:m-photon-added thermal states (mPATSs),which are defined as[11,30]

    Fig.2. Non-Gaussianity δNG of mPATSs as a function of x and for different values of the added photons m: (a)m=1,and(b)m=10. Curve types are the same as in Fig.1.

    3.3. Schr¨odinger-cat-like states

    Let us consider single-mode Schr¨odinger-cat-like states,which are represented by a coherent superposition of two coherent states|α〉and|-α〉,as follows:[19]

    and the covariance matrix is calculated to be

    Fig. 3. Non-Gaussianity for single-mode SCLSs as a function of the parameter φ and for different values of the amplitude α: (a)-(d) α ={0.2,0.4,1.5,5}. Curve types are the same as in Fig.1.

    3.4. Two-mode Bell-like states

    As our final example, we focus on two-mode Bell-like states,which are written as

    We can obtain that all the first moments of two-mode Bell-like states are zero but their covariance matrices are different from each other. For the states(45a),the covariance matrix is given by

    whereI2is a 2×2 unity matrix andσ3=Diag(1,-1).

    We proceed to calculate the fidelityFWaccording to the calculation strategy as pervious subsections,obtaining the result

    Fig. 4. Non-Gaussianity δNG and concurrence Cen of two-mode Belllike states(a)|Φ〉A(chǔ)B and(b)|Ψ〉A(chǔ)B as a function of θ for θ ∈[-π,π].The dotted line stands for Cen,and other curve types are the same as in Fig.1.

    4. Comparison of non-Gaussianity measures

    Before ending our work, we compare our fidelitybased non-Gaussianity measures with several known measures which have been introduced in the last ten years. Based on the Hilbert-Schmidt distance,Genoniet al.first proposed the following measure of non-Gaussianity of a stateρ:[9]andρ2, regardless of which measure we choose. This is because Fock state is a one-parameter categories of states and its non-Gaussianity has a monotonic behavior with respect to the photon numbersn. However,for a case of multi-parameter quantum states, the conclusion may not be correct. On the other hand,it is apparent from Table 1 that different measures have different limiting values of non-Gaussianity, in particular, the measuresδB,NW(ρ), andNG(ρ) are boundless. As is well-known, it is highly desirable that the chosen metric should be a normalized one,that is,its maximum value is equal to one. According to this point, we think that among these measures,C(ρ,σ)is an optimal non-Gaussianity measure for quantum states and then expect that it can be applied to investigate the non-Gaussianity-bounded uncertainty relation[32]and quantum communication.[7,37]

    Table 1. Comparison of non-Gaussianity measures for Fock states.

    5. Conclusion

    With the quantum fidelity introduced by Wang, we have presented three alternative measures of non-Gaussianity: the sine distance, the Bures angle, and the Bures distance. We have further evaluated the non-Gaussianity of some relevant single-mode and two-mode non-Gaussian states using these fidelity-based measures. We have shown that such measures are capable of precisely evaluating the non-Gaussianity of a wide range of non-Gaussian quantum states,particularly even Schr¨odinger-cat-like states,and have a very good consistency in displaying non-Gaussian behaviors. Finally, we have focused on the comparison between our introduced measures and the celebrated non-Gaussianity ones according to the metric axioms. We have also shown that the sine distance can be regarded as the best“l(fā)egitimate”measure for non-Gaussianity of quantum states among all.

    Although much work has been carried out,the problem of quantifying non-Gaussianity of quantum states remains completely unsolved to date. This is because the popular measures are hard to meet with all the six requirement of metric. In particular, they are required to have a straightforward physical interpretation and be feasible in an experiment. Therefore,our result may shed certain light on the quantitative aspect of non-Gaussianity of quantum states and we hope that our introduced measures have the potential applications in quantum information technologies.

    Acknowledgements

    Project supported by the Natural Science Foundation of Hunan Province,China(Grant No.2021JJ30535),the Science and Technology Innovation Foundation for College Students in Hunan Province of China(Grant No.2020RC1013),and the Research Foundation for Young Teachers from the Education Department of Hunan Province of China(Grant No.20B460).

    猜你喜歡
    少華
    余少華
    大江南北(2023年2期)2023-02-11 05:45:56
    漫畫哲理
    雜文選刊(2021年1期)2021-01-13 05:10:37
    畫與理
    理想
    雜文月刊(2019年15期)2019-09-26 00:53:54
    Quaternary antiferromagnetic Ba2BiFeS5 with isolated FeS4 tetrahedra
    畢業(yè)了
    雜文月刊(2019年14期)2019-08-03 09:07:20
    活得真累
    益壽寶典(2018年36期)2018-12-21 01:23:02
    婚前與婚后
    雜文月刊(2017年18期)2017-11-12 17:35:00
    First-principles study of solute diffusion in Ni3Al?
    二則
    女警被强在线播放| 免费黄频网站在线观看国产| 麻豆国产av国片精品| 久久久久久久久久久久大奶| 欧美黑人欧美精品刺激| 日韩免费av在线播放| 久热这里只有精品99| 日韩中文字幕视频在线看片| 久久99热这里只频精品6学生| 精品少妇内射三级| 国产精品秋霞免费鲁丝片| 久9热在线精品视频| 国产午夜精品久久久久久| 9色porny在线观看| 国产精品 欧美亚洲| 免费不卡黄色视频| 国产精品免费一区二区三区在线 | 亚洲中文日韩欧美视频| 男人舔女人的私密视频| 老司机在亚洲福利影院| 国产97色在线日韩免费| 国产欧美日韩一区二区三| 热re99久久国产66热| 最近最新中文字幕大全电影3 | 久久99热这里只频精品6学生| 在线看a的网站| 波多野结衣av一区二区av| 麻豆乱淫一区二区| 麻豆成人av在线观看| 我要看黄色一级片免费的| 午夜久久久在线观看| 精品第一国产精品| 国产成人免费无遮挡视频| 欧美性长视频在线观看| 国产精品1区2区在线观看. | 日韩一区二区三区影片| 精品亚洲成国产av| 在线观看免费视频网站a站| 欧美激情 高清一区二区三区| 成年人免费黄色播放视频| 欧美激情高清一区二区三区| 又大又爽又粗| 99香蕉大伊视频| 国产单亲对白刺激| 国产精品一区二区免费欧美| 高潮久久久久久久久久久不卡| 麻豆乱淫一区二区| 国产免费av片在线观看野外av| 啦啦啦 在线观看视频| 精品视频人人做人人爽| 多毛熟女@视频| 人人妻人人澡人人看| 成在线人永久免费视频| 欧美黑人精品巨大| 飞空精品影院首页| 午夜福利影视在线免费观看| 最新美女视频免费是黄的| 正在播放国产对白刺激| 亚洲avbb在线观看| 亚洲精品国产一区二区精华液| 久久久国产成人免费| 久久精品91无色码中文字幕| 国产在线视频一区二区| 亚洲精品美女久久久久99蜜臀| 日本欧美视频一区| 午夜福利视频在线观看免费| 丁香欧美五月| www.999成人在线观看| 91av网站免费观看| 亚洲九九香蕉| 亚洲精品国产精品久久久不卡| 国产一区二区三区在线臀色熟女 | 欧美乱码精品一区二区三区| 精品少妇一区二区三区视频日本电影| 日韩制服丝袜自拍偷拍| 亚洲国产看品久久| 精品少妇黑人巨大在线播放| 欧美激情高清一区二区三区| 久久精品亚洲av国产电影网| 桃花免费在线播放| 久久午夜综合久久蜜桃| 天天躁日日躁夜夜躁夜夜| 每晚都被弄得嗷嗷叫到高潮| 成年人免费黄色播放视频| 欧美日韩福利视频一区二区| 国产亚洲精品一区二区www | 电影成人av| 黑人猛操日本美女一级片| 黄色视频在线播放观看不卡| 美女高潮喷水抽搐中文字幕| 国产麻豆69| 一本综合久久免费| 考比视频在线观看| 欧美亚洲 丝袜 人妻 在线| 久久人妻av系列| 亚洲成人免费电影在线观看| 女人久久www免费人成看片| 久久国产亚洲av麻豆专区| 美女国产高潮福利片在线看| 国产不卡av网站在线观看| 丝袜人妻中文字幕| 啦啦啦在线免费观看视频4| 亚洲全国av大片| 午夜福利免费观看在线| 成人三级做爰电影| 国产精品99久久99久久久不卡| 国产免费av片在线观看野外av| a在线观看视频网站| 黄色a级毛片大全视频| 久久久久久久大尺度免费视频| 视频区欧美日本亚洲| 两性夫妻黄色片| 亚洲avbb在线观看| 女性被躁到高潮视频| 国产高清激情床上av| 久久精品91无色码中文字幕| 国产男女内射视频| 超碰97精品在线观看| 欧美日本中文国产一区发布| 亚洲成国产人片在线观看| 亚洲va日本ⅴa欧美va伊人久久| 久久国产精品男人的天堂亚洲| 男女下面插进去视频免费观看| 亚洲欧洲日产国产| 天堂俺去俺来也www色官网| 亚洲久久久国产精品| 操出白浆在线播放| 免费日韩欧美在线观看| 欧美黑人欧美精品刺激| 在线av久久热| 国产视频一区二区在线看| 高清视频免费观看一区二区| 日韩大片免费观看网站| 成人特级黄色片久久久久久久 | 夫妻午夜视频| 国产高清视频在线播放一区| 在线看a的网站| 伦理电影免费视频| 精品亚洲乱码少妇综合久久| 久久免费观看电影| 国产精品电影一区二区三区 | 91成年电影在线观看| 成人国语在线视频| 手机成人av网站| 欧美激情 高清一区二区三区| 99精品久久久久人妻精品| 99久久99久久久精品蜜桃| 啦啦啦免费观看视频1| 亚洲精华国产精华精| 黄色a级毛片大全视频| 国产深夜福利视频在线观看| 黄频高清免费视频| av一本久久久久| 美女视频免费永久观看网站| 天堂中文最新版在线下载| 午夜成年电影在线免费观看| 老司机靠b影院| 俄罗斯特黄特色一大片| av天堂久久9| 悠悠久久av| 亚洲人成77777在线视频| 精品久久蜜臀av无| 悠悠久久av| 精品国产乱码久久久久久男人| 老司机午夜福利在线观看视频 | 黄频高清免费视频| 免费在线观看日本一区| 国产成人系列免费观看| 黄片大片在线免费观看| 久久精品亚洲熟妇少妇任你| 国产免费av片在线观看野外av| 美女主播在线视频| 久久精品国产综合久久久| 国产野战对白在线观看| 又大又爽又粗| 又黄又粗又硬又大视频| 久久久欧美国产精品| 99精品久久久久人妻精品| 又黄又粗又硬又大视频| 精品乱码久久久久久99久播| 成人国语在线视频| 国产高清视频在线播放一区| 国产精品久久久久久人妻精品电影 | 欧美成人免费av一区二区三区 | 动漫黄色视频在线观看| 亚洲国产精品一区二区三区在线| 日日摸夜夜添夜夜添小说| 色在线成人网| 欧美日韩视频精品一区| 在线 av 中文字幕| 露出奶头的视频| √禁漫天堂资源中文www| 亚洲精品国产区一区二| 亚洲一码二码三码区别大吗| 人人妻人人添人人爽欧美一区卜| 男女午夜视频在线观看| 1024视频免费在线观看| 亚洲中文日韩欧美视频| 精品乱码久久久久久99久播| 一级片'在线观看视频| 精品国产超薄肉色丝袜足j| 色94色欧美一区二区| 亚洲精品国产一区二区精华液| 老司机靠b影院| 狠狠狠狠99中文字幕| 久久人人爽av亚洲精品天堂| 日韩 欧美 亚洲 中文字幕| 久久精品亚洲av国产电影网| 曰老女人黄片| 19禁男女啪啪无遮挡网站| 久久久久国产一级毛片高清牌| 建设人人有责人人尽责人人享有的| 欧美日韩中文字幕国产精品一区二区三区 | 国产免费视频播放在线视频| 国产又色又爽无遮挡免费看| 99热网站在线观看| 成人av一区二区三区在线看| 男女下面插进去视频免费观看| 精品国内亚洲2022精品成人 | 91麻豆精品激情在线观看国产 | 如日韩欧美国产精品一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品一二三| 菩萨蛮人人尽说江南好唐韦庄| 国产精品1区2区在线观看. | 一级片免费观看大全| 日日爽夜夜爽网站| 国产精品久久久人人做人人爽| 一进一出抽搐动态| 成人特级黄色片久久久久久久 | 午夜福利视频精品| 亚洲第一青青草原| 高清av免费在线| 18禁观看日本| 久久九九热精品免费| 国产av国产精品国产| 亚洲国产看品久久| 久久久久久亚洲精品国产蜜桃av| 精品国产亚洲在线| 久久亚洲真实| 午夜日韩欧美国产| 日韩三级视频一区二区三区| 久久影院123| 97在线人人人人妻| 在线观看免费午夜福利视频| 欧美成人午夜精品| 肉色欧美久久久久久久蜜桃| 亚洲欧美日韩高清在线视频 | 国产人伦9x9x在线观看| 日本欧美视频一区| 国产区一区二久久| 大型黄色视频在线免费观看| 亚洲天堂av无毛| a级毛片黄视频| 国产精品.久久久| 免费av中文字幕在线| 丝瓜视频免费看黄片| 麻豆av在线久日| netflix在线观看网站| 蜜桃在线观看..| 成人国产av品久久久| 母亲3免费完整高清在线观看| 热re99久久国产66热| 国产91精品成人一区二区三区 | 国产伦理片在线播放av一区| 中文字幕色久视频| 亚洲精品在线观看二区| 国产极品粉嫩免费观看在线| 欧美日韩黄片免| 在线看a的网站| 中文字幕高清在线视频| 成年人免费黄色播放视频| 久久久精品94久久精品| 国产真人三级小视频在线观看| 黄色片一级片一级黄色片| 少妇 在线观看| 俄罗斯特黄特色一大片| 亚洲av片天天在线观看| 国产精品九九99| av一本久久久久| 欧美av亚洲av综合av国产av| 极品人妻少妇av视频| 亚洲精品在线美女| 高清毛片免费观看视频网站 | 亚洲欧洲日产国产| 精品国产一区二区三区四区第35| 女人精品久久久久毛片| 欧美+亚洲+日韩+国产| 嫁个100分男人电影在线观看| 热99国产精品久久久久久7| 国产一区二区激情短视频| 制服人妻中文乱码| 国产又色又爽无遮挡免费看| 精品久久蜜臀av无| tube8黄色片| 无人区码免费观看不卡 | 国产一区二区在线观看av| 成人特级黄色片久久久久久久 | 美国免费a级毛片| 99在线人妻在线中文字幕 | 午夜两性在线视频| 久久精品91无色码中文字幕| 国产精品99久久99久久久不卡| 欧美激情高清一区二区三区| 精品高清国产在线一区| 精品少妇黑人巨大在线播放| 久久国产精品人妻蜜桃| 久久毛片免费看一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲伊人色综图| 亚洲熟女精品中文字幕| 妹子高潮喷水视频| 嫁个100分男人电影在线观看| 老司机在亚洲福利影院| 国产精品久久久久久人妻精品电影 | 亚洲av美国av| 国产片内射在线| 午夜福利欧美成人| 欧美日韩亚洲国产一区二区在线观看 | 精品一区二区三区视频在线观看免费 | 日韩中文字幕欧美一区二区| 久久精品成人免费网站| av免费在线观看网站| 精品免费久久久久久久清纯 | 亚洲少妇的诱惑av| 亚洲国产av新网站| 久久人人97超碰香蕉20202| 欧美乱妇无乱码| 亚洲专区国产一区二区| 免费看十八禁软件| 日韩一区二区三区影片| 黄片大片在线免费观看| 国产亚洲一区二区精品| 久久午夜亚洲精品久久| 久热爱精品视频在线9| 亚洲国产精品一区二区三区在线| 在线 av 中文字幕| 欧美精品一区二区大全| av免费在线观看网站| 人成视频在线观看免费观看| 亚洲色图av天堂| 狠狠婷婷综合久久久久久88av| 精品少妇内射三级| 国产精品自产拍在线观看55亚洲 | 亚洲专区中文字幕在线| 日本一区二区免费在线视频| 国产深夜福利视频在线观看| 99久久精品国产亚洲精品| 日韩欧美国产一区二区入口| 免费不卡黄色视频| 亚洲av成人不卡在线观看播放网| 亚洲人成伊人成综合网2020| 亚洲伊人色综图| 国产成人一区二区三区免费视频网站| 好男人电影高清在线观看| 精品熟女少妇八av免费久了| 久久人人97超碰香蕉20202| 精品熟女少妇八av免费久了| 嫩草影视91久久| 国产国语露脸激情在线看| 不卡一级毛片| 国产熟女午夜一区二区三区| 欧美 日韩 精品 国产| 欧美精品一区二区免费开放| 国产精品久久久久久精品古装| 大香蕉久久成人网| 999久久久精品免费观看国产| 成人手机av| 国产日韩欧美视频二区| 久久精品亚洲av国产电影网| 悠悠久久av| 午夜精品久久久久久毛片777| 999久久久精品免费观看国产| 两性夫妻黄色片| 久久久久久免费高清国产稀缺| 中文欧美无线码| 亚洲精品在线美女| 亚洲一卡2卡3卡4卡5卡精品中文| 黑人巨大精品欧美一区二区蜜桃| 国产97色在线日韩免费| 国产真人三级小视频在线观看| 婷婷丁香在线五月| 午夜福利乱码中文字幕| 男女高潮啪啪啪动态图| 国产av一区二区精品久久| 亚洲国产中文字幕在线视频| 国产欧美日韩一区二区三| 成人影院久久| 高清视频免费观看一区二区| 99精品在免费线老司机午夜| 露出奶头的视频| 亚洲欧美一区二区三区久久| 18禁美女被吸乳视频| www日本在线高清视频| 亚洲国产精品一区二区三区在线| 国产精品98久久久久久宅男小说| 在线观看免费日韩欧美大片| 亚洲国产成人一精品久久久| 久久这里只有精品19| 精品人妻1区二区| 最新在线观看一区二区三区| 久久国产精品男人的天堂亚洲| 人妻久久中文字幕网| 午夜福利欧美成人| 国产人伦9x9x在线观看| 捣出白浆h1v1| 久久精品国产综合久久久| 欧美激情高清一区二区三区| 9热在线视频观看99| 啪啪无遮挡十八禁网站| 午夜视频精品福利| 99香蕉大伊视频| 日韩制服丝袜自拍偷拍| 少妇的丰满在线观看| 亚洲国产看品久久| av天堂久久9| 亚洲久久久国产精品| 一级毛片精品| 99精国产麻豆久久婷婷| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久久精品吃奶| 亚洲熟女毛片儿| tocl精华| 午夜免费成人在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利乱码中文字幕| 久久久久久久久免费视频了| videosex国产| av不卡在线播放| 欧美精品人与动牲交sv欧美| 中文亚洲av片在线观看爽 | 精品国内亚洲2022精品成人 | 精品福利永久在线观看| 亚洲色图av天堂| 欧美亚洲 丝袜 人妻 在线| 欧美亚洲日本最大视频资源| aaaaa片日本免费| 国产精品久久久av美女十八| 高清在线国产一区| 中文字幕人妻丝袜一区二区| 9191精品国产免费久久| 天天操日日干夜夜撸| 亚洲欧美精品综合一区二区三区| 美女福利国产在线| 久久毛片免费看一区二区三区| 国产成人av激情在线播放| 亚洲精品粉嫩美女一区| 久久精品亚洲精品国产色婷小说| 久久天躁狠狠躁夜夜2o2o| 一区二区三区激情视频| 女警被强在线播放| 欧美在线黄色| 久久午夜综合久久蜜桃| 在线天堂中文资源库| 天天躁日日躁夜夜躁夜夜| 天天操日日干夜夜撸| 国产日韩欧美视频二区| 国产成人一区二区三区免费视频网站| 国产真人三级小视频在线观看| 国产片内射在线| 亚洲精品美女久久av网站| 亚洲欧美一区二区三区久久| 久久久久久久久久久久大奶| 每晚都被弄得嗷嗷叫到高潮| 一本色道久久久久久精品综合| 日韩精品免费视频一区二区三区| 色视频在线一区二区三区| 视频区欧美日本亚洲| 国产精品熟女久久久久浪| 国产黄色免费在线视频| 亚洲 国产 在线| 首页视频小说图片口味搜索| 考比视频在线观看| 啦啦啦视频在线资源免费观看| 香蕉丝袜av| 国产精品1区2区在线观看. | 成人三级做爰电影| 亚洲成av片中文字幕在线观看| 美女福利国产在线| 欧美精品一区二区大全| 亚洲国产欧美日韩在线播放| 狂野欧美激情性xxxx| 蜜桃在线观看..| 久久 成人 亚洲| 久久人妻福利社区极品人妻图片| 黑人巨大精品欧美一区二区mp4| 麻豆国产av国片精品| 午夜福利视频在线观看免费| 最新美女视频免费是黄的| 成人亚洲精品一区在线观看| 777久久人妻少妇嫩草av网站| 欧美亚洲 丝袜 人妻 在线| 嫩草影视91久久| 亚洲精品国产一区二区精华液| 国产精品二区激情视频| 天天躁日日躁夜夜躁夜夜| 久久免费观看电影| 自线自在国产av| 欧美一级毛片孕妇| 国产精品二区激情视频| 亚洲专区字幕在线| 丝袜人妻中文字幕| 日本五十路高清| 高清在线国产一区| 露出奶头的视频| 国产精品98久久久久久宅男小说| bbb黄色大片| 巨乳人妻的诱惑在线观看| 欧美大码av| 免费高清在线观看日韩| 又紧又爽又黄一区二区| 久久久精品国产亚洲av高清涩受| 精品人妻在线不人妻| 丁香六月欧美| 国产成人精品久久二区二区91| 国产亚洲一区二区精品| 日韩大片免费观看网站| 午夜福利,免费看| 精品国产国语对白av| 1024视频免费在线观看| 国产精品影院久久| 中文字幕最新亚洲高清| 99国产综合亚洲精品| 变态另类成人亚洲欧美熟女 | 两个人免费观看高清视频| 日日爽夜夜爽网站| 日日爽夜夜爽网站| 国产亚洲精品久久久久5区| 建设人人有责人人尽责人人享有的| 日本vs欧美在线观看视频| 国产欧美日韩一区二区三| 亚洲av成人一区二区三| 汤姆久久久久久久影院中文字幕| 国产日韩欧美亚洲二区| 欧美大码av| 久久中文字幕人妻熟女| 欧美成人午夜精品| 成人国产av品久久久| 亚洲情色 制服丝袜| 极品教师在线免费播放| 亚洲成人免费电影在线观看| 首页视频小说图片口味搜索| 日本精品一区二区三区蜜桃| 国产精品熟女久久久久浪| 麻豆国产av国片精品| 精品国产一区二区三区四区第35| 亚洲精品av麻豆狂野| 大型av网站在线播放| 午夜精品国产一区二区电影| 多毛熟女@视频| 91成年电影在线观看| 亚洲欧美日韩另类电影网站| 亚洲人成伊人成综合网2020| 国产精品香港三级国产av潘金莲| 真人做人爱边吃奶动态| 1024视频免费在线观看| 91成人精品电影| 制服人妻中文乱码| 国产亚洲精品久久久久5区| 999精品在线视频| 久久久国产一区二区| 国产欧美亚洲国产| 黄色成人免费大全| 亚洲人成伊人成综合网2020| 亚洲第一青青草原| 国产成+人综合+亚洲专区| 纵有疾风起免费观看全集完整版| 在线亚洲精品国产二区图片欧美| 狂野欧美激情性xxxx| 国产人伦9x9x在线观看| 亚洲欧美日韩高清在线视频 | 国产免费现黄频在线看| 亚洲国产av新网站| 91字幕亚洲| 国产成人欧美在线观看 | 一夜夜www| 曰老女人黄片| 亚洲一卡2卡3卡4卡5卡精品中文| 国产深夜福利视频在线观看| 黄色丝袜av网址大全| 十八禁网站网址无遮挡| 亚洲av片天天在线观看| 中亚洲国语对白在线视频| 乱人伦中国视频| 欧美国产精品一级二级三级| 美女高潮到喷水免费观看| 777久久人妻少妇嫩草av网站| 男人操女人黄网站| 久久久国产欧美日韩av| 我的亚洲天堂| 肉色欧美久久久久久久蜜桃| 999精品在线视频| 法律面前人人平等表现在哪些方面| 日本精品一区二区三区蜜桃| 欧美性长视频在线观看| 青草久久国产| 欧美在线黄色| 少妇猛男粗大的猛烈进出视频| 人成视频在线观看免费观看| 伊人久久大香线蕉亚洲五| 久久久久精品国产欧美久久久| 亚洲性夜色夜夜综合| 一级黄色大片毛片| 久久久久久亚洲精品国产蜜桃av| 国产伦理片在线播放av一区| 国产在视频线精品| 男人操女人黄网站| 国产免费av片在线观看野外av| 咕卡用的链子| 如日韩欧美国产精品一区二区三区| 女人高潮潮喷娇喘18禁视频| 搡老乐熟女国产| 天天添夜夜摸| 亚洲三区欧美一区| 777米奇影视久久|