• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles study of solute diffusion in Ni3Al?

    2017-08-30 08:25:22ShaohuaLiu劉少華ZiLi李孜andChongyuWang王崇愚
    Chinese Physics B 2017年9期
    關(guān)鍵詞:少華

    Shaohua Liu(劉少華),Zi Li(李孜),and Chongyu Wang(王崇愚)

    1 School of Materials Science and Engineering,Tsinghua University,Beijing 100084,China

    2 Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    3 Department of Physics,Tsinghua University,Beijing 100084,China

    First-principles study of solute diffusion in Ni3Al?

    Shaohua Liu(劉少華)1,Zi Li(李孜)2,and Chongyu Wang(王崇愚)3,?

    1 School of Materials Science and Engineering,Tsinghua University,Beijing 100084,China

    2 Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    3 Department of Physics,Tsinghua University,Beijing 100084,China

    Using first-principles calculations in combination with Wagner–Schottky and kinetic Monte Carlo methods,the diffusion behaviors of solutes via various vacancy-mediated diffusion mechanisms in L12γ′-Ni3Al were investigated.The formation energies of the point defects and the migration energies for solutes were calculated.Adding alloying elements can decrease the defect-formation energies of NiAl,increase the defect-formation energies of AlNi,and have little effect on the formation energy of VNi.The migration energies of solutes are related with the site preference and the diffusion mechanism.The diffusion coefficients of Ni,Al,and solutes were calculated,and the concentration of antisite defects plays a crucial role in the elemental diffusion.

    nickel-based superalloy,diffusion,Ni3Al,first-principles

    1.Introduction

    γ′-Ni3Al(L12structure)intermetallic compounds as the key strengthening precipitates of nickel-based single-crystal superalloys play a decisive role in the excellent mechanical properties for blade applications in jet engines and land-based gas turbines.[1,2]In addition,L12structure intermetallics have attracted a great deal of attention in recent years in connection with enormous potential structural materials for high temperature applications due to their anomalous temperature dependence of the yield stress.[3,4]To improve the mechanical properties and temperature resistance of γ′-Ni3Al,alloying elements,such as Ta,W,Re,Mo,and Cr,are often added.[5–7]In the investigation of creep and oxidation behavior at elevated temperature,diffusion plays an important role in the microstructure evolution,[8]planar deformation mechanisms,[9]and dislocation motion[10,11]for γ′precipitates.

    Presently,there exist a large number of experimental works on self-diffusion and solute diffusion in model Ni3Al intermetallic compound measured in a wide temperature range.[12–21]Some of these data sets were studied using tracer techniques.[12–14]Unfortunately,direct experimental measurements on the Al self-diffusion in Ni3Al suffer from the lack of a suitable radiotracer Al.Thus,interdiffusion coefficients were measured using diffusion couples.[19,22,23]Due to the different concentrations of thermal defects(vacancies and anti-structure atoms)and sophisticated diffusion mechanisms in ordered intermetallics,the available data on the solute diffusion show a marked deviation and are often incomplete in the case of diffusion for alloying elements in ternary alloys.Therefore,a systematically theoretical investigation on the diffusion of alloying elements in ordered intermetallic compounds is important,not only from the fundamental scientific standpoint for gaining a deeper insight into the microscopic diffusion mechanisms,but also with the purpose of practical aspects for designing superior Ni-based super alloys.

    In this work,we employed density functional theory (DFT)calculations to study the formation energy of point defects and migration barriers of ternary additions(Ti,Nb,Ta, Cr,Co,Mo,W,Re,Ru)in Ni3Al.In addition,several potential diffusion mechanisms were also taken into account and the diffusivity of Ni,Al,and solutes was predicted by using kinetic Monte Carlo(KMC)simulations.This also provides the knowledge for the diffusion behavior of alloying elements in other L12structure intermetallics(e.g.,Co3(Al,W)).

    2.Computational methodology

    Density-functional theory implementing in the Vienna ab-initio simulation package(VASP)[24]was used to investigate the vacancy formation and migration energies.All calculations were performed using the projector augmented wave method[25,26]and the generalized gradient approximation in the Perdew–Burke–Ernzerh of form(GGA-PBE).[27]The minimum plane wave energy cutoff was 350 eV.A first order Methfessel–Paxton smearing method[28]was used with a smearing width of SIGMA=0.2 eV.The convergence accuracy of the total energies of electronic self-consistency was 10?5eV.The Brillouin zone integration was performed with a 5×5×5 Monkhorst–Pack[29]k-point scheme.Fullionic relaxation was performed until the maximum Hellmann–Feynman force was lower than 0.02 eV/?A.The vacancy formation and migration energies in the Ni–Al–M ternary systems were calculated in a 3×3×3(108 lattice sites)L12-Ni3Al supercell.

    In the metal crystals,the dominant mechanism for the diffusion of matrix atoms and substitutional solutes is the vacancy mechanism.[30]Each atom moving through the crystal by this mechanism should satisfy two requirements:(i)a vacancy must exist at the first neighbor of the jumping atom,(ii) the thermal activation is sufficient to make an adjacent atom exchange with a vacancy.The exchange jump rate of atoms jumping into a particular neighboring site with the vacancy mechanism can be expressed as[30]

    whereω denotes the jump rate between an atom and a vacancy,is the thermal equilibrium concentration of monovacancy in the crystal,and z is the coordination number.

    Fig.1.(color online)Atomic configuration for ordered L12 Ni3Al,with possible directions of the vacancy jumps and possible types of point defects.Ni atoms occupy the face-centered sites and Al atoms locate at the corner position.The arrows show nearest-neighbor(NN)and nextnearest-neighbor(n)vacancy jumps.

    In the L12-Ni3Al ordered structure as illustrated in Fig.1, each Ni atom is surrounded by eight nearest neighbor(NN)Ni atoms and four Al atoms,while each Al atom is surrounded by 12 Ni atoms.There are four types of point defects that can form in Ni3Al:VNion the Ni sublattices,VAlon the Al sublattices,AlNiantisite(anti-structure)atoms,and NiAlantisite atoms.The vacancy formation energies for Ni and Al atoms in the Ni3Al(γ′phase)were calculated using the Wagner–Schottky model[31,32]as follows:

    where E Ni80Al27Va,E Ni81Al26Va,and E Ni81Al27 are the energies of the supercells that contain one Ni vacancy,one Al vacancy, and no vacancy,respectively.ENiand EAlare the total energies per atom in perfect Ni and Al fcc crystals,respectively.In the presence of solute M at the Al sublattice or Ni sublattice for a dilute substitutional Ni3Al intermetallic with a vacancy, we have the expression

    Based on the mean-field approximation and the mass-balance constraints,a set of non-linear equations can be determined through the minimization of the Gibbs free energy of the system(ΔG=ΔH?TΔS=min).Then,the equilibrium concentrations of point defects can be obtained by solving the following set of non-linear equations:[32]

    where xiand Hidenote the mole fraction and formation enthalpy of point defect i,respectively.Note that,all calculations are performed at approximately zero pressure,the enthalpy Hiis equal to the energy Ei.xNiis the total mole fraction of Ni in the alloy.For the stoichiometric L12Ni3Al,xNi=0.75.For a given composition and temperature,the equilibrium concentrations of all point defects can be obtained by solving Eq.(4).

    Based on the harmonic transition state theory (hTST),[33–36]the jump rate can be expressed as

    where ω is the number of jumps per unit time to a neighboring site andν0is the attempt frequency,which is of the order of the Debye frequency v0=1013Hz.Emis the migration barrier of Al,Ni,and M solutes,which is calculated using the climbing image nudged elastic band method(CI-NEB)as implemented in the VTST package[37]for VASP.Three image CI-NEB calculations were used to determine the minimum energy path. Then,the images were fully relaxed until the total energy of electronic self-consistency was below 10?5eV and the maximum Hellmann–Feynman force was below 0.02 eV/?A.

    According to the Einstein–Smoluchowski(ES) relation,[30]the coefficient of diffusion is directly related with the mean square displacement of atoms and can be written as

    where〈L2〉is the total mean square displacement and τ is the simulation time in the simulation with averages taken over 105KMC trajectories.In each trajectory,105transitions are considered.

    As mentioned above,the fractions of the Al and the Alsubstituting solutes on the Ni sublattice should be considered. Then,the exchange jump rate can be obtained as

    where pMdenotesthe fraction ofelementson Nisublattice.By neglecting the concentration of the Al vacancy concentration,can be written for the stoichiometric composition.

    Introducing the exchange jump rate Γ into Eq.(6),we then have

    where d is the jump length,with a value offor the fcc Bravais lattices.

    The concentrations of point defects and the jump rate were included in the kinetic Monte Carlo(KMC)model[34,38]to calculate the diffusion rate at any particular temperature. Details of the KMC simulations can be found in our previous publication.[36]

    3.Results and discussion

    3.1.Concentration of point defects

    The point-defect formation energies Edefectare listed in Table 1.The formation energy of AlNiis<0 eV,indicating that it is favorable for the defect to form.The vacancy formation energies are higher than the antisite formation energies, which agrees with earlier results in the literature.[32,39]In the Ni–Al binary phase diagram,a narrow composition interval exists on both sides of the stoichiometric compositions,which are accommodated by antisite atoms(AlNiand NiAl).By numerically solving Eq.(4)with the point-defects formation energies given in Table 1,the concentrations of point defects in stoichiometric Ni3Al as a function of temperature are shown in Fig.2.Through a linear fit to the relationship

    the effective defect formation energies are obtained from Fig.2 and listed in Table 2.As shown,the antisite defects are preferentially formed and vacancies are mainly formed on the Nisublattice.Note that,the defectformation energies measured by positron lifetime spectroscopy experiments should be compared with?Edefectrather than Edefect,since the former is dependent on the alloy composition while the latter is dependent on the reference states of pure elements.As shown in Table 2,our calculations are in good agreement with the experiments.

    Table 1.Point defect formation energies(in units of eV)in Ni3Al with and without solutes in comparison with those from the literature.

    Table 2.Effective formation energies(in units of eV)of point defects in stoichiometric Ni3Al.

    Fig.2.(color online)Equilibrium point defect concentrations in stoichiometric Ni3 Al as a function of temperature.

    In multi-component super alloys,a variety of alloying elements dissolve in Ni3Al.Therefore,the solutes can influence the formation of Ni and Al vacancies and antisite atoms in Ni3Al.In order to gauge the maximum effect of the solutes on the point-defect energy,the solutes were placed in the NN positions of the point defect.Table 1 summarizes the influence of ternary solutes on formation energies of point defects.For the MNi,M is predicted to decrease the defect-formation energies of VAland NiAl,while increase that of AlNi.The effect of the solutes on the formation energy of VNiis negligible.For the MAl,the effect of the solutes on the point-defect energy is similar to that of Al,except that Ti,Nb,and Ta increase the formation energy of VAl.

    It is known that vacancy-mediated diffusion is governed by the vacancy formation and vacancy-atom exchange process.The formation vacancy is a prerequisite for alloying element diffusion and the concentration of point defects may influene the diffusion rate.

    3.2.Diffusion of solutes

    In the L12ordered Ni3Al intermetallic compounds,certain vacancy-mediated diffusion mechanisms possibly work, such as six-jump-cycle(6JC),sublattice assisted diffusion (AS),antistructure bridge(ASB),etc.[45]The 6JC consists of six jumps and the energy barrier for the cycle is higher than the other mechanisms,[40]so the important diffusion mechanisms relevant to the diffusion behavior of Al in Ni3Al are AS and ASB jump as shown in Fig.3.The major component(Ni)of Ni3Al forms a lattice structure that enables nearest neighbor (NN)jumps through the respective sublattice without producing disorder in the L12structure.The majority component and minority component may diffuse mainly in such a Ni sublattice.As shown in Fig.3,a Ni atom can exchange with a NN vacancy on its own sublattice as the intra-sublattice jump. However,an Al atom jumps into the“wrong”sublattice(intersublattice jump)that always introduces disorder in the lattice, and continues its migration through the Ni sublattice.Since the concentration of antisite defects is higher that of Ni and Al vacancies in Ni3Al,the Al and Ni antisites play an important role in diffusion processes in L12intermetallics,which can drastically enhance the mobility at higher temperatures.[46,47]The ASB mechanism for Al atoms consists of two jumps:(i)a vacancy and an adjacent Al atom exchange their positions,(ii) an NN anti-structure AlNiatom jumps into the new vacant position on the Al sublattice.Similarly,the ABS mechanism for Ni atoms involves the exchange of a Ni vacancy with an NN anti-structure NiAlatom,and then with a regular atom on the Ni sublattice.Two Al atoms(or Ni atoms),namely,regular sublattice and antisite,participate in the ASB jump and exchange their own lattices.As the result of accomplishing the ASB jump,the vacancy can jump up to the fourth coordination shell from its initial position,resulting in a large geometrical factor and increasing its contribution to the diffusivity.The steps of the ASB jump are presented in Fig.3.Based on the available experimental data on the Al-substituting solute diffusion,Divinski et al.[12]suggested that a diffusion model of the minority component via Ni sublattice as anti-structure defects in combination with the ASB mechanism also mediates the diffusion of Al-substituting solutes.

    Table 3.Various energy barriers(in units of eV)for NN,n,AS,and ASB sublattice jumps for Ni and Al in L12 Ni3Al.Experimental data and previous calculations are also listed for comparison.

    The calculated migration energy barrier of elementary jumps for Ni and Al in Ni3Al is listed in Table 3,which agrees well with previous calculations and available experimental values.For the NN jump,the migration energies of NiNi→VNiand NiNi→VAlare similar,with the value of~0.9 eV.However,the n jumps for Ni and Al atoms have higher energy barriers than the NN jumps.This may be correlated with the distance of the diffusion path,the complex neighborhood environment,and the strong interactions.It indicates that the NN jump for Ni and Al atoms is energetically favorable and Al atoms will likely diffuse with the adjacent Ni vacancies.

    Figures 3(b)–3(d)show the migration energies of solutes via one-step NN jump(MAl→VNi),AS jump,and ASB jump.According to our previous work about the site preference of ternary alloying additions,most metal elements exhibit a strong Al site preference in the dilute ternary ordered L12structure.[50]For the one-step NN jump,the solutes that preferentially occupy Al sites jump from the Al to the Ni sublattice,resulting in an inter-sublattice jump.From Fig.3(b), we see that the barrier energies for all solutes are higher than that for Al,which indicates that the addition of solutes into the γ′phase contributes to the inhibition of overall mass transport. In addition,all the minimum energy pathways(MEPs)for the inter-sublattice jump are asymmetric and the maximum energy appears at the position deviating from the midpoint of each step.Unlike the γ-forming elements(Cr,Co,Mo,Ru,W,Re), γ′-forming elements(Al,Ti,Nb,Ta)reach the maximum energy at a position close to the final state(MNi,endpoint structure).These resulted from the asymmetric defect structure and local atomic environment through which the vacancy passes, as shown in Fig.3(a).After the MAl→VNiinter-sublattice jumps,solutes M and Al are located at FNN positions.Because γ′-forming elements have larger atomic radii,the atomic environment around the M–Al pairs has a lattice distortion, leading to a high energy state.As shown in Table 4,the final state wherein a solute atom occupies the Ni sublattice is metastable and has a higher energy than the initial state where the solute occupies the Al sublattice.The energy difference between the final and initial states for Co is less than that for Al,while the energy increment for other solutes is higher than that for Al.It can be seen that Co atoms substitute at either an Al or Ni sublattice with a slight preference for the Al sublattice,whereas other solutes preferentially substitute at the Al sublattice.The above results agree with our previous reports about the site preference of transition metal elements in L12Ni3Al.[50]

    Fig.3.(color online)Diffusion pathways and minimum energy pathways for various jump mechanisms for solutes.(a)A scheme of the intra-sublattice,inter-sublattice,AS,and ASB mechanism in L12 Ni3Al.(b)Minimum energy pathways for M Al→VNi jump.(c)Minimum energy pathways for AS jump.(d)Minimum energy pathways for ASB jump.

    Table 4.Energy difference(in units of eV)between the steady and the metastable states.

    The schematics of the possible jump pathways and MEP plots for AS and ASB mechanisms for solutes diffusion in Ni3Al are shown in Fig.3,and the energy barriers for candidate mechanisms are listed in Table 5.For the AS mechanism, the migration energy of Re in Ni3Al with the AS mechanism is larger than that of other elements.Interestingly,the corresponding migration energy of the alloying elements for the AS jump in the ordered γ′-Ni3Al is less than that in the γ-Ni matrix,but the change in the energy barrier of Ni,Co,and Al is not much.For the ASB mechanism,the migration energy of Co is higher than that of other elements,these results may be related with the site preference of solutes in Ni3Al.Similar to the diffusion behavior of alloy elements in the matrix phase, the migration energy of the γ′-forming elements(Ti,Nb,Ta) is smaller than that of the γ-forming elements(Co,Cr,Ru,W, Re)for both AS and ASB mechanisms.However,the migration energy of Mo is lower than that of Al for AS and ASB mechanisms.

    Obviously,the AS mechanism has a lower energy barrier than the other candidate mechanisms for elemental(except Co)diffusion.However,the alloying element must occupy the Ni sublattice and a Ni vacancy must occupy the NN position of the solutes for this jump to occur.These restrictions will likely result in a lower jump rate of the solute atoms compared to Ni atoms because most solutes exhibit a strong Al site preference in the ordered L12structure for multi-component superalloys. Due to Co occupying either Al or Ni sublattice in the ordered γ′-Ni3Al,the Co atoms jump from the Ni sublattice to the Al sublattice facing the competition of anti-structure AlNiatoms. Therefore,the migration energy of Co with the AS mechanism is higher than that of other solutes.In general,the stronger the preference for the Al site,the lower the energy barrier of solutes for AS and ASB mechanisms in the γ′phase.

    Table 5.Calculated migration barrier(in units of eV)for various solute jumping mechanisms and site preferencein L12 Ni3Al in units of eV.

    Table 5.Calculated migration barrier(in units of eV)for various solute jumping mechanisms and site preferencein L12 Ni3Al in units of eV.

    a Ref.[51],b Ref.[50].

    Co Ru Re Cr W Mo Ti Ta Nb M Al→VNi 1.134 1.516 2.264 1.690 2.166 1.867 1.329 1.799 1.643 AS 0.974 0.929 0.986 0.725 0.800 0.608 0.308 0.462 0.325 ASB 1.694 1.493 1.309 1.013 1.003 0.826 0.789 0.743 0.716 M in γa 1.114 1.432 1.706 1.268 1.328 1.151 0.526 0.779 0.654 Site preferenceb–0.103–0.875–1.976–1.553–2.199–2.030–1.783–2.263–2.204

    As shown in Table 5,the migration energy of the ASB mechanism for solutes(except Co)is slightly higher than that of the AS mechanism,and smaller than that for MAl→VNijumps.If the concentration of the M anti-structure atoms is high enough at elevated temperature,the ASB mechanism will play a crucial role and promote elemental diffusion.This is in qualitative agreement with the previous experimental results that the higher Al self-diffusion and Al-like elements(Ge,Ga) diffusion with respect to the Ni self-diffusion occur at elevated temperature.[12]

    According the theoretical works on the diffusion in Ni3Al,the Ni/Al self-diffusion and the solute diffusion are determined by the following main parameters:[12,43]the Ni vacancy concentrationthe fractions of the Al and solute M atoms at anti-structure positions(pAland pM),and the jump rates of Ni,Al,and solute atoms.Note that,both AS and ASB mechanisms are governed by the contributions of the Ni vacancy and the anti-structure defect.The latter factor pMis probably the most important one,because the vacancy formation energy of Ni for various solutes is similar as shown in Table 1.If the formation energy of the M anti-structure atom is larger than that of the Al anti-structure atoms,the probability of the ASB jumps to occur is decreased and the solute atom diffusivity is mainly determined by the MAl→VNiand AS jumps.

    It is worth noting here that,the site preference of solutes in L12Ni3Al is a function of alloy composition and temperature,[52,53]and there will be a certain concentration of anti-structure atoms for solutes.Therefore,the absence of formation energy for anti-structure defects may be the reason that the activation energy of solutes obtained in the first-principles study is less than the experimental results.If the solutes occupy the Ni sublattice,the fraction of M atoms pM=1.If the solutes occupy the Al sublattice,the fraction of M atoms can be written as follows:[50,52]

    where xMAland xMAlare the concentrations of solutes on the Al and Ni sublattices,respectively.EMAland EMNiare the substitution formation energies of solutes on the Al and Ni sublattices,respectively,and the values are given in Table 5. According to Eq.(8),the diffusion coefficients of solutes via the AS mechanism are presented in Table 6.It can be seen that the diffusion coefficient of solutes is drastically reduced with the site preference from Ni to Al.The diffusion coefficients for Ni and Al with no solutes in stoichiometric Ni3Al are in good agreement with the available experimental results. The experimental results for solutes are within the range between the diffusivity for occupying Al and the diffusivity for occupying Ni,indicating that the concentration of solutes on the Ni sublattice is considerable in Ni3Al at given composition and temperature.Therefore,in addition to the migration barrier,the effect of the anti-structure defect on the diffusion of solutes is also important.Further,accurately calculating the fraction of solutes in the Ni sublattice is necessary.

    Table 6.Diffusivity(in units of m2/s)for Al,Ni,and solutes in the L12 γ′-Ni3Al phase at 1100°C in comparison with available experimental results.

    4.Summary

    By first-principles calculations with the KMC methods, the diffusion behavior of solutes via various vacancy-mediated diffusion mechanisms in L12γ′-Ni3Al were investigated.For the stoichiometric Ni3Al intermetallics,the AlNiand NiAlantisite atoms are preferentially formed.Vacancy formation on the Ni sublattice is energetically more favorable than on the Al sublattice.Adding alloying elements can decrease the defect formation energies of NiAland increase the defect-formation energies of AlNi.The effect of solutes on the formation energy of VNiis negligible.

    The MAl→VNimechanism has a higher energy barrier than the AS and ASB mechanisms for solute(except Co)diffusion.For the MAl→VNimechanism,the barrier energies for solutes are higher than those for Al.For the AS and ASB mechanisms,the migration energy of the γ′-forming elements (Ti,Nb,Ta)is smaller than that of the γ-forming elements(Co, Cr,Ru,W,Re).The migration energy of solutes is related to the site preference of transition metal elements in L12Ni3Al.

    To account for the available experimental data on the solute diffusion,various diffusion mechanisms for solutes contribute to the diffusivity in Ni3Al.The concentration of antisite defects plays a crucial role in the elemental diffusion and determines which diffusion mechanism gives the predominant contribution.

    Acknowledgment

    The simulations were carried out on the“Explorer 100”cluster system of the Tsinghua National Laboratory for Information Science and Technology,Beijing,China.

    [1]Reed R C 2006 The Superalloys:Fundamentals and Applications(New York:Cambridge University Press)

    [2]Pollock T M 2016 Nat.Mater.15 809

    [3]Suzuki A,Inui H and Pollock T M 2015 Annu.Rev.Mater.Res.45 345

    [4]Jiang L,Li S and Han Y 2017 IOP Conf.Ser.:Mater.Sci.Eng.182 012059

    [5]Liu Z and Gao W 2001 Oxid.Met.55 481

    [6]Nathal M V and Ebert L J 1985 Metall.Trans.A 16 1863

    [7]Mishima Y,Ochiai S,Hamao N,Yodogawa M and Suzuki T 1986 Transactions of the Japan Institute of Metals 27 648

    [8]Kamaraj M 2003 Sadhana 28 115

    [9]Kovarik L,Unocic R R,Li J and Mills M J 2009 JOM 61 42

    [10]Eggeler Y M,Müller J,Titus M S,Suzuki A,Pollock T M and Spiecker E 2016 Acta Mater.113 335

    [11]Titus M S,Mottura A,Babu Viswanathan G,Suzuki A,Mills M J and Pollock T M 2015 Acta Mater.89 423

    [12]Divinski S V,Frank S,S?dervall U and Herzig C 1998 Acta Mater.46 4369

    [13]Cserháti C,Szabó I A,Márton Z and Erdélyi G 2002 Intermetallics 10 887

    [14]Shi Y,Frohberg G and Wever H 1995 Phys.Stat.Sol.A 152 361

    [15]Fujiwara K and Horita Z 2002 Acta Mater.50 1571

    [16]Cserháti C,Paul A,Kodentsov A A,van Dal M J H and van Loo F J J 2003 Intermetallics 11 291

    [17]Minamino Y,Yoshida H,Jung S B,Hirao K and Yamane T 1997 Defect and Diffusion Forum 143-147 257

    [18]Chen C,Zhang L,Xin J,Wang Y,Du Y,Luo F,Zhang Z,Xu T and Long J 2015 J.Alloys Compd.645 259

    [19]Moniruzzaman M,Fukaya H,Murata Y,Tanaka K and Inui H 2012 Materials Transactions 53 2111

    [20]Mabruri E,Sakurai S,Murata Y,Koyama T and Morinaga M 2008 Materials Transactions 49 1441

    [21]Garimella N,Ode M,Ikeda M,Murakami H and Sohn Y H 2009 J. Phase Equilib.Diffus.30 246

    [22]Ikeda T,Almazouzi A,Numakura H,Koiwa M,Sprengel W and Nakajima H 1998 Acta Mater.46 5369

    [23]Watanabe M,Horita Z and Nemoto M 1997 Defect and Diffusion Forum 143-147 345

    [24]Kresse G and Furthmüller J 1996 Phys.Rev.B 54 11169

    [25]Bl?chl P E 1994 Phys.Rev.B 50 17953

    [26]Kresse G and Joubert D 1999 Phys.Rev.B 59 1758

    [27]Perdew J P,Burke K and Ernzerhof M 1996 Phys.Rev.Lett.77 3865

    [28]Methfessel M and Paxton A T 1989 Phys.Rev.B 40 3616

    [29]Monkhorst H J and Pack J D 1976 Phys.Rev.B 13 5188

    [30]Mehrer H 2007 Diffusion in Solids:Fundamentals,Methods,Materials,Diffusion-Controlled Process(New York:Springer Berlin Heidelberg)

    [31]Schottky W and Wagner C 1931 Zeitschr.Phys.Chem.B 11 163

    [32]Jiang C,Sordelet D J and Gleeson B 2006 Acta Mater.54 1147

    [33]Eyring H 1935 J.Chem.Phys.3 107

    [34]Vineyard G H 1957 J.Phys.Chem.Solids 3 121

    [35]H?nggi P,Talkner P and Borkovec M 1990 Rev.Mod.Phys.62 251

    [36]Sun M,Li Z,Zhu G Z,Liu W Q,Liu S H and Wang C Y 2016 Commun. Comput.Phys.20 603

    [37]Henkelman G,Uberuaga B P and Jónsson H 2000 J.Chem.Phys.113 9901

    [38]Voter A F 2007 Radiation Effects in Solids(Dordrecht:Springer Netherlands)pp.1–23

    [39]Zhang X,Deng H,Xiao S,Tang J,Deng L and Hu W 2014 J.Alloys Compd.612 361

    [40]Gopal P and Srinivasan S G 2012 Phys.Rev.B 86 014112

    [41]Yu S,Wang C Y,Yu T and Cai J 2007 Physica B 396 138

    [42]Badura-Gergen K and Schaefer H E 1997 Phys.Rev.B 56 3032

    [43]Numakura H,Ikeda T,M K and Almazouzi A 1998 Philos.Mag.A 77 887

    [44]Wang T M,Shimotomai M and Doyama M 1984 J.Phys.F:Met.Phys. 14 37

    [45]Gupta D 2005 Diffusion Processes in Advanced Technological Materials(Heidelberg:Springer Berlin Heidelberg)

    [46]Kao C R and Chang Y A 1993 Intermetallics 1 237

    [47]Divinski S V and Larikov L N 1997 J.Phys.:Condens.Matter 9 7873

    [48]Chen G X,Wang D D,Zhang J M,Huo H P and Xu K W 2008 Physica B 403 3538

    [49]Zhang X and Wang C Y 2009 Acta Mater.57 224

    [50]Liu S H,Liu C P,Liu W Q,Zhang X N,Yan P and Wang C Y 2016 Philos.Mag.96 2204

    [51]Liu S,Liu C,Ge L,Zhang X,Yu T,Yan P and Wang C 2017 Scr.Mater. Submitted

    [52]Ruban A V and Skriver H L 1997 Phys.Rev.B 55 856

    [53]Jiang C and Gleeson B 2006 Scr.Mater.55 433

    3 June 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/093102

    ?Project supported by Beijing Municipality Science and Technology Commission,China(Grant No.D161100002416001)and the National Key Ramp;D Program of China(Grant No.2017YFB0701502).

    ?Corresponding author.E-mail:cywang@mail.tsinghua.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    少華
    余少華
    大江南北(2023年2期)2023-02-11 05:45:56
    Alternative non-Gaussianity measures for quantum states based on quantum fidelity
    漫畫(huà)哲理
    雜文選刊(2021年1期)2021-01-13 05:10:37
    畫(huà)與理
    理想
    雜文月刊(2019年15期)2019-09-26 00:53:54
    Quaternary antiferromagnetic Ba2BiFeS5 with isolated FeS4 tetrahedra
    畢業(yè)了
    雜文月刊(2019年14期)2019-08-03 09:07:20
    無(wú)論你踩多少腳,種子都會(huì)破土發(fā)芽
    婚前與婚后
    雜文月刊(2017年18期)2017-11-12 17:35:00
    二則
    免费黄频网站在线观看国产| 成人永久免费在线观看视频 | 另类精品久久| 欧美 日韩 精品 国产| tocl精华| 欧美精品人与动牲交sv欧美| 视频区图区小说| 色综合欧美亚洲国产小说| av一本久久久久| 啦啦啦中文免费视频观看日本| 无限看片的www在线观看| 国产日韩欧美视频二区| 日韩免费av在线播放| 一区福利在线观看| 捣出白浆h1v1| 大陆偷拍与自拍| 欧美日韩中文字幕国产精品一区二区三区 | 超色免费av| 精品熟女少妇八av免费久了| 日本撒尿小便嘘嘘汇集6| 精品一区二区三区四区五区乱码| 亚洲精品乱久久久久久| 亚洲精品国产一区二区精华液| 亚洲精品国产色婷婷电影| 91老司机精品| 色播在线永久视频| 成人永久免费在线观看视频 | 黄频高清免费视频| 他把我摸到了高潮在线观看 | 亚洲国产毛片av蜜桃av| 女同久久另类99精品国产91| 亚洲va日本ⅴa欧美va伊人久久| 无限看片的www在线观看| 激情在线观看视频在线高清 | 老司机靠b影院| 99国产极品粉嫩在线观看| 久久久久久久国产电影| 亚洲av成人不卡在线观看播放网| 亚洲国产毛片av蜜桃av| 精品视频人人做人人爽| 他把我摸到了高潮在线观看 | 丰满饥渴人妻一区二区三| 80岁老熟妇乱子伦牲交| 两性夫妻黄色片| 在线播放国产精品三级| 侵犯人妻中文字幕一二三四区| 国产日韩欧美在线精品| 一级,二级,三级黄色视频| 国产精品久久电影中文字幕 | 999精品在线视频| 99精品欧美一区二区三区四区| 国产黄频视频在线观看| 亚洲色图综合在线观看| 97在线人人人人妻| 精品免费久久久久久久清纯 | av不卡在线播放| 在线观看人妻少妇| 欧美在线一区亚洲| 久久国产精品人妻蜜桃| 999久久久国产精品视频| 国产一区二区三区综合在线观看| 亚洲伊人久久精品综合| 手机成人av网站| 亚洲精品久久成人aⅴ小说| 天天操日日干夜夜撸| 91麻豆av在线| 老司机在亚洲福利影院| 国产伦理片在线播放av一区| 国产欧美日韩综合在线一区二区| 一本综合久久免费| 欧美av亚洲av综合av国产av| 夜夜爽天天搞| 久久久久精品国产欧美久久久| 国产精品98久久久久久宅男小说| 老汉色av国产亚洲站长工具| 国产一区二区在线观看av| 亚洲av成人一区二区三| 亚洲国产看品久久| av超薄肉色丝袜交足视频| 在线播放国产精品三级| 日本黄色视频三级网站网址 | 一区在线观看完整版| 国产99久久九九免费精品| 亚洲国产成人一精品久久久| 午夜福利在线免费观看网站| 狂野欧美激情性xxxx| 久久久久网色| 一进一出好大好爽视频| 中文字幕人妻熟女乱码| 搡老熟女国产l中国老女人| 亚洲欧美色中文字幕在线| 男女免费视频国产| 国产aⅴ精品一区二区三区波| 亚洲欧美激情在线| 成人免费观看视频高清| 亚洲第一欧美日韩一区二区三区 | 极品教师在线免费播放| √禁漫天堂资源中文www| 亚洲五月色婷婷综合| 18禁国产床啪视频网站| 国产国语露脸激情在线看| 色播在线永久视频| 精品人妻在线不人妻| 视频在线观看一区二区三区| 久久青草综合色| 自线自在国产av| 大陆偷拍与自拍| 婷婷丁香在线五月| 日韩一区二区三区影片| 国产精品九九99| 精品国产乱码久久久久久小说| 久久热在线av| av网站在线播放免费| 午夜老司机福利片| 少妇猛男粗大的猛烈进出视频| 亚洲中文字幕日韩| 巨乳人妻的诱惑在线观看| 欧美日韩亚洲综合一区二区三区_| 91精品三级在线观看| 日韩人妻精品一区2区三区| 亚洲欧洲日产国产| 在线观看舔阴道视频| 亚洲精品在线美女| 亚洲精品久久成人aⅴ小说| 久久中文字幕一级| 亚洲人成伊人成综合网2020| 我的亚洲天堂| 精品国产亚洲在线| 欧美老熟妇乱子伦牲交| 大型av网站在线播放| 亚洲人成伊人成综合网2020| 中文字幕av电影在线播放| 久久久久网色| 嫩草影视91久久| 亚洲av美国av| 亚洲av国产av综合av卡| 国产精品免费大片| 午夜福利影视在线免费观看| 91字幕亚洲| 国产免费现黄频在线看| 国产成人影院久久av| 久久精品国产99精品国产亚洲性色 | kizo精华| 欧美在线一区亚洲| 中文字幕人妻熟女乱码| 精品国产乱子伦一区二区三区| 亚洲中文字幕日韩| 日韩欧美免费精品| 久久人人爽av亚洲精品天堂| 人人妻,人人澡人人爽秒播| 亚洲一码二码三码区别大吗| 啦啦啦视频在线资源免费观看| 精品亚洲成国产av| 桃红色精品国产亚洲av| 成人永久免费在线观看视频 | 99精品在免费线老司机午夜| 精品视频人人做人人爽| 人人妻人人澡人人看| 欧美性长视频在线观看| 黄色视频不卡| svipshipincom国产片| 飞空精品影院首页| 夜夜爽天天搞| 久久精品国产综合久久久| 日韩精品免费视频一区二区三区| 一区二区av电影网| 97人妻天天添夜夜摸| 久久久久精品人妻al黑| 18禁裸乳无遮挡动漫免费视频| 国产精品一区二区精品视频观看| 国产精品九九99| 自拍欧美九色日韩亚洲蝌蚪91| 国产亚洲av高清不卡| 大香蕉久久网| 久久ye,这里只有精品| 18禁观看日本| 国产精品久久久久久人妻精品电影 | 国产日韩欧美亚洲二区| 国产黄频视频在线观看| 757午夜福利合集在线观看| 免费在线观看完整版高清| 亚洲国产av影院在线观看| 9热在线视频观看99| 天堂动漫精品| 国精品久久久久久国模美| 免费看a级黄色片| 最近最新免费中文字幕在线| 国产1区2区3区精品| 国产日韩欧美在线精品| 99久久国产精品久久久| 亚洲精品成人av观看孕妇| 成人免费观看视频高清| 国产一区二区 视频在线| 人人妻,人人澡人人爽秒播| 男女边摸边吃奶| 久久国产亚洲av麻豆专区| 国产又爽黄色视频| 69精品国产乱码久久久| 久久国产精品影院| 男女之事视频高清在线观看| 国产日韩一区二区三区精品不卡| 啦啦啦免费观看视频1| 制服诱惑二区| www日本在线高清视频| 一进一出好大好爽视频| 国产色视频综合| 纵有疾风起免费观看全集完整版| 狠狠婷婷综合久久久久久88av| 最新的欧美精品一区二区| 亚洲精品乱久久久久久| 欧美 亚洲 国产 日韩一| 无遮挡黄片免费观看| 99国产综合亚洲精品| 精品久久久久久电影网| 国产日韩欧美视频二区| 狠狠狠狠99中文字幕| 日本av手机在线免费观看| 波多野结衣av一区二区av| 91国产中文字幕| 日韩免费高清中文字幕av| 欧美黄色片欧美黄色片| 欧美一级毛片孕妇| 精品亚洲成a人片在线观看| 欧美亚洲 丝袜 人妻 在线| 91九色精品人成在线观看| 欧美午夜高清在线| 亚洲精品国产一区二区精华液| 亚洲专区中文字幕在线| 中文欧美无线码| 中文字幕精品免费在线观看视频| 欧美日本中文国产一区发布| 国产片内射在线| 女人高潮潮喷娇喘18禁视频| 日韩有码中文字幕| 亚洲中文字幕日韩| 国产成人精品久久二区二区91| 国精品久久久久久国模美| 人妻 亚洲 视频| 无人区码免费观看不卡 | 满18在线观看网站| 在线观看舔阴道视频| 欧美黑人欧美精品刺激| 久久久久精品国产欧美久久久| 亚洲少妇的诱惑av| 男人操女人黄网站| 亚洲熟女毛片儿| 少妇裸体淫交视频免费看高清 | 精品熟女少妇八av免费久了| 亚洲精品在线美女| 日韩大码丰满熟妇| 老司机在亚洲福利影院| 亚洲七黄色美女视频| 啦啦啦在线免费观看视频4| 另类亚洲欧美激情| 国产成人啪精品午夜网站| 99久久人妻综合| 天天操日日干夜夜撸| 黄色毛片三级朝国网站| 日本黄色日本黄色录像| av一本久久久久| tube8黄色片| 久9热在线精品视频| 午夜激情av网站| 久久中文字幕人妻熟女| 9191精品国产免费久久| 成人免费观看视频高清| 日日摸夜夜添夜夜添小说| 国产精品国产av在线观看| 国产区一区二久久| 国产一区二区三区视频了| 啪啪无遮挡十八禁网站| 不卡av一区二区三区| 视频区欧美日本亚洲| 久久热在线av| 精品人妻在线不人妻| 一本—道久久a久久精品蜜桃钙片| 少妇粗大呻吟视频| 国产av又大| 黄色视频在线播放观看不卡| 国产成人精品久久二区二区91| 亚洲中文日韩欧美视频| 天堂动漫精品| 精品一区二区三区av网在线观看 | 两人在一起打扑克的视频| 欧美亚洲日本最大视频资源| 香蕉国产在线看| 亚洲欧美精品综合一区二区三区| av网站免费在线观看视频| 国产在视频线精品| 黄色视频,在线免费观看| 亚洲色图综合在线观看| 捣出白浆h1v1| 国产99久久九九免费精品| kizo精华| 欧美大码av| h视频一区二区三区| 首页视频小说图片口味搜索| 在线观看人妻少妇| 日韩大片免费观看网站| 97在线人人人人妻| 亚洲伊人久久精品综合| 人人妻,人人澡人人爽秒播| 中文字幕人妻熟女乱码| 午夜视频精品福利| 国产精品成人在线| 麻豆乱淫一区二区| 视频在线观看一区二区三区| 麻豆成人av在线观看| 国产免费福利视频在线观看| 老司机深夜福利视频在线观看| 女性生殖器流出的白浆| 99国产精品99久久久久| videosex国产| 热re99久久国产66热| 亚洲精品美女久久av网站| 久久久久精品国产欧美久久久| 国产又色又爽无遮挡免费看| 午夜激情久久久久久久| 日韩精品免费视频一区二区三区| 午夜久久久在线观看| 国产成人系列免费观看| 老司机午夜福利在线观看视频 | 18禁黄网站禁片午夜丰满| 久久久久久免费高清国产稀缺| 一边摸一边抽搐一进一小说 | 80岁老熟妇乱子伦牲交| 高清在线国产一区| 欧美老熟妇乱子伦牲交| 久久久久久久久免费视频了| 99国产精品免费福利视频| 国产日韩一区二区三区精品不卡| 免费在线观看完整版高清| 国产高清videossex| 男女无遮挡免费网站观看| 菩萨蛮人人尽说江南好唐韦庄| 三上悠亚av全集在线观看| 欧美成狂野欧美在线观看| 成人特级黄色片久久久久久久 | 手机成人av网站| 欧美激情高清一区二区三区| 国产精品熟女久久久久浪| 中文字幕人妻丝袜制服| 欧美乱码精品一区二区三区| 黑丝袜美女国产一区| 丝袜美足系列| 黄色视频,在线免费观看| 中文字幕高清在线视频| 国产av精品麻豆| 国产成人精品久久二区二区免费| 天天添夜夜摸| 精品卡一卡二卡四卡免费| 午夜福利免费观看在线| 午夜91福利影院| 亚洲人成77777在线视频| 91精品国产国语对白视频| 99国产精品免费福利视频| 50天的宝宝边吃奶边哭怎么回事| 日韩三级视频一区二区三区| 真人做人爱边吃奶动态| 黑丝袜美女国产一区| 99久久99久久久精品蜜桃| 91成年电影在线观看| 午夜福利视频精品| 精品国产一区二区三区久久久樱花| 亚洲国产欧美网| 国产午夜精品久久久久久| av国产精品久久久久影院| 亚洲精品美女久久av网站| 啦啦啦中文免费视频观看日本| 欧美日本中文国产一区发布| 亚洲成人手机| 狠狠婷婷综合久久久久久88av| 又黄又粗又硬又大视频| 亚洲一码二码三码区别大吗| 国产精品免费视频内射| 中国美女看黄片| 侵犯人妻中文字幕一二三四区| 久久精品91无色码中文字幕| 久久久精品区二区三区| 中文欧美无线码| 老汉色∧v一级毛片| 中文字幕人妻熟女乱码| 精品人妻1区二区| 最新在线观看一区二区三区| 美女午夜性视频免费| 国产精品免费大片| a级片在线免费高清观看视频| 久久影院123| 男女床上黄色一级片免费看| 久久国产亚洲av麻豆专区| 香蕉丝袜av| 亚洲专区字幕在线| 亚洲av欧美aⅴ国产| 黄色成人免费大全| 久久精品亚洲av国产电影网| 国产高清视频在线播放一区| 无人区码免费观看不卡 | 男女高潮啪啪啪动态图| 日本精品一区二区三区蜜桃| 久久 成人 亚洲| 91成年电影在线观看| 女人爽到高潮嗷嗷叫在线视频| 免费观看av网站的网址| 亚洲午夜精品一区,二区,三区| a级毛片在线看网站| 女同久久另类99精品国产91| 久久久国产成人免费| 久久人人97超碰香蕉20202| 日本vs欧美在线观看视频| 女人高潮潮喷娇喘18禁视频| 久久久国产一区二区| 日韩欧美一区视频在线观看| 91老司机精品| 亚洲av电影在线进入| 中文字幕精品免费在线观看视频| 电影成人av| 麻豆乱淫一区二区| 欧美日韩福利视频一区二区| av天堂在线播放| 日韩中文字幕视频在线看片| 国产av一区二区精品久久| 久久午夜综合久久蜜桃| 成年人免费黄色播放视频| 丁香六月欧美| 欧美激情高清一区二区三区| 亚洲欧美精品综合一区二区三区| 欧美日韩视频精品一区| 日韩欧美国产一区二区入口| 婷婷丁香在线五月| a级片在线免费高清观看视频| 精品少妇久久久久久888优播| 欧美激情极品国产一区二区三区| 午夜福利影视在线免费观看| 久久免费观看电影| 蜜桃国产av成人99| 老司机午夜十八禁免费视频| 亚洲国产毛片av蜜桃av| 国产高清videossex| 亚洲精品美女久久久久99蜜臀| 精品少妇内射三级| 黄频高清免费视频| 欧美成人午夜精品| 欧美日韩福利视频一区二区| 免费黄频网站在线观看国产| 亚洲精品国产色婷婷电影| 亚洲精品美女久久久久99蜜臀| 国产成人精品久久二区二区免费| 亚洲色图 男人天堂 中文字幕| 天天躁夜夜躁狠狠躁躁| 成人av一区二区三区在线看| 国产精品成人在线| 好男人电影高清在线观看| 最新在线观看一区二区三区| av视频免费观看在线观看| 色视频在线一区二区三区| 90打野战视频偷拍视频| 曰老女人黄片| 久久午夜亚洲精品久久| 男女午夜视频在线观看| 国产精品 欧美亚洲| 亚洲成av片中文字幕在线观看| 精品少妇内射三级| 人成视频在线观看免费观看| 婷婷成人精品国产| e午夜精品久久久久久久| 午夜福利乱码中文字幕| av国产精品久久久久影院| 久久中文字幕人妻熟女| 久久国产精品影院| 日本一区二区免费在线视频| 日韩 欧美 亚洲 中文字幕| 丰满迷人的少妇在线观看| 视频区欧美日本亚洲| 国产精品熟女久久久久浪| 亚洲人成电影观看| 91字幕亚洲| 自拍欧美九色日韩亚洲蝌蚪91| 18禁国产床啪视频网站| 午夜日韩欧美国产| 电影成人av| 飞空精品影院首页| 大码成人一级视频| 人人妻人人爽人人添夜夜欢视频| 欧美日韩国产mv在线观看视频| av网站免费在线观看视频| 美女视频免费永久观看网站| 国产精品亚洲av一区麻豆| 少妇被粗大的猛进出69影院| 国精品久久久久久国模美| 男女之事视频高清在线观看| 日本黄色视频三级网站网址 | 午夜福利影视在线免费观看| 这个男人来自地球电影免费观看| 韩国精品一区二区三区| 国产亚洲午夜精品一区二区久久| 国产欧美亚洲国产| 热99国产精品久久久久久7| 大香蕉久久成人网| 亚洲美女黄片视频| 国产aⅴ精品一区二区三区波| 露出奶头的视频| 777久久人妻少妇嫩草av网站| 久久香蕉激情| 精品国产一区二区三区四区第35| 9色porny在线观看| 欧美激情高清一区二区三区| 日本黄色视频三级网站网址 | 我要看黄色一级片免费的| 汤姆久久久久久久影院中文字幕| 99久久人妻综合| 欧美国产精品一级二级三级| 日韩熟女老妇一区二区性免费视频| 亚洲va日本ⅴa欧美va伊人久久| 久久精品亚洲av国产电影网| 免费黄频网站在线观看国产| 国产在线精品亚洲第一网站| 99国产综合亚洲精品| 女同久久另类99精品国产91| 极品人妻少妇av视频| 久久亚洲精品不卡| 国产免费视频播放在线视频| 男女下面插进去视频免费观看| 国产成人欧美| 人妻久久中文字幕网| 99国产精品免费福利视频| 亚洲自偷自拍图片 自拍| 91国产中文字幕| 波多野结衣av一区二区av| 黑人欧美特级aaaaaa片| 亚洲九九香蕉| 精品一区二区三区视频在线观看免费 | 国产在线观看jvid| 50天的宝宝边吃奶边哭怎么回事| 一夜夜www| 国产亚洲一区二区精品| 中文字幕色久视频| 国产一区二区三区综合在线观看| 色老头精品视频在线观看| 精品熟女少妇八av免费久了| 久久精品aⅴ一区二区三区四区| 国产免费视频播放在线视频| 最近最新免费中文字幕在线| 亚洲伊人色综图| 中文字幕最新亚洲高清| 欧美日韩亚洲综合一区二区三区_| 建设人人有责人人尽责人人享有的| 日本撒尿小便嘘嘘汇集6| kizo精华| 夜夜骑夜夜射夜夜干| 青草久久国产| 国产xxxxx性猛交| 国产精品电影一区二区三区 | av一本久久久久| 大陆偷拍与自拍| 丰满饥渴人妻一区二区三| 狂野欧美激情性xxxx| 老汉色av国产亚洲站长工具| 9热在线视频观看99| 午夜老司机福利片| 18禁国产床啪视频网站| 亚洲自偷自拍图片 自拍| 久9热在线精品视频| 精品一品国产午夜福利视频| 精品少妇内射三级| 嫁个100分男人电影在线观看| 欧美av亚洲av综合av国产av| 亚洲 欧美一区二区三区| 久久精品国产亚洲av高清一级| 亚洲国产成人一精品久久久| 成人18禁在线播放| 丝袜美腿诱惑在线| 久久婷婷成人综合色麻豆| av网站在线播放免费| videosex国产| 一区二区三区激情视频| 精品午夜福利视频在线观看一区 | 黄片播放在线免费| 久久99一区二区三区| 999久久久国产精品视频| 亚洲精品国产色婷婷电影| 国内毛片毛片毛片毛片毛片| 久久婷婷成人综合色麻豆| 午夜成年电影在线免费观看| 国产男女超爽视频在线观看| 国产亚洲一区二区精品| 大片电影免费在线观看免费| 性高湖久久久久久久久免费观看| 一级a爱视频在线免费观看| 十分钟在线观看高清视频www| 国产欧美日韩精品亚洲av| 下体分泌物呈黄色| 免费不卡黄色视频| 天堂动漫精品| 国产精品一区二区精品视频观看| 两人在一起打扑克的视频| 捣出白浆h1v1| 少妇 在线观看| 可以免费在线观看a视频的电影网站| 19禁男女啪啪无遮挡网站| 少妇 在线观看| 可以免费在线观看a视频的电影网站| 大香蕉久久网| 亚洲中文字幕日韩| 久久久国产一区二区| 亚洲人成77777在线视频| 国产精品久久久久久精品古装| 夫妻午夜视频| 香蕉丝袜av| 18禁观看日本| 黑人欧美特级aaaaaa片| 啪啪无遮挡十八禁网站| 国产亚洲精品第一综合不卡| 啦啦啦在线免费观看视频4| 高清毛片免费观看视频网站 | 九色亚洲精品在线播放|