• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator

    2022-02-24 09:37:42LuYang楊璐ChenghaoLiu劉程浩YalongWang王亞龍PengchengZhu朱鵬程YaoWang王瑤andYuanDeng鄧元
    Chinese Physics B 2022年2期
    關(guān)鍵詞:亞龍王瑤鵬程

    Lu Yang(楊璐), Chenghao Liu(劉程浩), Yalong Wang(王亞龍), Pengcheng Zhu(朱鵬程),Yao Wang(王瑤),3,?, and Yuan Deng(鄧元)

    1School of Materials Science and Engineering,Beihang University,Beijing 100191,China

    2Hangzhou Innovation Institute,Beihang University,Hangzhou 310052,China

    3Research Institute for Frontier Science,Beihang University,Beijing 100191,China

    4School of Physics and Microelectronics,Zhengzhou University,Zhengzhou 450001,China

    With the growing need on distributed power supply for portable electronics,energy harvesting from environment becomes a promising solution.Organic thermoelectric(TE)materials have advantages in intrinsic flexibility and low thermal conductivity,thus hold great prospect in applications as a flexible power generator from dissipated heat.Nevertheless,the weak electrical transport behaviors of organic TE materials have severely impeded their development.Moreover, compared with p-type organic TE materials,stable and high-performance n-type counterparts are more difficult to obtain.Here,we developed a n-type polyaniline-based hybrid with core-shell heterostructured Bi2S3@Bi nanorods as fillers,showing a Seebeck coefficient ?159.4 μV/K at room temperature.Further, a couple of n/p legs from the PANI-based hybrids were integrated into an elastomer substrate forming a stretchable thermoelectric generator(TEG),whose function to output stable voltages responding to temperature differences has been demonstrated.The in situ output performance of the TEG under stretching could withstand up to 75% elongation,and stability test showed little degradation over a one-month period in the air.This study provides a promising strategy to develop stable and high thermopower organic TEGs harvesting heat from environment as long-term power supply.

    Keywords: polyaniline-based hybrids,thermoelectric properties,n-type,stretchable electronics

    1.Introduction

    Rapid development of flexible electronics brings a new era of technologically immersive world,and an everincreasing need for portable,distributed and long-term power source has thus been raised.Thermoelectric(TE)materials can realize direct energy conversion between thermal energy and electricity,thus provide a promising solution to harvest heat energy from environment for power generation.The performances of TE materials are evaluated via figure of meritZT=σS2/κ,where σ is electrical conductivity,S is Seebeck coefficient,and κ is thermal conductivity.Organic thermoelectric materials, such as conducting polymers,[1—4]organic semiconductors,[5,6]organic/inorganic hybrids[7—11]have emerged recently as successful candidates.Despite their relatively low electrical transport properties compared with the inorganic counterparts,they have significant advantages in easy processing and low cost;moreover, recent progress has shown a catching up trend in both materials properties and device performances.[12—15]

    Nevertheless, the scarcity of high-performance of n-type flexible TE materials is still a big challenge due to the lessefficient hopping transport mechanism and low electron affinity caused chemical instability, which has significantly impeded the development of flexible thermoelectric generators(TEGs) assembled from matched p/n pairs of TE legs.Several studies show that the organic/inorganic hybrids are of particular potential to realize high-performance n-type TE materials.For instance, via incorporating n-type inorganic fillers into polymer matrix, Wanet al.reported a high power factor (PF= σS2) of 0.45 mW/m·K2andZTof 0.28 at 373 K for a hybrid superlattice of alternating inorganic TiS2monolayers and organic cations.[6]Caiet al.designed n-type Ag2Se/Ag/CuAgSe thermoelectric composite film supported by a porous nylon membrane presenting an ultrahigh power factor of 2231.5μW/m·K2at 300 K.[13]In practice,when flexible TEGs applied as wearable electronics,these devices generally suffer nonuniform strain, thus mechanical compliance and stability are highly required.The TEGs assembled from organic TE materials are generally flexible,yet their stretchability has been addressed to less extent.

    Based on our previous studies, a heat treatment strategy is effective in transforming p-type polyaniline (PANI)-based hybrids into n-type, where after high temperature treatment,the concentration of the major hole carrier from p-type PANI quickly falls, and the electrons from n-type Bi2S3gradually dominate the hybrid film.[16]Due to intrinsically weak electrical transport behaviors of Bi2S3,[17]the power factor of the n-type Bi2S3/PANI is still magnitude lower than that of PANI-based p-type hybrids.Herein, core-shell heterostructured Bi2S3@Bi nanorods were constructed to increase the electrical conductivity of fillers via introducing a high conductivity Bi coating layer.The same heat treatment strategy has been employed to transform p-type PANI-based hybrids into stable n-type at room temperature.Further,a stretchable TEG has been integrated from n-type Bi2S3@Bi/PANI and p-type Te-MWCNT/PANI hybrids with elastomer substrate, and the function as power generator has been demonstrated.

    2.Experimental details

    2.1.Materials

    Bismuth chloride (BiCl3) and hydrazine hydrate (N2H4)were supplied by Shanghai Macklin Biochemical Co., Ltd.,China.Sodium sulfide nonahydrate (Na2S·9H2O) with purity higher than 98.0% was purchased from Xilong Chemical Reagent Co.Ltd., China.All the raw chemicals, including ethylene glycol, C6H7N, HCl, (NH)2S2O8, LiCl, NaOH, mcresol,and camphorsulfonic acid were used as received without further purification.

    2.2.Fabrication of Bi2S3@Bi nanorods

    The synthesis of Bi2S3@Bi core-shell structure is based on anin situreduction reaction that Bi element could be reduced from Bi2S3by a strong reductant in alkaline solution.Thus,the surface of Bi2S3nanorod would transform to Bi via controlling the reaction time.Here,the following reaction was employed:[18]

    Here 5.7 g BiCl3was added to 24 ml distilled water with stirring, and then 6 ml HCl (36 wt%) was added dropwise until the white precipitate(BiOCl)was dissolved completely.10.5 g Na2S·9H2O was dissolved in 15 ml deionized water completely.The solutions were then mixed and stirred for 30 min.Next, the mixed solution was transferred to a teflonlined autoclave and maintained at 180°C for 12 h.After the reaction, the product was washed with deionized water and alcohol and dried in an oven at 353 K to obtain clean Bi2S3nanorods.Afterwards, 1 g NaOH was added to 100 ml distilled water with stirring,and 10 ml of N2H4dropped at a constant speed was added.1 g Bi2S3nanorods were added into the solution and stirred for 30 min forming a brown-black suspension.After ultrasonic dispersing the suspension for 20 min,it was transferred to a teflon-lined autoclave and was maintained at 180°C for 1 h,2 h and 3 h,respectively.After the reaction,the product was washed with deionized water and alcohol and dried in an oven at 80°C.

    2.3.Fabrication of Bi2S3@Bi/PANI hybrid films

    The processing has been carried out according to our previous study on PANI-based hybrid films[19]and n-type Bi2S3/PANI.[16]The procedures are illustrated in Scheme 1.The as-prepared Bi2S3@Bi nanorods with different weight fractions from 50 wt% to 90 wt% were first ultrasonically dispersed in m-cresol,and then mixed with PANI solution ultrasonically.The obtained Bi2S3@Bi/PANI solution was cast on glass substrates and dried at 60°C to form a dense film.After the films were completely dried,they were rapidly heat treated at 210°C in vacuum for 10 min,followed by cooling to room temperature.

    Scheme 1.Schematic illustration on the processing procedures of n-type Bi2S3@Bi/PANI hybrid films.

    2.4.Integration of n/p polyaniline-based hybrids to stretchable TEG

    The p-type TE material used here is TeMWCNT/PANI hybrid film with Te nanorod around 60 wt% and MWCNT around 10 wt%,with TE parameters ofS=40±3μV/K,σ =196 S/cm based on our previous work.[20]The PANI-based hybrid films were first hot-pressed at 160°C and 0.35 MPa to form TE legs with size 1 mm×1 mm×1.3 mm.The illustration on a pair of p/n TEG integration flow is shown in Scheme 2.PDMS was employed as elastomer substrate film,two cubes(1 mm×1 mm)with a spacing of 1 mm were hollowed out.Next, Ag fabrics were used as flexible interconnects,and TE legs were filled in the hollows with silver paste adhering the TE legs and Ag fabrics.Finally, a few drops of PDMS solution were added to encapsulate the device.

    Scheme 2.Schematic illustration on integration steps of stretchable TEG.

    2.5.Characterization

    The microstructures of the hybrid films were observed by scanning electron microscopy (SEM, FEI Sirion 200).X-ray diffraction (XRD, Rigaku D/MAX 2200 PC with Cu-Kα radiation λ = 1.5406) and Raman spectroscopy(LabRAMHR800 using an Ar—Kr laser operating at 632.8 nm)were employed to analyze the phase and chain structures of the hybrid films.The electrical conductivity and Seebeck coefficient were measured using a ZEM-3 system(IULVAC-RIKO).Hall coefficients were measured using a Hall measurement system(Lakeshore 8400 Series,Model 8404)from room temperature to 200°C.

    2.6.Output performance measurement of TEG

    To precisely control the temperature gradient applied across the TEG,a temperature control system has been setup as shown in Fig.S1.The TEG was placed on a temperature control stage (TLTP-FW-TEC2410D, Wuhan Talent Century Technology Co., Ltd.) maintained at a constant temperature,i.e., 25°C as the cold end.A Peltier device, controlled by a DC power supply (TPR3005T-3C, Shenzhen Atten Technology Co.,Ltd.) was employed as a heater to provide temperature at the hot end.Meanwhile,a thermometer(UT325,UNIT Co., Ltd.) was used to monitor the temperature at the hot end.The output voltage of the TEG was recorded via a digit multimeter(Keithley,DMM 6500).

    3.Results and discussion

    3.1.Microstructures of Bi2S3@Bi/PANI hybrid films

    The phases of the synthesized Bi2S3@Bi nanorods are checked by XRD as shown in Fig.1(a).Since the positions of main diffraction peaks of Bi are very close to those of Bi2S3(see the standard PDF cards),and peaks are overlapped due to the peak broadening,it could hardly differentiate Bi and Bi2S3phases from these diffraction patterns.Instead, Bi2S3@Bi nanorods with different reduction reaction time are compared as shown in Fig.1(b).Longer reaction time results in higher Bi content,thus,it could be identified from the increasing intensity of the peak assigned to the(012)plane of Bi that elemental Bi has been reduced and coexists with Bi2S3.

    Fig.1.(a) XRD patterns of Bi2S3@Bi core-shell nanorods in comparison with Bi2S3 nanorods.(b) XRD patterns of Bi2S3@Bi core-shell nanorods with different reduction reaction time.

    Fig.2.SEM images of (a) Bi2S3 nanorods and Bi2S3@Bi core-shell nanorods with different reaction time: (b)1 h,(c)2 h,and(d)3 h.

    Fig.3.Cross-sectional SEM images of Bi2S3@Bi/PANI hybrid films with filler content (a) 50%, (b) 60%, (c) 70%, (d) 80%, (e) 90%, (f) 70% hybrid film after heat treatment.

    The microstructures of Bi2S3@Bi nanorods with different Bi contents in comparison with Bi2S3nanorods(Fig.2(a))are shown in Figs.2(b)—2(d).At low Bi content, i.e., with reaction time 1 h, the core-shell structure almost keeps the morphology of the Bi2S3nanorod.As reduction reaction increases,the morphologies of some nanorods begin to collapse,resulting in shorter nanorods and a small number of nanoparticles(see Figs.2(c)and 2(d)).Therefore,Bi2S3@Bi nanorods at reaction time 1 h were employed as fillers for hybrids.

    Seen from the cross-sectional SEM images of the Bi2S3@Bi/PANI hybrid films shown in Figs.3(a)—3(e) with filler loading increasing from 50% to 90%, the hybrid films present compact microstructure.The PANI turns into discontinuity as Bi2S3@Bi filler exceeds 70% weight fraction (see Fig.3(c)),and the hybrid film becomes too fragile to be freestanding as Bi2S3@Bi loading reaches 90%.After heat treatment at 210°C in vacuum,the interfaces between polymer and inorganic fillers become obscure (see Fig.3(f)) compared to the morphology of the as-prepared film shown in Fig.3(c),indicating slight change on polymer morphologies by heat treatment.

    Further, Raman spectra were used to study the chemical bonds change brought by incorporation of Bi2S3@Bi fillers and heat treatment.As shown in Fig.4, the typical vibrating modes of pure PANI occur at 1191 cm?1, 1507 cm?1,and 1563 cm?1assigned to C—H bending vibration of the quinoid or benzenoid ring, N—H stretching vibration of the benzenoid ring,and C—C stretching vibration of the benzenoid ring, respectively.[21]Peaks at 1334 cm?1are assigned to the C—N+vibration of the quinoid ring and 1403 cm?1and 1638 cm?1to the delocalized polarons in the expanded polymeric conformation.Incorporating Bi2S3@Bi generally reserves the expanded polymeric conformation as seen from the existence of the 1638 cm?1mode in all the as-prepared hybrid films.Intensity increase of vibrating mode 1403 cm?1is an indication that cross-linking of PANI polymer has occurred,[16]which becomes more intense in hybrids after heat treatment with Bi2S3@Bi loading exceeding 70%,in consistent with the microstructure change.

    Fig.4.Raman spectra of Bi2S3@Bi/PANI hybrid films with various Bi2S3@Bi contents before and after the heat treatment.

    3.2.Thermoelectric properties of Bi2S3@Bi/PANI hybrid films

    The temperature-dependent TE performances of the asprepared hybrid films are shown in Figs.5(a)—5(c).The electrical conductivity of the hybrid films, as shown in Fig.5(a),decreases with increasing Bi2S3@Bi core-shell nanorods loading.This is due to their low electrical conductivity compared to PANI and the discontinuity of the conducting PANI polymer at high filler loading, which leads to sharp drop in the conductivity from 4700 S/m for 50% to 1057.8 S/m for 80% loading at room temperature.The significant decrease in the electrical conductivity of the hybrid films with increasing temperature is attributed to the decrease in crystallinity and loss of the emeraldine sequence due to chain scission, crosslinking of the PANI matrix as well as the partial loss of CSA.The carrier in the as-prepared hybrid films at room temperature is still p-type,and due to the opposite carrier types of PANI and Bi2S3@Bi, the competition between carriers results in very low Seebeck coefficients as shown in Fig.5(b), i.e., about 15μV/K for 50% hybrid film and decreasing to 7.6μV/K for 80% hybrid film.With increasing temperature to higher than 200°C,a transition from p-type to n-type is observed,and the maximum Seebeck coefficient ?150μV/K is obtained in 80% hybrid film at 230°C.Meanwhile,the power factor calculated for these Bi2S3@Bi/PANI hybrid films reaches the maximum value 5.24μW/m·K2for 80% hybrid film at 230°C shown in Fig.5(c).

    Temperature-dependent Hall effect measurement was carried out to study the transport behavior of the carriers of the Bi2S3@Bi/PANI hybrids.As shown in Fig.5(d), the carrier concentration increases as the temperature rises,while the mobility decreases quickly, suggesting that the hopping of carriers in the polymer chains has been obstructed.As the temperature continues to increase exceeding 160°C,the carrier concentration drops abruptly and the mobility turns its sign from positive to negative,originated from the change in Hall coefficient(RH)according to μ =RH/ρ, where ρ is the resistivity.The observation thus reflects a change in major carrier from holes contributed from PANI to the electrons from Bi2S3@Bi,confirming that n-type material has been obtained at 200°C.

    To support the idea that Bi2S3@Bi core-shell heterostructure is more effective in enhancing the electrical conductivity of PANI-based hybrids so as to further optimize the ntype TE properties, TE properties of Bi2S3@Bi/PANI have been compared with those of Bi2S3/PANI hybrid films.As shown in Fig.6, taking filler loading at 80% as an example,the as-prepared Bi2S3@Bi/PANI has higher electrical conductivity at room temperature (1057.8 S/m for Bi2S3@Bi filler vs.718.6 S/m for Bi2S3filler).Since Bi2S3@Bi filler could endure higher temperature up to 220°C, the carrier concentration is adjusted to a more favorable value,thus the Seebeck coefficient continues to increase.PFis 5.24 μW/m·K2for Bi2S3@Bi/PANI and 0.97 μW/m·K2for Bi2S3/PANI, more than 4 times increment.It is worth noting that,Bi2S3@Bi heterostructure promotes not only electrical conductivity,but also leads to slightly higher Seebeck coefficient compared with Bi2S3, which probably comes from the energy filtering effect enabled by the Bi2S3/Bi/PANI multiple interfaces.The work function of Bi, ΦBi, is about 4.22 eV,[22,23]while the conduction band of Bi2S3is around ?4.27 eV,[24]the lowest unoccupied molecular orbital (LUMO) energy in PANI is?4.15 eV,[20]to equilibrate the Fermi levels, energy barriers would be formed at Bi2S3/Bi and Bi/PANI interfaces,permitting electrons with higher energy to pass through so as to give rise to the Seebeck coefficient of the Bi2S3@Bi/PANI hybrid film.

    After the heat treatment,the room temperature TE properties of the hybrid films with different filler loadings are shown in Fig.6(d).For all the hybrid films, the n-type is retained,and the higher content of Bi2S3@Bi filler,the higher Seebeck coefficient,showing a maximum value of ?159.4μV/K.However,due to the crosslink of polymer chains as well as the loss of partial dopant,the electrical conductivity is low.Finally,the optimal stable n-type Bi2S3@Bi/PANI has been obtained in 70% Bi2S3@Bi/PANI hybrid film withPF=0.246μW/m·K2.

    Fig.5.Temperature-dependent thermoelectric properties of the as-prepared Bi2S3@Bi/PANI hybrid films: (a)electrical conductivity,(b)Seebeck coefficient,(c)power factor.(d)Temperature-dependent transport parameters,carrier concentration and mobility of Bi2S3@Bi/PANI film.

    Fig.6.Comparison on thermoelectric properties between Bi2S3@Bi/PANI and Bi2S3/PANI hybrid films at 80% filler loading.(a) Electrical conductivity,(b)Seebeck coefficient,(c)power factor.(d)Thermoelectric properties measured at room temperature of heat-treated Bi2S3@Bi/PANI films with different Bi2S3@Bi loadings.

    3.3.Performances of stretchable TEG

    The thermal energy harvesting functions of the integrated stretchable TEG from n-type Bi2S3@Bi/PANI and p-type Te-MWCNT/PANI hybrids are demonstrated in Fig.7.Figure 7(a)presents the steady voltage responses to different ΔT.The output voltages with ΔTconform to a linear relationship,i.e.,V= |S|×ΔT, where the slope is the sensitivity of the TE sensor.As shown in Fig.7(b), the sensitivity of the asfabricated device is about 84±3μV/K,and when placed in the atmosphere, the slope decreases about 15% to 71±4 μV/K.The mechanical stability of the stretchable TEG was measured under a fixed temperature difference of 10 K within situexternal tensile strain loaded.As shown in Fig.7(c),the output voltage decreases as the TEG elongation increases,due to increase in internal resistance from geometry variation and the gradually destruction at the joints where the electrodes interconnect the TE legs and encapsulated PDMS.The TEG could be stretched to 75% before broken, suggesting its good mechanical compliance.

    Fig.7.(a) Steady responses of TEG to various temperature differences.(b) Comparison on the output voltages changing with ΔT of the asfabricated TEG and stored one month later.(c)The in situ output performance measurement of the TEG with increasing stretching strain at a fixed temperature difference of 10 K.

    4.Conclusion and perspectives

    Core-shell heterostructured n-type Bi2S3@Bi nanorods have been incorporated into PANI to transform an intrinsic p-type polymer into n-type TE materials via carrier adjustment strategy in combination of a proper heat treatment processing.Heterostructured Bi2S3@Bi nanorods are more effective in improving the power factor of the hybrids than the Bi2S3nanorods due to higher electrical conductivity brought by the Bi.Further, a pair of n/p bulk TE legs made from the PANI-based hybrids were integrated with elastomer substrate into stretchable TEG.Its function as thermal energy harvester showing stable output with thermopower 84±3μV/K for one pair and little degradation over a one-month period in the air was demonstrated.The mechanical stability test showed that the TEG could withstand up to 75% elongation.This study has therefore provided a promising strategy to develop stretchable TEGs harvesting heat from environment with stable and high thermopower performances as long-term power supply.

    Acknowledgments

    The study was supported by the National Key Research and Development Program of China (Grant Nos.2018YFA0702100 and 2018YFB0703600),the National Natural Science Foundation of China (Grant Nos.51872009 and 92066203), Beijing Nova Programme Interdisciplinary Cooperation Project,and the Fundamental Research Funds for the Central Universities,China.

    猜你喜歡
    亞龍王瑤鵬程
    GLEASON’S PROBLEM ON THE SPACE Fp,q,s(B) IN Cn*
    冷靜是一種智慧,寬恕是一種力量
    A PRIORI BOUNDS AND THE EXISTENCE OF POSITIVE SOLUTIONS FOR WEIGHTED FRACTIONAL SYSTEMS?
    船舶上層建筑建造工藝探討
    在傳統(tǒng)與創(chuàng)新中尋求制衡點(diǎn)
    THE CAUCHY PROBLEM FOR THE TWO LAYER VISOUS SHALLOW WATER EQUATIONS*
    A Pair of Resonance Stripe Solitons and Lump Solutions to a Reduced(3+1)-Dimensional Nonlinear Evolution Equation?
    “王瑤式”說法
    愛你(2017年10期)2017-04-14 11:21:51
    王瑤怎樣當(dāng)北大教授
    Clinical observation of Huatan Huoxue Formula in treating coronary heart disease with hyperlipidemia
    久久狼人影院| 人人妻人人澡人人看| 99热国产这里只有精品6| 久久久精品94久久精品| 水蜜桃什么品种好| 国产又色又爽无遮挡免费看| 中文字幕另类日韩欧美亚洲嫩草| 男人操女人黄网站| 人妻久久中文字幕网| 我的亚洲天堂| 一区二区三区激情视频| 蜜桃在线观看..| 99精国产麻豆久久婷婷| 久9热在线精品视频| 国产精品欧美亚洲77777| 成人精品一区二区免费| 亚洲熟女毛片儿| 巨乳人妻的诱惑在线观看| 捣出白浆h1v1| 免费人妻精品一区二区三区视频| 精品欧美一区二区三区在线| 黄色毛片三级朝国网站| 精品国产超薄肉色丝袜足j| 国产又爽黄色视频| 国产精品av久久久久免费| 十八禁人妻一区二区| 成人国语在线视频| 黑人欧美特级aaaaaa片| 动漫黄色视频在线观看| 久久精品aⅴ一区二区三区四区| 极品教师在线免费播放| 菩萨蛮人人尽说江南好唐韦庄| 久久人人爽av亚洲精品天堂| 水蜜桃什么品种好| 国产精品国产av在线观看| 在线看a的网站| 女人精品久久久久毛片| 在线 av 中文字幕| 99热国产这里只有精品6| 啦啦啦中文免费视频观看日本| 亚洲中文字幕日韩| 日韩欧美三级三区| 成年人黄色毛片网站| 成人18禁高潮啪啪吃奶动态图| 色老头精品视频在线观看| 国产真人三级小视频在线观看| 丝袜美腿诱惑在线| 国产精品久久电影中文字幕 | 国产精品电影一区二区三区 | 国产一区二区三区综合在线观看| 亚洲五月婷婷丁香| 淫妇啪啪啪对白视频| 精品一区二区三区视频在线观看免费 | 电影成人av| 18禁裸乳无遮挡动漫免费视频| 欧美日韩国产mv在线观看视频| 日韩欧美国产一区二区入口| 男女免费视频国产| 一本色道久久久久久精品综合| 咕卡用的链子| av欧美777| 天天操日日干夜夜撸| 午夜激情久久久久久久| 亚洲欧美日韩另类电影网站| 国产一区二区三区综合在线观看| 国产区一区二久久| 不卡av一区二区三区| 欧美av亚洲av综合av国产av| 1024视频免费在线观看| 午夜免费鲁丝| 少妇粗大呻吟视频| 国产精品.久久久| 69精品国产乱码久久久| 精品国产国语对白av| videos熟女内射| 丝袜美腿诱惑在线| 亚洲国产中文字幕在线视频| 欧美成人午夜精品| 国产一区二区激情短视频| 中文字幕人妻熟女乱码| 无限看片的www在线观看| 国产xxxxx性猛交| 国产成人精品无人区| av网站在线播放免费| 女性被躁到高潮视频| 美女午夜性视频免费| 夜夜爽天天搞| 怎么达到女性高潮| 在线观看人妻少妇| 国产成人精品无人区| 午夜成年电影在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 久久精品国产亚洲av香蕉五月 | www.精华液| 一级黄色大片毛片| 欧美日本中文国产一区发布| 夜夜夜夜夜久久久久| 久久精品亚洲精品国产色婷小说| 亚洲精品久久成人aⅴ小说| 1024视频免费在线观看| 日日摸夜夜添夜夜添小说| 男人舔女人的私密视频| 性色av乱码一区二区三区2| 2018国产大陆天天弄谢| 欧美日韩黄片免| 黄色视频不卡| 少妇的丰满在线观看| 99九九在线精品视频| 不卡一级毛片| 侵犯人妻中文字幕一二三四区| 一级片'在线观看视频| 9色porny在线观看| 咕卡用的链子| 黄色视频在线播放观看不卡| 国产亚洲av高清不卡| 国产一卡二卡三卡精品| 亚洲人成伊人成综合网2020| 夜夜骑夜夜射夜夜干| 美女午夜性视频免费| 午夜福利在线观看吧| 欧美久久黑人一区二区| 精品亚洲乱码少妇综合久久| 一夜夜www| 国产成人啪精品午夜网站| 一边摸一边做爽爽视频免费| 国产免费现黄频在线看| tocl精华| 99精品久久久久人妻精品| 亚洲国产毛片av蜜桃av| kizo精华| 精品国产一区二区三区久久久樱花| 日韩大码丰满熟妇| 精品久久久久久电影网| 一边摸一边抽搐一进一出视频| 久久中文看片网| 免费在线观看黄色视频的| 在线观看舔阴道视频| 巨乳人妻的诱惑在线观看| 丝袜人妻中文字幕| 大片免费播放器 马上看| 欧美av亚洲av综合av国产av| 最近最新免费中文字幕在线| 免费一级毛片在线播放高清视频 | 午夜精品久久久久久毛片777| 大片免费播放器 马上看| 久久国产精品男人的天堂亚洲| 欧美精品人与动牲交sv欧美| 日日摸夜夜添夜夜添小说| tube8黄色片| 亚洲av日韩在线播放| 免费在线观看黄色视频的| 久久影院123| 在线观看免费视频日本深夜| avwww免费| 亚洲久久久国产精品| 母亲3免费完整高清在线观看| 亚洲人成伊人成综合网2020| 国产精品亚洲一级av第二区| 国产欧美亚洲国产| 国产精品欧美亚洲77777| 999久久久精品免费观看国产| 啦啦啦 在线观看视频| 99热网站在线观看| 亚洲精品在线美女| 中文字幕另类日韩欧美亚洲嫩草| 人人澡人人妻人| 久久久国产精品麻豆| 少妇的丰满在线观看| 麻豆成人av在线观看| 19禁男女啪啪无遮挡网站| 久久久久久亚洲精品国产蜜桃av| 国产精品亚洲一级av第二区| 免费观看av网站的网址| 久久99热这里只频精品6学生| 极品少妇高潮喷水抽搐| 国产精品成人在线| 在线 av 中文字幕| 国产欧美日韩精品亚洲av| 操美女的视频在线观看| 天堂俺去俺来也www色官网| 国产成人精品在线电影| 国产aⅴ精品一区二区三区波| 亚洲专区中文字幕在线| 男女边摸边吃奶| 看免费av毛片| av在线播放免费不卡| 久9热在线精品视频| 国产精品久久久久成人av| 宅男免费午夜| 亚洲人成伊人成综合网2020| 在线观看www视频免费| 国产男女超爽视频在线观看| 两个人看的免费小视频| videos熟女内射| 99riav亚洲国产免费| 国产成人免费无遮挡视频| 国产又爽黄色视频| 日本wwww免费看| 精品福利观看| 久久国产精品大桥未久av| 法律面前人人平等表现在哪些方面| 亚洲国产欧美日韩在线播放| 母亲3免费完整高清在线观看| 91精品国产国语对白视频| 亚洲国产看品久久| 国产一区二区在线观看av| 亚洲专区国产一区二区| 亚洲av日韩精品久久久久久密| 国产成人啪精品午夜网站| 国产欧美日韩一区二区三区在线| 99国产精品一区二区蜜桃av | 精品国产亚洲在线| 91av网站免费观看| 欧美久久黑人一区二区| 国产不卡一卡二| 亚洲人成电影免费在线| 国产精品久久久久久精品电影小说| 精品少妇黑人巨大在线播放| 精品午夜福利视频在线观看一区 | 高清毛片免费观看视频网站 | 久久久久视频综合| 国产精品偷伦视频观看了| 久久精品国产综合久久久| 国产又色又爽无遮挡免费看| 国产一区二区三区在线臀色熟女 | 午夜福利,免费看| 叶爱在线成人免费视频播放| 亚洲人成伊人成综合网2020| 一区二区三区国产精品乱码| 久久精品国产a三级三级三级| 大香蕉久久网| 99久久国产精品久久久| 日日爽夜夜爽网站| 999久久久国产精品视频| videosex国产| 性少妇av在线| 我要看黄色一级片免费的| 久久久国产欧美日韩av| 久久人妻熟女aⅴ| 少妇的丰满在线观看| 老熟妇乱子伦视频在线观看| 国产精品香港三级国产av潘金莲| 亚洲国产精品一区二区三区在线| 婷婷丁香在线五月| 手机成人av网站| 精品视频人人做人人爽| 色婷婷av一区二区三区视频| 纯流量卡能插随身wifi吗| 最近最新免费中文字幕在线| 五月天丁香电影| 成年人免费黄色播放视频| 法律面前人人平等表现在哪些方面| 国产在线一区二区三区精| 亚洲人成电影观看| 超碰成人久久| 国产精品久久久人人做人人爽| 日韩成人在线观看一区二区三区| 欧美性长视频在线观看| 日本五十路高清| 国产三级黄色录像| 操出白浆在线播放| 国产精品一区二区在线不卡| 建设人人有责人人尽责人人享有的| 午夜福利,免费看| av福利片在线| 王馨瑶露胸无遮挡在线观看| 欧美av亚洲av综合av国产av| 老鸭窝网址在线观看| 最近最新中文字幕大全电影3 | 日韩大码丰满熟妇| 国产精品免费视频内射| 老司机影院毛片| 午夜免费鲁丝| 精品乱码久久久久久99久播| 欧美国产精品一级二级三级| 国产又色又爽无遮挡免费看| 亚洲国产欧美在线一区| av线在线观看网站| bbb黄色大片| 欧美成人午夜精品| 国产黄色免费在线视频| 国产精品一区二区精品视频观看| 国产精品av久久久久免费| av国产精品久久久久影院| 1024香蕉在线观看| www.熟女人妻精品国产| 51午夜福利影视在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看一区二区三区激情| 亚洲精品粉嫩美女一区| 成人国产av品久久久| 999久久久国产精品视频| 免费女性裸体啪啪无遮挡网站| av一本久久久久| 久久久久久久大尺度免费视频| 国产av精品麻豆| 2018国产大陆天天弄谢| 精品一区二区三区视频在线观看免费 | 国产av一区二区精品久久| 91成年电影在线观看| 亚洲国产中文字幕在线视频| 少妇粗大呻吟视频| 99国产精品一区二区蜜桃av | 青青草视频在线视频观看| 美女国产高潮福利片在线看| 国产午夜精品久久久久久| 99国产综合亚洲精品| 成人手机av| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看免费高清a一片| 午夜激情av网站| 久久久国产欧美日韩av| 免费观看人在逋| 亚洲精品国产色婷婷电影| 国产无遮挡羞羞视频在线观看| 涩涩av久久男人的天堂| 亚洲国产毛片av蜜桃av| 欧美在线黄色| 久久精品国产亚洲av香蕉五月 | 女人被躁到高潮嗷嗷叫费观| 欧美日韩亚洲高清精品| 纯流量卡能插随身wifi吗| 伊人久久大香线蕉亚洲五| 99国产极品粉嫩在线观看| 国产在线一区二区三区精| 十八禁高潮呻吟视频| 新久久久久国产一级毛片| 亚洲成人免费av在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 日本欧美视频一区| 午夜福利欧美成人| 久久久精品免费免费高清| 91麻豆精品激情在线观看国产 | 男人操女人黄网站| 在线观看免费午夜福利视频| 精品久久久久久电影网| 久久久久久亚洲精品国产蜜桃av| 一本—道久久a久久精品蜜桃钙片| 亚洲第一欧美日韩一区二区三区 | 高潮久久久久久久久久久不卡| 国产精品电影一区二区三区 | 自拍欧美九色日韩亚洲蝌蚪91| 熟女少妇亚洲综合色aaa.| 色尼玛亚洲综合影院| 黑人欧美特级aaaaaa片| 亚洲色图综合在线观看| 老熟妇仑乱视频hdxx| 亚洲少妇的诱惑av| 国产在线观看jvid| 国产高清激情床上av| 18禁国产床啪视频网站| 啦啦啦 在线观看视频| 黑丝袜美女国产一区| 国产成人精品无人区| 十八禁人妻一区二区| 精品国产乱码久久久久久小说| 色婷婷av一区二区三区视频| 午夜激情久久久久久久| 久久人妻av系列| 91老司机精品| 国产成人精品久久二区二区免费| 高清欧美精品videossex| 精品福利观看| 国产成人欧美| 亚洲少妇的诱惑av| 国产主播在线观看一区二区| 一区二区日韩欧美中文字幕| 国产伦理片在线播放av一区| 亚洲精品美女久久av网站| 首页视频小说图片口味搜索| 在线观看免费视频日本深夜| 亚洲全国av大片| 国产一区有黄有色的免费视频| 两个人免费观看高清视频| 在线天堂中文资源库| 香蕉丝袜av| 男女边摸边吃奶| 人人妻人人澡人人看| 熟女少妇亚洲综合色aaa.| 高潮久久久久久久久久久不卡| 精品久久久精品久久久| av免费在线观看网站| 狠狠精品人妻久久久久久综合| 国产精品麻豆人妻色哟哟久久| 久久精品国产亚洲av香蕉五月 | 97在线人人人人妻| 少妇精品久久久久久久| 美女高潮喷水抽搐中文字幕| 99国产综合亚洲精品| 超色免费av| 夜夜夜夜夜久久久久| 制服人妻中文乱码| 精品卡一卡二卡四卡免费| 成年人午夜在线观看视频| 亚洲国产欧美日韩在线播放| 搡老岳熟女国产| 国产一区二区三区综合在线观看| 免费观看av网站的网址| 久久精品亚洲av国产电影网| 久久久久久亚洲精品国产蜜桃av| 久久国产精品人妻蜜桃| 中文字幕精品免费在线观看视频| 精品国产亚洲在线| 亚洲成人免费av在线播放| 欧美黑人欧美精品刺激| 亚洲七黄色美女视频| 91国产中文字幕| 欧美一级毛片孕妇| 淫妇啪啪啪对白视频| 欧美精品啪啪一区二区三区| 久久久久久人人人人人| 国产xxxxx性猛交| 国产三级黄色录像| 亚洲精华国产精华精| e午夜精品久久久久久久| 丰满迷人的少妇在线观看| 免费在线观看视频国产中文字幕亚洲| 天堂俺去俺来也www色官网| 日韩视频在线欧美| 成人免费观看视频高清| 99riav亚洲国产免费| 精品欧美一区二区三区在线| 中文字幕av电影在线播放| 侵犯人妻中文字幕一二三四区| 午夜福利视频在线观看免费| 亚洲熟妇熟女久久| 亚洲一区二区三区欧美精品| 十分钟在线观看高清视频www| 精品一区二区三区av网在线观看 | 亚洲精品国产区一区二| av在线播放免费不卡| 99热网站在线观看| 老汉色∧v一级毛片| 日韩人妻精品一区2区三区| 黄片播放在线免费| 国内毛片毛片毛片毛片毛片| 欧美国产精品一级二级三级| 男女午夜视频在线观看| 视频在线观看一区二区三区| 国产av国产精品国产| 国产男靠女视频免费网站| cao死你这个sao货| 国产精品一区二区免费欧美| 日韩制服丝袜自拍偷拍| 亚洲av第一区精品v没综合| 国产aⅴ精品一区二区三区波| 搡老岳熟女国产| 在线av久久热| 国产成+人综合+亚洲专区| 涩涩av久久男人的天堂| 精品久久久久久久毛片微露脸| 久久香蕉激情| 看免费av毛片| 老司机靠b影院| 亚洲精品美女久久久久99蜜臀| 嫁个100分男人电影在线观看| 高清av免费在线| 国产老妇伦熟女老妇高清| 精品亚洲成国产av| 久久中文字幕一级| 两人在一起打扑克的视频| 亚洲av片天天在线观看| 水蜜桃什么品种好| 飞空精品影院首页| 久热这里只有精品99| 人妻一区二区av| 中文欧美无线码| 我的亚洲天堂| 老汉色∧v一级毛片| 超碰97精品在线观看| 人人妻人人爽人人添夜夜欢视频| 丝袜人妻中文字幕| 久久影院123| 一区二区三区激情视频| 久久av网站| 国产色视频综合| 午夜免费鲁丝| 老熟妇仑乱视频hdxx| 大香蕉久久网| 热99re8久久精品国产| 亚洲成人手机| 女人高潮潮喷娇喘18禁视频| 亚洲av电影在线进入| 国产一区二区在线观看av| 午夜91福利影院| 丁香六月天网| 少妇裸体淫交视频免费看高清 | 午夜精品国产一区二区电影| 国产在线免费精品| 亚洲国产av影院在线观看| 丰满少妇做爰视频| 国产精品麻豆人妻色哟哟久久| 亚洲欧美一区二区三区黑人| 久久久国产一区二区| 九色亚洲精品在线播放| 在线永久观看黄色视频| a在线观看视频网站| 人人澡人人妻人| 中文字幕制服av| 精品国产一区二区三区久久久樱花| 少妇的丰满在线观看| 欧美日韩av久久| 黄片小视频在线播放| 欧美人与性动交α欧美精品济南到| 亚洲精品av麻豆狂野| 99久久人妻综合| 亚洲欧美一区二区三区黑人| 法律面前人人平等表现在哪些方面| 麻豆成人av在线观看| 久久久久精品人妻al黑| 精品国产一区二区久久| 免费在线观看视频国产中文字幕亚洲| avwww免费| 欧美乱妇无乱码| 亚洲av片天天在线观看| 国产日韩欧美在线精品| 亚洲一区二区三区欧美精品| 色视频在线一区二区三区| 99久久人妻综合| 高清黄色对白视频在线免费看| 欧美精品av麻豆av| 老汉色∧v一级毛片| 国产精品av久久久久免费| 2018国产大陆天天弄谢| 热re99久久精品国产66热6| 性高湖久久久久久久久免费观看| 老司机午夜十八禁免费视频| www日本在线高清视频| 天天躁夜夜躁狠狠躁躁| 欧美日韩中文字幕国产精品一区二区三区 | 久久精品91无色码中文字幕| 亚洲欧美日韩高清在线视频 | 色精品久久人妻99蜜桃| 窝窝影院91人妻| 欧美在线黄色| 香蕉国产在线看| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美一区视频在线观看| 高清毛片免费观看视频网站 | 亚洲av成人一区二区三| 国产不卡一卡二| 中文字幕人妻熟女乱码| 精品久久久精品久久久| 亚洲精品久久成人aⅴ小说| 成人黄色视频免费在线看| 国产在视频线精品| 久久中文看片网| 夜夜夜夜夜久久久久| 建设人人有责人人尽责人人享有的| 90打野战视频偷拍视频| 多毛熟女@视频| 人人妻,人人澡人人爽秒播| 性少妇av在线| tube8黄色片| 免费久久久久久久精品成人欧美视频| 热99久久久久精品小说推荐| 怎么达到女性高潮| 91成年电影在线观看| 久久精品亚洲精品国产色婷小说| 欧美老熟妇乱子伦牲交| 国产97色在线日韩免费| 动漫黄色视频在线观看| 18禁美女被吸乳视频| 国产99久久九九免费精品| 男女无遮挡免费网站观看| 久久久国产成人免费| 夜夜骑夜夜射夜夜干| 91精品三级在线观看| 熟女少妇亚洲综合色aaa.| 亚洲 国产 在线| 欧美精品人与动牲交sv欧美| 一区二区三区国产精品乱码| 国产不卡av网站在线观看| 亚洲免费av在线视频| 妹子高潮喷水视频| 国产成人精品无人区| 色综合婷婷激情| 美女高潮喷水抽搐中文字幕| 欧美成人免费av一区二区三区 | 18禁裸乳无遮挡动漫免费视频| 不卡一级毛片| cao死你这个sao货| 丰满少妇做爰视频| 欧美日本中文国产一区发布| 午夜成年电影在线免费观看| 97在线人人人人妻| 国产欧美日韩一区二区精品| 国产精品1区2区在线观看. | 成年版毛片免费区| 国产有黄有色有爽视频| 日日摸夜夜添夜夜添小说| 蜜桃在线观看..| 一级片'在线观看视频| 亚洲伊人色综图| 别揉我奶头~嗯~啊~动态视频| 一二三四在线观看免费中文在| 久久人妻熟女aⅴ| 中文字幕高清在线视频| 亚洲精品国产精品久久久不卡| 色综合婷婷激情| 亚洲av第一区精品v没综合| 在线十欧美十亚洲十日本专区| 免费女性裸体啪啪无遮挡网站| 欧美国产精品va在线观看不卡| 亚洲七黄色美女视频| 亚洲一区中文字幕在线| 亚洲av电影在线进入| 在线观看舔阴道视频| 少妇裸体淫交视频免费看高清 | 国产男女超爽视频在线观看| 99精品在免费线老司机午夜| 美女高潮喷水抽搐中文字幕| 成人影院久久| 80岁老熟妇乱子伦牲交| 亚洲精品国产一区二区精华液|