• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-Cluster Feature Selection Based on Isometric Mapping

    2022-01-26 00:36:20YadiWangZefengZhangandYinghaoLin
    IEEE/CAA Journal of Automatica Sinica 2022年3期

    Yadi Wang,Zefeng Zhang,and Yinghao Lin

    Dear editor,

    This letter presents an unsupervised feature selection method based on machine learning.Feature selection is an important component of artificial intelligence,machine learning,which can effectively solve the curse of dimensionality problem.Since most of the labeled data is expensive to obtain,this paper focuses on the unsupervised feature selection method.The distance metric of traditional unsupervised feature selection algorithms is usually based on Euclidean distance,and it is maybe unreasonable to map high-dimensional data into low dimensional space by using Euclidean distance.Inspired by this,this paper combines manifold learning to improve the multi-cluster unsupervised feature selection algorithm.By using geodesic distance,we propose a multi-cluster feature selection based on isometric mapping (MCFS-I) algorithm to perform unsupervised feature selection adaptively for multiple clusters.Experimental results show that the proposed method consistently improves the clustering performance compared to the existing competing methods.

    Related work:With the rapid development of data and knowledge management technologies,the amount of data collected in various application areas is growing exponentially.Feature selection method[1] is conducive to reduce dimensionality,remove irrelevant data,and improve resultant learning accuracy of the high-dimensional data.In most of the tasks,the labeled data is often difficult to obtain,which increases the difficulty of the feature selection task.Unsupervised feature selection can be used to process the data without labels which make it better for the distance-based clustering tasks.

    The feature selection algorithm could be categorized into three types: filter [2],[3],wrapper [4],and embedded [5].The filter methods first pretreated the data and then throws the processed data into the model for training.The wrapper methods are to continuously optimize the selection by the feedback of the subsequent model.Embedded methods select a feature subset in the learning stage.According to whether or not the label assist feature selection process,the feature selection algorithms can be divided into supervised feature selection [2]–[5] and unsupervised feature selection [6],[7],heuristic-based feature selection exploration is also a very important direction in the feature selection.

    The unsupervised feature selection algorithm multi-cluster feature selection (MCFS) [7] could preserve the multi-cluster structure of the data to make it beneficial to multi-cluster tasks.The MCFS algorithm is an unsupervised feature selection algorithm based on manifold learning.It first uses Laplacian Eigenmaps (LE) [8] algorithm to embed the high dimensional manifold data into low-dimensional space,and then process the embedded feature matrix.The LE algorithm uses the Euclidean distance to establish ap-nearest neighbor map.The geodesic distance is the shortest distance that two points on the hypersurface travel along the surface of the hypersurface in high-dimensional space.In dealing with the hypersurface in high dimensional space,when the hypersurface close to the plane,the distance between two points in the low dimensional space approximate the Euclidean distance.When the highdimensional space hypersur face bend degree is large,the geodesic distance can preserve the global structure commendably [9].By introducing the geodesic distance into MCFS,this paper proposes a novel algorithm called multi-cluster feature selection based on isometric mapping (MCFS-I).

    Multi-cluster feature selection based on isometric mapping:

    1) Manifold data embedding:Manifold data refers to hypersurfaces composed of data in a high-dimensional space.Due to the high dimensional space where these data is located has redundant information,manifold learning [10] is to expand manifold data in high-dimensional space and embed them into low-dimensional subspace.Most manifold learning algorithms use Euclidean distance to establishp-nearest neighbor map to process data,which can only preserve the data in the local manifold structure embedded into low dimensional subspace,and isometric mapping (IsoMap) [9] based on the geodesic distance can well preserve the global structure of the data.

    Firstly,IsoMap applies property that the manifold data is locally homeomorphic to Euclidean space.By calculating the Euclidean distance of all data points,its adjacent points can be obtained.After that,each point is connected to its adjacent points,and the geodesic distance between two points is their shortest path in thep-nearest neighbor graph.In this way,the classical shortest path algorithm Dijkstra or Floyd algorithm can be used to approximate the real geodesic distance with the shortest path.Therefore,the global structure of the manifold data can be well preserved,and the global structure can be retained to the maximum extent after the data is embedded in the low-dimensional space.After the distance between any two points is obtained,the multiple dimensional scaling (MDS)algorithms [11] can be used to calculate the coordinates of each data point in the low-dimensional space.The process of IsoMap is shown in Algorithm 1.

    2) Learn the sparse coefficient vector:The MCFS-I algorithm is composed of IsoMap algorithm and Lasso regression,the feature matrix is embedded into the low-dimensional space based on geodesic distance and MDS algorithm.Since the dimensions in the low-dimensional space are usually equal to the cluster number,each dimension in the low-dimensional space corresponds to each clustering structure.Based on this,Lasso regression is used to fit the embedding matrix.

    When the embedding matrixY∈RN×Kis obtainedby the I so Map algorithm,the feature matrixX∈RN×Mshould benor malizedto make the various feature metric in the feature matrix consistent.A sparse coefficient vector is obtained by fitting each columnykofYwith Lasso regression [12] :

    whereakis theM-dimension coefficient vector.Due to the punitive ofL1regularization,whenβis large enough,some coefficients will be reduced to 0 precisely.Since the sparsity of Lasso regression,a sparse matrix will be automatically obtained in the process of solving Lasso regression.Because the metric of features is unified before Lasso regression,the larger the coefficients of some features are,the greater their contribution to resolving cluster structure will be.Moreover,the combination of several features with relatively weak influence can better distinguish different clusters,this property will be ignored when evaluating these features individually.Lasso regression is a combination solution of various features rather than the independent evaluation of features.Therefore,we chose Lasso regression instead of evaluating the contribution of each feature individually.The equivalent form of Lasso regression can be expressed as follows:

    It is difficult to control the sparsity of coefficient matrix precisely in Lasso Regression,while the least angel regression (LARs) [13]algorithm can solve (2) effectively by entering the number of nonzero items inak,the sparsity of coefficient matrix can be easily controlled.Hence,we use LARs algorithm to solve (2).

    3) Unsupervised feature selection:By combining IsoMap algorithm and Lasso regression,MCFS-I algorithm embedded the feature matrix of the data into the low-dimensional space according to the geodesic distance,and obtains the low-dimensional representation of the clustering structure.The importance of features is comprehensively measured by Lasso regression,and then thedfeatures with the highest score can be selected by scoring the results of Lasso regression.

    Ksparse coefficient vectorsak∈RM,k∈{1,2,...,K} can be obtained by Lasso regression in Section II-B,eachakcorresponds to a cluster,and each item inakrepresents a feature.Since the data is normalized first,the largerak,jis,the greater contribution of thejfeature to thekcluster.Since each feature contributes differently to different clustering structures,it is natural to choose its maximum contribution value as the selection criterion for each feature,which is recorded as MCFS score [7] and it can be defined as follows:

    whereak,jis thejelement ofak.After that,the MCFS scores of all features are ranked in descending order,anddfeatures with the largest MCFS score will be selected as the output result of the MCFS-I algorithm.The detailed process of the MCFS-I algorithm is shown in Algorithm 2.

    Experiments:In this section,we will evaluate the performance of the MCFS-I algorithm in clustering tasks.We compared the following four algorithms:

    ● For the proposed MCFS-I algorithm,the nearest neighbors parametern_neighboris set to 5,and the dimension of the embedding matrixn_embis set to be the same as the number of clusters on the data set [14].

    ● MCFS algorithm [7] uses LE [8] algorithm to process manifold data.

    ● Laplacian (Lap_score) algorithm [6] selects the data that preserves the local manifold structure.

    ● Nonnegative discriminative feature selection (NDFS) algorithm[15] combines spectral clustering with the unsupervised feature selection process.

    1) Data sets: We selected four commonly used benchmark data sets to test the algorithm separately,which are from scikit-learn and scikit-feature.The detailed information of these data sets is shown in Table 1.

    Table 1.Data Sets Used in the Experiment

    2) Performance comparisons:In our experiment,we use normalized mutual information (NMI) [6] to evaluate the clustering result on the data which are processed by feature selection algorithm.In each test,we repeat the experiments for five times.Each time we run the k-means clustering algorithm with a random starting point and evaluate it with the NMI evaluation metric.The average NMI value of the five algorithms is used as the comparison results.

    The comparison of feature selection results is shown in Fig.1.It can be seen that the clustering performance of the MCFS-I algorithm on each data set is better than the MCFS algorithm,and the clustering result of the MCFS-I algorithm gradually reaches the optimal when the number of features is 50 to 100 on the Lung_small data set.

    Table 2 shows the clustering results of each feature selection algorithm when the number of selected features is 100/30 (digits).The column of the “All Features” in the table indicates the performance of the k-means algorithm over the original datasets without using feature selection algorithm.It can be seen that the MCFS-I algorithm has shown the best performance on all data sets,and the MCFS-I algorithm performs better than that when all features are used on some of these data sets.The average improvement of the MCFS-I algorithm over the MCFS algorithm on the four data sets is about 3.206%,the average improvement for the Lap_score algorithm is about 14.822%,and the average improvement for the NDFS algorithm is about 7.704%.

    It can be observed from Table 2 that the MCFS-I algorithm on the biological data set has a greater improvement than the MCFS algorithm,while the improvement on the other three image recognition data sets is small.This is because biological data sets have higher requirements for global information,while image data pays more attention to local information.

    Table 2.The NMI of the Feature Selection Algorithms (%)

    Conclusions:This paper proposes a multi-cluster feature selection based on isometric mapping (MCFS-I) algorithm by introducing the geodesic distance into MCFS.The proposed algorithm uses IsoMap to capture global information and embed it into a low-dimensional space,which is extremely beneficial to process the data with global information.In the experimental section,we compare MCFS-I with MCFS and two commonly used unsupervised feature selection algorithms Laplacian score and NDFS on four benchmark data sets,and the experimental results demonstrate the superiority of the proposed algorithm.

    Acknowledgments:This work was supported by grants from the National Natural Science Foundation of China (62106066),Key Research Projects of Henan Higher Education Institutions(22A520019),Scientific and Technological Project of Henan Province (202102110121),Science and Technology Development Project of Kaifeng City (2002001).

    Fig.1.NMI of the different feature selection algorithms on four data sets.

    人人妻人人添人人爽欧美一区卜| 久久久精品国产亚洲av高清涩受| 国产亚洲av片在线观看秒播厂| 老司机影院成人| 99热国产这里只有精品6| 男女免费视频国产| 国产亚洲欧美在线一区二区| 这个男人来自地球电影免费观看| 超色免费av| 国产男人的电影天堂91| 老司机影院成人| 无遮挡黄片免费观看| 成年动漫av网址| 免费观看人在逋| 满18在线观看网站| 婷婷丁香在线五月| 一级毛片女人18水好多 | 大话2 男鬼变身卡| 免费不卡黄色视频| 一级毛片我不卡| 水蜜桃什么品种好| 久久亚洲国产成人精品v| av网站免费在线观看视频| 一本色道久久久久久精品综合| 亚洲中文日韩欧美视频| 亚洲精品日本国产第一区| 丝瓜视频免费看黄片| 亚洲久久久国产精品| 最新的欧美精品一区二区| 一边亲一边摸免费视频| 97人妻天天添夜夜摸| 国产亚洲av片在线观看秒播厂| 一二三四社区在线视频社区8| 久久鲁丝午夜福利片| 中国美女看黄片| 国产精品成人在线| 精品第一国产精品| 激情视频va一区二区三区| 另类亚洲欧美激情| 久久精品亚洲av国产电影网| 黄色a级毛片大全视频| 天堂俺去俺来也www色官网| 热99久久久久精品小说推荐| 欧美亚洲 丝袜 人妻 在线| 亚洲成色77777| 在线看a的网站| 国产成人免费观看mmmm| 中文乱码字字幕精品一区二区三区| 欧美+亚洲+日韩+国产| 黄色视频不卡| 国产麻豆69| 久久 成人 亚洲| 晚上一个人看的免费电影| 99re6热这里在线精品视频| 嫁个100分男人电影在线观看 | 久久久久久久国产电影| 成在线人永久免费视频| bbb黄色大片| 国产1区2区3区精品| 亚洲 国产 在线| 国产精品九九99| 亚洲美女黄色视频免费看| 久久热在线av| 欧美成人精品欧美一级黄| 亚洲成av片中文字幕在线观看| 免费人妻精品一区二区三区视频| 高潮久久久久久久久久久不卡| 激情视频va一区二区三区| 人妻一区二区av| 国产色视频综合| 丰满迷人的少妇在线观看| 亚洲成人免费电影在线观看 | 男男h啪啪无遮挡| 午夜视频精品福利| 夫妻性生交免费视频一级片| 91麻豆av在线| a级毛片黄视频| 亚洲精品久久成人aⅴ小说| 天天操日日干夜夜撸| 啦啦啦在线观看免费高清www| 欧美性长视频在线观看| av视频免费观看在线观看| 男女边摸边吃奶| 国产人伦9x9x在线观看| 悠悠久久av| 啦啦啦 在线观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| 丝袜美足系列| 久久精品熟女亚洲av麻豆精品| 永久免费av网站大全| 美女扒开内裤让男人捅视频| 韩国高清视频一区二区三区| 色94色欧美一区二区| 国产成人免费观看mmmm| 午夜激情av网站| av视频免费观看在线观看| 欧美日韩成人在线一区二区| 国产成人免费无遮挡视频| 亚洲专区中文字幕在线| 久久女婷五月综合色啪小说| 成年女人毛片免费观看观看9 | 欧美日韩综合久久久久久| 亚洲av男天堂| 97人妻天天添夜夜摸| 国产不卡av网站在线观看| 国产黄频视频在线观看| 午夜福利视频精品| 国产在线观看jvid| 婷婷色麻豆天堂久久| 亚洲国产精品一区三区| 久久精品久久久久久久性| 亚洲精品一卡2卡三卡4卡5卡 | 成人18禁高潮啪啪吃奶动态图| 一区二区三区精品91| 免费高清在线观看视频在线观看| 中文字幕人妻熟女乱码| 免费av中文字幕在线| 99九九在线精品视频| a 毛片基地| 人妻 亚洲 视频| 麻豆av在线久日| 精品一区二区三区av网在线观看 | 黄色毛片三级朝国网站| 男人爽女人下面视频在线观看| 曰老女人黄片| 日韩免费高清中文字幕av| 少妇粗大呻吟视频| 一个人免费看片子| videosex国产| 国产女主播在线喷水免费视频网站| 大香蕉久久成人网| 超色免费av| 久久性视频一级片| 午夜av观看不卡| 嫁个100分男人电影在线观看 | 欧美日韩国产mv在线观看视频| 国产精品免费视频内射| 男女午夜视频在线观看| 国产一卡二卡三卡精品| 捣出白浆h1v1| 满18在线观看网站| 桃花免费在线播放| 一级毛片电影观看| av电影中文网址| 欧美日韩黄片免| 丝袜在线中文字幕| 女人高潮潮喷娇喘18禁视频| 国产主播在线观看一区二区 | 国产日韩一区二区三区精品不卡| www.熟女人妻精品国产| 亚洲国产欧美网| 老司机深夜福利视频在线观看 | 超碰97精品在线观看| 欧美 日韩 精品 国产| 亚洲 国产 在线| 好男人电影高清在线观看| 久久国产精品男人的天堂亚洲| 国产91精品成人一区二区三区 | 天天影视国产精品| 欧美黑人精品巨大| 19禁男女啪啪无遮挡网站| 国产亚洲欧美在线一区二区| 成人亚洲欧美一区二区av| 国产成人91sexporn| 五月天丁香电影| 亚洲av美国av| 黄色片一级片一级黄色片| 一本大道久久a久久精品| 午夜免费男女啪啪视频观看| 精品久久久久久电影网| 99热全是精品| 男女之事视频高清在线观看 | 日本91视频免费播放| 欧美精品人与动牲交sv欧美| 啦啦啦在线免费观看视频4| 精品亚洲成a人片在线观看| 国产女主播在线喷水免费视频网站| 亚洲情色 制服丝袜| 狠狠精品人妻久久久久久综合| 亚洲七黄色美女视频| av天堂久久9| 久久久久久久国产电影| 美女大奶头黄色视频| 色视频在线一区二区三区| 亚洲精品一区蜜桃| 亚洲精品久久久久久婷婷小说| 啦啦啦视频在线资源免费观看| 涩涩av久久男人的天堂| 久久久亚洲精品成人影院| 亚洲黑人精品在线| 亚洲欧美日韩另类电影网站| netflix在线观看网站| 黄色视频在线播放观看不卡| 久久亚洲精品不卡| 宅男免费午夜| 人人妻人人爽人人添夜夜欢视频| 男女下面插进去视频免费观看| 十分钟在线观看高清视频www| 午夜老司机福利片| 国产男人的电影天堂91| 国产亚洲av高清不卡| 老汉色av国产亚洲站长工具| 一级片免费观看大全| 国产成人免费观看mmmm| 一区二区三区乱码不卡18| 男人添女人高潮全过程视频| 大话2 男鬼变身卡| 国产97色在线日韩免费| 国产亚洲欧美精品永久| 美女福利国产在线| 91成人精品电影| 日韩av在线免费看完整版不卡| 脱女人内裤的视频| 亚洲国产欧美日韩在线播放| 无遮挡黄片免费观看| 国产不卡av网站在线观看| 日韩av不卡免费在线播放| av网站在线播放免费| 成年人午夜在线观看视频| 精品视频人人做人人爽| 亚洲中文av在线| 婷婷色麻豆天堂久久| 天天操日日干夜夜撸| 亚洲一码二码三码区别大吗| 久久精品国产亚洲av高清一级| 午夜av观看不卡| 久久ye,这里只有精品| 午夜激情av网站| 波多野结衣av一区二区av| 女人久久www免费人成看片| 又大又爽又粗| 男女国产视频网站| 精品少妇一区二区三区视频日本电影| 欧美激情 高清一区二区三区| 亚洲国产欧美一区二区综合| 亚洲精品国产一区二区精华液| 免费日韩欧美在线观看| 丝袜脚勾引网站| 亚洲国产毛片av蜜桃av| 一区二区日韩欧美中文字幕| 国产在线免费精品| 一区二区av电影网| 亚洲国产欧美网| 无遮挡黄片免费观看| 男女免费视频国产| 久久热在线av| 国产野战对白在线观看| 久久精品国产亚洲av高清一级| 性少妇av在线| 一边亲一边摸免费视频| 在线 av 中文字幕| 美女中出高潮动态图| 视频在线观看一区二区三区| 久久午夜综合久久蜜桃| 老汉色∧v一级毛片| 亚洲成色77777| 少妇人妻久久综合中文| 丰满饥渴人妻一区二区三| 亚洲欧美精品自产自拍| 黑人欧美特级aaaaaa片| 日韩 欧美 亚洲 中文字幕| 99香蕉大伊视频| 国产精品一区二区精品视频观看| 成人亚洲欧美一区二区av| 国产成人免费观看mmmm| 国产日韩欧美视频二区| 人成视频在线观看免费观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲少妇的诱惑av| 国产一区二区在线观看av| 热re99久久精品国产66热6| 国产免费福利视频在线观看| 夜夜骑夜夜射夜夜干| 国产在线视频一区二区| 国产亚洲午夜精品一区二区久久| 搡老岳熟女国产| 久久这里只有精品19| 亚洲熟女毛片儿| 最近中文字幕2019免费版| 久久青草综合色| 国产午夜精品一二区理论片| 国产精品三级大全| 日韩电影二区| 国产一区亚洲一区在线观看| 韩国精品一区二区三区| 视频区图区小说| 亚洲欧美日韩另类电影网站| 久久久亚洲精品成人影院| 伊人亚洲综合成人网| 国产99久久九九免费精品| h视频一区二区三区| 中文欧美无线码| 好男人视频免费观看在线| 自线自在国产av| 男女之事视频高清在线观看 | 中文字幕av电影在线播放| 搡老岳熟女国产| 久久久精品国产亚洲av高清涩受| 每晚都被弄得嗷嗷叫到高潮| 麻豆国产av国片精品| 夜夜骑夜夜射夜夜干| 欧美日韩亚洲高清精品| 真人做人爱边吃奶动态| 国产视频一区二区在线看| 国产精品久久久人人做人人爽| 亚洲av日韩在线播放| 国产成人欧美在线观看 | 99国产精品一区二区三区| 涩涩av久久男人的天堂| 伊人亚洲综合成人网| 久久综合国产亚洲精品| 欧美+亚洲+日韩+国产| 国产成人精品无人区| 国产成人精品久久二区二区免费| 巨乳人妻的诱惑在线观看| 男女免费视频国产| 在线观看国产h片| 久久久久久久大尺度免费视频| 少妇裸体淫交视频免费看高清 | 只有这里有精品99| 欧美人与性动交α欧美精品济南到| 国产成人免费观看mmmm| 成年人午夜在线观看视频| 久久久精品免费免费高清| 欧美日韩亚洲综合一区二区三区_| 国产福利在线免费观看视频| 国产欧美日韩精品亚洲av| 国产极品粉嫩免费观看在线| 精品国产国语对白av| 欧美激情极品国产一区二区三区| 亚洲精品av麻豆狂野| 午夜免费男女啪啪视频观看| 欧美另类一区| 美女午夜性视频免费| 中文字幕色久视频| 美女中出高潮动态图| 可以免费在线观看a视频的电影网站| 亚洲国产精品国产精品| 日韩一卡2卡3卡4卡2021年| 91字幕亚洲| 麻豆国产av国片精品| 久久久久久免费高清国产稀缺| 色精品久久人妻99蜜桃| 麻豆乱淫一区二区| 久久精品亚洲av国产电影网| 亚洲精品中文字幕在线视频| 最黄视频免费看| 欧美日韩黄片免| 满18在线观看网站| 午夜福利视频精品| 丁香六月欧美| 久久久久精品国产欧美久久久 | 一边亲一边摸免费视频| 亚洲欧美激情在线| 老司机影院毛片| 免费av中文字幕在线| 成人国产一区最新在线观看 | 亚洲精品一卡2卡三卡4卡5卡 | 国产主播在线观看一区二区 | 亚洲精品一二三| 丰满人妻熟妇乱又伦精品不卡| 一区二区日韩欧美中文字幕| 一级毛片电影观看| 亚洲精品久久成人aⅴ小说| 日韩av免费高清视频| 国产淫语在线视频| 伦理电影免费视频| 人人妻人人爽人人添夜夜欢视频| 免费在线观看日本一区| 岛国毛片在线播放| 大片免费播放器 马上看| 免费高清在线观看日韩| 免费在线观看视频国产中文字幕亚洲 | 少妇粗大呻吟视频| 国产成人一区二区三区免费视频网站 | 黄色视频不卡| 午夜日韩欧美国产| 欧美日韩亚洲综合一区二区三区_| 美国免费a级毛片| 免费观看av网站的网址| 9热在线视频观看99| 久久久亚洲精品成人影院| 亚洲专区国产一区二区| 国产黄色免费在线视频| 国产精品熟女久久久久浪| 亚洲av日韩精品久久久久久密 | 欧美日韩精品网址| 亚洲,欧美精品.| 老司机午夜十八禁免费视频| 侵犯人妻中文字幕一二三四区| 天堂中文最新版在线下载| 日本av手机在线免费观看| 午夜免费男女啪啪视频观看| 美女扒开内裤让男人捅视频| 国产日韩欧美亚洲二区| 一区在线观看完整版| 在线 av 中文字幕| 国产三级黄色录像| 国产人伦9x9x在线观看| 涩涩av久久男人的天堂| 99香蕉大伊视频| 欧美精品啪啪一区二区三区 | 国产又爽黄色视频| 午夜av观看不卡| 亚洲欧美中文字幕日韩二区| 老汉色av国产亚洲站长工具| 精品欧美一区二区三区在线| 亚洲av成人不卡在线观看播放网 | 亚洲欧美精品自产自拍| 一级毛片电影观看| 十八禁高潮呻吟视频| 如日韩欧美国产精品一区二区三区| 亚洲一区中文字幕在线| 肉色欧美久久久久久久蜜桃| 亚洲精品av麻豆狂野| 免费在线观看完整版高清| 成人国语在线视频| 晚上一个人看的免费电影| 亚洲激情五月婷婷啪啪| 热99国产精品久久久久久7| 久久久国产精品麻豆| 一区二区三区四区激情视频| 国产不卡av网站在线观看| 2018国产大陆天天弄谢| 十八禁高潮呻吟视频| 精品国产乱码久久久久久小说| av在线播放精品| 丁香六月天网| 日本wwww免费看| 老汉色∧v一级毛片| 久久免费观看电影| av不卡在线播放| 欧美日本中文国产一区发布| 日日爽夜夜爽网站| 肉色欧美久久久久久久蜜桃| 亚洲专区国产一区二区| 久9热在线精品视频| 久久人人97超碰香蕉20202| e午夜精品久久久久久久| 国产又爽黄色视频| 久久ye,这里只有精品| 人人妻人人爽人人添夜夜欢视频| av一本久久久久| 国产淫语在线视频| 狂野欧美激情性xxxx| 美女视频免费永久观看网站| 久久久久久久久久久久大奶| 亚洲国产最新在线播放| 亚洲国产日韩一区二区| 精品第一国产精品| 久久毛片免费看一区二区三区| 成人国产av品久久久| 日韩精品免费视频一区二区三区| 高清黄色对白视频在线免费看| 日韩 亚洲 欧美在线| 欧美精品一区二区免费开放| 人人妻,人人澡人人爽秒播 | 女人高潮潮喷娇喘18禁视频| 国产成人啪精品午夜网站| 国产成人一区二区在线| 亚洲中文日韩欧美视频| 亚洲av日韩在线播放| 日韩一区二区三区影片| 午夜老司机福利片| 日韩精品免费视频一区二区三区| 国产成人av激情在线播放| 人人妻人人澡人人爽人人夜夜| 老司机亚洲免费影院| 亚洲人成电影观看| 亚洲 国产 在线| 99热网站在线观看| 韩国精品一区二区三区| 99精品久久久久人妻精品| 亚洲精品在线美女| 1024视频免费在线观看| a级毛片黄视频| 黄频高清免费视频| 亚洲色图综合在线观看| 国产欧美日韩精品亚洲av| 91老司机精品| 18禁国产床啪视频网站| 国产精品三级大全| 天天影视国产精品| 亚洲国产欧美在线一区| 亚洲国产精品国产精品| 免费在线观看黄色视频的| 超碰97精品在线观看| 久久性视频一级片| 亚洲中文字幕日韩| 色精品久久人妻99蜜桃| 久久久久网色| 久久精品国产亚洲av高清一级| 99久久99久久久精品蜜桃| 国产三级黄色录像| 久久 成人 亚洲| 成人免费观看视频高清| 久久99热这里只频精品6学生| 欧美老熟妇乱子伦牲交| 成人影院久久| 国产精品久久久人人做人人爽| svipshipincom国产片| www.999成人在线观看| 美国免费a级毛片| 亚洲精品日韩在线中文字幕| 男人舔女人的私密视频| 欧美中文综合在线视频| 日韩,欧美,国产一区二区三区| 黄色怎么调成土黄色| 亚洲成人国产一区在线观看 | 日本欧美视频一区| 中文字幕色久视频| 欧美精品高潮呻吟av久久| 两人在一起打扑克的视频| 久久久精品区二区三区| 大香蕉久久成人网| 日韩中文字幕欧美一区二区 | 老司机深夜福利视频在线观看 | 日韩一本色道免费dvd| a级毛片黄视频| 亚洲av日韩在线播放| 久久精品亚洲熟妇少妇任你| 欧美xxⅹ黑人| 精品少妇内射三级| 国产精品久久久久久人妻精品电影 | 观看av在线不卡| 国产亚洲一区二区精品| 欧美精品一区二区免费开放| 亚洲成人免费电影在线观看 | 黄色视频在线播放观看不卡| 男女免费视频国产| 日韩 亚洲 欧美在线| 1024视频免费在线观看| 国产亚洲av高清不卡| 亚洲五月婷婷丁香| 超碰97精品在线观看| 欧美日韩视频精品一区| 超碰97精品在线观看| 操出白浆在线播放| 在线亚洲精品国产二区图片欧美| 一区二区三区精品91| 国产黄色视频一区二区在线观看| 国产成人精品久久二区二区91| 婷婷色综合www| 黑丝袜美女国产一区| 我要看黄色一级片免费的| av网站免费在线观看视频| 精品少妇一区二区三区视频日本电影| 菩萨蛮人人尽说江南好唐韦庄| 久久久精品免费免费高清| 精品少妇内射三级| 18在线观看网站| 丁香六月天网| 人人妻人人添人人爽欧美一区卜| 亚洲av日韩在线播放| 亚洲国产成人一精品久久久| 国产亚洲欧美精品永久| 看十八女毛片水多多多| 五月天丁香电影| 色精品久久人妻99蜜桃| 啦啦啦啦在线视频资源| 免费在线观看黄色视频的| 精品亚洲成a人片在线观看| 一级片'在线观看视频| 亚洲视频免费观看视频| 色视频在线一区二区三区| 午夜福利免费观看在线| 无限看片的www在线观看| 久久精品国产亚洲av高清一级| 久久久久国产精品人妻一区二区| 欧美精品一区二区免费开放| 纯流量卡能插随身wifi吗| 久久天躁狠狠躁夜夜2o2o | 人成视频在线观看免费观看| 亚洲成人免费电影在线观看 | 欧美日韩黄片免| 精品久久久久久电影网| 天天影视国产精品| 免费久久久久久久精品成人欧美视频| 欧美老熟妇乱子伦牲交| xxxhd国产人妻xxx| 亚洲中文av在线| 免费在线观看视频国产中文字幕亚洲 | 国产成人系列免费观看| av国产精品久久久久影院| 久久久亚洲精品成人影院| 涩涩av久久男人的天堂| 一级毛片女人18水好多 | 女人被躁到高潮嗷嗷叫费观| 极品人妻少妇av视频| 欧美av亚洲av综合av国产av| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品一二三| av在线播放精品| 肉色欧美久久久久久久蜜桃| 亚洲五月色婷婷综合| av天堂在线播放| 熟女少妇亚洲综合色aaa.| 深夜精品福利| xxxhd国产人妻xxx| 在线天堂中文资源库| 午夜福利影视在线免费观看| 高清黄色对白视频在线免费看| 国产亚洲av高清不卡| 久久精品久久久久久噜噜老黄| 亚洲成人免费av在线播放| 欧美中文综合在线视频| 国产精品二区激情视频| 50天的宝宝边吃奶边哭怎么回事| 欧美激情极品国产一区二区三区| 亚洲精品国产av成人精品| 国产精品 国内视频| 亚洲精品中文字幕在线视频| 可以免费在线观看a视频的电影网站| 黄色一级大片看看| 黄网站色视频无遮挡免费观看|