• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-Cluster Feature Selection Based on Isometric Mapping

    2022-01-26 00:36:20YadiWangZefengZhangandYinghaoLin
    IEEE/CAA Journal of Automatica Sinica 2022年3期

    Yadi Wang,Zefeng Zhang,and Yinghao Lin

    Dear editor,

    This letter presents an unsupervised feature selection method based on machine learning.Feature selection is an important component of artificial intelligence,machine learning,which can effectively solve the curse of dimensionality problem.Since most of the labeled data is expensive to obtain,this paper focuses on the unsupervised feature selection method.The distance metric of traditional unsupervised feature selection algorithms is usually based on Euclidean distance,and it is maybe unreasonable to map high-dimensional data into low dimensional space by using Euclidean distance.Inspired by this,this paper combines manifold learning to improve the multi-cluster unsupervised feature selection algorithm.By using geodesic distance,we propose a multi-cluster feature selection based on isometric mapping (MCFS-I) algorithm to perform unsupervised feature selection adaptively for multiple clusters.Experimental results show that the proposed method consistently improves the clustering performance compared to the existing competing methods.

    Related work:With the rapid development of data and knowledge management technologies,the amount of data collected in various application areas is growing exponentially.Feature selection method[1] is conducive to reduce dimensionality,remove irrelevant data,and improve resultant learning accuracy of the high-dimensional data.In most of the tasks,the labeled data is often difficult to obtain,which increases the difficulty of the feature selection task.Unsupervised feature selection can be used to process the data without labels which make it better for the distance-based clustering tasks.

    The feature selection algorithm could be categorized into three types: filter [2],[3],wrapper [4],and embedded [5].The filter methods first pretreated the data and then throws the processed data into the model for training.The wrapper methods are to continuously optimize the selection by the feedback of the subsequent model.Embedded methods select a feature subset in the learning stage.According to whether or not the label assist feature selection process,the feature selection algorithms can be divided into supervised feature selection [2]–[5] and unsupervised feature selection [6],[7],heuristic-based feature selection exploration is also a very important direction in the feature selection.

    The unsupervised feature selection algorithm multi-cluster feature selection (MCFS) [7] could preserve the multi-cluster structure of the data to make it beneficial to multi-cluster tasks.The MCFS algorithm is an unsupervised feature selection algorithm based on manifold learning.It first uses Laplacian Eigenmaps (LE) [8] algorithm to embed the high dimensional manifold data into low-dimensional space,and then process the embedded feature matrix.The LE algorithm uses the Euclidean distance to establish ap-nearest neighbor map.The geodesic distance is the shortest distance that two points on the hypersurface travel along the surface of the hypersurface in high-dimensional space.In dealing with the hypersurface in high dimensional space,when the hypersurface close to the plane,the distance between two points in the low dimensional space approximate the Euclidean distance.When the highdimensional space hypersur face bend degree is large,the geodesic distance can preserve the global structure commendably [9].By introducing the geodesic distance into MCFS,this paper proposes a novel algorithm called multi-cluster feature selection based on isometric mapping (MCFS-I).

    Multi-cluster feature selection based on isometric mapping:

    1) Manifold data embedding:Manifold data refers to hypersurfaces composed of data in a high-dimensional space.Due to the high dimensional space where these data is located has redundant information,manifold learning [10] is to expand manifold data in high-dimensional space and embed them into low-dimensional subspace.Most manifold learning algorithms use Euclidean distance to establishp-nearest neighbor map to process data,which can only preserve the data in the local manifold structure embedded into low dimensional subspace,and isometric mapping (IsoMap) [9] based on the geodesic distance can well preserve the global structure of the data.

    Firstly,IsoMap applies property that the manifold data is locally homeomorphic to Euclidean space.By calculating the Euclidean distance of all data points,its adjacent points can be obtained.After that,each point is connected to its adjacent points,and the geodesic distance between two points is their shortest path in thep-nearest neighbor graph.In this way,the classical shortest path algorithm Dijkstra or Floyd algorithm can be used to approximate the real geodesic distance with the shortest path.Therefore,the global structure of the manifold data can be well preserved,and the global structure can be retained to the maximum extent after the data is embedded in the low-dimensional space.After the distance between any two points is obtained,the multiple dimensional scaling (MDS)algorithms [11] can be used to calculate the coordinates of each data point in the low-dimensional space.The process of IsoMap is shown in Algorithm 1.

    2) Learn the sparse coefficient vector:The MCFS-I algorithm is composed of IsoMap algorithm and Lasso regression,the feature matrix is embedded into the low-dimensional space based on geodesic distance and MDS algorithm.Since the dimensions in the low-dimensional space are usually equal to the cluster number,each dimension in the low-dimensional space corresponds to each clustering structure.Based on this,Lasso regression is used to fit the embedding matrix.

    When the embedding matrixY∈RN×Kis obtainedby the I so Map algorithm,the feature matrixX∈RN×Mshould benor malizedto make the various feature metric in the feature matrix consistent.A sparse coefficient vector is obtained by fitting each columnykofYwith Lasso regression [12] :

    whereakis theM-dimension coefficient vector.Due to the punitive ofL1regularization,whenβis large enough,some coefficients will be reduced to 0 precisely.Since the sparsity of Lasso regression,a sparse matrix will be automatically obtained in the process of solving Lasso regression.Because the metric of features is unified before Lasso regression,the larger the coefficients of some features are,the greater their contribution to resolving cluster structure will be.Moreover,the combination of several features with relatively weak influence can better distinguish different clusters,this property will be ignored when evaluating these features individually.Lasso regression is a combination solution of various features rather than the independent evaluation of features.Therefore,we chose Lasso regression instead of evaluating the contribution of each feature individually.The equivalent form of Lasso regression can be expressed as follows:

    It is difficult to control the sparsity of coefficient matrix precisely in Lasso Regression,while the least angel regression (LARs) [13]algorithm can solve (2) effectively by entering the number of nonzero items inak,the sparsity of coefficient matrix can be easily controlled.Hence,we use LARs algorithm to solve (2).

    3) Unsupervised feature selection:By combining IsoMap algorithm and Lasso regression,MCFS-I algorithm embedded the feature matrix of the data into the low-dimensional space according to the geodesic distance,and obtains the low-dimensional representation of the clustering structure.The importance of features is comprehensively measured by Lasso regression,and then thedfeatures with the highest score can be selected by scoring the results of Lasso regression.

    Ksparse coefficient vectorsak∈RM,k∈{1,2,...,K} can be obtained by Lasso regression in Section II-B,eachakcorresponds to a cluster,and each item inakrepresents a feature.Since the data is normalized first,the largerak,jis,the greater contribution of thejfeature to thekcluster.Since each feature contributes differently to different clustering structures,it is natural to choose its maximum contribution value as the selection criterion for each feature,which is recorded as MCFS score [7] and it can be defined as follows:

    whereak,jis thejelement ofak.After that,the MCFS scores of all features are ranked in descending order,anddfeatures with the largest MCFS score will be selected as the output result of the MCFS-I algorithm.The detailed process of the MCFS-I algorithm is shown in Algorithm 2.

    Experiments:In this section,we will evaluate the performance of the MCFS-I algorithm in clustering tasks.We compared the following four algorithms:

    ● For the proposed MCFS-I algorithm,the nearest neighbors parametern_neighboris set to 5,and the dimension of the embedding matrixn_embis set to be the same as the number of clusters on the data set [14].

    ● MCFS algorithm [7] uses LE [8] algorithm to process manifold data.

    ● Laplacian (Lap_score) algorithm [6] selects the data that preserves the local manifold structure.

    ● Nonnegative discriminative feature selection (NDFS) algorithm[15] combines spectral clustering with the unsupervised feature selection process.

    1) Data sets: We selected four commonly used benchmark data sets to test the algorithm separately,which are from scikit-learn and scikit-feature.The detailed information of these data sets is shown in Table 1.

    Table 1.Data Sets Used in the Experiment

    2) Performance comparisons:In our experiment,we use normalized mutual information (NMI) [6] to evaluate the clustering result on the data which are processed by feature selection algorithm.In each test,we repeat the experiments for five times.Each time we run the k-means clustering algorithm with a random starting point and evaluate it with the NMI evaluation metric.The average NMI value of the five algorithms is used as the comparison results.

    The comparison of feature selection results is shown in Fig.1.It can be seen that the clustering performance of the MCFS-I algorithm on each data set is better than the MCFS algorithm,and the clustering result of the MCFS-I algorithm gradually reaches the optimal when the number of features is 50 to 100 on the Lung_small data set.

    Table 2 shows the clustering results of each feature selection algorithm when the number of selected features is 100/30 (digits).The column of the “All Features” in the table indicates the performance of the k-means algorithm over the original datasets without using feature selection algorithm.It can be seen that the MCFS-I algorithm has shown the best performance on all data sets,and the MCFS-I algorithm performs better than that when all features are used on some of these data sets.The average improvement of the MCFS-I algorithm over the MCFS algorithm on the four data sets is about 3.206%,the average improvement for the Lap_score algorithm is about 14.822%,and the average improvement for the NDFS algorithm is about 7.704%.

    It can be observed from Table 2 that the MCFS-I algorithm on the biological data set has a greater improvement than the MCFS algorithm,while the improvement on the other three image recognition data sets is small.This is because biological data sets have higher requirements for global information,while image data pays more attention to local information.

    Table 2.The NMI of the Feature Selection Algorithms (%)

    Conclusions:This paper proposes a multi-cluster feature selection based on isometric mapping (MCFS-I) algorithm by introducing the geodesic distance into MCFS.The proposed algorithm uses IsoMap to capture global information and embed it into a low-dimensional space,which is extremely beneficial to process the data with global information.In the experimental section,we compare MCFS-I with MCFS and two commonly used unsupervised feature selection algorithms Laplacian score and NDFS on four benchmark data sets,and the experimental results demonstrate the superiority of the proposed algorithm.

    Acknowledgments:This work was supported by grants from the National Natural Science Foundation of China (62106066),Key Research Projects of Henan Higher Education Institutions(22A520019),Scientific and Technological Project of Henan Province (202102110121),Science and Technology Development Project of Kaifeng City (2002001).

    Fig.1.NMI of the different feature selection algorithms on four data sets.

    亚洲在线观看片| 日日干狠狠操夜夜爽| 亚洲成a人片在线一区二区| 91av网一区二区| 波多野结衣巨乳人妻| 欧美色视频一区免费| 色视频www国产| 亚洲人与动物交配视频| 亚洲欧美一区二区三区黑人| 波多野结衣巨乳人妻| 18禁黄网站禁片午夜丰满| a在线观看视频网站| 亚洲熟妇熟女久久| 国产主播在线观看一区二区| 少妇裸体淫交视频免费看高清| 毛片女人毛片| 99热这里只有精品一区 | 国产精品久久久久久亚洲av鲁大| 黄色女人牲交| 老鸭窝网址在线观看| 成人av在线播放网站| 麻豆成人午夜福利视频| 日本与韩国留学比较| 精品久久久久久成人av| 黄频高清免费视频| 97超视频在线观看视频| 国产主播在线观看一区二区| or卡值多少钱| 久久中文字幕人妻熟女| 一区二区三区激情视频| 国产又黄又爽又无遮挡在线| 成年人黄色毛片网站| 一边摸一边抽搐一进一小说| 性色av乱码一区二区三区2| 天天添夜夜摸| 亚洲美女黄片视频| av天堂中文字幕网| 日韩免费av在线播放| 宅男免费午夜| 男插女下体视频免费在线播放| 精品久久蜜臀av无| 国产久久久一区二区三区| 日本三级黄在线观看| 国产激情久久老熟女| 99热这里只有精品一区 | 97碰自拍视频| 色综合站精品国产| 91av网站免费观看| 久久中文字幕一级| 国产野战对白在线观看| 一级毛片高清免费大全| 色视频www国产| 十八禁人妻一区二区| 亚洲黑人精品在线| 日本 欧美在线| 性欧美人与动物交配| 日日摸夜夜添夜夜添小说| 亚洲电影在线观看av| 久久精品国产亚洲av香蕉五月| 欧美性猛交╳xxx乱大交人| 精品一区二区三区视频在线 | a在线观看视频网站| 亚洲欧美日韩卡通动漫| 日韩 欧美 亚洲 中文字幕| 日本黄大片高清| 国产精品亚洲一级av第二区| 白带黄色成豆腐渣| 国产精品99久久99久久久不卡| 国产精品1区2区在线观看.| 国产三级在线视频| 51午夜福利影视在线观看| 夜夜夜夜夜久久久久| 美女被艹到高潮喷水动态| 亚洲熟女毛片儿| 久久婷婷人人爽人人干人人爱| 精品国产乱码久久久久久男人| 非洲黑人性xxxx精品又粗又长| 午夜久久久久精精品| 在线国产一区二区在线| 国产激情偷乱视频一区二区| 久久九九热精品免费| 色综合亚洲欧美另类图片| 婷婷精品国产亚洲av在线| 老熟妇仑乱视频hdxx| 久久人人精品亚洲av| 久久久久久国产a免费观看| 亚洲国产色片| 天堂av国产一区二区熟女人妻| 国产精品久久久久久久电影 | 看免费av毛片| 1024手机看黄色片| 露出奶头的视频| 国产三级黄色录像| 长腿黑丝高跟| 九九热线精品视视频播放| 精品免费久久久久久久清纯| 亚洲一区高清亚洲精品| 婷婷亚洲欧美| 最新中文字幕久久久久 | 麻豆国产97在线/欧美| 国产午夜福利久久久久久| 欧美乱码精品一区二区三区| 午夜久久久久精精品| 久久久精品大字幕| 在线播放国产精品三级| 高潮久久久久久久久久久不卡| 久久香蕉精品热| 九九久久精品国产亚洲av麻豆 | 91老司机精品| 日本黄大片高清| 亚洲国产欧洲综合997久久,| 午夜激情福利司机影院| 丁香六月欧美| 日本成人三级电影网站| 国产午夜精品论理片| 真人做人爱边吃奶动态| 国产免费男女视频| 激情在线观看视频在线高清| 免费av不卡在线播放| 婷婷亚洲欧美| 成人特级黄色片久久久久久久| av在线蜜桃| 亚洲精品一区av在线观看| 国产三级中文精品| 国产男靠女视频免费网站| 18禁观看日本| 99久久久亚洲精品蜜臀av| 国产精品久久久久久久电影 | 久久久久亚洲av毛片大全| 成人特级av手机在线观看| 99热6这里只有精品| 久久精品综合一区二区三区| 美女高潮的动态| 亚洲av片天天在线观看| 成人国产综合亚洲| 国产黄片美女视频| 欧美乱码精品一区二区三区| 脱女人内裤的视频| 两人在一起打扑克的视频| 欧美成人免费av一区二区三区| 美女扒开内裤让男人捅视频| 欧美中文综合在线视频| 成人一区二区视频在线观看| 国产综合懂色| 少妇熟女aⅴ在线视频| 精华霜和精华液先用哪个| 亚洲av第一区精品v没综合| 久久精品国产99精品国产亚洲性色| 欧美精品啪啪一区二区三区| 18禁国产床啪视频网站| 欧美乱妇无乱码| 波多野结衣高清作品| 成人特级黄色片久久久久久久| 变态另类成人亚洲欧美熟女| 国产精品久久久久久亚洲av鲁大| 亚洲真实伦在线观看| 午夜福利欧美成人| 女生性感内裤真人,穿戴方法视频| 18禁黄网站禁片午夜丰满| 久久精品国产综合久久久| 此物有八面人人有两片| 黄频高清免费视频| 99热这里只有是精品50| 色哟哟哟哟哟哟| 亚洲成人精品中文字幕电影| 丰满的人妻完整版| 91字幕亚洲| 夜夜看夜夜爽夜夜摸| 老汉色∧v一级毛片| 亚洲精品在线美女| 欧美日韩综合久久久久久 | 麻豆成人av在线观看| 欧美不卡视频在线免费观看| 久久久国产成人精品二区| 国产精品精品国产色婷婷| 99在线人妻在线中文字幕| 制服丝袜大香蕉在线| 别揉我奶头~嗯~啊~动态视频| 波多野结衣巨乳人妻| 日韩成人在线观看一区二区三区| 中国美女看黄片| 亚洲精品乱码久久久v下载方式 | 午夜精品在线福利| 性色avwww在线观看| 久久精品91无色码中文字幕| 亚洲av第一区精品v没综合| 国产成人影院久久av| 欧美丝袜亚洲另类 | av在线天堂中文字幕| 校园春色视频在线观看| 久久久久久人人人人人| 两个人视频免费观看高清| 欧美一级毛片孕妇| 国产熟女xx| 久久国产精品影院| 亚洲最大成人中文| 国产激情偷乱视频一区二区| 岛国在线观看网站| 精品不卡国产一区二区三区| 国产成人系列免费观看| 亚洲无线在线观看| 伦理电影免费视频| av中文乱码字幕在线| 99久久无色码亚洲精品果冻| 国产成人精品久久二区二区免费| 亚洲成人久久性| 男女床上黄色一级片免费看| 老汉色av国产亚洲站长工具| 12—13女人毛片做爰片一| 亚洲成人中文字幕在线播放| 亚洲成人中文字幕在线播放| 90打野战视频偷拍视频| 两性夫妻黄色片| 最新在线观看一区二区三区| 真实男女啪啪啪动态图| 老汉色∧v一级毛片| 偷拍熟女少妇极品色| 国产精品 欧美亚洲| 老汉色∧v一级毛片| 国产精品女同一区二区软件 | 国产激情久久老熟女| 青草久久国产| 欧美3d第一页| 99热这里只有是精品50| 国产精品乱码一区二三区的特点| 91字幕亚洲| 亚洲av熟女| xxx96com| 色在线成人网| 在线观看免费午夜福利视频| 少妇熟女aⅴ在线视频| 亚洲18禁久久av| 欧美3d第一页| 18禁观看日本| 国产精华一区二区三区| 不卡av一区二区三区| 99精品欧美一区二区三区四区| 日本黄色片子视频| 国产爱豆传媒在线观看| 伊人久久大香线蕉亚洲五| 国产精品av视频在线免费观看| av女优亚洲男人天堂 | 国产精品爽爽va在线观看网站| 亚洲精品乱码久久久v下载方式 | 欧美一区二区国产精品久久精品| 法律面前人人平等表现在哪些方面| 身体一侧抽搐| 国产精品 国内视频| 国产av麻豆久久久久久久| 国产又色又爽无遮挡免费看| 亚洲专区国产一区二区| 国产精品自产拍在线观看55亚洲| 级片在线观看| 亚洲国产看品久久| 色视频www国产| 动漫黄色视频在线观看| 嫩草影院入口| 国产免费男女视频| 十八禁网站免费在线| 成人三级做爰电影| 最好的美女福利视频网| 99riav亚洲国产免费| 香蕉久久夜色| 19禁男女啪啪无遮挡网站| 亚洲avbb在线观看| 97碰自拍视频| 亚洲国产色片| 熟妇人妻久久中文字幕3abv| 国产高清视频在线观看网站| 亚洲第一电影网av| 国产三级在线视频| 黄色片一级片一级黄色片| 老司机在亚洲福利影院| 精品免费久久久久久久清纯| 久久精品国产综合久久久| 岛国视频午夜一区免费看| 国产成人欧美在线观看| 久久久久亚洲av毛片大全| 俺也久久电影网| 欧美乱色亚洲激情| 琪琪午夜伦伦电影理论片6080| 欧美国产日韩亚洲一区| 午夜福利欧美成人| 少妇的丰满在线观看| 一区二区三区高清视频在线| 亚洲成av人片免费观看| 国语自产精品视频在线第100页| 九九久久精品国产亚洲av麻豆 | 一级毛片女人18水好多| www.自偷自拍.com| 搡老妇女老女人老熟妇| 欧美中文综合在线视频| 国产精品1区2区在线观看.| 在线免费观看的www视频| 久久久久九九精品影院| 亚洲人成网站高清观看| 亚洲成人免费电影在线观看| 丰满人妻一区二区三区视频av | 天堂√8在线中文| 一进一出抽搐动态| 国产亚洲精品一区二区www| 国产一区二区在线观看日韩 | 色尼玛亚洲综合影院| 在线a可以看的网站| 国产三级黄色录像| 首页视频小说图片口味搜索| 久久久久国产精品人妻aⅴ院| 日韩欧美一区二区三区在线观看| 国模一区二区三区四区视频 | av中文乱码字幕在线| 亚洲熟妇中文字幕五十中出| 桃红色精品国产亚洲av| 久久久精品大字幕| 久久久久久九九精品二区国产| 国产精品爽爽va在线观看网站| 精品日产1卡2卡| 又黄又爽又免费观看的视频| 日韩欧美三级三区| 在线看三级毛片| av天堂中文字幕网| 国产高清视频在线观看网站| 欧美3d第一页| 精品国产超薄肉色丝袜足j| 偷拍熟女少妇极品色| 级片在线观看| 亚洲 国产 在线| 欧美激情在线99| 欧美一级a爱片免费观看看| 国产精品综合久久久久久久免费| 观看美女的网站| www.精华液| 黄色 视频免费看| 老汉色av国产亚洲站长工具| 国产成人av教育| 亚洲av五月六月丁香网| 丰满人妻一区二区三区视频av | 五月伊人婷婷丁香| 欧美在线一区亚洲| 男女那种视频在线观看| 日韩免费av在线播放| 午夜亚洲福利在线播放| 精品一区二区三区av网在线观看| 亚洲,欧美精品.| 在线免费观看不下载黄p国产 | 亚洲激情在线av| 久久久久国内视频| 国内久久婷婷六月综合欲色啪| 手机成人av网站| 精华霜和精华液先用哪个| 91在线精品国自产拍蜜月 | 日韩欧美免费精品| 亚洲欧美激情综合另类| 国产精品亚洲美女久久久| 日韩欧美精品v在线| 免费搜索国产男女视频| 制服人妻中文乱码| 国产亚洲av高清不卡| 88av欧美| 国产69精品久久久久777片 | 午夜日韩欧美国产| 国产野战对白在线观看| 久久天躁狠狠躁夜夜2o2o| 精品一区二区三区av网在线观看| av天堂在线播放| 免费看十八禁软件| 人人妻人人看人人澡| av欧美777| 日韩有码中文字幕| 一个人观看的视频www高清免费观看 | 久久国产乱子伦精品免费另类| 午夜福利在线观看吧| 看黄色毛片网站| 黄色女人牲交| 国产美女午夜福利| 国产精品一区二区三区四区免费观看 | 天堂影院成人在线观看| 亚洲一区二区三区不卡视频| 婷婷六月久久综合丁香| 中亚洲国语对白在线视频| 国产成人欧美在线观看| 欧美激情久久久久久爽电影| 午夜免费观看网址| 最近最新中文字幕大全免费视频| 午夜福利成人在线免费观看| 中文亚洲av片在线观看爽| 亚洲国产欧洲综合997久久,| 久99久视频精品免费| 国产伦一二天堂av在线观看| 久久这里只有精品中国| 青草久久国产| 变态另类成人亚洲欧美熟女| 俺也久久电影网| 熟女电影av网| 免费人成视频x8x8入口观看| 中文字幕久久专区| 国产真人三级小视频在线观看| 母亲3免费完整高清在线观看| 国内久久婷婷六月综合欲色啪| 一级黄色大片毛片| www.999成人在线观看| 麻豆成人午夜福利视频| 精品国产乱子伦一区二区三区| 两个人的视频大全免费| 亚洲精品粉嫩美女一区| 99久国产av精品| 国产午夜福利久久久久久| 黄频高清免费视频| 亚洲专区字幕在线| 欧美zozozo另类| 白带黄色成豆腐渣| 丝袜人妻中文字幕| 身体一侧抽搐| 三级毛片av免费| 神马国产精品三级电影在线观看| x7x7x7水蜜桃| 亚洲美女黄片视频| 亚洲av电影不卡..在线观看| 国产免费av片在线观看野外av| 亚洲第一电影网av| 88av欧美| 天堂av国产一区二区熟女人妻| 色综合站精品国产| 欧美日韩国产亚洲二区| 亚洲av熟女| 网址你懂的国产日韩在线| 日本 欧美在线| 在线a可以看的网站| a在线观看视频网站| 精品国产超薄肉色丝袜足j| 真人一进一出gif抽搐免费| 1000部很黄的大片| 一进一出抽搐动态| 午夜影院日韩av| 中出人妻视频一区二区| 久久精品夜夜夜夜夜久久蜜豆| 日本在线视频免费播放| 亚洲精品色激情综合| 啦啦啦韩国在线观看视频| 国产亚洲欧美在线一区二区| 一本综合久久免费| 欧美zozozo另类| 亚洲精品一卡2卡三卡4卡5卡| 丝袜人妻中文字幕| 国产高清视频在线播放一区| xxxwww97欧美| 美女大奶头视频| 午夜福利成人在线免费观看| 午夜免费观看网址| 窝窝影院91人妻| 欧美日韩中文字幕国产精品一区二区三区| 亚洲一区二区三区不卡视频| 啪啪无遮挡十八禁网站| 99视频精品全部免费 在线 | 全区人妻精品视频| 操出白浆在线播放| 免费看a级黄色片| 久久久久国产一级毛片高清牌| 中文字幕人成人乱码亚洲影| av黄色大香蕉| 欧美黑人欧美精品刺激| 亚洲 欧美一区二区三区| 久久久久久大精品| 两性午夜刺激爽爽歪歪视频在线观看| 色播亚洲综合网| av天堂中文字幕网| 久9热在线精品视频| 亚洲美女视频黄频| 色综合欧美亚洲国产小说| 黄色女人牲交| 99热精品在线国产| 亚洲激情在线av| 亚洲人成电影免费在线| 又爽又黄无遮挡网站| 国内精品美女久久久久久| 色播亚洲综合网| 中文字幕高清在线视频| 久久中文看片网| 老司机福利观看| 亚洲专区中文字幕在线| 给我免费播放毛片高清在线观看| 成人高潮视频无遮挡免费网站| 亚洲狠狠婷婷综合久久图片| 啦啦啦观看免费观看视频高清| 欧美午夜高清在线| 欧美日韩亚洲国产一区二区在线观看| 国产精品免费一区二区三区在线| 看片在线看免费视频| 男女之事视频高清在线观看| 在线观看免费视频日本深夜| 18禁黄网站禁片午夜丰满| 亚洲国产精品sss在线观看| 黄色丝袜av网址大全| 亚洲精品美女久久av网站| 91九色精品人成在线观看| 亚洲黑人精品在线| 免费在线观看影片大全网站| 性欧美人与动物交配| 色综合亚洲欧美另类图片| 午夜精品一区二区三区免费看| 一个人免费在线观看的高清视频| 老熟妇乱子伦视频在线观看| 一本一本综合久久| 亚洲成人精品中文字幕电影| 亚洲欧洲精品一区二区精品久久久| 床上黄色一级片| 亚洲自偷自拍图片 自拍| 在线观看午夜福利视频| 又粗又爽又猛毛片免费看| 亚洲欧美精品综合久久99| 97超视频在线观看视频| 在线观看舔阴道视频| 日本 欧美在线| 国产高清视频在线播放一区| 亚洲第一欧美日韩一区二区三区| 97超视频在线观看视频| 国产亚洲精品av在线| 国产精品 国内视频| 一区二区三区高清视频在线| 亚洲欧美精品综合久久99| 97超视频在线观看视频| 国产熟女xx| 欧美激情在线99| 欧美日韩瑟瑟在线播放| 免费观看人在逋| netflix在线观看网站| 免费电影在线观看免费观看| 特大巨黑吊av在线直播| 12—13女人毛片做爰片一| 18美女黄网站色大片免费观看| 亚洲专区字幕在线| 90打野战视频偷拍视频| 丁香六月欧美| 日本五十路高清| 久9热在线精品视频| 三级国产精品欧美在线观看 | 99热精品在线国产| 久久精品影院6| 脱女人内裤的视频| 床上黄色一级片| 亚洲最大成人中文| 1024手机看黄色片| www日本黄色视频网| 欧美一级a爱片免费观看看| 国产精品女同一区二区软件 | 免费观看的影片在线观看| 人人妻,人人澡人人爽秒播| 亚洲男人的天堂狠狠| 亚洲精品美女久久av网站| 国产精品乱码一区二三区的特点| 免费看十八禁软件| 亚洲电影在线观看av| 国产淫片久久久久久久久 | 免费在线观看亚洲国产| 亚洲国产中文字幕在线视频| 嫩草影视91久久| 国产精品美女特级片免费视频播放器 | 在线视频色国产色| 国产成人欧美在线观看| 91av网一区二区| 老司机福利观看| 婷婷六月久久综合丁香| 制服人妻中文乱码| 岛国视频午夜一区免费看| 99精品在免费线老司机午夜| 久久久久久久精品吃奶| 亚洲专区中文字幕在线| 亚洲精品乱码久久久v下载方式 | 精品熟女少妇八av免费久了| 国内揄拍国产精品人妻在线| 看片在线看免费视频| 日本 欧美在线| 国产精品久久久久久亚洲av鲁大| 天堂影院成人在线观看| 国产精品av久久久久免费| 国产亚洲av高清不卡| 成年免费大片在线观看| 国产成年人精品一区二区| 国产伦在线观看视频一区| 亚洲成av人片免费观看| 欧美在线黄色| 国产精品野战在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲精品在线观看二区| 国产aⅴ精品一区二区三区波| 久久中文字幕一级| 精品国产亚洲在线| 精品久久蜜臀av无| 国产精品九九99| 在线观看66精品国产| 两人在一起打扑克的视频| 88av欧美| 国产精品国产高清国产av| 国产麻豆成人av免费视频| 一进一出好大好爽视频| 成人永久免费在线观看视频| 后天国语完整版免费观看| 中文字幕人成人乱码亚洲影| 精品久久久久久久人妻蜜臀av| 一边摸一边抽搐一进一小说| 无遮挡黄片免费观看| 国产成人av激情在线播放| 欧美zozozo另类| 嫩草影视91久久| 久久国产精品人妻蜜桃| 欧美日韩乱码在线| 老熟妇仑乱视频hdxx| 高清在线国产一区| 免费观看人在逋| 久久久久久九九精品二区国产| 丰满人妻熟妇乱又伦精品不卡| 嫩草影院精品99| 身体一侧抽搐| 久久伊人香网站| 国内毛片毛片毛片毛片毛片| 999久久久精品免费观看国产|