• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive Control of Discrete-time Nonlinear Systems Using ITF-ORVFL

    2022-01-26 00:36:16XiaofeiZhangHongbinMaWenchaoZuoandManLuo
    IEEE/CAA Journal of Automatica Sinica 2022年3期

    Xiaofei Zhang,Hongbin Ma,Wenchao Zuo,and Man Luo

    Abstract—Random vector functional ink (RVFL) networks belong to a class of single hidden layer neural networks in which some parameters are randomly selected.Their network structure in which contains the direct links between inputs and outputs is unique,and stability analysis and real-time performance are two difficulties of the control systems based on neural networks.In this paper,combining the advantages of RVFL and the ideas of online sequential extreme learning machine (OS-ELM) and initial-training-free online extreme learning machine (ITFOELM),a novel online learning algorithm which is named as initial-training-free online random vector functional link algo rithm (ITF-ORVFL) is investigated for training RVFL.The link vector of RVFL network can be analytically determined based on sequentially arriving data by ITF-ORVFL with a high learning speed,and the stability for nonlinear systems based on this learning algorithm is analyzed.The experiment results indicate that the proposed ITF-ORVFL is effective in coping with nonparametric uncertainty.

    I.INTRODUCTION

    MOST conventional control approaches can not provide satisfactory control performance for complex systems,such as complex industrial process control systems,robot control systems and so on,due to the difficulties in developing exact mathematical models for nonparametric uncertainties of systems (e.g.,frictional force,unmodeled dynamics).Neural networks (NN) are a good class of nonlinear function approximators [1].With enough history data,and it is possible to estimate nonparametric uncertainty using NN.Radial basis function (RBF) networks belong to a class of single-hidden layer feedforward neural networks (SLFNs) that do not contain the direct links between inputs and outputs,and they have been shown to perform well in solving many practical problems [2]–[5].In recent years,several new RBF architectures have been proposed with the aim of providing better performance.The standard learning algorithm of RBF networks is the conventional gradient descent algorithm.Extreme learning machine (ELM) [6],in which the input weights and hidden layer biases of networks are chosen randomly,and the output weights are determined by the Pseudo-Inverse of hidden layer output matrix,is used to train SLFNs [7].In order to train SLFNs using online data,some online learning algorithms were introduced,such as online sequential extreme learning machine (OS-ELM) [8],regularized online sequential extreme learning machine(ReOS-ELM) [9],initial-training-free online extreme learning machine (ITF-OELM) [10],etc.Although,the learning speed of ELM is extremely fast,the stability of ITF-OELM for nonlinear systems has not been analyzed.

    Random vector functional link (RVFL) network is a randomized version of the functional link neural network [11],[12].RVFL contains more information by the direct links between inputs and outputs.RVFL was proposed in [13],and learning and generalization characteristics of RVFL were discussed in [14],[15].In [16],Igelnik and Pao proved that the RVFL network is a universal approximator for a continuous function on a bound finite dimensional set with a closed-form solution.

    Usually,RVFL network is trained by offline data.The stochastic gradient descent back-propagation (SGBP)algorithm is used to train RVFL using online data,but it suffers from slow training error convergence as a large number of training data may be required.In this paper,inspired by ITF-OELM and broad learning system (BLS) [17],a novel online learning algorithm which is named as initialtraining-free online random vector functional link algorithm(ITF-ORVFL) is investigated for training RVFL using online data.ITF- ORVFL is different from ITF-OSELM,the update formulae is mended,so that the stability for nonlinear systems based on this learning algorithm can be guaranteed.Compared with the the SGBP algorithm,the link vector of RVFL is determined based on the sequentially arriving data by ITFORVFL,so the learning speed of ITF-ORVF is very fast.In order to verify the effectiveness of ITF-ORVFL,ITF-ORVFL is applied in a robot servo control system based on vision for coping with nonlinear uncertainty.

    This paper is organized as follows.RVFL is briefly introduced in Section II.In Section III,we introduce ITFORVFL.In Section IV,the robot servo control system based on vision is explained.In Section V,two experiment examples are given to verify the effectiveness of ITF-ORVFL in coping with nonlinear uncertaiies.Our conclusions are given in Section VI.

    II.RANDOM VECTOR FUNCTIONAL LINK

    RVFL network is shown in Fig.1,and actual values of the weights from the input layer to enhancement nodes can be randomly generated in a suitable domain and kept fixed in the learning stage.The input features of RVFL are firstly transformed into the enhanced features by enhancement nodes,and input weights and biases of the enhancement nodes are randomly generated.At output layer,all the enhanced and original features are concatenated and fed into output neurons.

    Fig.1.The structure of RVFL.

    As the RVFL network has highly beneficial direct links,it is different from the RBF network.

    The training procedure of RVFL is similar to ELM and contains two stages: random feature mapping and linear parameter solving.For the output of the RVFL withMinput nodes,Lenhancement nodes and one output node has the following form

    andG(·) is the active function (additive or radical basis function) of the enhancement node with parameterswl∈RM,bl∈R,and β is a link vector.

    For RVFL,only the link vector β need to the determined by solving the following problem:

    whereNis the number of data samples,andhiis a vector version of the concatenation of the original features as well as the enhanced features.Directly solving the problem in (5) may lead to over-fitting.In practice,a regularization on the solution or preference of the solution with smaller norm [18]can be adopted to obtain the solution.A straightforward solution within a single learning step can be achieved by the pseudo-inverse [16],[19],among which the Moore-Penrose pseudo-inverse,is most commonly used,and

    whereHandTare matrix versions of the features and targets by stacking the features and targets of all data samples,andH?is the Moore-Penrose generalized inverse ofH.Another alternative is theL2 norm regularized least square (or ridge regression),which solves the following problem:

    The solution is given by

    where λ is a regularization parameter.

    III.INITIAL-TRAINING-FREE ONLINE RANDOM VECTOR FUNCTIONAL LINK

    It should be noted that the afore mentioned theorems assume the availability of complete training data and use (6)or (8) for calculating the link vector β,however in real applications,the training data may arrive chunk-by-chunk or one-by-one (a special case of chunk).Hence,the batch algorithm for RVFL has to be modified for this case so as to make it online sequential.

    We must find the learning for mulae for the online sequential learning process.Given a chunk of initial training set,andN0≥(L+M),then the solution of‖H0β-T0‖is

    When another chunk of data is given,andN1≥(M+L),the problem then becomes minimizing

    whereH1is explained in (12) (at the bottom of this page),and

    Considering both chunks of training data setsand,the link vector becomes

    Combining ( 14),(15) and ( 16),β1is given by

    When thekth chunk of data set is received

    whereHkis explained in (21) (at the bottom of this page.) and

    Note that the size ofKkis (M+L)×(M+L),and the value of (M+L) is often quite large.In order to reduce the computational cost for inverse matrix in the case whereNk?(M+L),from (19),the update formula foris

    derived using the Woodbury formula as

    For the convenience of expression (23),we define

    Then,the update formula for βkcan be written as

    Remark 1:From (25) and (26),it can be seen that the sequential implementation of the least-squares solution (8) is similar to recursive least squares (RLS).Hence,all the convergence results of RLS can be applied here.

    OS-ELM is an efficient online version of ELM,and the sequential implementation of OS-ELM is similar to RLS.ITFOELM is an improved version of OS-ELM,and it incorporates the regularization factor λ and forgetting factorρ and thus can yield good generalization performance for noisy data and time-varying models.In this paper,inspired by ITFOELM and BLS,ITF-ORVFL is introduced.

    The weight updating formula of ITF-ORVFL for thekth arriving data is

    where 0 <ρ <1 and ρ is the forgetting factor of ITF-ORVFL that gives the more recent arriving data a higher contribution to the output weight adjustment.

    The initial conditions ofP0and β0could be set as

    where 0Lis a vector of all zeros with size (M+L)×1.

    In fact,this way of initializing β0andP0is a common initialization setting for using RLS algorithm.

    IV.THE ROBOT SERVO CONTROL SYSTEM BASED ON VISION

    Six-degree-of-freedom robots have six degrees of freedom,and these industrial robots are implemented by six joints (J1 to J6),respectively.The six joints (J1 to J6) all have a servo motor and a decelerator.A six-degree-of-freedom robot can be regarded as a kinematic chain which is connected by a series of rigid bodies through the joints.The rigid bodies are called connecting rods,and the six-degree-of-freedom robot comprises shoulder joint,upper arm,elbow joint,lower arm,wrist and the end-effector.Fig.2 is a modular and multijointed robot.Forward kinematics and inverse kinematics are two important aspects of robot arm motion analysis,and inverse kinematics is used to obtain the joint angles when the position and posture of the end joint are specified.

    Fig.2.A modular and multi-joint robot.

    The robot servo control system based on vision consists of a modular and multi-jointed robot,a laser and a camera,the laser is fixed on the J6 joint of the robot,and the camera can obtain the position of laser point as a sensor.Fig.3 is the robot servo control system based on vision.

    Fig.3.The robot servo control system based on vision.

    The goal of the robot servo control system based on vision is to make the laser point arrive at the designated location.However,the robot servo control system based on vision contains many nonlinear uncertainties,such as,friction torque disturbance,calibration error,etc.Due to nonlinear uncertainties of the robot servo control system based on vision,it is suitable for verifying the effectiveness of the proposed ITF-ORVFL on this system.

    In this paper,the position control of the laser point inY-axis direction is adopted,and the position of the laser point inXaxis is a constant value in actual experiments.The state equation of the robot servo control system based on vision is

    wherexkis the position of laser point at timek,ζk+1andyk+1are the nonparametric uncertainty of this system,the laser point which is obtained by camera at timek+1,respectively,andukdenotes control signal.The nonparametric uncertainty indicates the sum of the nonlinear uncertainties of this system.

    The use of forgetting factor in ITF-OELM can accelerate the convergence speed for system identification but may lead to an ill-conditioned covariance matrix in the recursively updating process,ITF-ORVFL also has this issue,and in order to solve this issue,the change detection mechanism is also introduced in ITF-ORVFL.Besides a novel variable is added to the update for mulae of ITF-ORVFL for the purpose of analyzing system stability.

    The robot servo control system based on vision is a special system where the training data comes one by one which meansNk=1.ITF-ORVFL is performed in two main stages,the first stage is parameter initialization,and the second stage is parameter learning.

    1) Initialization Phase:

    a) The parameters of ITF-ORVFL are λ=0.005,ρ=0.998,L=350,M=2,△ =0.0000001,Mm=2000,and η =0.

    b) Set ηm=20.When ITF-ORVFL is initialized,ITFORVFL need much training data that is used to train network,the value ηmis important for the change detection mechanism in ITF-ORVFL,and this value can be adjusted based on estimated error.TheMmcan be decided based on actual situation.

    c) Assign reference signal.

    d) The initialization of ITF-ORVFL is

    c) Do the work of initialization phase,and set=0,and η=0.

    d) Calculateuk,and

    A.Stability Analysis

    In this paper,the camera is roughly calibrated,the main part of ζk+1is calibration error,and the ζk+1of this system is considered as a nonlinear function,and it is estimated by ITFORVFL.The RVFL network has the universal approximation capability for a continuous function on a bound finite dimensional set with a closed-form solution.ITF-ORVFL is an online learning algorithm,and it can train RVFL using online data.

    Assumption 1:Because of the universal approximation capability of the RVFL network,if enough data is available and the number of enhancement nodes is appropriate,there is β*and

    where s up|δk|≤△,and △ is a given upper bound.

    In this paper,RVFL is used to estimate the nonlinear functionζk+1,we select the output of the RVFL network as the est imatedvalue of=Hkβk.

    Introducing Lyapunov candidate as

    Substituting (36) and (37) in (41),we can get that

    Substituting (45) in the above equation,

    andVk+1is nonnegative.

    Based on (49) and (43) and the update algorithm,we can get that

    If enoughdataisobtained,based (53),andthe universal approx imati on ability of RFVL net work,we canget will infinite approach β*,that is to say,we can get that

    where ε1is very value,so,we also can get the system tracking error will be less than ε1basing on (54) and (35).

    V.ANALYSIS OF EXPERIMENT RESULTS

    In order to realize the control of uncertain systems with large nonlinear uncertainty,nonparametric uncertainty is estimated by using the input data of systems and the output data of systems,and the required control law is designed based on the estimated value of nonparametric uncertainty.NN is a good class of nonlinear function approx ima tors,and NN has recently received considerable research interests in the identification and control of dynamical systems [20]–[29].

    In this paper,the camera is roughly calibrated,ζk+1of the system (28) is considered as a nonlinear function,and two simulation experiments are done.The control algorithm which contains the estimated value of ζk+1by RVFL using the proposed ITF-ORVFL is compared with the control algorithm which contains the estimated value of ζk+1by ITF-OELM and the control algorithm which does not contain the estimated value.In order to describe the control algorithm which does not contain the estimated value easily,this control algorithm is named as DC.

    In order to further show the effectiveness of algorithms,the following two indices are introduced: the maximum of |ek|,and the mean value of |ek|.

    The maximum of |ek| is

    A.The First Experiment

    In the first experiment,em= 100,and 100 random points between 318 and 417 inY-axis are generated.Two adjoining random points are different,and those 100 random points are selected as the reference signal.Fig.4 and Fig.5 denote the first experiment results.Figs.4 (a)–(d) are the tracking curves of the control algorithm which contains the estimated value by ITFORVFL,the control algorithm which contains the estimated value by ITF-OELM,DC,and the changing curve of the reference signal,respectively.TheY-axis of Fig.5 indicates the tracking error of experiment 1,and theX-axis of Fig.5 indicates the number of robot arm motion.Fig.5 plots the tracking error curves of the robot servo control system based on vision.The indices ofeaveandemaxare showed in Table I.Fig.5 and Table I show that the control algorithm which contains the estimated value of nonparametric uncertainty by ITF-ORVFL have a higher control accuracy than two other algorithms,when the reference signal is a sequence which contains 100 random points.The results of Fig.5 and Table I imply that ITF-ORVFL is effective coping with nonparametric uncertainty of the system (28),where the reference signals is a sequence which contains 100 random points.

    Fig.4.The tracking curves of Experiment 1.(a) The tracking curve of ITFORFVL; (b) The tracking curve of ITF-OELM; (c) The tracking curve of DC;(d) The changing curve of reference signal.

    Fig.5.The tracking errors of Experiment 1.(a) The error curve of ITFORFVL; (b) The error curve of ITF-OELM; (c) The error curve of DC.

    B.The Second Experiment

    In the second experiment,em=12,and the reference signal is

    Figs.6 and 7 denote the second experiment results.Figs.6 (a)–(d) are the tracking curves of the control algorithm which contains the estimated value by ITF-ORVFL,the control algorithm which contains the estimated value by ITF-OELM,DC,and the change curve of the reference signal in the secondexperiment,respectively.Fig.7 plots the tracking error curves of the robot servo control system based on vision.Table II show theeaveandemaxindices of the second experiment.The results of Fig.7 and Table II imply that ITF-ORVFL is effective in coping with nonparametric uncertainty of the system (28),when (58) is adopted as reference signal.

    TABLE ITHE INDICES OF EXPERIMENT 1

    Fig.6.The tracking curves of Experiment 2.(a) The tracking curve of ITFORFVL; (b) The tracking curve of ITF-OELM; (c) The tracking curve of DC;(d) The changing curve of the reference signal.

    Fig.7.The tracking errors of Experiment 2.(a) The error curve of ITFORFVL; (b) The error curve of ITF-OELM; (c) The error curve of DC.

    VI.CONCLUSION

    In this paper,inspired by ITF-OELM and BLS,ITFORVFL has been introduced to train RVFL,a novel variable is added to the update for mulae of ITF-ORVFL,a robot servo control system based on vision is adopted to verify the effectiveness of ITF-ORVFL in predicting nonparametric uncertainty of the system.The stability of the proposedalgorithm is guaranteed by theoretical analysis.Two experiments have been performed,and these two experiments show that the proposed ITF-ORVFL algorithm is effective in estimating nonparametric uncertainty of actual systems.

    TABLE IITHE INDICES OF EXPERIMENT 2

    亚洲国产精品sss在线观看| 亚洲自偷自拍图片 自拍| 国产精品乱码一区二三区的特点| 国产又色又爽无遮挡免费看| 亚洲色图av天堂| 久9热在线精品视频| 久久婷婷人人爽人人干人人爱| 后天国语完整版免费观看| 国产高清激情床上av| 亚洲av成人一区二区三| 免费看十八禁软件| 成人国产综合亚洲| 91麻豆精品激情在线观看国产| 热re99久久国产66热| 欧美黑人巨大hd| 国产又爽黄色视频| 国产单亲对白刺激| 欧美在线黄色| 国产成人一区二区三区免费视频网站| 男人舔奶头视频| 亚洲成人久久爱视频| 午夜福利欧美成人| 久久人妻av系列| 亚洲五月天丁香| 精品久久久久久久久久免费视频| 欧美日韩福利视频一区二区| 亚洲 国产 在线| 国产区一区二久久| 精品久久久久久,| 精品少妇一区二区三区视频日本电影| 少妇被粗大的猛进出69影院| 亚洲 欧美一区二区三区| 亚洲激情在线av| 校园春色视频在线观看| 亚洲精品国产精品久久久不卡| 男人舔奶头视频| 国产成年人精品一区二区| 麻豆成人av在线观看| 嫁个100分男人电影在线观看| 老司机在亚洲福利影院| 婷婷丁香在线五月| 99精品欧美一区二区三区四区| 欧美精品亚洲一区二区| 成年免费大片在线观看| 老汉色av国产亚洲站长工具| 国内精品久久久久久久电影| 国产精品九九99| 不卡一级毛片| 国产亚洲av嫩草精品影院| 美女午夜性视频免费| 亚洲午夜精品一区,二区,三区| 亚洲精品国产一区二区精华液| 日本精品一区二区三区蜜桃| 麻豆一二三区av精品| 精品久久久久久久末码| 午夜免费观看网址| 欧美激情久久久久久爽电影| 亚洲成国产人片在线观看| 久久中文字幕一级| 欧美国产日韩亚洲一区| 老熟妇乱子伦视频在线观看| 日韩有码中文字幕| www.999成人在线观看| 亚洲av五月六月丁香网| 欧美成人性av电影在线观看| 99国产极品粉嫩在线观看| 国产免费男女视频| 热99re8久久精品国产| 国产精品精品国产色婷婷| 久久欧美精品欧美久久欧美| 免费一级毛片在线播放高清视频| 久久久国产精品麻豆| 国产av在哪里看| 亚洲精品国产区一区二| 国产成人欧美| 日日爽夜夜爽网站| 久久草成人影院| 欧美性猛交黑人性爽| ponron亚洲| 一级毛片精品| 国产精品自产拍在线观看55亚洲| 一区二区三区高清视频在线| 中文字幕精品免费在线观看视频| 精品一区二区三区四区五区乱码| 一级片免费观看大全| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品中文字幕一二三四区| 91成人精品电影| 国产伦在线观看视频一区| 欧美一级毛片孕妇| 午夜福利视频1000在线观看| 哪里可以看免费的av片| 99国产精品一区二区三区| 亚洲色图 男人天堂 中文字幕| 韩国精品一区二区三区| 夜夜躁狠狠躁天天躁| 成人午夜高清在线视频 | 国产亚洲精品久久久久久毛片| 久久精品成人免费网站| 国产主播在线观看一区二区| 黄色成人免费大全| 亚洲人成网站高清观看| 国产成人影院久久av| 日本成人三级电影网站| 国产精品九九99| 村上凉子中文字幕在线| 伦理电影免费视频| 51午夜福利影视在线观看| 大型黄色视频在线免费观看| 搡老熟女国产l中国老女人| 美女高潮喷水抽搐中文字幕| 在线观看www视频免费| 50天的宝宝边吃奶边哭怎么回事| 男女视频在线观看网站免费 | 欧美日韩亚洲国产一区二区在线观看| 色播亚洲综合网| 丁香欧美五月| 亚洲一区中文字幕在线| 欧美一级毛片孕妇| 男女视频在线观看网站免费 | 国内揄拍国产精品人妻在线 | 欧美乱妇无乱码| 黄色视频不卡| 日韩成人在线观看一区二区三区| 国产激情偷乱视频一区二区| 免费在线观看亚洲国产| 97超级碰碰碰精品色视频在线观看| 久久精品91无色码中文字幕| 黄色视频,在线免费观看| 一本综合久久免费| 一本一本综合久久| 国产亚洲精品一区二区www| 一个人免费在线观看的高清视频| 热99re8久久精品国产| 在线播放国产精品三级| 久久天躁狠狠躁夜夜2o2o| 国产精品日韩av在线免费观看| 91九色精品人成在线观看| 18禁裸乳无遮挡免费网站照片 | 亚洲国产高清在线一区二区三 | 99久久久亚洲精品蜜臀av| 国产成人精品久久二区二区免费| www.精华液| av福利片在线| 亚洲av电影在线进入| 久久中文看片网| avwww免费| 女人爽到高潮嗷嗷叫在线视频| 国产真实乱freesex| 19禁男女啪啪无遮挡网站| 91麻豆精品激情在线观看国产| 亚洲欧美日韩无卡精品| 91老司机精品| aaaaa片日本免费| cao死你这个sao货| 欧美+亚洲+日韩+国产| 在线观看www视频免费| 欧美 亚洲 国产 日韩一| 精品第一国产精品| 欧美黑人巨大hd| 少妇裸体淫交视频免费看高清 | 一本一本综合久久| 国产一卡二卡三卡精品| 老熟妇仑乱视频hdxx| xxx96com| a级毛片在线看网站| 午夜免费成人在线视频| 免费在线观看黄色视频的| 亚洲成av片中文字幕在线观看| 午夜两性在线视频| 91老司机精品| 窝窝影院91人妻| 又大又爽又粗| 男人舔女人的私密视频| 超碰成人久久| 欧美乱妇无乱码| 久久人妻福利社区极品人妻图片| 老熟妇仑乱视频hdxx| 国语自产精品视频在线第100页| 两个人看的免费小视频| 久久亚洲真实| 成熟少妇高潮喷水视频| 少妇裸体淫交视频免费看高清 | 午夜日韩欧美国产| 国产伦在线观看视频一区| 好看av亚洲va欧美ⅴa在| 黑人欧美特级aaaaaa片| 精品国产国语对白av| 免费在线观看日本一区| 法律面前人人平等表现在哪些方面| 人人澡人人妻人| 夜夜躁狠狠躁天天躁| 精品国产国语对白av| 亚洲一区二区三区不卡视频| 人人妻人人看人人澡| av片东京热男人的天堂| 国产国语露脸激情在线看| 三级毛片av免费| 1024视频免费在线观看| 一夜夜www| 精品久久久久久久毛片微露脸| 亚洲熟妇中文字幕五十中出| 一级a爱片免费观看的视频| 日韩免费av在线播放| 变态另类成人亚洲欧美熟女| 看黄色毛片网站| 亚洲av成人一区二区三| 黄片小视频在线播放| 天堂动漫精品| 1024香蕉在线观看| www日本黄色视频网| 午夜免费成人在线视频| 亚洲午夜精品一区,二区,三区| 亚洲午夜理论影院| 免费看日本二区| 国产成人一区二区三区免费视频网站| 国产成人精品无人区| 亚洲精品粉嫩美女一区| 国产亚洲欧美在线一区二区| 一个人免费在线观看的高清视频| 18禁国产床啪视频网站| 午夜福利欧美成人| 人人妻人人澡欧美一区二区| 日本黄色视频三级网站网址| 在线观看免费视频日本深夜| 又黄又爽又免费观看的视频| 看免费av毛片| svipshipincom国产片| 日本三级黄在线观看| 精品午夜福利视频在线观看一区| 久99久视频精品免费| 最近最新中文字幕大全免费视频| 亚洲男人天堂网一区| 黄片小视频在线播放| 久久欧美精品欧美久久欧美| 悠悠久久av| 一二三四在线观看免费中文在| 亚洲av成人一区二区三| 精品第一国产精品| 日本一本二区三区精品| 亚洲第一电影网av| 日韩欧美在线二视频| www.精华液| 国内久久婷婷六月综合欲色啪| 欧美色欧美亚洲另类二区| av片东京热男人的天堂| 99热6这里只有精品| 免费在线观看成人毛片| 日韩有码中文字幕| 两性夫妻黄色片| 99国产综合亚洲精品| 免费观看人在逋| videosex国产| 国产黄色小视频在线观看| 亚洲人成电影免费在线| 一卡2卡三卡四卡精品乱码亚洲| 中出人妻视频一区二区| 欧洲精品卡2卡3卡4卡5卡区| 免费观看精品视频网站| 我的亚洲天堂| 看片在线看免费视频| 91老司机精品| 国产精品电影一区二区三区| 九色国产91popny在线| 91老司机精品| 国产精品久久电影中文字幕| 亚洲欧洲精品一区二区精品久久久| 99精品在免费线老司机午夜| 黄色毛片三级朝国网站| 女性被躁到高潮视频| 在线观看66精品国产| 成人特级黄色片久久久久久久| 天天一区二区日本电影三级| 好看av亚洲va欧美ⅴa在| 亚洲va日本ⅴa欧美va伊人久久| 国产精品99久久99久久久不卡| 欧美精品啪啪一区二区三区| 曰老女人黄片| 欧美成人午夜精品| 精品电影一区二区在线| 亚洲精品在线观看二区| 天天躁狠狠躁夜夜躁狠狠躁| 草草在线视频免费看| 国产欧美日韩一区二区三| 亚洲av美国av| 欧美日韩乱码在线| 可以在线观看的亚洲视频| 国产精品 欧美亚洲| 曰老女人黄片| 国产av在哪里看| 亚洲精品美女久久av网站| 国产伦人伦偷精品视频| 91国产中文字幕| 欧美日韩一级在线毛片| 九色国产91popny在线| 色老头精品视频在线观看| 女同久久另类99精品国产91| 一a级毛片在线观看| 99国产综合亚洲精品| 在线观看免费午夜福利视频| 老司机午夜福利在线观看视频| 亚洲精品国产精品久久久不卡| 成人午夜高清在线视频 | 精品久久蜜臀av无| 色av中文字幕| 精品久久久久久久久久久久久 | 一进一出抽搐gif免费好疼| 久久精品91蜜桃| 久久国产乱子伦精品免费另类| 美女高潮喷水抽搐中文字幕| 久久中文字幕人妻熟女| 欧美黑人巨大hd| 18禁黄网站禁片午夜丰满| 国产视频内射| 久久久久久久久免费视频了| 亚洲国产精品合色在线| 亚洲国产欧美日韩在线播放| 好男人电影高清在线观看| 国产一区二区三区视频了| 亚洲国产毛片av蜜桃av| 亚洲成人国产一区在线观看| a级毛片a级免费在线| 日本a在线网址| 亚洲五月婷婷丁香| 很黄的视频免费| 色尼玛亚洲综合影院| 香蕉久久夜色| 亚洲 欧美 日韩 在线 免费| 国产高清视频在线播放一区| 欧美绝顶高潮抽搐喷水| 精品国产亚洲在线| 国产三级在线视频| 午夜影院日韩av| 俄罗斯特黄特色一大片| 亚洲精华国产精华精| 午夜福利成人在线免费观看| netflix在线观看网站| 国产一级毛片七仙女欲春2 | a级毛片a级免费在线| 又大又爽又粗| 国产麻豆成人av免费视频| √禁漫天堂资源中文www| 亚洲国产欧美网| 久久精品91蜜桃| 2021天堂中文幕一二区在线观 | 亚洲七黄色美女视频| 国产熟女午夜一区二区三区| 一本精品99久久精品77| 免费无遮挡裸体视频| av中文乱码字幕在线| 91麻豆精品激情在线观看国产| 亚洲av日韩精品久久久久久密| a级毛片a级免费在线| 国产av一区二区精品久久| 久久精品影院6| 18禁美女被吸乳视频| 俺也久久电影网| 欧美人与性动交α欧美精品济南到| 欧美日韩福利视频一区二区| 亚洲第一欧美日韩一区二区三区| 成人一区二区视频在线观看| avwww免费| 在线观看日韩欧美| 天天一区二区日本电影三级| 亚洲片人在线观看| 国产极品粉嫩免费观看在线| netflix在线观看网站| 搡老岳熟女国产| 18禁裸乳无遮挡免费网站照片 | 亚洲天堂国产精品一区在线| 999久久久精品免费观看国产| 嫩草影视91久久| 欧美黑人欧美精品刺激| 俺也久久电影网| 成年女人毛片免费观看观看9| 国产精品 欧美亚洲| 激情在线观看视频在线高清| 亚洲电影在线观看av| 草草在线视频免费看| 国产高清有码在线观看视频 | 免费av毛片视频| 在线观看午夜福利视频| 免费在线观看日本一区| 老司机靠b影院| 国产蜜桃级精品一区二区三区| 久久久久久国产a免费观看| 男女视频在线观看网站免费 | 成年版毛片免费区| 亚洲成人精品中文字幕电影| 在线免费观看的www视频| 最近最新中文字幕大全免费视频| 制服诱惑二区| 久久国产精品人妻蜜桃| 国内少妇人妻偷人精品xxx网站 | 午夜影院日韩av| av在线天堂中文字幕| 给我免费播放毛片高清在线观看| 免费看日本二区| 欧美中文综合在线视频| 亚洲中文日韩欧美视频| ponron亚洲| 美女高潮喷水抽搐中文字幕| 母亲3免费完整高清在线观看| 国产成人啪精品午夜网站| 欧美乱码精品一区二区三区| 国产黄片美女视频| 巨乳人妻的诱惑在线观看| 90打野战视频偷拍视频| 国产麻豆成人av免费视频| 在线播放国产精品三级| 免费在线观看视频国产中文字幕亚洲| 日韩欧美国产一区二区入口| 久久久久精品国产欧美久久久| 亚洲专区字幕在线| 国产精品久久久av美女十八| a级毛片a级免费在线| 中文字幕人妻熟女乱码| 人人澡人人妻人| 欧美乱色亚洲激情| 国产av在哪里看| 听说在线观看完整版免费高清| 精品一区二区三区四区五区乱码| 人妻久久中文字幕网| 女性被躁到高潮视频| 村上凉子中文字幕在线| 国产一区二区在线av高清观看| 好男人在线观看高清免费视频 | 少妇熟女aⅴ在线视频| 大型黄色视频在线免费观看| 久久精品国产亚洲av香蕉五月| 国产黄色小视频在线观看| 亚洲人成电影免费在线| 午夜久久久在线观看| 精品福利观看| 99re在线观看精品视频| 国产亚洲精品久久久久5区| 免费在线观看黄色视频的| 精品一区二区三区av网在线观看| 一级黄色大片毛片| 久久99热这里只有精品18| 香蕉av资源在线| 美女高潮喷水抽搐中文字幕| 久久午夜亚洲精品久久| 亚洲在线自拍视频| 999精品在线视频| 听说在线观看完整版免费高清| 国产亚洲欧美98| 欧美精品亚洲一区二区| 岛国视频午夜一区免费看| 日本撒尿小便嘘嘘汇集6| 99国产精品一区二区三区| 亚洲片人在线观看| 成人午夜高清在线视频 | 一进一出抽搐动态| 免费在线观看日本一区| av中文乱码字幕在线| 亚洲aⅴ乱码一区二区在线播放 | 精品久久久久久久毛片微露脸| 可以在线观看的亚洲视频| 麻豆一二三区av精品| 欧美又色又爽又黄视频| 日韩视频一区二区在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲在线自拍视频| 精品电影一区二区在线| 久久天堂一区二区三区四区| 少妇裸体淫交视频免费看高清 | 19禁男女啪啪无遮挡网站| 久久久久九九精品影院| 亚洲欧美日韩高清在线视频| 嫩草影视91久久| 黄频高清免费视频| av福利片在线| 99久久99久久久精品蜜桃| 神马国产精品三级电影在线观看 | 国产成人系列免费观看| 成年人黄色毛片网站| 婷婷精品国产亚洲av| 在线观看免费视频日本深夜| 成人三级黄色视频| 后天国语完整版免费观看| 欧美日韩瑟瑟在线播放| 视频区欧美日本亚洲| 亚洲第一电影网av| 国产成人系列免费观看| 操出白浆在线播放| 久久国产精品影院| 黄色视频不卡| 在线播放国产精品三级| 久久人人精品亚洲av| 久久香蕉激情| 午夜激情av网站| 国产精品精品国产色婷婷| 男女那种视频在线观看| 亚洲国产精品sss在线观看| 麻豆成人午夜福利视频| 国产午夜福利久久久久久| 亚洲成av人片免费观看| 悠悠久久av| 中文字幕精品亚洲无线码一区 | 亚洲精品一区av在线观看| 久9热在线精品视频| 国产99白浆流出| 中国美女看黄片| www日本在线高清视频| 欧美日韩亚洲综合一区二区三区_| 99国产精品99久久久久| 欧美黑人欧美精品刺激| 欧美国产日韩亚洲一区| 在线观看一区二区三区| 十分钟在线观看高清视频www| 精品一区二区三区视频在线观看免费| 日韩大码丰满熟妇| 老熟妇乱子伦视频在线观看| 精品国产乱码久久久久久男人| 丁香六月欧美| 久久中文看片网| 国产亚洲欧美精品永久| 国产av在哪里看| 一级作爱视频免费观看| 欧美精品啪啪一区二区三区| 色综合站精品国产| 精品第一国产精品| 草草在线视频免费看| 成人特级黄色片久久久久久久| 久久久精品欧美日韩精品| 中文字幕av电影在线播放| 深夜精品福利| 淫妇啪啪啪对白视频| 男女床上黄色一级片免费看| 中文在线观看免费www的网站 | 精品国产亚洲在线| 国产一区二区三区在线臀色熟女| 精品久久蜜臀av无| 亚洲真实伦在线观看| www.www免费av| 老司机深夜福利视频在线观看| 免费高清在线观看日韩| 香蕉久久夜色| 国产成人精品无人区| 国产精品1区2区在线观看.| 午夜福利在线观看吧| 午夜激情av网站| 男女视频在线观看网站免费 | 欧美 亚洲 国产 日韩一| 国产精品自产拍在线观看55亚洲| 中文资源天堂在线| or卡值多少钱| 国产成+人综合+亚洲专区| 精品国产乱码久久久久久男人| 国产亚洲欧美精品永久| 国产免费男女视频| 日本免费a在线| 国产精品亚洲美女久久久| а√天堂www在线а√下载| 国产精品乱码一区二三区的特点| 亚洲aⅴ乱码一区二区在线播放 | 欧美绝顶高潮抽搐喷水| a级毛片在线看网站| 亚洲成人免费电影在线观看| 一区二区三区精品91| 不卡一级毛片| 久久香蕉激情| 亚洲成人久久性| 禁无遮挡网站| 国产成人欧美| 麻豆成人午夜福利视频| 久久婷婷成人综合色麻豆| 香蕉国产在线看| 日本黄色视频三级网站网址| 一级片免费观看大全| 亚洲av成人一区二区三| 天天添夜夜摸| 亚洲精品av麻豆狂野| av有码第一页| 国产激情欧美一区二区| 99在线人妻在线中文字幕| 国产aⅴ精品一区二区三区波| 午夜免费观看网址| 欧美国产日韩亚洲一区| 两个人免费观看高清视频| 欧美中文综合在线视频| 男人舔女人下体高潮全视频| 性欧美人与动物交配| 亚洲真实伦在线观看| 操出白浆在线播放| 最好的美女福利视频网| 首页视频小说图片口味搜索| 午夜免费成人在线视频| 国产极品粉嫩免费观看在线| 999久久久国产精品视频| 精品一区二区三区四区五区乱码| 欧美av亚洲av综合av国产av| 成人三级做爰电影| 亚洲精品久久成人aⅴ小说| 久久国产精品人妻蜜桃| 1024香蕉在线观看| 国产精品一区二区免费欧美| 宅男免费午夜| 精品久久久久久久久久久久久 | 国产精品日韩av在线免费观看| 日日摸夜夜添夜夜添小说| 国产一区二区在线av高清观看| 制服人妻中文乱码| 深夜精品福利| 日日夜夜操网爽| 女性生殖器流出的白浆| 欧美绝顶高潮抽搐喷水| 母亲3免费完整高清在线观看| 黄色成人免费大全| 18禁裸乳无遮挡免费网站照片 | 色综合亚洲欧美另类图片| 亚洲天堂国产精品一区在线| 国产真人三级小视频在线观看| 欧美大码av|