• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive Control of Discrete-time Nonlinear Systems Using ITF-ORVFL

    2022-01-26 00:36:16XiaofeiZhangHongbinMaWenchaoZuoandManLuo
    IEEE/CAA Journal of Automatica Sinica 2022年3期

    Xiaofei Zhang,Hongbin Ma,Wenchao Zuo,and Man Luo

    Abstract—Random vector functional ink (RVFL) networks belong to a class of single hidden layer neural networks in which some parameters are randomly selected.Their network structure in which contains the direct links between inputs and outputs is unique,and stability analysis and real-time performance are two difficulties of the control systems based on neural networks.In this paper,combining the advantages of RVFL and the ideas of online sequential extreme learning machine (OS-ELM) and initial-training-free online extreme learning machine (ITFOELM),a novel online learning algorithm which is named as initial-training-free online random vector functional link algo rithm (ITF-ORVFL) is investigated for training RVFL.The link vector of RVFL network can be analytically determined based on sequentially arriving data by ITF-ORVFL with a high learning speed,and the stability for nonlinear systems based on this learning algorithm is analyzed.The experiment results indicate that the proposed ITF-ORVFL is effective in coping with nonparametric uncertainty.

    I.INTRODUCTION

    MOST conventional control approaches can not provide satisfactory control performance for complex systems,such as complex industrial process control systems,robot control systems and so on,due to the difficulties in developing exact mathematical models for nonparametric uncertainties of systems (e.g.,frictional force,unmodeled dynamics).Neural networks (NN) are a good class of nonlinear function approximators [1].With enough history data,and it is possible to estimate nonparametric uncertainty using NN.Radial basis function (RBF) networks belong to a class of single-hidden layer feedforward neural networks (SLFNs) that do not contain the direct links between inputs and outputs,and they have been shown to perform well in solving many practical problems [2]–[5].In recent years,several new RBF architectures have been proposed with the aim of providing better performance.The standard learning algorithm of RBF networks is the conventional gradient descent algorithm.Extreme learning machine (ELM) [6],in which the input weights and hidden layer biases of networks are chosen randomly,and the output weights are determined by the Pseudo-Inverse of hidden layer output matrix,is used to train SLFNs [7].In order to train SLFNs using online data,some online learning algorithms were introduced,such as online sequential extreme learning machine (OS-ELM) [8],regularized online sequential extreme learning machine(ReOS-ELM) [9],initial-training-free online extreme learning machine (ITF-OELM) [10],etc.Although,the learning speed of ELM is extremely fast,the stability of ITF-OELM for nonlinear systems has not been analyzed.

    Random vector functional link (RVFL) network is a randomized version of the functional link neural network [11],[12].RVFL contains more information by the direct links between inputs and outputs.RVFL was proposed in [13],and learning and generalization characteristics of RVFL were discussed in [14],[15].In [16],Igelnik and Pao proved that the RVFL network is a universal approximator for a continuous function on a bound finite dimensional set with a closed-form solution.

    Usually,RVFL network is trained by offline data.The stochastic gradient descent back-propagation (SGBP)algorithm is used to train RVFL using online data,but it suffers from slow training error convergence as a large number of training data may be required.In this paper,inspired by ITF-OELM and broad learning system (BLS) [17],a novel online learning algorithm which is named as initialtraining-free online random vector functional link algorithm(ITF-ORVFL) is investigated for training RVFL using online data.ITF- ORVFL is different from ITF-OSELM,the update formulae is mended,so that the stability for nonlinear systems based on this learning algorithm can be guaranteed.Compared with the the SGBP algorithm,the link vector of RVFL is determined based on the sequentially arriving data by ITFORVFL,so the learning speed of ITF-ORVF is very fast.In order to verify the effectiveness of ITF-ORVFL,ITF-ORVFL is applied in a robot servo control system based on vision for coping with nonlinear uncertainty.

    This paper is organized as follows.RVFL is briefly introduced in Section II.In Section III,we introduce ITFORVFL.In Section IV,the robot servo control system based on vision is explained.In Section V,two experiment examples are given to verify the effectiveness of ITF-ORVFL in coping with nonlinear uncertaiies.Our conclusions are given in Section VI.

    II.RANDOM VECTOR FUNCTIONAL LINK

    RVFL network is shown in Fig.1,and actual values of the weights from the input layer to enhancement nodes can be randomly generated in a suitable domain and kept fixed in the learning stage.The input features of RVFL are firstly transformed into the enhanced features by enhancement nodes,and input weights and biases of the enhancement nodes are randomly generated.At output layer,all the enhanced and original features are concatenated and fed into output neurons.

    Fig.1.The structure of RVFL.

    As the RVFL network has highly beneficial direct links,it is different from the RBF network.

    The training procedure of RVFL is similar to ELM and contains two stages: random feature mapping and linear parameter solving.For the output of the RVFL withMinput nodes,Lenhancement nodes and one output node has the following form

    andG(·) is the active function (additive or radical basis function) of the enhancement node with parameterswl∈RM,bl∈R,and β is a link vector.

    For RVFL,only the link vector β need to the determined by solving the following problem:

    whereNis the number of data samples,andhiis a vector version of the concatenation of the original features as well as the enhanced features.Directly solving the problem in (5) may lead to over-fitting.In practice,a regularization on the solution or preference of the solution with smaller norm [18]can be adopted to obtain the solution.A straightforward solution within a single learning step can be achieved by the pseudo-inverse [16],[19],among which the Moore-Penrose pseudo-inverse,is most commonly used,and

    whereHandTare matrix versions of the features and targets by stacking the features and targets of all data samples,andH?is the Moore-Penrose generalized inverse ofH.Another alternative is theL2 norm regularized least square (or ridge regression),which solves the following problem:

    The solution is given by

    where λ is a regularization parameter.

    III.INITIAL-TRAINING-FREE ONLINE RANDOM VECTOR FUNCTIONAL LINK

    It should be noted that the afore mentioned theorems assume the availability of complete training data and use (6)or (8) for calculating the link vector β,however in real applications,the training data may arrive chunk-by-chunk or one-by-one (a special case of chunk).Hence,the batch algorithm for RVFL has to be modified for this case so as to make it online sequential.

    We must find the learning for mulae for the online sequential learning process.Given a chunk of initial training set,andN0≥(L+M),then the solution of‖H0β-T0‖is

    When another chunk of data is given,andN1≥(M+L),the problem then becomes minimizing

    whereH1is explained in (12) (at the bottom of this page),and

    Considering both chunks of training data setsand,the link vector becomes

    Combining ( 14),(15) and ( 16),β1is given by

    When thekth chunk of data set is received

    whereHkis explained in (21) (at the bottom of this page.) and

    Note that the size ofKkis (M+L)×(M+L),and the value of (M+L) is often quite large.In order to reduce the computational cost for inverse matrix in the case whereNk?(M+L),from (19),the update formula foris

    derived using the Woodbury formula as

    For the convenience of expression (23),we define

    Then,the update formula for βkcan be written as

    Remark 1:From (25) and (26),it can be seen that the sequential implementation of the least-squares solution (8) is similar to recursive least squares (RLS).Hence,all the convergence results of RLS can be applied here.

    OS-ELM is an efficient online version of ELM,and the sequential implementation of OS-ELM is similar to RLS.ITFOELM is an improved version of OS-ELM,and it incorporates the regularization factor λ and forgetting factorρ and thus can yield good generalization performance for noisy data and time-varying models.In this paper,inspired by ITFOELM and BLS,ITF-ORVFL is introduced.

    The weight updating formula of ITF-ORVFL for thekth arriving data is

    where 0 <ρ <1 and ρ is the forgetting factor of ITF-ORVFL that gives the more recent arriving data a higher contribution to the output weight adjustment.

    The initial conditions ofP0and β0could be set as

    where 0Lis a vector of all zeros with size (M+L)×1.

    In fact,this way of initializing β0andP0is a common initialization setting for using RLS algorithm.

    IV.THE ROBOT SERVO CONTROL SYSTEM BASED ON VISION

    Six-degree-of-freedom robots have six degrees of freedom,and these industrial robots are implemented by six joints (J1 to J6),respectively.The six joints (J1 to J6) all have a servo motor and a decelerator.A six-degree-of-freedom robot can be regarded as a kinematic chain which is connected by a series of rigid bodies through the joints.The rigid bodies are called connecting rods,and the six-degree-of-freedom robot comprises shoulder joint,upper arm,elbow joint,lower arm,wrist and the end-effector.Fig.2 is a modular and multijointed robot.Forward kinematics and inverse kinematics are two important aspects of robot arm motion analysis,and inverse kinematics is used to obtain the joint angles when the position and posture of the end joint are specified.

    Fig.2.A modular and multi-joint robot.

    The robot servo control system based on vision consists of a modular and multi-jointed robot,a laser and a camera,the laser is fixed on the J6 joint of the robot,and the camera can obtain the position of laser point as a sensor.Fig.3 is the robot servo control system based on vision.

    Fig.3.The robot servo control system based on vision.

    The goal of the robot servo control system based on vision is to make the laser point arrive at the designated location.However,the robot servo control system based on vision contains many nonlinear uncertainties,such as,friction torque disturbance,calibration error,etc.Due to nonlinear uncertainties of the robot servo control system based on vision,it is suitable for verifying the effectiveness of the proposed ITF-ORVFL on this system.

    In this paper,the position control of the laser point inY-axis direction is adopted,and the position of the laser point inXaxis is a constant value in actual experiments.The state equation of the robot servo control system based on vision is

    wherexkis the position of laser point at timek,ζk+1andyk+1are the nonparametric uncertainty of this system,the laser point which is obtained by camera at timek+1,respectively,andukdenotes control signal.The nonparametric uncertainty indicates the sum of the nonlinear uncertainties of this system.

    The use of forgetting factor in ITF-OELM can accelerate the convergence speed for system identification but may lead to an ill-conditioned covariance matrix in the recursively updating process,ITF-ORVFL also has this issue,and in order to solve this issue,the change detection mechanism is also introduced in ITF-ORVFL.Besides a novel variable is added to the update for mulae of ITF-ORVFL for the purpose of analyzing system stability.

    The robot servo control system based on vision is a special system where the training data comes one by one which meansNk=1.ITF-ORVFL is performed in two main stages,the first stage is parameter initialization,and the second stage is parameter learning.

    1) Initialization Phase:

    a) The parameters of ITF-ORVFL are λ=0.005,ρ=0.998,L=350,M=2,△ =0.0000001,Mm=2000,and η =0.

    b) Set ηm=20.When ITF-ORVFL is initialized,ITFORVFL need much training data that is used to train network,the value ηmis important for the change detection mechanism in ITF-ORVFL,and this value can be adjusted based on estimated error.TheMmcan be decided based on actual situation.

    c) Assign reference signal.

    d) The initialization of ITF-ORVFL is

    c) Do the work of initialization phase,and set=0,and η=0.

    d) Calculateuk,and

    A.Stability Analysis

    In this paper,the camera is roughly calibrated,the main part of ζk+1is calibration error,and the ζk+1of this system is considered as a nonlinear function,and it is estimated by ITFORVFL.The RVFL network has the universal approximation capability for a continuous function on a bound finite dimensional set with a closed-form solution.ITF-ORVFL is an online learning algorithm,and it can train RVFL using online data.

    Assumption 1:Because of the universal approximation capability of the RVFL network,if enough data is available and the number of enhancement nodes is appropriate,there is β*and

    where s up|δk|≤△,and △ is a given upper bound.

    In this paper,RVFL is used to estimate the nonlinear functionζk+1,we select the output of the RVFL network as the est imatedvalue of=Hkβk.

    Introducing Lyapunov candidate as

    Substituting (36) and (37) in (41),we can get that

    Substituting (45) in the above equation,

    andVk+1is nonnegative.

    Based on (49) and (43) and the update algorithm,we can get that

    If enoughdataisobtained,based (53),andthe universal approx imati on ability of RFVL net work,we canget will infinite approach β*,that is to say,we can get that

    where ε1is very value,so,we also can get the system tracking error will be less than ε1basing on (54) and (35).

    V.ANALYSIS OF EXPERIMENT RESULTS

    In order to realize the control of uncertain systems with large nonlinear uncertainty,nonparametric uncertainty is estimated by using the input data of systems and the output data of systems,and the required control law is designed based on the estimated value of nonparametric uncertainty.NN is a good class of nonlinear function approx ima tors,and NN has recently received considerable research interests in the identification and control of dynamical systems [20]–[29].

    In this paper,the camera is roughly calibrated,ζk+1of the system (28) is considered as a nonlinear function,and two simulation experiments are done.The control algorithm which contains the estimated value of ζk+1by RVFL using the proposed ITF-ORVFL is compared with the control algorithm which contains the estimated value of ζk+1by ITF-OELM and the control algorithm which does not contain the estimated value.In order to describe the control algorithm which does not contain the estimated value easily,this control algorithm is named as DC.

    In order to further show the effectiveness of algorithms,the following two indices are introduced: the maximum of |ek|,and the mean value of |ek|.

    The maximum of |ek| is

    A.The First Experiment

    In the first experiment,em= 100,and 100 random points between 318 and 417 inY-axis are generated.Two adjoining random points are different,and those 100 random points are selected as the reference signal.Fig.4 and Fig.5 denote the first experiment results.Figs.4 (a)–(d) are the tracking curves of the control algorithm which contains the estimated value by ITFORVFL,the control algorithm which contains the estimated value by ITF-OELM,DC,and the changing curve of the reference signal,respectively.TheY-axis of Fig.5 indicates the tracking error of experiment 1,and theX-axis of Fig.5 indicates the number of robot arm motion.Fig.5 plots the tracking error curves of the robot servo control system based on vision.The indices ofeaveandemaxare showed in Table I.Fig.5 and Table I show that the control algorithm which contains the estimated value of nonparametric uncertainty by ITF-ORVFL have a higher control accuracy than two other algorithms,when the reference signal is a sequence which contains 100 random points.The results of Fig.5 and Table I imply that ITF-ORVFL is effective coping with nonparametric uncertainty of the system (28),where the reference signals is a sequence which contains 100 random points.

    Fig.4.The tracking curves of Experiment 1.(a) The tracking curve of ITFORFVL; (b) The tracking curve of ITF-OELM; (c) The tracking curve of DC;(d) The changing curve of reference signal.

    Fig.5.The tracking errors of Experiment 1.(a) The error curve of ITFORFVL; (b) The error curve of ITF-OELM; (c) The error curve of DC.

    B.The Second Experiment

    In the second experiment,em=12,and the reference signal is

    Figs.6 and 7 denote the second experiment results.Figs.6 (a)–(d) are the tracking curves of the control algorithm which contains the estimated value by ITF-ORVFL,the control algorithm which contains the estimated value by ITF-OELM,DC,and the change curve of the reference signal in the secondexperiment,respectively.Fig.7 plots the tracking error curves of the robot servo control system based on vision.Table II show theeaveandemaxindices of the second experiment.The results of Fig.7 and Table II imply that ITF-ORVFL is effective in coping with nonparametric uncertainty of the system (28),when (58) is adopted as reference signal.

    TABLE ITHE INDICES OF EXPERIMENT 1

    Fig.6.The tracking curves of Experiment 2.(a) The tracking curve of ITFORFVL; (b) The tracking curve of ITF-OELM; (c) The tracking curve of DC;(d) The changing curve of the reference signal.

    Fig.7.The tracking errors of Experiment 2.(a) The error curve of ITFORFVL; (b) The error curve of ITF-OELM; (c) The error curve of DC.

    VI.CONCLUSION

    In this paper,inspired by ITF-OELM and BLS,ITFORVFL has been introduced to train RVFL,a novel variable is added to the update for mulae of ITF-ORVFL,a robot servo control system based on vision is adopted to verify the effectiveness of ITF-ORVFL in predicting nonparametric uncertainty of the system.The stability of the proposedalgorithm is guaranteed by theoretical analysis.Two experiments have been performed,and these two experiments show that the proposed ITF-ORVFL algorithm is effective in estimating nonparametric uncertainty of actual systems.

    TABLE IITHE INDICES OF EXPERIMENT 2

    中文资源天堂在线| 国产一区二区激情短视频| 亚洲午夜理论影院| 日日摸夜夜添夜夜添小说| 国产成人av激情在线播放| 一级毛片精品| 一区二区三区国产精品乱码| 欧美激情久久久久久爽电影| 亚洲中文字幕日韩| 日本黄大片高清| 波多野结衣高清无吗| 神马国产精品三级电影在线观看| 日韩欧美在线乱码| 人人妻人人看人人澡| 中文字幕高清在线视频| 人妻夜夜爽99麻豆av| 色在线成人网| 日韩欧美免费精品| 99久久精品国产亚洲精品| 啦啦啦韩国在线观看视频| 成人国产综合亚洲| 亚洲成人中文字幕在线播放| 国产精品女同一区二区软件 | 久久午夜亚洲精品久久| 91老司机精品| 午夜两性在线视频| 亚洲av免费在线观看| 两个人视频免费观看高清| 18禁黄网站禁片午夜丰满| 九色国产91popny在线| 又紧又爽又黄一区二区| 99热只有精品国产| 成人无遮挡网站| 欧美国产日韩亚洲一区| 国产精品1区2区在线观看.| 欧美在线黄色| 成人无遮挡网站| 亚洲第一电影网av| 久久精品91蜜桃| 免费电影在线观看免费观看| 久9热在线精品视频| 国产精品一区二区免费欧美| 亚洲成人免费电影在线观看| 波多野结衣高清作品| 美女cb高潮喷水在线观看 | 国产精品,欧美在线| 欧美黑人巨大hd| 亚洲avbb在线观看| 国产精品一区二区精品视频观看| 亚洲成人精品中文字幕电影| 免费看美女性在线毛片视频| 国产v大片淫在线免费观看| 国产伦在线观看视频一区| 人人妻,人人澡人人爽秒播| 视频区欧美日本亚洲| 成人av在线播放网站| 亚洲欧美日韩高清在线视频| 亚洲av成人不卡在线观看播放网| 综合色av麻豆| 色av中文字幕| 一区二区三区激情视频| 99久久国产精品久久久| 级片在线观看| 国产亚洲精品久久久久久毛片| 国产又色又爽无遮挡免费看| 69av精品久久久久久| 老司机福利观看| 少妇熟女aⅴ在线视频| 美女大奶头视频| 精品免费久久久久久久清纯| 高清在线国产一区| 1000部很黄的大片| 丰满人妻一区二区三区视频av | 又大又爽又粗| 中文在线观看免费www的网站| 搞女人的毛片| 黄色女人牲交| 国产真实乱freesex| 黑人欧美特级aaaaaa片| 久久久久久九九精品二区国产| 国产精品av视频在线免费观看| 51午夜福利影视在线观看| 日本黄色片子视频| 国产精品一区二区精品视频观看| 亚洲美女视频黄频| 国产成人影院久久av| 国产人伦9x9x在线观看| 国产高清视频在线播放一区| 舔av片在线| 久久这里只有精品19| 在线国产一区二区在线| 国产三级在线视频| 久久亚洲真实| 窝窝影院91人妻| 亚洲 国产 在线| 午夜福利免费观看在线| 精品久久蜜臀av无| 在线观看66精品国产| 一进一出好大好爽视频| 国产成人av教育| 在线国产一区二区在线| 男人舔女人下体高潮全视频| 免费搜索国产男女视频| 免费观看精品视频网站| 村上凉子中文字幕在线| 最近最新免费中文字幕在线| 日日摸夜夜添夜夜添小说| 此物有八面人人有两片| 免费人成视频x8x8入口观看| 九色国产91popny在线| 免费在线观看影片大全网站| 精品国产乱码久久久久久男人| 免费观看的影片在线观看| 精品一区二区三区av网在线观看| 一区二区三区高清视频在线| 露出奶头的视频| 色视频www国产| 激情在线观看视频在线高清| 久久精品影院6| 99热6这里只有精品| 亚洲一区二区三区不卡视频| 美女大奶头视频| 精品久久久久久久末码| 国产精品野战在线观看| avwww免费| 最近最新免费中文字幕在线| 美女被艹到高潮喷水动态| 神马国产精品三级电影在线观看| 少妇裸体淫交视频免费看高清| 欧美色欧美亚洲另类二区| 久久精品亚洲精品国产色婷小说| 亚洲欧美日韩无卡精品| a级毛片在线看网站| 中文在线观看免费www的网站| 又紧又爽又黄一区二区| 亚洲国产欧洲综合997久久,| 桃色一区二区三区在线观看| 国语自产精品视频在线第100页| 国产不卡一卡二| a级毛片在线看网站| 欧美一级a爱片免费观看看| www.自偷自拍.com| 天天躁日日操中文字幕| 免费一级毛片在线播放高清视频| 人人妻人人澡欧美一区二区| 一个人观看的视频www高清免费观看 | 色综合欧美亚洲国产小说| 亚洲欧美日韩东京热| 久久这里只有精品中国| 欧美日韩福利视频一区二区| 欧美乱码精品一区二区三区| 一区福利在线观看| 在线观看日韩欧美| 国产精品国产高清国产av| 国产欧美日韩一区二区三| 久久久色成人| 国产熟女xx| 欧美av亚洲av综合av国产av| 18禁裸乳无遮挡免费网站照片| 在线播放国产精品三级| 久久久久亚洲av毛片大全| 两个人视频免费观看高清| 真实男女啪啪啪动态图| 18禁黄网站禁片免费观看直播| av视频在线观看入口| 午夜福利成人在线免费观看| 免费在线观看视频国产中文字幕亚洲| 每晚都被弄得嗷嗷叫到高潮| av国产免费在线观看| 久久天躁狠狠躁夜夜2o2o| 精品国产乱子伦一区二区三区| 两个人的视频大全免费| 久久亚洲真实| 少妇的逼水好多| 国产一区二区在线观看日韩 | 午夜精品在线福利| 欧美日本视频| 99热只有精品国产| 免费看日本二区| 小说图片视频综合网站| 在线观看美女被高潮喷水网站 | 一个人免费在线观看电影 | 久久人人精品亚洲av| 国产成人精品久久二区二区91| 国产激情久久老熟女| 国产精品亚洲一级av第二区| 一个人免费在线观看电影 | АⅤ资源中文在线天堂| 精品久久久久久成人av| 18禁观看日本| 这个男人来自地球电影免费观看| 窝窝影院91人妻| 国产成人系列免费观看| 国产淫片久久久久久久久 | 欧美色欧美亚洲另类二区| 日韩欧美在线乱码| 村上凉子中文字幕在线| 18禁黄网站禁片午夜丰满| 日韩国内少妇激情av| 色综合亚洲欧美另类图片| 欧美日韩一级在线毛片| 激情在线观看视频在线高清| 九九热线精品视视频播放| 色av中文字幕| 97碰自拍视频| 青草久久国产| 国产1区2区3区精品| 91av网一区二区| 免费观看的影片在线观看| 韩国av一区二区三区四区| 国产精品av视频在线免费观看| 最近最新免费中文字幕在线| 天堂av国产一区二区熟女人妻| 免费在线观看影片大全网站| 一边摸一边抽搐一进一小说| 成人欧美大片| 久久精品国产清高在天天线| 美女 人体艺术 gogo| 超碰成人久久| 亚洲av免费在线观看| 女人被狂操c到高潮| 九九在线视频观看精品| 亚洲av第一区精品v没综合| 亚洲av成人精品一区久久| 在线视频色国产色| 国产精品美女特级片免费视频播放器 | 欧美又色又爽又黄视频| 午夜免费激情av| 中文资源天堂在线| 长腿黑丝高跟| 欧美大码av| 一进一出抽搐gif免费好疼| 欧美成人性av电影在线观看| 午夜日韩欧美国产| 国产成人福利小说| 91老司机精品| 免费av毛片视频| 国产亚洲欧美98| 成人特级黄色片久久久久久久| 久久精品影院6| 欧美极品一区二区三区四区| 999久久久国产精品视频| 久久久久久久精品吃奶| 亚洲专区字幕在线| 亚洲av日韩精品久久久久久密| 精品一区二区三区四区五区乱码| 三级男女做爰猛烈吃奶摸视频| 1024香蕉在线观看| 免费看日本二区| ponron亚洲| 又大又爽又粗| 网址你懂的国产日韩在线| 成人特级av手机在线观看| 黄色丝袜av网址大全| 最好的美女福利视频网| 日韩有码中文字幕| 精品一区二区三区视频在线观看免费| 午夜亚洲福利在线播放| 亚洲国产欧美网| 国产私拍福利视频在线观看| 老司机午夜福利在线观看视频| 亚洲精品在线美女| 亚洲七黄色美女视频| 日日摸夜夜添夜夜添小说| 久久精品国产清高在天天线| svipshipincom国产片| 男人舔女人的私密视频| 欧美成狂野欧美在线观看| 手机成人av网站| 亚洲性夜色夜夜综合| 日本一本二区三区精品| 国产蜜桃级精品一区二区三区| 国产欧美日韩一区二区精品| 午夜两性在线视频| 18美女黄网站色大片免费观看| 在线国产一区二区在线| 久久久久久久午夜电影| 国内精品久久久久精免费| 国产伦精品一区二区三区视频9 | 美女免费视频网站| 99热6这里只有精品| 国产一区二区三区视频了| 嫩草影院入口| 国产亚洲精品一区二区www| а√天堂www在线а√下载| 国产高清三级在线| 国产精品,欧美在线| 精品99又大又爽又粗少妇毛片 | 99久国产av精品| 又粗又爽又猛毛片免费看| 男人的好看免费观看在线视频| 成人永久免费在线观看视频| 淫秽高清视频在线观看| 美女被艹到高潮喷水动态| 欧美黄色片欧美黄色片| www.熟女人妻精品国产| 久久精品国产亚洲av香蕉五月| 三级毛片av免费| 99视频精品全部免费 在线 | 夜夜看夜夜爽夜夜摸| 免费搜索国产男女视频| 白带黄色成豆腐渣| 51午夜福利影视在线观看| 亚洲av片天天在线观看| 亚洲国产欧美人成| 一级毛片精品| 亚洲中文av在线| 国产成人av激情在线播放| 他把我摸到了高潮在线观看| 丰满人妻熟妇乱又伦精品不卡| 午夜福利在线在线| 麻豆国产av国片精品| 99视频精品全部免费 在线 | 一区二区三区高清视频在线| 俺也久久电影网| 国产精品99久久99久久久不卡| 国产精品日韩av在线免费观看| 精品久久久久久成人av| 日韩 欧美 亚洲 中文字幕| 在线免费观看不下载黄p国产 | 亚洲人成伊人成综合网2020| 亚洲 国产 在线| 毛片女人毛片| 色哟哟哟哟哟哟| 桃红色精品国产亚洲av| 亚洲人成网站在线播放欧美日韩| 91久久精品国产一区二区成人 | 白带黄色成豆腐渣| 国产高清有码在线观看视频| 不卡av一区二区三区| 欧美中文日本在线观看视频| 美女大奶头视频| 国产69精品久久久久777片 | 欧美另类亚洲清纯唯美| 亚洲乱码一区二区免费版| 18禁黄网站禁片午夜丰满| 麻豆久久精品国产亚洲av| 麻豆av在线久日| 亚洲午夜精品一区,二区,三区| 久久久国产精品麻豆| 国产精品野战在线观看| 九九热线精品视视频播放| 国产av麻豆久久久久久久| 长腿黑丝高跟| 天堂av国产一区二区熟女人妻| 香蕉av资源在线| 亚洲国产中文字幕在线视频| www日本黄色视频网| 午夜激情欧美在线| 97碰自拍视频| av片东京热男人的天堂| 嫩草影视91久久| 亚洲国产色片| 男人舔女人的私密视频| 国产日本99.免费观看| 好男人电影高清在线观看| 国产成人aa在线观看| 999精品在线视频| 欧美成狂野欧美在线观看| 成年女人看的毛片在线观看| 男人和女人高潮做爰伦理| 日本黄大片高清| 男人和女人高潮做爰伦理| 一二三四在线观看免费中文在| 日本免费a在线| 亚洲av片天天在线观看| 精品久久久久久久毛片微露脸| 亚洲 欧美一区二区三区| 五月玫瑰六月丁香| 日日夜夜操网爽| 深夜精品福利| 淫妇啪啪啪对白视频| 宅男免费午夜| 日韩大尺度精品在线看网址| 国产伦精品一区二区三区视频9 | 国产精品 欧美亚洲| 亚洲国产精品sss在线观看| 午夜激情欧美在线| 亚洲真实伦在线观看| 两人在一起打扑克的视频| 国产精品久久久久久亚洲av鲁大| 嫁个100分男人电影在线观看| 不卡av一区二区三区| 精品国产乱码久久久久久男人| 可以在线观看毛片的网站| 亚洲18禁久久av| 99精品在免费线老司机午夜| 精品久久久久久久毛片微露脸| 看免费av毛片| 久久久久久大精品| 中文资源天堂在线| 成人午夜高清在线视频| 欧美日韩综合久久久久久 | 免费看光身美女| 成人午夜高清在线视频| 少妇的逼水好多| 露出奶头的视频| 搡老熟女国产l中国老女人| av在线天堂中文字幕| 成人永久免费在线观看视频| 18禁美女被吸乳视频| 亚洲最大成人中文| 久久亚洲真实| 精品国产超薄肉色丝袜足j| 两性夫妻黄色片| 久久久久久人人人人人| 老司机午夜十八禁免费视频| 啦啦啦免费观看视频1| 法律面前人人平等表现在哪些方面| 97人妻精品一区二区三区麻豆| 老司机午夜十八禁免费视频| 搡老岳熟女国产| 亚洲男人的天堂狠狠| 免费av毛片视频| 久久久精品大字幕| 一个人免费在线观看的高清视频| 一级毛片高清免费大全| 免费看美女性在线毛片视频| 亚洲色图av天堂| 久久精品91无色码中文字幕| 亚洲 欧美 日韩 在线 免费| 国产真实乱freesex| 日韩欧美国产一区二区入口| 欧美一级毛片孕妇| 国产精品久久久久久精品电影| www.精华液| 午夜免费观看网址| 国产av麻豆久久久久久久| 久久久精品欧美日韩精品| 一个人看视频在线观看www免费 | 特大巨黑吊av在线直播| 美女免费视频网站| 久久午夜综合久久蜜桃| 亚洲精品美女久久av网站| 丁香六月欧美| 极品教师在线免费播放| 成人高潮视频无遮挡免费网站| 中文字幕熟女人妻在线| 亚洲无线观看免费| 免费人成视频x8x8入口观看| 亚洲专区国产一区二区| 久久午夜亚洲精品久久| 亚洲精品在线观看二区| 精品久久久久久成人av| 日本精品一区二区三区蜜桃| 小蜜桃在线观看免费完整版高清| 久久久精品欧美日韩精品| 国产精品乱码一区二三区的特点| 一个人观看的视频www高清免费观看 | 女人高潮潮喷娇喘18禁视频| 看片在线看免费视频| 哪里可以看免费的av片| 亚洲专区字幕在线| 一边摸一边抽搐一进一小说| 老熟妇仑乱视频hdxx| 桃色一区二区三区在线观看| 久久这里只有精品中国| 亚洲国产色片| 免费看a级黄色片| 美女扒开内裤让男人捅视频| 男女床上黄色一级片免费看| 中文资源天堂在线| 久久天躁狠狠躁夜夜2o2o| 1000部很黄的大片| 久久久国产成人精品二区| 精品国产三级普通话版| 国产探花在线观看一区二区| 在线观看美女被高潮喷水网站 | 亚洲美女黄片视频| 国产激情久久老熟女| 免费av毛片视频| 曰老女人黄片| 国产成+人综合+亚洲专区| а√天堂www在线а√下载| av福利片在线观看| 久9热在线精品视频| 最好的美女福利视频网| 伦理电影免费视频| 亚洲精品色激情综合| 成人欧美大片| 午夜久久久久精精品| 国产精品一及| 99久久99久久久精品蜜桃| cao死你这个sao货| 亚洲一区二区三区色噜噜| 精品久久久久久久末码| 精品国产亚洲在线| 国产视频内射| 九九久久精品国产亚洲av麻豆 | 久久精品91蜜桃| 国产成人一区二区三区免费视频网站| 2021天堂中文幕一二区在线观| 欧美一级毛片孕妇| 99热只有精品国产| 好看av亚洲va欧美ⅴa在| 色精品久久人妻99蜜桃| 999久久久国产精品视频| 美女高潮的动态| 在线永久观看黄色视频| 国产欧美日韩精品一区二区| 99国产精品一区二区蜜桃av| 每晚都被弄得嗷嗷叫到高潮| 欧美一级毛片孕妇| 波多野结衣高清作品| 国产精品亚洲美女久久久| 日韩高清综合在线| 波多野结衣高清无吗| 蜜桃久久精品国产亚洲av| 99在线人妻在线中文字幕| 国产午夜精品论理片| 最近最新免费中文字幕在线| 嫩草影视91久久| 亚洲国产中文字幕在线视频| 亚洲国产欧美人成| h日本视频在线播放| 国产淫片久久久久久久久 | 国产亚洲精品综合一区在线观看| 亚洲欧美日韩卡通动漫| 99久久久亚洲精品蜜臀av| 欧美成人免费av一区二区三区| 香蕉av资源在线| 亚洲av成人一区二区三| 又大又爽又粗| 人人妻人人澡欧美一区二区| 最近最新中文字幕大全电影3| 国产91精品成人一区二区三区| 啦啦啦观看免费观看视频高清| 天堂动漫精品| 少妇的逼水好多| 夜夜爽天天搞| 一进一出抽搐gif免费好疼| www国产在线视频色| 国产91精品成人一区二区三区| 中文字幕久久专区| 国产成人精品久久二区二区91| 成人特级黄色片久久久久久久| bbb黄色大片| 美女大奶头视频| 观看免费一级毛片| 综合色av麻豆| 99视频精品全部免费 在线 | 在线视频色国产色| 人妻丰满熟妇av一区二区三区| 国产高清视频在线观看网站| 特级一级黄色大片| 午夜精品在线福利| 18禁黄网站禁片免费观看直播| 久久午夜综合久久蜜桃| 综合色av麻豆| 午夜两性在线视频| 性欧美人与动物交配| 黄片小视频在线播放| 国产午夜精品论理片| 欧美乱妇无乱码| 搡老岳熟女国产| 国产激情欧美一区二区| 两个人视频免费观看高清| av在线蜜桃| 狂野欧美激情性xxxx| 久久精品影院6| 成年版毛片免费区| x7x7x7水蜜桃| 午夜免费观看网址| 特级一级黄色大片| 别揉我奶头~嗯~啊~动态视频| 亚洲 国产 在线| 国产精品永久免费网站| 一个人免费在线观看的高清视频| 欧美不卡视频在线免费观看| av女优亚洲男人天堂 | 在线播放国产精品三级| 成在线人永久免费视频| 亚洲欧美精品综合一区二区三区| 给我免费播放毛片高清在线观看| 波多野结衣高清无吗| 国产aⅴ精品一区二区三区波| 国产三级黄色录像| 欧美日韩精品网址| 国内精品久久久久久久电影| 亚洲av美国av| 欧美绝顶高潮抽搐喷水| tocl精华| 美女午夜性视频免费| 国产人伦9x9x在线观看| 男女之事视频高清在线观看| 999久久久国产精品视频| 日本三级黄在线观看| 听说在线观看完整版免费高清| 国产精品亚洲美女久久久| 麻豆成人午夜福利视频| 草草在线视频免费看| 国产亚洲精品一区二区www| 最近在线观看免费完整版| 久久亚洲精品不卡| 中文资源天堂在线| 国产淫片久久久久久久久 | 欧美日韩瑟瑟在线播放| av女优亚洲男人天堂 | 国产高清videossex| a级毛片a级免费在线| 国产午夜福利久久久久久| 特大巨黑吊av在线直播| 久久久久久大精品| 国产一级毛片七仙女欲春2| 成人亚洲精品av一区二区| 国产精品爽爽va在线观看网站| 亚洲午夜精品一区,二区,三区| 最近在线观看免费完整版| 国产精品久久久人人做人人爽| 亚洲av成人一区二区三| 香蕉国产在线看| 一区福利在线观看| 中文资源天堂在线| 成人性生交大片免费视频hd| 国产私拍福利视频在线观看|