• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    QoS Prediction Model of Cloud Services Based on Deep Learning

    2022-01-26 00:36:18WenJunHuangPeiYunZhangYuTongChenMengChuZhouYusufAlTurkiandAbdullahAbusorrah
    IEEE/CAA Journal of Automatica Sinica 2022年3期

    WenJun Huang,PeiYun Zhang,,YuTong Chen,MengChu Zhou,,Yusuf Al-Turki,,and Abdullah Abusorrah,

    Dear editor,

    This letter presents a deep learning-based prediction model for the quality-of-service (QoS) of cloud services.Specifically,to improve the QoS prediction accuracy of cloud services,a new QoS prediction model is proposed,which is based on multi-staged multi-metric feature fusion with individual evaluations.The multi-metric features include global,local,and individual ones.Experimental results show that the proposed model can provide more accurate QoS prediction results of cloud services than several state-of-the-art methods.

    Cloud computing provides users with fast and secure cloud services,called “service” for short.With the rapid development of cloud computing,the number of cloud-based services continues to increase.However,it is difficult for users to choose services from lots of candidates to meet their needs.In this case,users must compare their QoS,and then determine the best ones.

    QoS can describe non-functional attributes of a service,which is a key indicator often used to evaluate service performance in cloud computing.Due to the uncertainty of user information (such as network status and personal preferences),when different users call the same services,their QoS may differ.Therefore,accurate prediction of QoS values of services is thus required in order to help users choose the most suitable cloud services.

    Many methods have emerged to predict QoS,most of which are inspired by collaborative filtering for service recommendation.These methods predict missing QoS values by collecting historical information of users or services.However,they only use information from an original user-service QoS matrix,which may ignore some important factors that affect QoS,such as locations.Differences in user information,service characteristics,and network status lead to different QoS.

    With the rapid development of deep learning and computing environments,deep neural network (DNN) technologies have significantly impacted many fields,such as computer vision,data mining,and natural language processing.A DNN has a strong nonlinear fitting ability,which can approximate any nonlinear continuous function.It can extract advanced features from original data after statistical learning on a large amount of data.Thus,it is widely used in many artificial intelligence applications to provide the highest prediction accuracy.DNNs can also be used to accurately predict cloud-service QoS.

    Related work:Significant studies have been devoted to solving this problem in recent years.They result in the four main types of methods: Memory-based,model-based,hybrid collaborative filtering,and neural network-based ones.

    Memory-based collaborative filtering methods only use an original user-service QoS matrix to predict QoS.Zhanget al.[1] propose a QoS prediction method in the field of cloud computing.It learns user features via non-negative matrix factorization (NMF) and utilizes the QoS of similar users to improve prediction accuracy.Although memory-based collaborative filtering methods are easy to implement,they are easily affected by data sparsity.Meanwhile,they have problems such as cold start and poor scalability.

    Model-based collaborative filtering methods are widely used to solve the problems mentioned above.Aiming at predicting candidate services for a real-time service adjustment,Zhuet al.[2] propose an adaptive matrix factorization method for online QoS prediction.

    Hybrid collaborative filtering methods combine memory-based and model-based methods.Since collecting QoS values may cause privacy problems,the studies [3],[4] propose privacy protection strategies to obtain high QoS prediction accuracy while protecting user privacy.These methods offer the advantages of both memory based and model-based methods.However,they have the problem of high computational complexity.

    In recent years,with the development of artificial intelligence,neural networks have been applied to the field of QoS prediction.Using the time correlation of QoS,Xionget al.[5] propose a novel personalized matrix factorization method based on Long Short-Term Memory (LSTM) for online QoS prediction.Chenet al.[6] combine an empirical mode decomposition and multivariate LSTM model to propose a hybrid QoS prediction method.However,their network structures and QoS prediction accuracy have much room for improvement in their data preprocessing and feature extraction.This work aims to make such important improvements.

    Problem statement:Usually,a user can call multiple cloud services,and a cloud service can be called by different users.As the number of cloud services continues to increase,many services offer similar functions.Users hope to choose a service that meets their needs,which can be achieved by choosing the one with the best QoS from similar services.

    After a user calls a cloud service,its QoS value is collected by a cloud system and stored in an original user-service QoS matrix,which is denoted asQ.InQ,rows and columns representusers and services,respectively.Items represent QoS values.qij∈Qrepresents the QoS value of servicejdeployed by useri.Fig.1 shows the QoS values provided after three users call five services.

    Fig.1.An original user-service QoS matrix Q.

    Given that not all users call all cloud services in a cloud system,Qmay have some missing items,which may result in a sparseQ.Due to the similarity among services and among users,missing items can be predicted by using existing/known items inQ.The predicted items are shown in bold in Fig.2.To accurately predict QoS values,we propose a QoS prediction model based on deep learning,which adopts multi-staged multi-metric feature fusion with individual evaluations for the first time.

    Basic concepts:

    ● Multi-metric features: They include global,local,and individual ones.

    Fig.2.A user-service QoS matrix with predicted items.

    ● Local feature matrixG: Based on distance similarity,similar users and similar cloud services are extracted fromand thenGis generated.Local features ? can be obtained fromG.

    ● Individual feature matrices: There are two types of individual feature matrices including matrixUfor users and matrixSfor cloud services.They are obtained by performing NMF on matrixQ.Individual features ? can be extracted from them.

    ● Individual evaluation: It comes from matrix.If the proposed model predicts a QoS value of cloud servicejfor useri,serves as an individual evaluation.

    Proposed prediction model:A new DNN is designed to predict QoS values,which is called multi-staged multi-metric-feature DNN(MM-DNN),as shown in Fig.3.It has four stages.Multi-metric features are fused in different concatenation layers.Stages 1–3 serve to fuse global,local,and individual features,respectively.In each stage,an individual evaluation is used to modify features,which makes the output more accurate.If these features are input together into MM-DNN at the same time in Stage 1,it may cause a problem of excessive values.Before outputting a final predicted QoS value in Stage 4,an individual evaluation is input to further improve the value.A detailed analysis of the four stages is shown as follows:

    Stage 1: Global features are input to the proposed model.Then information with the same size as that of local features is further extracted throughLfully connected layers.The features are modified by concatenating an individual evaluation in a concatenation layer.The forward propagation process at this stage can be expressed as

    where φ() denotes a rectified linear unit,i.e.,φ(x) = max(0,x).? is the concatenation operation.y0is the input of Stage1 in MM-DNN.y2is obtained through the fully connected layer after concatenatingy1and.ykis the output of thekth fully connected layer of Stage 1.αkandβkrepresent the weight and bias of thekth fully connected layer,respectively.yLis the output of Stage 1.

    Stage 2: It consists of two concatenation layers andMfully connected layers.Local features are concatenated in a concatenation layer and fed into a fully connected layer.After concatenating an individual evaluation in a concatenation layer,they are learned through fully connected layers.The process is expressed as follows:

    whereyLand ? are the inputs of Stage 2 in MM-DNN,yL+1is obtained through the fully connected layer after concatenatingyLand?,yL+2is obtained through the fully connected layer after concatenatingyL+1and,yL+zis the output of fully connected layer(L+z),andyL+Mis the output of Stage 2.

    Stage 3: It contains two concatenation layers andZfully connected layers.Individual features are connected in a concatenation layer and learned through a fully connected layer.An individual evaluation is then concatenated in a concatenation layer and fed into fully connected layers.The process is expressed as:

    whereyL+Mand ? are inputs of Stage 3 in MM-DNN,yL+M+1is obtained through the fully connected layer after concatenatingyL+Mand ?,yL+M+2is obtained through the fully connected layer after concatenatingyL+M+1and,yL+M+bis the output of the fully connected layer (L+M+b) of MMDNN,andyL+M+Zis the output of Stage 3.

    Stage 4: It consists of a concatenation layer and a fully connected layer.The goal of the proposed model is to predict the QoS value of cloud servicejfor useri.Thus,an individual evaluationis input and connected in the last concatenation layer and learned to further improve the prediction result through the last fully connected layer.The predicted QoS values are then output.The process is expressed as:

    whereyL+M+Zandare inputs of Stage 4.yL+M+Z+1is obtained through the fully connected layer after concatenatingyL+M+Zand.yL+M+Z+1is the output of Stage 4.It is also the output of MM-DNN.pijis a QoS prediction value of cloud servicejfor userifrom the output of MM-DNN.

    Experiments:Our experiments use an Intel Core i7-11700KF CPU @ 3.60GHz,NVIDIA GeForce RTX3090 GPU,and Windows 10 64bit.We use Python 3.7 and Pytorch 1.8.0 to realize MM-DNN.

    To evaluate the performance of the proposed model,experiments are conducted on a real-world QoS data set of services,which is called WS-DREAM [7].Letμbe the matrix density:

    where ξ is the number of existing items in an original user-service QoS matrixQ.|Q| is the total number of entries inQ.Mean absolute error (MAE) and root mean square error (RMSE) are used as indicators to evaluate prediction accuracy.

    The proposed model is compared with the following methods:Probabilistic matrix factorization (PMF) [8],neighborhood-integrated deep matrix factorization (NDMF) [9],and covering-based web service quality prediction via neighborhood-aware matrix factorization (CNMF) [10].

    Fig.3.The structure of MM-DNN.

    Experimental parameters are set in Table 1.They are obtained through lots of experiments.Given four different matrix densities(5%,10%,15%,and 20%),the MAE and RMSE of the four methods are compared.Tables 2 and 3 show the MAE and RMSE of the response time and throughput (i.e.,two kinds of QoS) of the four methods,respectively.MM-DNN outperforms its peers in terms of prediction accuracy with different matrix densities.The results clearly show that MM-DNN outperforms its peers by 6.1% to 21.2%in response time and by 0.2% to 6.8% in throughput.

    Table 1.Experimental Parameters

    Table 2.Comparison of Response Time

    Table 3.Comparison of Throughput

    Conclusions:This paper presents a QoS prediction model for cloud services based on deep learning and multi-staged multi-metric feature fusion with individual evaluations.A new deep neural network model is constructed to fuse the extracted multi-metric features in multiple stages.At each stage of the model,individual evaluations are used to modify features to improve prediction accuracy.Experimental results show that the proposed method can predict QoS values more accurately than the three compared methods.Our future work plans to use time information to improve the proposed model.Since MM-DNN needs a large amount of data for training,it has limitations when facing a highly dynamic environment.More studies are needed to deal with the related issues [11]–[12].

    Acknowledgments:This work was in part supported by the National Natural Science Foundation of China (61872006),the Startup Foundation for New Talents of NUIST,Institutional Fund Projects (IFPNC-001-135-2020),and the Deanship of Scientific Research (DSR) at King Abdulaziz University,Jeddah,Saudi Arabia under grant no.GCV19-37-1441.

    在线播放国产精品三级| av一本久久久久| 人妻丰满熟妇av一区二区三区 | 亚洲av成人一区二区三| 如日韩欧美国产精品一区二区三区| 99riav亚洲国产免费| 在线av久久热| 亚洲 欧美一区二区三区| 久久久久国产一级毛片高清牌| 久久精品人人爽人人爽视色| 搡老乐熟女国产| 制服诱惑二区| 日韩 欧美 亚洲 中文字幕| 变态另类成人亚洲欧美熟女 | 看片在线看免费视频| 久久青草综合色| 久久精品国产99精品国产亚洲性色 | 亚洲一区二区三区欧美精品| 天天躁狠狠躁夜夜躁狠狠躁| 黄色成人免费大全| 亚洲人成伊人成综合网2020| 国产一卡二卡三卡精品| 黑人巨大精品欧美一区二区mp4| 91大片在线观看| 一级,二级,三级黄色视频| 成人国语在线视频| 乱人伦中国视频| 国产成人欧美| 黑人猛操日本美女一级片| e午夜精品久久久久久久| 很黄的视频免费| 99香蕉大伊视频| 亚洲七黄色美女视频| 欧美日韩乱码在线| 99久久人妻综合| 日韩中文字幕欧美一区二区| 欧美性长视频在线观看| 久久久国产一区二区| 18在线观看网站| 亚洲欧美激情在线| 一级毛片高清免费大全| 国产激情久久老熟女| av福利片在线| 国产av又大| 精品一区二区三区视频在线观看免费 | 新久久久久国产一级毛片| 岛国在线观看网站| 99久久99久久久精品蜜桃| 国产精品 欧美亚洲| 精品久久蜜臀av无| 久久久国产一区二区| 亚洲欧洲精品一区二区精品久久久| 欧美精品av麻豆av| 两性夫妻黄色片| 久久久精品免费免费高清| 欧美+亚洲+日韩+国产| 少妇粗大呻吟视频| 大香蕉久久网| 国产男女超爽视频在线观看| 下体分泌物呈黄色| 久久 成人 亚洲| 精品国内亚洲2022精品成人 | 丰满饥渴人妻一区二区三| 国产成人一区二区三区免费视频网站| 交换朋友夫妻互换小说| 成人亚洲精品一区在线观看| 亚洲视频免费观看视频| 欧美午夜高清在线| 国产淫语在线视频| 黄色女人牲交| 国产一区二区三区综合在线观看| 国产不卡一卡二| 村上凉子中文字幕在线| 老汉色∧v一级毛片| 97人妻天天添夜夜摸| 青草久久国产| 老鸭窝网址在线观看| 丝袜美腿诱惑在线| 天堂中文最新版在线下载| 日韩欧美免费精品| 大型av网站在线播放| 啪啪无遮挡十八禁网站| 欧美日韩视频精品一区| 69av精品久久久久久| 国产精品国产av在线观看| 美女午夜性视频免费| 久久国产精品影院| 王馨瑶露胸无遮挡在线观看| 国产精品欧美亚洲77777| 欧美久久黑人一区二区| 国产高清videossex| 成年人黄色毛片网站| 久久亚洲真实| 日韩三级视频一区二区三区| 日韩免费av在线播放| 亚洲 国产 在线| 男男h啪啪无遮挡| 国产成人av激情在线播放| 久久久久视频综合| 99久久综合精品五月天人人| 欧美精品av麻豆av| 亚洲精品久久午夜乱码| 免费在线观看黄色视频的| 久久人人97超碰香蕉20202| 欧美日韩亚洲高清精品| 纯流量卡能插随身wifi吗| ponron亚洲| 黄色成人免费大全| 黑人巨大精品欧美一区二区mp4| 亚洲精品成人av观看孕妇| 男女高潮啪啪啪动态图| 国产97色在线日韩免费| 久久九九热精品免费| 1024视频免费在线观看| 亚洲黑人精品在线| 亚洲一码二码三码区别大吗| 99精品欧美一区二区三区四区| 国产深夜福利视频在线观看| 精品人妻1区二区| 黄色女人牲交| 国产有黄有色有爽视频| 十八禁人妻一区二区| 男女下面插进去视频免费观看| 香蕉丝袜av| 国产精品一区二区在线观看99| 人人妻人人爽人人添夜夜欢视频| 成年动漫av网址| 丰满的人妻完整版| 91精品三级在线观看| 美女高潮喷水抽搐中文字幕| 欧美老熟妇乱子伦牲交| 欧美黑人精品巨大| 丁香欧美五月| 日韩欧美一区视频在线观看| 亚洲精品久久成人aⅴ小说| 久久精品熟女亚洲av麻豆精品| 天天躁夜夜躁狠狠躁躁| 纯流量卡能插随身wifi吗| 韩国av一区二区三区四区| 国产成+人综合+亚洲专区| 91在线观看av| 一本综合久久免费| 中文字幕精品免费在线观看视频| 欧美 亚洲 国产 日韩一| 欧美日韩瑟瑟在线播放| 老司机亚洲免费影院| 精品卡一卡二卡四卡免费| 国产成+人综合+亚洲专区| 91在线观看av| 一级毛片女人18水好多| 啦啦啦在线免费观看视频4| 在线观看免费高清a一片| 757午夜福利合集在线观看| 成人特级黄色片久久久久久久| 欧美精品亚洲一区二区| 亚洲一区二区三区不卡视频| 757午夜福利合集在线观看| 高清欧美精品videossex| 亚洲一区中文字幕在线| 欧美成人免费av一区二区三区 | 精品一区二区三卡| 91成人精品电影| 亚洲,欧美精品.| 国产一区在线观看成人免费| 新久久久久国产一级毛片| 国产日韩欧美亚洲二区| 无遮挡黄片免费观看| 国产av一区二区精品久久| av超薄肉色丝袜交足视频| 人人妻人人澡人人爽人人夜夜| 色精品久久人妻99蜜桃| 亚洲人成电影免费在线| 久久热在线av| 欧美久久黑人一区二区| xxxhd国产人妻xxx| 国产1区2区3区精品| 麻豆成人av在线观看| 天天影视国产精品| 午夜91福利影院| 亚洲 欧美一区二区三区| 国产亚洲欧美精品永久| 18禁裸乳无遮挡免费网站照片 | 日本wwww免费看| 51午夜福利影视在线观看| 露出奶头的视频| 国产一区二区三区在线臀色熟女 | 国产99白浆流出| 日本黄色视频三级网站网址 | 亚洲一码二码三码区别大吗| 久久久精品国产亚洲av高清涩受| 国产麻豆69| 日本a在线网址| cao死你这个sao货| 亚洲五月婷婷丁香| 精品熟女少妇八av免费久了| 久9热在线精品视频| 国产精品美女特级片免费视频播放器 | 成年动漫av网址| 亚洲精品美女久久久久99蜜臀| 在线观看午夜福利视频| 亚洲第一欧美日韩一区二区三区| 欧美日韩视频精品一区| 日韩欧美在线二视频 | 欧美性长视频在线观看| netflix在线观看网站| 中出人妻视频一区二区| 桃红色精品国产亚洲av| 午夜精品在线福利| 欧美日韩成人在线一区二区| 天天操日日干夜夜撸| 久久九九热精品免费| 极品人妻少妇av视频| 欧美日韩一级在线毛片| 欧美人与性动交α欧美精品济南到| 国产麻豆69| 国产精品久久电影中文字幕 | 久久香蕉国产精品| 精品国产一区二区三区久久久樱花| а√天堂www在线а√下载 | 精品午夜福利视频在线观看一区| 成人国语在线视频| 制服诱惑二区| 老司机福利观看| 亚洲av片天天在线观看| 国产精品乱码一区二三区的特点 | 国产亚洲av高清不卡| 一边摸一边抽搐一进一出视频| 国产精品乱码一区二三区的特点 | 美女国产高潮福利片在线看| 一区二区三区激情视频| 丝瓜视频免费看黄片| 亚洲三区欧美一区| 亚洲欧美激情综合另类| 法律面前人人平等表现在哪些方面| 免费久久久久久久精品成人欧美视频| 黄色丝袜av网址大全| 黄色丝袜av网址大全| 色播在线永久视频| 一边摸一边做爽爽视频免费| 色播在线永久视频| 黄色成人免费大全| 99国产极品粉嫩在线观看| 99re在线观看精品视频| 午夜影院日韩av| 午夜亚洲福利在线播放| 欧美精品人与动牲交sv欧美| 69av精品久久久久久| 99久久国产精品久久久| x7x7x7水蜜桃| 最近最新中文字幕大全电影3 | 国产精品香港三级国产av潘金莲| 国产一区二区激情短视频| 99国产精品免费福利视频| 久99久视频精品免费| 国产精品偷伦视频观看了| 日本vs欧美在线观看视频| 操出白浆在线播放| 91麻豆精品激情在线观看国产 | 成人18禁在线播放| 最新的欧美精品一区二区| 中文字幕最新亚洲高清| 欧美人与性动交α欧美软件| 91九色精品人成在线观看| 国产在线观看jvid| 天堂中文最新版在线下载| 老司机午夜福利在线观看视频| 国产激情欧美一区二区| 少妇粗大呻吟视频| 国产欧美日韩精品亚洲av| 香蕉国产在线看| 亚洲精品久久午夜乱码| 国产男女内射视频| 免费观看精品视频网站| 高清欧美精品videossex| 王馨瑶露胸无遮挡在线观看| 美女视频免费永久观看网站| 大香蕉久久网| 久99久视频精品免费| 色播在线永久视频| 纯流量卡能插随身wifi吗| 欧美日韩中文字幕国产精品一区二区三区 | 日韩欧美一区视频在线观看| 精品久久久久久久毛片微露脸| 99久久精品国产亚洲精品| 亚洲av片天天在线观看| av线在线观看网站| 国产野战对白在线观看| 99热只有精品国产| 这个男人来自地球电影免费观看| 9色porny在线观看| 成人特级黄色片久久久久久久| 欧美黄色片欧美黄色片| 啪啪无遮挡十八禁网站| 国产精品一区二区在线不卡| 久久香蕉精品热| 国产精品二区激情视频| 如日韩欧美国产精品一区二区三区| 高潮久久久久久久久久久不卡| av免费在线观看网站| 十八禁网站免费在线| 日韩一卡2卡3卡4卡2021年| 色老头精品视频在线观看| 亚洲视频免费观看视频| 国产精华一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 日韩免费av在线播放| 满18在线观看网站| 欧美精品av麻豆av| 热re99久久精品国产66热6| 男女床上黄色一级片免费看| 一进一出好大好爽视频| 在线观看免费日韩欧美大片| 黄色a级毛片大全视频| 91字幕亚洲| 亚洲精华国产精华精| 真人做人爱边吃奶动态| 午夜福利视频在线观看免费| 国产黄色免费在线视频| 久久精品国产99精品国产亚洲性色 | 午夜福利一区二区在线看| 国产精品偷伦视频观看了| 精品久久久精品久久久| 日韩欧美一区二区三区在线观看 | 亚洲av成人一区二区三| 午夜福利欧美成人| 中文欧美无线码| 满18在线观看网站| 黄色丝袜av网址大全| 欧美乱色亚洲激情| 国产aⅴ精品一区二区三区波| 天天躁日日躁夜夜躁夜夜| 精品视频人人做人人爽| 色精品久久人妻99蜜桃| 国产高清国产精品国产三级| 精品少妇久久久久久888优播| av电影中文网址| 天天影视国产精品| 国产精品av久久久久免费| 欧美乱妇无乱码| 色精品久久人妻99蜜桃| 国产极品粉嫩免费观看在线| 中文欧美无线码| 在线观看免费午夜福利视频| 精品无人区乱码1区二区| 久久精品亚洲精品国产色婷小说| 777久久人妻少妇嫩草av网站| 国产在线一区二区三区精| 高清黄色对白视频在线免费看| 一区二区三区精品91| 中出人妻视频一区二区| 亚洲专区字幕在线| 美女午夜性视频免费| 中文字幕人妻丝袜制服| 捣出白浆h1v1| 欧美亚洲 丝袜 人妻 在线| 高清在线国产一区| av天堂久久9| 午夜精品国产一区二区电影| 99久久人妻综合| 亚洲av美国av| 性少妇av在线| 亚洲欧美精品综合一区二区三区| 他把我摸到了高潮在线观看| 99国产综合亚洲精品| 99香蕉大伊视频| 久久久久精品国产欧美久久久| 久久精品亚洲精品国产色婷小说| 身体一侧抽搐| 亚洲精品一二三| 99riav亚洲国产免费| 丝袜美足系列| 一a级毛片在线观看| 波多野结衣一区麻豆| 国产成人av激情在线播放| 日韩中文字幕欧美一区二区| 韩国精品一区二区三区| 丰满的人妻完整版| 亚洲性夜色夜夜综合| 国产成人一区二区三区免费视频网站| 中文字幕人妻熟女乱码| 久久草成人影院| 欧美日韩瑟瑟在线播放| 亚洲专区国产一区二区| 日韩免费av在线播放| 精品国产美女av久久久久小说| 黄色视频不卡| 亚洲黑人精品在线| bbb黄色大片| 亚洲av片天天在线观看| 好男人电影高清在线观看| 成年人免费黄色播放视频| 欧美日韩成人在线一区二区| 欧美国产精品一级二级三级| 香蕉久久夜色| 黄色成人免费大全| 在线永久观看黄色视频| 亚洲aⅴ乱码一区二区在线播放 | 国产高清国产精品国产三级| 丝袜美足系列| 日本五十路高清| 国产成人精品在线电影| 人人妻人人澡人人看| 一二三四在线观看免费中文在| 女人久久www免费人成看片| 老司机福利观看| 999久久久国产精品视频| 男女下面插进去视频免费观看| 中文字幕最新亚洲高清| 丰满饥渴人妻一区二区三| 精品国产美女av久久久久小说| 国产精品久久久久久人妻精品电影| 女人精品久久久久毛片| 韩国av一区二区三区四区| 无遮挡黄片免费观看| 黄频高清免费视频| 大片电影免费在线观看免费| 高清欧美精品videossex| 日本欧美视频一区| 久久久久久久精品吃奶| 精品午夜福利视频在线观看一区| 韩国av一区二区三区四区| 精品国产超薄肉色丝袜足j| 亚洲视频免费观看视频| 久久久国产成人免费| 欧美另类亚洲清纯唯美| 亚洲国产精品合色在线| 精品久久久久久,| 黄频高清免费视频| 一二三四在线观看免费中文在| av中文乱码字幕在线| 天天添夜夜摸| av片东京热男人的天堂| 咕卡用的链子| 精品国产超薄肉色丝袜足j| 国产深夜福利视频在线观看| 亚洲视频免费观看视频| 人人妻人人澡人人爽人人夜夜| 麻豆av在线久日| 久久久国产成人免费| 法律面前人人平等表现在哪些方面| 怎么达到女性高潮| 欧美 亚洲 国产 日韩一| 免费在线观看影片大全网站| 午夜视频精品福利| avwww免费| 亚洲七黄色美女视频| 91麻豆av在线| 黄色毛片三级朝国网站| 欧美日韩黄片免| 成人免费观看视频高清| 日韩欧美在线二视频 | 日韩精品免费视频一区二区三区| 国产色视频综合| 国产麻豆69| 亚洲熟女毛片儿| 精品福利永久在线观看| 一级毛片高清免费大全| 国产91精品成人一区二区三区| 夜夜夜夜夜久久久久| 飞空精品影院首页| 1024视频免费在线观看| 又黄又爽又免费观看的视频| 亚洲性夜色夜夜综合| 黄色怎么调成土黄色| 在线观看一区二区三区激情| 十八禁人妻一区二区| 看片在线看免费视频| 美女国产高潮福利片在线看| 在线永久观看黄色视频| 亚洲熟女精品中文字幕| 亚洲av成人一区二区三| 久久精品熟女亚洲av麻豆精品| 国产一区二区三区在线臀色熟女 | 免费黄频网站在线观看国产| 国产精品.久久久| 欧美黄色淫秽网站| 一边摸一边做爽爽视频免费| 大香蕉久久网| 久久久国产成人精品二区 | 又大又爽又粗| 黄片播放在线免费| 亚洲一区中文字幕在线| 亚洲第一青青草原| 操美女的视频在线观看| 又紧又爽又黄一区二区| 国产免费av片在线观看野外av| 男人的好看免费观看在线视频 | 午夜精品久久久久久毛片777| aaaaa片日本免费| 精品久久久久久久久久免费视频 | 在线观看免费视频日本深夜| 午夜福利,免费看| 满18在线观看网站| 亚洲精品国产色婷婷电影| 成人永久免费在线观看视频| 亚洲片人在线观看| 一夜夜www| 精品久久久久久久久久免费视频 | 国产精品免费视频内射| 交换朋友夫妻互换小说| 在线十欧美十亚洲十日本专区| 香蕉丝袜av| av网站在线播放免费| 一级黄色大片毛片| 色94色欧美一区二区| 国产精品成人在线| 国产无遮挡羞羞视频在线观看| 精品免费久久久久久久清纯 | 国产精品国产av在线观看| 午夜成年电影在线免费观看| 国产亚洲精品第一综合不卡| 很黄的视频免费| 亚洲国产欧美网| 久久国产精品大桥未久av| 丝袜美足系列| 露出奶头的视频| 久热爱精品视频在线9| 国产一区二区三区综合在线观看| av片东京热男人的天堂| 黄网站色视频无遮挡免费观看| 亚洲aⅴ乱码一区二区在线播放 | 热re99久久精品国产66热6| 免费在线观看完整版高清| 在线观看免费日韩欧美大片| 亚洲成人手机| 国产一区在线观看成人免费| 在线观看午夜福利视频| 亚洲五月色婷婷综合| tocl精华| 精品国产美女av久久久久小说| 男人操女人黄网站| 日韩免费高清中文字幕av| 国产野战对白在线观看| 久久久久国内视频| 一本大道久久a久久精品| 精品人妻在线不人妻| 午夜精品久久久久久毛片777| 国产精品乱码一区二三区的特点 | 日本黄色视频三级网站网址 | 美女午夜性视频免费| 午夜亚洲福利在线播放| 50天的宝宝边吃奶边哭怎么回事| 色在线成人网| 亚洲黑人精品在线| 热re99久久国产66热| 国产成人系列免费观看| 免费女性裸体啪啪无遮挡网站| 国产成人av激情在线播放| 欧美黑人精品巨大| 欧美日韩福利视频一区二区| 午夜激情av网站| 宅男免费午夜| 欧美成人免费av一区二区三区 | 亚洲国产欧美一区二区综合| 中文亚洲av片在线观看爽 | 曰老女人黄片| 中亚洲国语对白在线视频| 精品国产亚洲在线| 欧美日韩福利视频一区二区| 亚洲 国产 在线| 免费观看a级毛片全部| 亚洲专区字幕在线| 欧美激情极品国产一区二区三区| 欧美中文综合在线视频| 国产一区二区三区视频了| 久久精品国产亚洲av香蕉五月 | 中文字幕制服av| 女警被强在线播放| 韩国精品一区二区三区| 极品人妻少妇av视频| 搡老熟女国产l中国老女人| 亚洲av第一区精品v没综合| 成年版毛片免费区| 国产精品 国内视频| 午夜两性在线视频| 亚洲色图 男人天堂 中文字幕| 亚洲欧美日韩高清在线视频| 精品视频人人做人人爽| 99热国产这里只有精品6| 欧美黄色淫秽网站| 亚洲成人手机| 亚洲男人天堂网一区| 婷婷丁香在线五月| 久久久久久久国产电影| 国产精华一区二区三区| 欧美日韩精品网址| 亚洲,欧美精品.| 日本撒尿小便嘘嘘汇集6| 老司机亚洲免费影院| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲aⅴ乱码一区二区在线播放 | 黄片小视频在线播放| 操美女的视频在线观看| 老司机靠b影院| 黄色女人牲交| 欧美成人免费av一区二区三区 | 在线天堂中文资源库| 欧美人与性动交α欧美精品济南到| 国产精品1区2区在线观看. | 亚洲熟妇熟女久久| 久久久久精品国产欧美久久久| 丝袜在线中文字幕| 欧美激情高清一区二区三区| 在线观看免费高清a一片| 国产精品av久久久久免费| 色综合欧美亚洲国产小说| 日韩欧美国产一区二区入口| 男人操女人黄网站| 亚洲色图av天堂| 中文字幕人妻丝袜制服| 变态另类成人亚洲欧美熟女 | 国产欧美日韩一区二区三区在线| 国产精品秋霞免费鲁丝片| 亚洲成人免费av在线播放| 99久久综合精品五月天人人|