• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Highway Lane Change Decision-Making via Attention-Based Deep Reinforcement Learning

    2022-01-26 00:36:20JunjieWangQichaoZhangandDongbinZhao
    IEEE/CAA Journal of Automatica Sinica 2022年3期

    Junjie Wang,Qichao Zhang,and Dongbin Zhao,

    Dear editor,

    Deep reinforcement learning (DRL),combining the perception capability of deep learning (DL) and the decision-making capability of reinforcement learning (RL) [1],has been widely investigated for autonomous driving decision-making tasks.In this letter,we would like to discuss the impact of different types of state input on the performance of DRL-based lane change decision-making.

    Note that the state representation is critical for the performance of DRL,especially for the autonomous driving task with multi-sensor data.Many previous works [2],[3] have targeted RL models with vector-based state representations,which lack the generalization ability for different road structures.On the one hand,road and lane line information is an important constraint on vehicle behaviors.Further research is needed on how these constraints can be better represented in DRL algorithms.On the other hand,for the case of many surrounding vehicles,it is necessary to find the interacting vehicles that have a more significant impact on the autonomous vehicle’s decision to make a safe and effective decision behavior.Therefore,for the highway lane-changing task,we propose an appropriate state representation with dual inputs combining the local bird’s-eye view (BEV) image with vector input and further implementing a combination of attention mechanisms and the DRL algorithm to enhance the performance of lane change decisions.Among the attention mechanisms,self-attention [4] is widely used.This letter employs different self-attention models for the BEV image and vector inputs to consider the key interacting vehicles with greater weights in the decision process.Note that the key interacting vehicles that have a considerable influence on self-driving cars’ decisionmaking are identified with the self-attention mechanism.Fig.1 gives some example BEV images and visualizes the results of feeding them into the trained attention module.

    Related work:The application of deep reinforcement learning methods to lane-changing scenarios has been widely studied.Most existing works have used vectors [2] or grids [3] as forms of state representations,covering information such as surrounding vehicle positions and speeds that are critical for lane-changing decisions but do not explicitly consider spatial location relationships and interactions between vehicles.The attention mechanism can discover inter-dependencies among a variable number of inputs and is applicable to autonomous driving decision-making problems.

    Fig.1.Examples of image-based state representation and the visualization of the trained attention block with images as inputs.The top row shows the original image-based state; The middle row presents the output of softmax in the block,corresponding to the intermediate result of attention; The bottom row gives the output of the image state through the whole non-local block,representing the result of the entire attention module.We reshape the outputs to the same size as the inputs.

    The self-attention mechanism [4]–[6] computes the response at a position in the sequence in a self-supervised manner.In [7],selfattention is extended to the more general class of non-local filtering operations that are applicable to image inputs.There are also works combining self-attention mechanisms with DRL methods for autonomous driving.In [8],an ego attention mechanism for vector inputs is developed to capture ego-to-vehicle dependencies.In [9],a multi-head attention model is introduced for trajectory prediction in autonomous driving.Unfortunately,there is no work to analyze the different types of state representations with the attention mechanism.

    RL formulation for highway lane change decision-making:The process of lane change decision-making can be formulated as a Markov decision process (MDP).An MDP is a 5-tuple of the form〈S,A,P,R,γ〉,where S is the state space,Atheactionspace,Pthestate transition modelP(st+1=s′|st=s,at=a) foreach action,Rthe reward functionR(st=s,at=a)=E(rt|st=s,at=a),and γ ∈[0,1] the discount factor.Also,st,at,andrtare the state,action and reward at timetrespectively.The transition modelPand rewardRare affected by the specific behaviora.The goal of RL is to learn an optimal policythat maximizes the expectedγ-discounted cumulative reward (also known as return)Jπ=argmaxπEπ.The state,action space,and reward function are defined as follows.

    ● Vector-based state input: For the highway lane change problem,the agent necessitates information about the ego and surrounding vehicles to make a decision.The related vector includes the location,heading,and velocity of vehicles.We use a 6-dimensional vector to characterize the information about vehicles:

    whereNis the number of visible vehicles.The elements insirepresent the vehicle’s lateral location in the road,the longitudinal location,the lateral velocity of the vehicle,the longitudinal velocity,and the cos and sin values of the heading error between the vehicle and the lane orientation,respectively.The remaining states are filled with zeros when fewer thanNvehicles are visible.

    ● Image-based state input: In addition to the direct vector-based state representation,an alternative is to formulate the state in image form.Although vector-based states inform the position of each vehicle in the road,it is not very intuitive to capture the relationship between the road structure and vehicles.In contrast,the BEV imagebased state representation can directly take the vehicles together with the road structure as the input and obtain all vehicles’ location and heading information from a local BEV space.In addition,the combination of image-based states and convolutional neural networks (CNNs) can also help extract the position relationship between different vehicles.However,the image-based state does not easily represent the velocity information of the vehicles explicitly.Examples of BEV image-based state inputs are shown in the top row of Fig.1.We represent the ego vehicle,the surrounding vehicles,and the road structure as a single-channel gray-scale image to characterize the position of the ego vehicle (the dark square in the image) and the surrounding vehicles (the light squares in the image)in the road.The position of the ego vehicle in the image is fixed.

    ● Action space: The discrete action space is set as the output of DRL agents for the lane change task,including both lateral and longitudinal commands of the ego vehicle,i.e.,{no operation,change lanes to the left,change lanes to the right,acceleration,and deceleration}.At a certain time step,only one lateral or longitudinal action command will be given to the ego vehicle.Therefore,the agent needs to execute a series of actions coherently to produce a specific behavior.For example,when required to accelerate from the left to overtake the vehicle ahead,the agent needs to output the left lane change command in the current time step and then provide the acceleration actions in several subsequent time steps.

    ● Reward function: The design of the reward function requires a combination of safety and efficiency.To improve the safety of the policies learned by agents,we apply a penalty when a collision occurs,i.e.,rc=0(if no collision)or-1.0(if collision happens)is given to the agent at each time step.In order to improve the efficiency,it is expected that ego speed should be fast,therefore,a rewardrv=0.2·(vt-vmin)/(vmax-vmin) is off eredat each time step,wherevtis thevelocity of the egovehicle at time stept,vmax=30 m/s,vmin=20 m/s.Thus,the total reward for each time stepisr=rv+rc,which weclip itto [0,1].

    Model-freeDRL:Toevaluate a particular policyπ,the state value functionVπ(s) andstate-action valuefunctionQπ(s,a) are formally defined as

    For the continuous state space,we typically rely on function approximation techniques for the generalization over the input domain.In this letter,we utilize dueling double DQN (D3QN).DQN(deep Q-network) [10] incorporates Q-learning [11] with a deep neural network to fit the action-value function,denoted byQ(s,a;φ),whereφis the weights in the Q network.Dueling DQN[12] further divides the Q network into a value function partV(s;θ,α) and an advantage function partA(s,a;θ,β),whereθis the part of the Q network common toVandA,andαandβare their respective parameters.Then,the final state-action value function can be re-expressed asQ(s,a;φ)=Q(s,a;θ,α,β)=V(s;θ,α)+A(s,a;θ,β).The loss function of the neural network training can be defined as

    Stochastic gradient descent is usually employed to optimize the loss function rather than directly calculating the expectation value in(5).

    Attention-based DRL framework:For different forms of state representations,we adopt different self-attention mechanisms to extract state features.The overall framework of the proposed attention-based D3QN framework combining the BEV image and vector states is depicted in Fig.2.

    Fig.2.The proposed attention-based DRL framework for highway lane change decision-making.

    First,the dual inputs,including vector-based states and imagebased states,are fed into their respective encoders: a multilayer perceptron (MLP) for vectors and a CNN for images.Next,the two encoder outputs are inputted into the corresponding attention modules,and the attention results of the two parts are concatenated together as a full feature.Subsequently,this feature goes through the dueling-structured MLP network to output the final Q value.Note that the overall architecture is jointly optimized by the D3QN algorithm.

    For the vector-based state input,the used attention model is the ego-attention [8].This attention mechanism is a variant of the traditional social attention [14] mechanisms,in which only the ego state has query encoding.The architecture of an ego-attention head is represented in Fig.3(a).This architecture can satisfy the requirements of variable sizes with permutation invariance,even when using a set of characteristic representations.It also naturally accounts for the interaction between the ego vehicle and surrounding vehicles.

    For the image-based state input,the used attention model is the non-local block [7].In some computer vision tasks,CNNs increase the receptive field of perception by stacking multiple convolutional modules.Convolution operators are all local operations in feature space.The way to capture a larger range of information in an image by repeated stacking has some shortcomings: inefficiency in capturing a large range of information,need for careful design of modules and gradients,and local operations are harder to implement when information needs to be passed between relatively distant locations.Compared with the traditional convolutional operation,the non-local block directly captures large range dependencies by computing the interaction between any two positions without limiting to adjacent points,which is equivalent to constructing a convolutional kernel as large as the size of the feature map and thus can sustain more information.In addition,the non-local block can be used as a component that can be easily combined with other network structures.The model structure is shown in the left panel in Fig.3(b).

    Fig.3.The utilized attention mechanisms for vector and image inputs.

    Experiments and analysis:For two different forms of state inputs,vector and image,we conduct different experiments to compare the effectiveness of the algorithms with the help of the open-source High way Env environment (https://github.com/eleurent/highwayenv).These experiments include vector input,vector input with egoattention,image input,image input with non-local block,and dual input (vector input with ego-attention combined with image input with non-local block).Ten test episodes are conducted for each of the different experimental settings,with each test going through 50 time steps.The results are presented in Table 1.The average lane change times in the table indicate the average number of lane change actions taken by the ego vehicle in these ten test runs.The average return is the average cumulative reward of the feedback from the environment in 10 runs.The average step is the average of the time steps experienced in 10 runs (if the ego vehicle crashes during one test episode,the test will be terminated,then the test steps will be less than 50 time steps),and the lane change success rate indicates the rate of successful lane changes,i.e.,without collision in 10 runs.

    Table 1.Test Results.The Data is Averaged Over 10 Runs

    As can be seen from the results in Table 1,dual inputs combined with different attention mechanisms achieve the best results in all the evaluation metrics.For BEV images,the relationships between scene elements such as the lane with vehicles and the ego with vehicles can be captured.For vector inputs,more accurate spatially distant interactions between the ego and surrounding vehicles can be captured.The results prove that the dual input combining the vector with images is a better state representation for the decision-making task.In addition,comparing the odd rows of the table with the even rows,we can see that using the attention mechanism can further improve the performances of the original state input.This shows the effectiveness of the proposed method,and the attention mechanisms have a positive effect on different forms of state input.

    In addition,we visualize the trained non-local block,and the results are given in Fig.1.From the results,we can see that the regions with the presence of surrounding vehicles have higher weights,showing that the agent has greater attention to these regions.The interesting result is that,after the attention module,the agent only pays attention to vehicles close to and in front of itself and ignores the vehicles behind it (see the image in the bottom right-hand corner of Fig.1).Coincidentally,the ego speed is usually higher than the surrounding vehicles,and the vehicles in the rear have very little effect on the ego vehicle.

    Acknowledgments:This work was supported in part by the National Natural Science Foundation of China (NSFC) ( 62173325),and the Beijing Municipal Natural Science Foundation (L191002).

    欧美成人一区二区免费高清观看 | 久久久国产成人免费| 一本久久中文字幕| 99re在线观看精品视频| 国产精品一区二区免费欧美| 欧美黄色淫秽网站| 成人鲁丝片一二三区免费| 成人av在线播放网站| 亚洲欧美激情综合另类| 国产单亲对白刺激| 色尼玛亚洲综合影院| 国产一区二区三区在线臀色熟女| 中文字幕熟女人妻在线| 国产成人精品久久二区二区91| 日韩av在线大香蕉| 丝袜人妻中文字幕| 1024手机看黄色片| 欧美成人免费av一区二区三区| www.精华液| 亚洲,欧美精品.| 在线视频色国产色| 国产高清激情床上av| 国产精品,欧美在线| 日韩三级视频一区二区三区| 狠狠狠狠99中文字幕| tocl精华| 色视频www国产| 精品久久久久久久久久久久久| 国产亚洲精品av在线| 中文资源天堂在线| 精品国产超薄肉色丝袜足j| 亚洲国产精品999在线| 18禁黄网站禁片免费观看直播| 久久久水蜜桃国产精品网| 亚洲狠狠婷婷综合久久图片| 国产精品久久久久久人妻精品电影| 国产亚洲av嫩草精品影院| 非洲黑人性xxxx精品又粗又长| 亚洲欧美精品综合久久99| 中文字幕最新亚洲高清| 国产精品电影一区二区三区| 不卡av一区二区三区| 欧美三级亚洲精品| 波多野结衣高清无吗| 一a级毛片在线观看| 哪里可以看免费的av片| 亚洲欧美一区二区三区黑人| 一边摸一边抽搐一进一小说| 操出白浆在线播放| www.熟女人妻精品国产| 国产在线精品亚洲第一网站| 淫妇啪啪啪对白视频| 看免费av毛片| 91九色精品人成在线观看| 白带黄色成豆腐渣| 九九在线视频观看精品| 国产乱人视频| 久久这里只有精品中国| 亚洲18禁久久av| 久久中文字幕人妻熟女| 久久久久国内视频| 国产日本99.免费观看| 两个人看的免费小视频| 欧美日韩精品网址| 日韩欧美一区二区三区在线观看| 99在线视频只有这里精品首页| 国产精品一区二区免费欧美| 欧美+亚洲+日韩+国产| 国产精品九九99| 别揉我奶头~嗯~啊~动态视频| 亚洲在线自拍视频| 不卡一级毛片| 99久久国产精品久久久| 少妇的逼水好多| 日本免费一区二区三区高清不卡| 听说在线观看完整版免费高清| 老司机午夜十八禁免费视频| 国产免费男女视频| 男女午夜视频在线观看| 亚洲五月天丁香| 日本在线视频免费播放| 亚洲一区二区三区不卡视频| 变态另类成人亚洲欧美熟女| 精品国产超薄肉色丝袜足j| 亚洲美女黄片视频| 五月玫瑰六月丁香| 久久精品91无色码中文字幕| 国产精品爽爽va在线观看网站| 久久久水蜜桃国产精品网| 欧美zozozo另类| 欧美日韩福利视频一区二区| www.精华液| 欧美高清成人免费视频www| 久久香蕉精品热| 精品久久久久久,| 十八禁网站免费在线| 免费搜索国产男女视频| 可以在线观看的亚洲视频| 国产精品永久免费网站| 黑人操中国人逼视频| 婷婷精品国产亚洲av在线| 在线观看美女被高潮喷水网站 | 亚洲激情在线av| a在线观看视频网站| 两个人看的免费小视频| 精品人妻1区二区| 精品无人区乱码1区二区| 成年人黄色毛片网站| 免费在线观看亚洲国产| 欧美极品一区二区三区四区| 观看免费一级毛片| 99久久99久久久精品蜜桃| 久久精品亚洲精品国产色婷小说| 一级黄色大片毛片| www.自偷自拍.com| 99热只有精品国产| 国产成人欧美在线观看| 亚洲国产精品久久男人天堂| 在线观看舔阴道视频| 精品一区二区三区视频在线观看免费| 少妇人妻一区二区三区视频| av在线天堂中文字幕| 欧美色欧美亚洲另类二区| 观看免费一级毛片| 久久久久久久久中文| 久久久国产精品麻豆| 久久亚洲真实| 久久伊人香网站| 亚洲人成网站在线播放欧美日韩| 神马国产精品三级电影在线观看| 欧美又色又爽又黄视频| 久久久成人免费电影| 午夜免费激情av| 国产视频内射| 一级毛片高清免费大全| av福利片在线观看| 婷婷六月久久综合丁香| 亚洲精品中文字幕一二三四区| 后天国语完整版免费观看| 亚洲天堂国产精品一区在线| 亚洲最大成人中文| 婷婷精品国产亚洲av在线| 日韩欧美三级三区| 搡老妇女老女人老熟妇| 欧美日韩一级在线毛片| 最新美女视频免费是黄的| 99国产精品一区二区三区| 国产精品影院久久| 国产黄a三级三级三级人| 中文字幕精品亚洲无线码一区| 搡老熟女国产l中国老女人| av欧美777| 日本一二三区视频观看| 亚洲自偷自拍图片 自拍| 国产精品久久久久久精品电影| 麻豆国产av国片精品| 久久久久久久久中文| av国产免费在线观看| 免费看十八禁软件| 成人永久免费在线观看视频| 波多野结衣高清作品| av片东京热男人的天堂| 午夜两性在线视频| 亚洲性夜色夜夜综合| 久久草成人影院| 亚洲成人免费电影在线观看| a级毛片a级免费在线| 欧美丝袜亚洲另类 | 国产蜜桃级精品一区二区三区| 免费观看的影片在线观看| 日日摸夜夜添夜夜添小说| 天天躁狠狠躁夜夜躁狠狠躁| 欧美色视频一区免费| 黑人操中国人逼视频| 国产主播在线观看一区二区| 在线看三级毛片| 国产免费男女视频| av国产免费在线观看| 亚洲aⅴ乱码一区二区在线播放| 99热这里只有精品一区 | 久久99热这里只有精品18| 嫁个100分男人电影在线观看| 男女那种视频在线观看| 一区二区三区激情视频| 久久中文看片网| 亚洲欧美日韩高清专用| 99热这里只有是精品50| 亚洲黑人精品在线| av在线天堂中文字幕| 18禁黄网站禁片午夜丰满| 最新美女视频免费是黄的| 婷婷精品国产亚洲av| 国内揄拍国产精品人妻在线| 少妇裸体淫交视频免费看高清| 一进一出抽搐动态| 波多野结衣巨乳人妻| 欧美一区二区精品小视频在线| 在线观看一区二区三区| 偷拍熟女少妇极品色| 成人性生交大片免费视频hd| 两个人看的免费小视频| 亚洲中文字幕日韩| 亚洲精品国产精品久久久不卡| 国产69精品久久久久777片 | 欧美黄色淫秽网站| 一进一出抽搐gif免费好疼| 一个人免费在线观看电影 | 国产精品爽爽va在线观看网站| www.精华液| 欧美一区二区精品小视频在线| 狠狠狠狠99中文字幕| 夜夜躁狠狠躁天天躁| 成人三级黄色视频| 国产淫片久久久久久久久 | 性欧美人与动物交配| 亚洲熟女毛片儿| 国产精品自产拍在线观看55亚洲| 久久久久久久久免费视频了| 国产主播在线观看一区二区| 欧美丝袜亚洲另类 | av女优亚洲男人天堂 | 男人的好看免费观看在线视频| 日韩欧美在线乱码| 日本精品一区二区三区蜜桃| 99热这里只有精品一区 | 又大又爽又粗| 久久午夜综合久久蜜桃| 亚洲中文字幕日韩| 亚洲av免费在线观看| 1024手机看黄色片| 欧美国产日韩亚洲一区| 国产黄片美女视频| 国产又色又爽无遮挡免费看| 91在线精品国自产拍蜜月 | 国产 一区 欧美 日韩| 97碰自拍视频| 久久性视频一级片| 国产精品1区2区在线观看.| a级毛片a级免费在线| 成人三级做爰电影| 一二三四在线观看免费中文在| 亚洲美女黄片视频| 偷拍熟女少妇极品色| 久久精品国产99精品国产亚洲性色| 香蕉久久夜色| 天天躁狠狠躁夜夜躁狠狠躁| 最近最新中文字幕大全免费视频| 亚洲中文日韩欧美视频| 男女床上黄色一级片免费看| 日本三级黄在线观看| 国产三级中文精品| 桃红色精品国产亚洲av| 免费无遮挡裸体视频| 淫秽高清视频在线观看| 精品国内亚洲2022精品成人| 97超视频在线观看视频| 18禁观看日本| 香蕉国产在线看| 成人国产综合亚洲| 极品教师在线免费播放| 99久久精品一区二区三区| 久久亚洲精品不卡| 亚洲精品456在线播放app | 女人被狂操c到高潮| 日本黄大片高清| 一个人观看的视频www高清免费观看 | 99久久国产精品久久久| 欧美激情久久久久久爽电影| 成人特级av手机在线观看| 中文字幕最新亚洲高清| 男女做爰动态图高潮gif福利片| av片东京热男人的天堂| 嫩草影视91久久| 在线观看午夜福利视频| 国产黄片美女视频| 男女之事视频高清在线观看| 久久久久免费精品人妻一区二区| 精品国产三级普通话版| 麻豆av在线久日| 国产激情久久老熟女| 特级一级黄色大片| 国产一区在线观看成人免费| 18禁裸乳无遮挡免费网站照片| 真人做人爱边吃奶动态| 日本与韩国留学比较| 听说在线观看完整版免费高清| 亚洲精品乱码久久久v下载方式 | 日韩精品青青久久久久久| 久久香蕉国产精品| 午夜激情福利司机影院| 一级毛片精品| ponron亚洲| 久久精品aⅴ一区二区三区四区| 亚洲精华国产精华精| 国内精品久久久久精免费| 亚洲人成网站在线播放欧美日韩| 亚洲精品美女久久久久99蜜臀| 亚洲人成电影免费在线| 日本在线视频免费播放| 日韩中文字幕欧美一区二区| 国产精品免费一区二区三区在线| 久久天躁狠狠躁夜夜2o2o| 国产综合懂色| 色老头精品视频在线观看| 亚洲国产精品999在线| or卡值多少钱| 美女 人体艺术 gogo| 欧美日韩国产亚洲二区| 亚洲成人精品中文字幕电影| 国产成人精品久久二区二区91| 国产人伦9x9x在线观看| 在线观看一区二区三区| 欧美一级毛片孕妇| av中文乱码字幕在线| 国产淫片久久久久久久久 | 好男人在线观看高清免费视频| 国产毛片a区久久久久| 一个人免费在线观看的高清视频| 啦啦啦韩国在线观看视频| 黄色女人牲交| 亚洲av电影不卡..在线观看| 欧美av亚洲av综合av国产av| xxxwww97欧美| 国产精品久久久久久亚洲av鲁大| x7x7x7水蜜桃| 波多野结衣高清无吗| 欧美日韩一级在线毛片| 午夜福利高清视频| 国产成人系列免费观看| 性色av乱码一区二区三区2| 久久久久精品国产欧美久久久| 亚洲真实伦在线观看| 在线观看午夜福利视频| 国产av麻豆久久久久久久| 18禁黄网站禁片免费观看直播| 性色avwww在线观看| 中文字幕av在线有码专区| 国产一区二区在线观看日韩 | 大型黄色视频在线免费观看| 成在线人永久免费视频| 国产成人一区二区三区免费视频网站| 欧美日韩国产亚洲二区| 亚洲国产欧美人成| 中文字幕高清在线视频| 久久久久久国产a免费观看| 一本精品99久久精品77| 此物有八面人人有两片| 国产精品av久久久久免费| 久久久国产成人精品二区| 婷婷亚洲欧美| 在线免费观看的www视频| 亚洲人与动物交配视频| 超碰成人久久| 美女大奶头视频| 日韩高清综合在线| 亚洲av成人一区二区三| 国内揄拍国产精品人妻在线| 真人一进一出gif抽搐免费| 无限看片的www在线观看| 1024香蕉在线观看| 色尼玛亚洲综合影院| 久久亚洲精品不卡| 国产高清videossex| 欧美最黄视频在线播放免费| 久久精品国产亚洲av香蕉五月| www.精华液| 日本 av在线| 蜜桃久久精品国产亚洲av| 国产真人三级小视频在线观看| 成人鲁丝片一二三区免费| 国产野战对白在线观看| 久久久国产成人精品二区| 无遮挡黄片免费观看| 成人鲁丝片一二三区免费| 亚洲成人精品中文字幕电影| 欧美成人免费av一区二区三区| av国产免费在线观看| 成人三级做爰电影| 国产精品久久久人人做人人爽| 国内久久婷婷六月综合欲色啪| 男女做爰动态图高潮gif福利片| 日本在线视频免费播放| 免费av毛片视频| 亚洲天堂国产精品一区在线| 亚洲国产欧洲综合997久久,| 麻豆一二三区av精品| 午夜福利免费观看在线| 亚洲一区二区三区不卡视频| 欧美成人性av电影在线观看| 免费av不卡在线播放| 丝袜人妻中文字幕| 三级国产精品欧美在线观看 | 神马国产精品三级电影在线观看| 欧美丝袜亚洲另类 | 精品久久蜜臀av无| 亚洲国产看品久久| 在线播放国产精品三级| 天堂动漫精品| 窝窝影院91人妻| 久久久久久久午夜电影| 欧美乱色亚洲激情| 国产野战对白在线观看| 精品久久蜜臀av无| 日韩欧美一区二区三区在线观看| 精品久久久久久久久久免费视频| 日韩三级视频一区二区三区| netflix在线观看网站| 亚洲中文av在线| 99国产精品99久久久久| 国产精品av久久久久免费| 欧美绝顶高潮抽搐喷水| 亚洲黑人精品在线| 久久精品91蜜桃| 男人和女人高潮做爰伦理| 欧美一区二区精品小视频在线| 国产成人av教育| 亚洲精品一区av在线观看| www国产在线视频色| 国产又色又爽无遮挡免费看| 亚洲天堂国产精品一区在线| 九色成人免费人妻av| 日日摸夜夜添夜夜添小说| 精品久久久久久久毛片微露脸| 91在线观看av| 精品免费久久久久久久清纯| 黄色成人免费大全| 嫁个100分男人电影在线观看| 999精品在线视频| 熟女人妻精品中文字幕| 日韩欧美精品v在线| 精品日产1卡2卡| 日本 av在线| 国产aⅴ精品一区二区三区波| 亚洲av成人av| 99国产精品99久久久久| 我要搜黄色片| 老司机在亚洲福利影院| 两性夫妻黄色片| 12—13女人毛片做爰片一| 亚洲人成伊人成综合网2020| 成人三级黄色视频| 中文字幕最新亚洲高清| 亚洲国产欧美人成| 超碰成人久久| a在线观看视频网站| 亚洲熟女毛片儿| 国产淫片久久久久久久久 | 99久久99久久久精品蜜桃| 搡老妇女老女人老熟妇| 国产视频一区二区在线看| 精品欧美国产一区二区三| 伊人久久大香线蕉亚洲五| 女生性感内裤真人,穿戴方法视频| 国产精品野战在线观看| 51午夜福利影视在线观看| av福利片在线观看| 99精品久久久久人妻精品| 国产男靠女视频免费网站| 欧美一级毛片孕妇| 精品乱码久久久久久99久播| 国产成人精品久久二区二区免费| 欧美激情在线99| 亚洲熟女毛片儿| 在线观看免费午夜福利视频| 午夜影院日韩av| 精华霜和精华液先用哪个| 国产激情久久老熟女| 亚洲av美国av| 亚洲国产日韩欧美精品在线观看 | 免费观看的影片在线观看| 激情在线观看视频在线高清| а√天堂www在线а√下载| 在线十欧美十亚洲十日本专区| 亚洲国产欧美一区二区综合| 全区人妻精品视频| 欧美日韩一级在线毛片| 亚洲国产精品999在线| 久久久久精品国产欧美久久久| 国产av不卡久久| 欧美日韩国产亚洲二区| 成人无遮挡网站| 黄色 视频免费看| 最新在线观看一区二区三区| 亚洲美女视频黄频| 久久久久久久久免费视频了| 国产精品精品国产色婷婷| 国产黄片美女视频| 精品熟女少妇八av免费久了| 午夜影院日韩av| 丰满人妻熟妇乱又伦精品不卡| 欧美黑人欧美精品刺激| 91在线观看av| 国模一区二区三区四区视频 | 精品无人区乱码1区二区| 国产不卡一卡二| 国产高清三级在线| 欧美日韩中文字幕国产精品一区二区三区| 国产精品亚洲美女久久久| 中国美女看黄片| 欧美三级亚洲精品| 午夜激情福利司机影院| 日本 av在线| 日日夜夜操网爽| 亚洲欧美一区二区三区黑人| 中文亚洲av片在线观看爽| 精品一区二区三区四区五区乱码| 美女大奶头视频| 日韩欧美国产在线观看| 久久久精品欧美日韩精品| 亚洲国产精品合色在线| 国产淫片久久久久久久久 | 啦啦啦观看免费观看视频高清| 香蕉丝袜av| 亚洲成人免费电影在线观看| 久久这里只有精品19| 少妇丰满av| 亚洲在线观看片| 黄色视频,在线免费观看| 曰老女人黄片| 国产成人aa在线观看| 国产精品香港三级国产av潘金莲| 99精品在免费线老司机午夜| 欧美zozozo另类| 12—13女人毛片做爰片一| 亚洲第一欧美日韩一区二区三区| 波多野结衣高清作品| 熟妇人妻久久中文字幕3abv| 给我免费播放毛片高清在线观看| 日韩成人在线观看一区二区三区| 久久热在线av| 香蕉丝袜av| 久久精品91蜜桃| 成人鲁丝片一二三区免费| 免费电影在线观看免费观看| 亚洲成av人片在线播放无| 亚洲五月天丁香| 男人舔奶头视频| 国内久久婷婷六月综合欲色啪| 欧美日韩中文字幕国产精品一区二区三区| 网址你懂的国产日韩在线| 18禁黄网站禁片午夜丰满| 久久精品aⅴ一区二区三区四区| 天堂av国产一区二区熟女人妻| 国产精品久久久久久人妻精品电影| 久久久久久人人人人人| 国产激情久久老熟女| 琪琪午夜伦伦电影理论片6080| h日本视频在线播放| 无人区码免费观看不卡| 国产精品久久久久久精品电影| 欧美高清成人免费视频www| 这个男人来自地球电影免费观看| 2021天堂中文幕一二区在线观| 真实男女啪啪啪动态图| 日本免费a在线| 国产亚洲精品久久久久久毛片| 国内精品久久久久久久电影| 91麻豆精品激情在线观看国产| 国产午夜精品论理片| 国产亚洲精品久久久com| 美女大奶头视频| 欧美最黄视频在线播放免费| 久久亚洲真实| 99国产极品粉嫩在线观看| 国产 一区 欧美 日韩| 少妇裸体淫交视频免费看高清| 999精品在线视频| 色av中文字幕| 久久精品综合一区二区三区| 一级黄色大片毛片| 欧美黄色淫秽网站| 久久精品影院6| 又黄又爽又免费观看的视频| 久久久色成人| 日韩 欧美 亚洲 中文字幕| 一级毛片精品| 亚洲精品久久国产高清桃花| 亚洲美女黄片视频| 看免费av毛片| 天天躁日日操中文字幕| 国产精品影院久久| 99热这里只有是精品50| 99国产精品一区二区蜜桃av| 国产三级中文精品| 真实男女啪啪啪动态图| 91在线精品国自产拍蜜月 | 国产一区二区在线av高清观看| 好看av亚洲va欧美ⅴa在| 91久久精品国产一区二区成人 | 国产高清视频在线观看网站| 最近最新中文字幕大全电影3| 天堂√8在线中文| 国产熟女xx| 在线观看午夜福利视频| 国产三级中文精品| 国产久久久一区二区三区| 19禁男女啪啪无遮挡网站| 免费看光身美女| 免费观看的影片在线观看| 久久久久久九九精品二区国产| 亚洲成人久久爱视频| 色噜噜av男人的天堂激情| 夜夜躁狠狠躁天天躁| 黄色视频,在线免费观看| h日本视频在线播放| 国产亚洲av嫩草精品影院| 久久久久亚洲av毛片大全| 特大巨黑吊av在线直播| 欧美午夜高清在线| 小蜜桃在线观看免费完整版高清| 99国产精品一区二区蜜桃av| 欧美日韩黄片免| 在线看三级毛片| 久久精品aⅴ一区二区三区四区| 久久久精品大字幕|