• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recursive Least Squares Identification With Variable-Direction Forgetting via Oblique Projection Decomposition

    2022-01-26 00:36:10KunZhuChengpuYuandYimingWan
    IEEE/CAA Journal of Automatica Sinica 2022年3期

    Kun Zhu,Chengpu Yu,and Yiming Wan

    Abstract—In this paper,a new recursive least squares (RLS)identification algorithm with variable-direction forgetting (VDF)is proposed for multi-output systems.The objective is to enhance parameter estimation performance under non-persistent excitation.The proposed algorithm performs oblique projection decomposition of the information matrix,such that forgetting is applied only to directions where new information is received.Theoretical proofs show that even without persistent excitation,the information matrix remains lower and upper bounded,and the estimation error variance converges to be within a finite bound.Moreover,detailed analysis is made to compare with a recently reported VDF algorithm that exploits eigenvalue decomposition (VDF-ED).It is revealed that under non-persistent excitation,part of the forgotten subspace in the VDF-ED algorithm could discount old information without receiving new data,which could produce a more ill-conditioned information matrix than our proposed algorithm.Numerical simulation results demonstrate the efficacy and advantage of our proposed algorithm over this recent VDF-ED algorithm.

    I.INTRODUCTION

    RESEARCH on system identification dates back to the 1960s,but is still very active due to its critical importance in systems and controls [1],[2].For online parameter estimation,recursive least squares (RLS) identification is one of the most well-known methods [3].To enhance tracking capability of time-varying parameters,exponential forgetting(EF) was initially established for RLS identification of singleoutput (SO) systems,which discounts old information with a constant forgetting factor [3].Various RLS extensions with or without EF have been proposed for multiple-output (MO)systems that are ubiquitous in industrial applications [4]–[11].The parameter errors given by the EF algorithms exponentially converge if the identification data is persistently exciting[12],[13].However,the condition of persistent excitation cannot be always satisfied in practice.With non-persistent excitation,the EF algorithm discounts old data without receiving sufficient new information.As a result,the undesirable estimator windup phenomenon occurs,i.e.,the RLS gain grows unbounded,and the obtained estimates become highly sensitive to noise.

    The above limitation of EF in the absence of persistent excitation is attributed to discounting old information uniformly over time and in the parameter space.To cope with this issue,various modified forgetting strategies have been reported in the literature,which can be classified into two categories: Variable-rate forgetting (VRF) and variabledirection forgetting (VDF).The category of VRF algorithms adjusts a variable forgetting factor to discount old information non-uniformly over time.For example,the forgetting factor is updated according to the prediction error [14],[15] by minimizing the mean square error [16] or in accordance with Bayesian decision-making [17].Convergence and consistency of a general VRF algorithm was recently investigated in [18].However,data excitation in practice is not uniformly distributed over space,but might be restricted to certain directions of the parameter space over a period of time.In this case,the VRF algorithms still gradually lose information in the non-excited directions,which would lead to illconditioned matrix inversion and increased estimation errors[19].This problem is addressed by the VDF algorithms in[19]–[21].Specifically,forgetting is applied only to directions that are excited by the online data.By doing so,estimator windup does not occur under non-persistent excitation,because information in the non-excited subspace is retained.

    The VRF and VDF algorithms were initially proposed for SO systems.Considering MO systems,the VRF algorithm is still applicable since it simply applies uniform forgetting to the entire parameter space [18],[22].However,the extension of VDF algorithms to cope with MO systems is not straightforward,since the forgotten subspace varies with the online data.As the latest progress in this line of research,a VDF algorithm via eigenvalue decomposition (VDF-ED) has been proposed in [23],[24] for MO systems.The basic idea is to apply forgetting to the eigendirections of the old information matrix where new information is received.Moreover,this VDF-ED algorithm is combined with a variable forgetting factor to further enhance its tracking performance [24].

    In this paper,a new VDF algorithm using oblique projection decomposition (VDF-OPD) is proposed for MO systems under non-persistent excitation.Oblique projection is exploited to decompose the old information matrix into a forgotten part and a retained part.This proposed VDF-OPD algorithm has three main contributions:

    1) The proposed decomposition of the information matrix has a clear geometrical interpretation based on oblique projection.It reduces to the decomposition described in [21]when the considered system has a scalar output.

    2) A detailed comparison with the recently proposed VDFED algorithm in [23] is provided.The forgotten subspace in the VDF-ED algorithm has a higher dimension than that in our VDF-OPD algorithm.Under non-persistent excitation,the VDF-ED algorithm produces a more ill-conditioned information matrix,because part of its forgotten subspace discounts old information without receiving new data.

    3) Boundedness of the information matrix and convergence of the estimation error variance of our VDF-OPD algorithm are proved under non-persistent excitation.

    The rest of this paper is organized as follows.Firstly,Section II states the problem of RLS identification of MO systems under non-persistent excitation.Our proposed VDFOPD algorithm is presented in Section III,and compared with the VDF-ED algorithm in Section IV.Then,Section V gives the convergence analysis.Finally,simulation results and concluding remarks are provided in Sections VI and VII,respectively.

    Notations: The 2-norm of a vectorxis denoted by ‖x‖.For a matrixX,R ange(X),N ull(X),‖X‖2,andX?represent its range space,nullspace,induced 2-norm,and Moore-Penrose inverse,respectively.For a square matrixX,tr(X) denotes its trace,and λmin(X) and λmax(X) represent its minimal and maximal eigenvalues,respectively.For a symmetric matrixX,the positive definiteness and positive semi-definiteness are denoted byX>0 andX≥0,respectively.LetInrepresent an identity matrix of dimensionn.The vectorization operator vec(X)creates a column vector by stacking the columns vectors of a matrixX.For matricesXandY,diag(X,Y)represents a block-diagonal matrix whose diagonal blocks areXandY.

    II.PROBLEM STATEMENT

    Consider the following MO system [25]

    which include slowly time-varying parameters in their coefficient matrices.Define

    with Θk∈Rn1×my,φk∈Rn1.Then,the system model (1) is written into

    where the parameter vector θkand the regressor matrix Φkare defined as

    To estimate the parameter vector θkin (3),the standard RLS algorithm with EF is [22]

    The above EF algorithm works well if the regressor sequence {Φk} is persistently exciting [12],[13],i.e.,there exist α >0 and a positive integers0such thatholds for allk>0.The persistently exciting data contains rich new information to compensate for discounted old data.However,under non-persistent excitation,the old information inRkcould be discounted continuously without being fully replaced by any new information from Φk.As a result,some eigenvalues ofRktend to be zero,and the corresponding gainbecomes unbounded,i.e.,the undesirable estimator windup occurs.In this situation,the obtained parameter estimates become highly sensitive to noise.

    To address the estimator windup under non-persistent excitation,various VDF strategies have been reported in the literature for SO systems [19]–[21].However,these VDF algorithms consider only aregressor vector,thus cannot cope with the regressor matrix Φkfor MO systems.In this paper,we propose the VDF-OPD algorithm for MO systems,analyze its benefit over the VDF-ED algorithm recently reported in[23],and investigate its convergence properties.

    III.RLS WITH VARIABLE-DIRECTION FORGETTING VIA OBLIQUE PROJECTION DECOMPOSITION

    For the RLS identification,the basic idea of VDF is to apply forgetting only to directions that receive new information[21].Following this idea,(5b) is modified by decomposing the old information matrixRk-1into two disjoint parts as

    In the following derivations,we assume Φk≠0 andRk-1>0.Note thatRk-1>0 will be proved later in Theorem 3.For MO systems,the following requirements are imposed for the decomposition in (6):

    according to (6) and (7).This means that the forgotten partand the old information matrixRk-1have the same amount of correlation with Φk.

    3) The two decomposed parts are disjoint,i.e.,

    4) Positive semi-definiteness,i.e.,

    Geometrically,the above requirements can be satisfied by applyingoblique projectiontoRk-1.Definetwo complementary subspaces,satisfying

    sinceRk-1is non-singular.Then,requirements (7)–(9) for the above decomposition are satisfied by setting

    according to Lemma 1 in Appendix A.As indicated by (13),are the forgotten and retained subspaces,respectively.

    It is reasonable to require that information in the entire subspaceis all retained,i.e.,

    Otherwise,certain directions within Null() would be included in the forgotten subspace Vk-1,and old information in those directions would be discounted without being compensated by new information from Φk.

    Being a complement subspace of V?k-1,Vk-1is to be determined such that,as required in(10).For this purpose,one solution is

    a ndthe corresponding oblique projection matrix ontoVk-1alongis

    where?is determined by the noise level in the data.If Φklies in the above dead zone,Φkis dominated by noise and carries little new information.In this case,the VDF algorithm should not forget any old information inRk-1,and the decomposition(6) is not performed.

    By applying a variable forgetting factor μkonly to,the information matrixRkis updated by

    The variable forgetting factor μkis introduced to further improve tracking capability of the proposed VDF-OPD algorithm.Various VRF strategies,such as those found in[14]–[16],can be used to update μkadaptively.In this paper,μkis adjusted according to the prediction error

    where μLrepresents the lower bound of μkandηis a positive constant chosen by the user.The user-defined constantηcan be viewed as a sensitivity factor: a smallerηleads to higher sensitivity of μkto variations ofek.As can be seen from (21),when the prediction errorekincreases,a smaller forgetting factor is used such that the parameter estimate tracks the timevarying parameters at a faster rate.

    The above proposed VDF-OPD algorithm is summarized in Algorithm 1.Note that (23) is derived from (19) and (6).When the considered system (1) has only a scalar output,the regressor Φkdefined in (4) becomes a vector,and Algorithm 1 reduces to the one proposed in [21].

    IV.COMPARISON WITH VARIABLE-DIRECTION FORGETTING VIA EIGENVALUE DECOMPOSITION

    Recent progress made in the VDF-ED algorithm in [23] is applicable to MO systems,thus is closely related to our VDFOPD algorithm.However,theoretical analysis of VDF-ED in[23] considers only the condition of persistent excitation,e.g.,see Proposition 10 in [23].Then,it is of interest to compare these two VDF algorithm under non-persistent excitation.

    In the VDF-ED algorithm,the information matrixRkis updated by [23]

    coli(Ψk) is theith column of Ψkthat represents the information content of the regressor matrix Φkalong theith column ofUk-1,λk∈(0,1) is the forgetting factor,and ?this a user-defined scalar which should be larger than the noise level.

    To facilitate the following analysis,according to (25),is rewritten as

    where bothU1,k-1andU2,k-1consist of columns ofUk-1,and satisfy

    respectively.With (24) and (25),the old information in Range(U1,k-1)is retained,while the old information in Range(U2,k-1)is forgotten.Therefore,the information update in (24) and (25) can be expressed in a form similar to (19),i.e.,

    Theorem 2:AssumeRk-1>0.Consider the noise-free case.Set ?=0 in (18) and ?th=0 in (25).Our proposed VDF-OPD algorithm differs from VDF-ED in the adopted two decompositions (17) and (29),i.e.,

    The proof is given in Appendix C.In the noisy case,we still have (30) and (31) if the amount of informative data in Φkis significantly larger than noise,and the corresponding proof follows the same idea in Appendix C but with more tedious derivations.

    It should be also noted that the orthonormal matrixUk-1in(24) is non-unique ifRk-1has identical eigenvalues.A different selection of eigenvectors inUk-1might result in a different decomposition ofRk-1in (29).For instance,in the above example,if we choose the two retained subspaces in VDF-OPD and VDF-ED are identical,i.e.,the range space spanned by the last two columns ofU0given above.This issue caused by the non-unique orthonormal matrixUk-1in (24) does not occur in our VDFOPD algorithm.

    V.CONVERGENCE ANALYSIS

    In this section,the convergence behavior of our proposed VDF-OPD algorithm under non-persistent excitation is investigated.

    For this purpose,it is important to first analyze the boundedness of the information matrixRkat all time instants[21].With a lower boundedRk,the algorithm gainremains upper bounded,which prevents the estimator windup phenomenon.With an upper boundedRk,the algorithm gaindoes not approach zero,thus it retains its tracking capability.The following two theorems show thatRkis bounded from below and above without requiring persistent excitation.In contrast,the VDF-ED algorithm in [23] only analyzes the lower bound ofRkunder persistent excitation,while the VDF algorithm in [21] is not applicable to MO systems in this paper.

    Theorem 3:Consider the recursive update ofRkin (23).With?defined in (18),ifR0>0 and ε ≤‖Φk‖2<∞ for allk>0,then 1)for μk>0 andk>0; and 2) there exists βk>0 such thatRk>βkInfor allk>0.

    Theorem 4:With ? defined in (18),assume ε ≤‖Φk‖2<∞ at allk>0 .Then,there exist a finite constant γ >0 such thatRk<γInfor allk>0.

    Proofs of Theorems 3 and 4 are given in Appendices D and E,respectively.

    To analyze the dynamics of parameter estimation errors,we assume θkin (3) to be constant,as in [19],[23].Letθrepresent the true constant parameter.Then,the estimation error is defined by

    The following theorem shows that in the presence of noise,the estimation error variance converges to be within a finite bound.

    Theorem 5:With?defined in (18),assumeε <‖Φk‖2≤∞,?k>0.Define

    There exista∈(0,1) andb∈(0,1) such that

    The bounding sequence { ζk} converges to ζ∞=bδ/(1-a) askgoes to infinity,and monotonically decreases if ζk>ζ∞.

    The proof is given in Appendix F.

    Remark 2:The convergence property holds only when the parameter is constant or its change rate is slower than the algorithm’s convergence speed.

    VI.SIMULATION STUDY

    In this section,we present a numerical example to show the efficacy of our proposed VDF-OPD algorithm and its advantage over the VDF-ED algorithm in [23].

    The identification data is generated by the following MO system

    whose parameters and input signals are

    This system model is equivalently written as

    The measure noisevkis Gaussian,with zero mean and covariance matrix 0 .01I2.

    Three RLS algorithms are implemented for comparisons:the EF algorithm,our proposed VDF-OPD algorithm,and the VDF-ED algorithm in [23].In all three implemented algorithms,the initial guess of the parameter is=[0.50.50.5 0.50.5 0.5]T,andtheinitialinformation matrix isR0=10-3I6.The constantforgetting factorμinEFis 0.95,while the VDF-OPD and VDF-ED algorithms use the same variable forgetting factor strategy in (21) withη=10-2and μL=0.5.The thresholds?in (18) and ?thin (25) are both set to 0.1.

    The parameter estimates from the two VDF algorithms are depicted in Fig.1,while those given by EF are shown in Fig.2.The achieved estimation performance listed in Table I is evaluated by root mean square error (RMSE) of each element in θk,i.e.,

    Fig.2.The estimation results of EF algorithm.

    where θk(i) and(i) represent theith element of the true parameter and its estimate at timek,respectively.

    Fig.1.The estimation results of two VDF algorithms.

    As indicated by Fig.2 and Table I,the parameter estimates from the EF algorithm have the largest errors,and our proposed VDF-OPD algorithm gives the smallest estimation errors.This can be explained by the evolution of the minimal eigenvalue of the information matrixRk,i.e.,λmin(Rk),in these algorithms,as depicted in Fig.3.For the EF algorithm,its λmin(Rk) is significantly smaller than the other two algorithms,hence its obtained estimates are most sensitive to noise.After about time instantk=700,the VDF-ED algorithm gives highly noisy estimates in Fig.1,because its value of λmin(Rk) decreases to around 0.1.Compared to EF and VDF-ED,our VDF-OPD algorithm gives the largest λmin(Rk),thus is least sensitive to noise.

    The robustness of VDF-OPD and VDF-ED algorithms arefurther compared in terms of the condition number ofRk,which is shown in Fig.4.It can be seen that our VDF-OPD algorithm gives a much lower condition number ofRkthan the VDF-ED algorithm.

    TABLE IRMSE OF PARAMETER ESTIMATES FROM EF,VDF-ED,AND VDF-OPD ALGORITHMS

    Fig.3.λ min(Rk) in EF,VDF-ED,and VDF-OPD algorithms.

    Fig.4.Condition number of Rk in EF,VDF-ED,and VDF-OPD algorithms.

    VII.CONCLUSIONS

    In this paper,a new VDF algorithm using oblique projection decomposition is presented for MO systems under nonpersistent excitation.It ensures the information matrix is lower and upper bounded,and its estimation error variance converges.In contrast,the VDF-ED algorithm in [23]discounts old information in part of its forgotten subspace where no new information is received,hence producing a more ill-conditioned information matrix under non-persistent excitation.The advantage of our proposed algorithm is illustrated by a numerical simulation example.

    APPENDIX A

    PRELIMINARIES ON OBLIQUE PROJECTIONAPPENDIX B

    Let X and Y be complementary subspaces of Rn,i.e.,X +Y=RnandX∩Y={0}.Note that Xand Yarenot necessarily orthogonal.The oblique projector onto X alongY is uniquely represented by a square matrixPX|Y∈Rn×nthat satisfies

    If X+Y=Rnand X∩Y={0},the two oblique projectionsPX|YandPY|Xare complementary,i.e.,PX|Y+PY|X=In.

    Note that the oblique projection matrixPX|Yin (37) is idempotent but can be non-symmetric.If X and Y in Lemma 1 are orthogonal complementary subspaces,PX|Ybecomes an idempotent and symmetric matrix representing the orthogonal projection onto X.

    PROOF OF THEOREM 1

    APPENDIX C

    PROOF OF THEOREM 2APPENDIX D

    With the two complementary subspaces Vk-1in (16) andin(15),the applied oblique projection in (12)results in

    due toRk-1>0 and (26).Note that (26) can be expressed as,withcolidenotingtheithcolumn of amatrix.Accordingto (25)with?th=0,if coli(Ψk)is nonzero,the associated coli(Uk-1) should be included in the forgotten part,i.e.,U2,k-1in (27).Otherwise,coli(Uk-1) is included in the retained part,i.e.,U1,k-1in (27).Hence rank(U2,k-1)is equal to the number of non-zero columns of Ψk.Furthermore,since rank(Ψk) is less than or equal to the number of non-zero columns of Ψk,we have rank(Ψk)≤rank(U2,k-1),thus

    PROOF OF THEOREM 3

    In the following,we prove thatRkobtained from (23) is positive ifRk-1is positive and Φkis bounded.This then leads to the proof of Theorem 3 via mathematical induction.

    From (17) and (38)–(40),we have

    SinceDkis an idempotent matrix,its eigenvalue decomposition can be expressed as

    withs=rank(Dk).Then,we have

    APPENDIX E

    PROOF OF THEOREM 4

    Assume rank(Φk)=rk,whererkmay vary with Φk.Let the singular value decomposition of Φkbe expressed as

    From (46) and (50),Qiin (45) can be expressed as

    Then,using the invariance property of trace under cyclic permutations,the trace ofQican be rewritten as

    Let λi-1,jrepresent thejth eigenvalue ofRi-1.Then,thejth eigenvalue of Ωi-1in (52) is

    Next,by following the same idea in the proof of Theorem 2 in [21],we prove that it is impossible to have an unboundedRkby contradiction.Assume that one eigenvalueλi-1,s(1 ≤s≤n) ofRi-1is unbounded.Then,at all time instantsq≥i,the eigenvalue λq,sofRqbecomes unbounded according to the update ofRqin (23) fromRq-1.Hence,for allq≥i,the eigenvalue ωq,sin (54) is unbounded.Furthermore,each tr(Qi)in (52) is dominated by the ratio

    th(at is unbound)ed.Therefore,on the right-hand side of (44),becomes negative and unbounded,which is in contradiction with the positive definiteness ofRkproved in Theorem 3.Such a contradiction proves thatRkmust be bounded from above.

    APPENDIX F

    PROOF OF THEOREM 5

    Under the condition ‖Φk‖2>ε,holds due to the adopted forgetting strategy.Hence there existsa∈(0,1) such that (34) holds for allk>0.According to (56),there must also existb∈(0,1) such that (35) holds for allk≥0.

    From (19),(20),(22),(32),and (33),the parameter estimation error dynamics is expressed as

    Taking mathematical expectation on both sides of (58),we haveE{Φkvk}=0 due to the statistical independence betweenvkand Φk,then we derive

    80岁老熟妇乱子伦牲交| 久久久久网色| 九色成人免费人妻av| 亚洲av国产av综合av卡| 国产伦理片在线播放av一区| 美女国产视频在线观看| 国产免费一级a男人的天堂| 精品视频人人做人人爽| 国产日韩欧美视频二区| 午夜福利在线观看免费完整高清在| 男人添女人高潮全过程视频| 亚洲人与动物交配视频| 校园人妻丝袜中文字幕| 日本av免费视频播放| 亚洲经典国产精华液单| 巨乳人妻的诱惑在线观看| 亚洲五月色婷婷综合| 两个人看的免费小视频| 两性夫妻黄色片 | 日韩成人伦理影院| 久久人人97超碰香蕉20202| 天堂8中文在线网| 99热网站在线观看| 日韩av在线免费看完整版不卡| 少妇被粗大的猛进出69影院 | h视频一区二区三区| 久久人人爽人人片av| 黄色怎么调成土黄色| 各种免费的搞黄视频| 男女啪啪激烈高潮av片| 在线天堂中文资源库| 久久久国产欧美日韩av| 久久精品久久久久久久性| 国语对白做爰xxxⅹ性视频网站| 青春草亚洲视频在线观看| 美女福利国产在线| 亚洲欧洲国产日韩| 国产成人精品无人区| 蜜桃在线观看..| 18禁观看日本| 美国免费a级毛片| 美女xxoo啪啪120秒动态图| 国产一区二区在线观看av| 99精国产麻豆久久婷婷| 国产精品.久久久| 久久久欧美国产精品| 欧美成人精品欧美一级黄| 日日摸夜夜添夜夜爱| 777米奇影视久久| 亚洲天堂av无毛| 成人毛片60女人毛片免费| 熟女av电影| 国产又爽黄色视频| 香蕉精品网在线| 亚洲国产精品成人久久小说| 黄色毛片三级朝国网站| 有码 亚洲区| 少妇人妻 视频| av在线观看视频网站免费| 亚洲成色77777| 免费看不卡的av| 日本91视频免费播放| 侵犯人妻中文字幕一二三四区| 一二三四中文在线观看免费高清| 国产男女内射视频| 亚洲精品乱久久久久久| 成人黄色视频免费在线看| 国产精品久久久久久久电影| 欧美激情极品国产一区二区三区 | xxx大片免费视频| 亚洲美女黄色视频免费看| 亚洲经典国产精华液单| 日韩成人伦理影院| 日韩电影二区| 涩涩av久久男人的天堂| 国产精品久久久久久av不卡| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品,欧美精品| 亚洲性久久影院| 精品99又大又爽又粗少妇毛片| 免费日韩欧美在线观看| 最近的中文字幕免费完整| 亚洲av在线观看美女高潮| 中国美白少妇内射xxxbb| 中文字幕另类日韩欧美亚洲嫩草| 国产一区二区三区av在线| 一本色道久久久久久精品综合| 日韩成人av中文字幕在线观看| 欧美性感艳星| 国产激情久久老熟女| 少妇人妻 视频| 日韩av在线免费看完整版不卡| 久久久久久久国产电影| 国产精品熟女久久久久浪| 91精品伊人久久大香线蕉| 成人18禁高潮啪啪吃奶动态图| 国产成人精品婷婷| 最新中文字幕久久久久| 欧美精品人与动牲交sv欧美| 亚洲国产精品999| 日韩视频在线欧美| videos熟女内射| 最近2019中文字幕mv第一页| 大片免费播放器 马上看| 国精品久久久久久国模美| 精品第一国产精品| 欧美少妇被猛烈插入视频| 亚洲精品乱久久久久久| 成人国语在线视频| 久久这里只有精品19| 国产欧美日韩综合在线一区二区| 久久天躁狠狠躁夜夜2o2o| 久久亚洲真实| 男女免费视频国产| 中文字幕人妻丝袜制服| 香蕉丝袜av| 欧美日韩乱码在线| 国产精华一区二区三区| 国产精品久久视频播放| 在线观看免费日韩欧美大片| 黄片大片在线免费观看| tocl精华| bbb黄色大片| 极品人妻少妇av视频| 成人三级做爰电影| 久久人妻av系列| 久久国产亚洲av麻豆专区| 一级毛片女人18水好多| 午夜福利影视在线免费观看| 亚洲色图av天堂| 国产亚洲精品久久久久久毛片 | videosex国产| 国产欧美亚洲国产| 久久久水蜜桃国产精品网| 欧美激情极品国产一区二区三区| 午夜福利在线免费观看网站| 国产三级黄色录像| 国产欧美亚洲国产| 老司机影院毛片| 亚洲国产精品一区二区三区在线| 亚洲黑人精品在线| 99国产精品一区二区蜜桃av | 高潮久久久久久久久久久不卡| 我的亚洲天堂| 亚洲精品国产色婷婷电影| 精品一区二区三区av网在线观看| 黑人欧美特级aaaaaa片| 亚洲专区字幕在线| 黄色成人免费大全| ponron亚洲| 美女午夜性视频免费| 99热只有精品国产| 免费观看人在逋| 一级片免费观看大全| 久久性视频一级片| 性少妇av在线| 国产片内射在线| 精品一区二区三区av网在线观看| 国产男女内射视频| 精品国产乱子伦一区二区三区| 免费在线观看日本一区| 中文字幕高清在线视频| 女性被躁到高潮视频| 午夜两性在线视频| 日韩免费av在线播放| 99久久人妻综合| 搡老岳熟女国产| 人妻一区二区av| 叶爱在线成人免费视频播放| 超色免费av| 黄色片一级片一级黄色片| 日韩一卡2卡3卡4卡2021年| 欧美日韩福利视频一区二区| 亚洲人成电影观看| 国产色视频综合| 亚洲人成电影免费在线| 三级毛片av免费| 午夜精品久久久久久毛片777| 波多野结衣一区麻豆| bbb黄色大片| 两人在一起打扑克的视频| 亚洲avbb在线观看| 国产人伦9x9x在线观看| 丁香六月欧美| 欧美日韩国产mv在线观看视频| 欧美国产精品va在线观看不卡| 国产亚洲av高清不卡| 亚洲国产欧美日韩在线播放| 久久人人97超碰香蕉20202| 国产精品国产av在线观看| 国产亚洲精品第一综合不卡| 久久国产精品男人的天堂亚洲| 久久精品国产亚洲av香蕉五月 | 免费女性裸体啪啪无遮挡网站| 一个人免费在线观看的高清视频| 亚洲av第一区精品v没综合| 母亲3免费完整高清在线观看| 99riav亚洲国产免费| 制服诱惑二区| 夫妻午夜视频| 国产高清国产精品国产三级| 夜夜躁狠狠躁天天躁| 黄色怎么调成土黄色| 中文字幕高清在线视频| 老司机深夜福利视频在线观看| 九色亚洲精品在线播放| 婷婷成人精品国产| 午夜视频精品福利| 成人国产一区最新在线观看| 国产淫语在线视频| 成年动漫av网址| 黄片小视频在线播放| 久久人妻福利社区极品人妻图片| 最近最新免费中文字幕在线| 欧美乱妇无乱码| 国产成人av教育| 免费久久久久久久精品成人欧美视频| 国产精品 欧美亚洲| 最近最新中文字幕大全电影3 | 大香蕉久久成人网| 国产成人精品无人区| 成人黄色视频免费在线看| 亚洲成国产人片在线观看| 午夜久久久在线观看| 精品国产乱子伦一区二区三区| xxxhd国产人妻xxx| 午夜91福利影院| 女同久久另类99精品国产91| 999久久久精品免费观看国产| 老熟女久久久| 午夜福利视频在线观看免费| 亚洲精品美女久久av网站| 精品久久久久久久毛片微露脸| 免费人成视频x8x8入口观看| 国产av又大| 国产成人免费观看mmmm| 久久精品国产99精品国产亚洲性色 | 19禁男女啪啪无遮挡网站| 国产免费现黄频在线看| 国产色视频综合| 18禁黄网站禁片午夜丰满| 国产高清国产精品国产三级| 中文字幕高清在线视频| 久久精品亚洲熟妇少妇任你| 国产99白浆流出| 一区二区日韩欧美中文字幕| 精品国产乱码久久久久久男人| 在线观看日韩欧美| 夜夜躁狠狠躁天天躁| 亚洲精品一卡2卡三卡4卡5卡| 午夜免费成人在线视频| 欧美午夜高清在线| 狠狠婷婷综合久久久久久88av| 18禁裸乳无遮挡免费网站照片 | 99re6热这里在线精品视频| 欧美日韩亚洲综合一区二区三区_| 亚洲黑人精品在线| 如日韩欧美国产精品一区二区三区| 日本wwww免费看| 国产成人啪精品午夜网站| 人妻丰满熟妇av一区二区三区 | 亚洲熟女毛片儿| 国产高清激情床上av| 又大又爽又粗| 大码成人一级视频| 亚洲va日本ⅴa欧美va伊人久久| 国产成人欧美| 国产精品二区激情视频| 久久性视频一级片| 国产高清videossex| 欧美人与性动交α欧美软件| 亚洲少妇的诱惑av| 亚洲av电影在线进入| 制服诱惑二区| 婷婷丁香在线五月| 9191精品国产免费久久| 欧美国产精品va在线观看不卡| 韩国精品一区二区三区| 免费在线观看完整版高清| 视频区欧美日本亚洲| 久久久水蜜桃国产精品网| 久久久久久久久久久久大奶| 亚洲免费av在线视频| 亚洲av成人一区二区三| 国产精品综合久久久久久久免费 | 久久亚洲精品不卡| 国产av精品麻豆| 操出白浆在线播放| 欧美国产精品一级二级三级| 色综合婷婷激情| 女同久久另类99精品国产91| 日韩 欧美 亚洲 中文字幕| 免费高清在线观看日韩| 欧美乱妇无乱码| 精品人妻1区二区| 亚洲精品在线观看二区| 91精品三级在线观看| 99国产精品一区二区蜜桃av | 黄网站色视频无遮挡免费观看| 在线视频色国产色| 国产一区二区三区综合在线观看| 电影成人av| 成人国语在线视频| 脱女人内裤的视频| 亚洲精品一卡2卡三卡4卡5卡| 极品人妻少妇av视频| 欧美国产精品一级二级三级| 看黄色毛片网站| 亚洲专区国产一区二区| 亚洲美女黄片视频| 啦啦啦 在线观看视频| 亚洲一区二区三区欧美精品| av片东京热男人的天堂| av有码第一页| 18禁美女被吸乳视频| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美另类亚洲清纯唯美| 91九色精品人成在线观看| 超碰97精品在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲中文av在线| 久久精品成人免费网站| 在线av久久热| 国产成人精品久久二区二区免费| 欧美日韩精品网址| 婷婷精品国产亚洲av在线 | 日本vs欧美在线观看视频| 国产激情欧美一区二区| 黑人巨大精品欧美一区二区mp4| 精品国产美女av久久久久小说| 亚洲aⅴ乱码一区二区在线播放 | 国产真人三级小视频在线观看| 少妇裸体淫交视频免费看高清 | xxxhd国产人妻xxx| 女同久久另类99精品国产91| 久久狼人影院| 老鸭窝网址在线观看| 成人影院久久| 黑人巨大精品欧美一区二区mp4| 国产高清激情床上av| 中国美女看黄片| 国产精品一区二区在线不卡| 亚洲午夜精品一区,二区,三区| 久热这里只有精品99| 亚洲国产精品一区二区三区在线| 婷婷丁香在线五月| 欧美精品亚洲一区二区| 精品亚洲成国产av| 久久中文字幕人妻熟女| 亚洲一区高清亚洲精品| 女性被躁到高潮视频| 久久亚洲精品不卡| 欧美日韩成人在线一区二区| 久久人人爽av亚洲精品天堂| 在线观看66精品国产| 人妻 亚洲 视频| 99国产精品一区二区蜜桃av | 少妇粗大呻吟视频| 十八禁网站免费在线| 成人手机av| 久久久久久久久免费视频了| 少妇 在线观看| 精品视频人人做人人爽| 亚洲七黄色美女视频| 欧美日韩亚洲国产一区二区在线观看 | 亚洲第一欧美日韩一区二区三区| 黄色毛片三级朝国网站| 一进一出抽搐gif免费好疼 | 91成人精品电影| 国产免费现黄频在线看| av片东京热男人的天堂| 咕卡用的链子| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久久久久久毛片微露脸| 操出白浆在线播放| 亚洲成人手机| 精品亚洲成a人片在线观看| 黄色视频,在线免费观看| 伦理电影免费视频| 日韩中文字幕欧美一区二区| 欧美在线黄色| 亚洲欧美一区二区三区黑人| 国产高清videossex| 亚洲色图综合在线观看| 男人舔女人的私密视频| 91麻豆精品激情在线观看国产 | 成年人午夜在线观看视频| 一级黄色大片毛片| 国产深夜福利视频在线观看| 露出奶头的视频| 亚洲国产中文字幕在线视频| 国产1区2区3区精品| 搡老熟女国产l中国老女人| 精品久久久久久,| 免费看十八禁软件| 一级毛片女人18水好多| 嫩草影视91久久| 亚洲人成77777在线视频| 欧美黄色淫秽网站| 久久亚洲精品不卡| 久久久久久久久久久久大奶| 国产精品欧美亚洲77777| 亚洲精品国产区一区二| 啦啦啦 在线观看视频| 可以免费在线观看a视频的电影网站| 高清欧美精品videossex| 午夜福利乱码中文字幕| 国产精品成人在线| 精品一区二区三区av网在线观看| 亚洲国产精品sss在线观看 | 人妻一区二区av| 色婷婷av一区二区三区视频| 老熟妇乱子伦视频在线观看| av视频免费观看在线观看| tocl精华| 咕卡用的链子| 亚洲视频免费观看视频| 久久性视频一级片| 一级毛片高清免费大全| 天天影视国产精品| 老鸭窝网址在线观看| 国产在线精品亚洲第一网站| 91字幕亚洲| 亚洲aⅴ乱码一区二区在线播放 | 午夜免费成人在线视频| 国产成人精品无人区| 9色porny在线观看| 免费看a级黄色片| av超薄肉色丝袜交足视频| 亚洲色图综合在线观看| 免费少妇av软件| 午夜福利在线观看吧| 久久久久久久久免费视频了| 天堂俺去俺来也www色官网| 国产精品九九99| 国产精品亚洲av一区麻豆| 精品福利观看| 日本黄色日本黄色录像| 别揉我奶头~嗯~啊~动态视频| 老司机深夜福利视频在线观看| 亚洲,欧美精品.| 热99re8久久精品国产| 亚洲一区中文字幕在线| 国产不卡av网站在线观看| 一进一出抽搐动态| 亚洲午夜精品一区,二区,三区| 国产欧美日韩精品亚洲av| 精品欧美一区二区三区在线| 欧美激情久久久久久爽电影 | 精品国产一区二区久久| av电影中文网址| 精品人妻在线不人妻| 波多野结衣一区麻豆| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美一区二区三区在线观看 | 亚洲专区字幕在线| svipshipincom国产片| 日韩中文字幕欧美一区二区| 日韩视频一区二区在线观看| 高清av免费在线| 美女视频免费永久观看网站| 性色av乱码一区二区三区2| www.熟女人妻精品国产| 伊人久久大香线蕉亚洲五| 国产亚洲精品久久久久5区| 国产成人啪精品午夜网站| 久久久久久久国产电影| 久久精品91无色码中文字幕| 香蕉久久夜色| 国产一区二区三区综合在线观看| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美日韩另类电影网站| 十八禁网站免费在线| 国产97色在线日韩免费| 国产亚洲av高清不卡| 久久精品人人爽人人爽视色| 婷婷丁香在线五月| 欧美亚洲日本最大视频资源| 露出奶头的视频| 国产精品 欧美亚洲| 丝袜在线中文字幕| 黄频高清免费视频| 国产aⅴ精品一区二区三区波| 18禁观看日本| 亚洲七黄色美女视频| 夜夜躁狠狠躁天天躁| 精品亚洲成a人片在线观看| 亚洲一区二区三区欧美精品| 成人精品一区二区免费| 久久精品aⅴ一区二区三区四区| 一进一出抽搐动态| 9热在线视频观看99| 19禁男女啪啪无遮挡网站| 欧美成人免费av一区二区三区 | 亚洲午夜精品一区,二区,三区| 捣出白浆h1v1| 熟女少妇亚洲综合色aaa.| 欧美日韩亚洲高清精品| 露出奶头的视频| 久久ye,这里只有精品| 亚洲精品成人av观看孕妇| 热99久久久久精品小说推荐| 亚洲欧美激情综合另类| 国产精品亚洲一级av第二区| 久久国产精品大桥未久av| 制服人妻中文乱码| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲色图 男人天堂 中文字幕| 99国产精品一区二区三区| 91精品三级在线观看| 国产亚洲欧美精品永久| 中文字幕制服av| 久久性视频一级片| 黄色成人免费大全| 91av网站免费观看| 中文字幕高清在线视频| 欧美黄色片欧美黄色片| 免费久久久久久久精品成人欧美视频| 99久久人妻综合| 国产欧美日韩一区二区精品| 美女国产高潮福利片在线看| 亚洲人成77777在线视频| 最近最新中文字幕大全电影3 | 在线观看免费日韩欧美大片| 不卡av一区二区三区| 天天添夜夜摸| 黄色a级毛片大全视频| 久久精品国产亚洲av香蕉五月 | 精品国产超薄肉色丝袜足j| 精品免费久久久久久久清纯 | 亚洲精品一二三| 久久久久国产一级毛片高清牌| 嫩草影视91久久| 久久香蕉激情| 国产亚洲av高清不卡| 亚洲七黄色美女视频| 在线国产一区二区在线| 99热只有精品国产| 多毛熟女@视频| 国产xxxxx性猛交| 无人区码免费观看不卡| 老司机靠b影院| 欧美精品一区二区免费开放| 国产亚洲精品久久久久久毛片 | 又黄又爽又免费观看的视频| 一夜夜www| 亚洲av成人一区二区三| 亚洲中文av在线| 精品少妇久久久久久888优播| 精品国产美女av久久久久小说| 自拍欧美九色日韩亚洲蝌蚪91| 免费黄频网站在线观看国产| 十分钟在线观看高清视频www| 国产欧美日韩一区二区三区在线| 高清毛片免费观看视频网站 | 午夜久久久在线观看| 色在线成人网| aaaaa片日本免费| 大型黄色视频在线免费观看| 别揉我奶头~嗯~啊~动态视频| 在线观看www视频免费| 91av网站免费观看| 超碰成人久久| 91av网站免费观看| 亚洲午夜理论影院| 国产精品.久久久| 搡老乐熟女国产| 久热这里只有精品99| 久久久国产一区二区| 国产不卡一卡二| 中文字幕人妻熟女乱码| 在线观看www视频免费| 十八禁人妻一区二区| 亚洲中文字幕日韩| 51午夜福利影视在线观看| 看片在线看免费视频| 岛国毛片在线播放| 免费观看精品视频网站| 99热只有精品国产| 黄片播放在线免费| 在线永久观看黄色视频| 日韩欧美在线二视频 | 亚洲人成电影免费在线| 丝袜在线中文字幕| 国产av又大| 黄网站色视频无遮挡免费观看| 高清毛片免费观看视频网站 | 丰满人妻熟妇乱又伦精品不卡| 精品视频人人做人人爽| 成熟少妇高潮喷水视频| 日本欧美视频一区| 久久精品国产99精品国产亚洲性色 | 97人妻天天添夜夜摸| 99国产精品一区二区蜜桃av | 久久中文字幕一级| 成年人午夜在线观看视频| 国产成人精品无人区| 又黄又爽又免费观看的视频| 电影成人av| 亚洲精品中文字幕在线视频| 欧美色视频一区免费| 12—13女人毛片做爰片一| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美 日韩 精品 国产| 国产欧美日韩综合在线一区二区| 自线自在国产av| 亚洲成a人片在线一区二区| 国产又爽黄色视频| 男女高潮啪啪啪动态图| 亚洲男人天堂网一区| 国产精品电影一区二区三区 | 久久人人爽av亚洲精品天堂| 日本精品一区二区三区蜜桃| 国精品久久久久久国模美| 亚洲av电影在线进入|