• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Motion cue based pedestrian detection with two-frame-filtering①

    2015-04-17 06:27:06LvJingqin呂敬欽
    High Technology Letters 2015年3期

    Lv Jingqin (呂敬欽)

    (Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, P.R.China)

    ?

    Motion cue based pedestrian detection with two-frame-filtering①

    Lv Jingqin (呂敬欽)②

    (Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, P.R.China)

    This study proposes a motion cue based pedestrian detection method with two-frame-filtering (Tff) for video surveillance. The novel motion cue is exploited by the gray value variation between two frames. Then Tff processing filters the gradient magnitude image by the variation map. Summations of the Tff gradient magnitudes in cells are applied to train a pre-detector to exclude most of the background regions. Histogram of Tff oriented gradient (HTffOG) feature is proposed for pedestrian detection. Experimental results show that this method is effective and suitable for real-time surveillance applications.

    pedestrian detection, two-frame-filtering (TFF), Tff magnitude vector (TffMV), Histogram of Tff oriented gradient (HTffOG), SVM, video surveillance

    0 Introduction

    Pedestrian detection is an important precursor for many computer vision applications, such as intelligent video surveillance and image annotation. Though pedestrian detection is a challenging task due to variable appearance and pose, prominent progresses have been published[1,2]for pedestrian detection on image. Such works study detection on image by densely extracting powerful feature (such as HOG and LBP) and SVM training, and good results have been achieved. However these methods are time-consuming, furthermore their performance can be improved by adding motion information. Therefore such methods are still not suitable for video surveillance. In recent years, a few works exploit motion information for video pedestrian detection. In Ref.[3] the detection performance is improved significantly when optical flow based feature is combined, but the detection speed is decreased. In Ref.[4] the motion information is exploited by image differencing, and as an early work the detector is trained based on sums of absolute differences and gray value in rectangles. Methods combined with edge templates and foreground cues[5,6]can obtain good performance in video surveillance scenes with relatively rapid speed.

    In surveillance scenes most people are walking, and stand-up people will walk away later. By this observation, a motion cue based pedestrian detection method with two-frame-filtering is proposed to detect moving pedestrians in surveillance scenes. The novel motion cue is exploited by the variation of pixel’s gray value between two adjacent frames, instead of foreground cues which may obtain undesirable inaccurate foreground in crowded scenes. Then Tff processing filters the gradient magnitude image of the current frame through the variation map by constraining the magnitude less than the variation value for each pixel. Consequently, the Tff gradient magnitude of the background region is suppressed substantially, and contours of moving targets are highlighted relatively. Summations of the Tff magnitudes in cells are concatenated into Tff magnitude vector (TffMV) and utilized to train the pre-detector by SVM to exclude most of the background regions rapidly. To represent pedestrian’s appearance, histogram of Tff oriented gradient feature is proposed and utilized to train the pedestrian detector. Experimental results and analysis indicate that our detection method is effective and suitable for real-time surveillance applications.

    The structure of this paper is as follows. Section 1 introduces Tff processing, TffMV as well as HTffOG. In Section 2, the detection method is described. Experimental results are presented in Section 3. Finally, the method is concluded in Section 4.

    1 Tff processing and HTffOG

    1.1 Tff processing

    For surveillance scene, motion cue can be exploited from two frames. Firstly, Tff processing computes the variation map of the scene. Given two adjacent frames It+1and It, difference dIt+1(x) of pixel x is calculated

    (1)

    where g is a normalizing factor. The gray value variation map Vt+1(x) is computed as

    (2)

    The result map Vt+1(x) which simply captures pixel’s variation across frames contains the valuable motion cue of the scene. If dIt+1(x) is large enough, it is most likely produced by motion or illumination changing. The normalizing factor g is set to 25 in our experiments by obtaining better effects of variation maps for several randomly selected frames.

    For illustrative purpose, the results of Tff processing on two frames are shown in Fig.1. In the variation map Vt+1(x), the background is suppressed substantially, while moving targets are highlighted relatively, which indicates that the motion information is successfully extracted into the variation map.

    Fig.1 Original image, variation map, magnitude image and Tff magnitude image (from top to bottom)

    In some cases, motions of some local body parts are tiny. In the variation map, such parts are usually thin and weaker. To strengthen the variation of such parts, Vt+1(x) is improved as

    (3)

    Secondly, the gradient magnitude Gt+1(x) of the current frame It+1is calculated using [-1,1] derivative mask. Then magnitude Gt+1(x) is divided by coefficient g as in Eq.(1). Next it is cropped by the same way as Eq.(2).

    The gradient cue characterizes the appearance of the scene, and the variation map exploits the variation parts around moving objects. In order to obtain good features for detection, to integrate the merits of both cues is an advisable way. As the variation map and the magnitude image are calculated in similar ways, Tff processing filters the gradient magnitude image of the current frame through the variation map

    (4)

    1.2 TffMV and HTffOG

    The notable HOG densely extracts histograms of oriented gradient in each cell on a grid of pedestrian window. It captures the appearance and shape information which enable detector to discriminate pedestrians from complex background. Given the Tff magnitude image, the proposed TffMV and HTffOG are extracted in a similar way as HOG. The pedestrian window (96×48 image window) is divided into a 16×8 grid and a 15×7 grid (with cell size of 6×6), as shown in Fig.2. The appearance of pedestrian window can be represented by extracting feature from each cell. Cells of one grid are located at the center of 2×2 neighboring cells of the other grid. Therefore this pair of grids can provide abundant information.

    Fig.2 Illustration of two grids for calculating HTffOG

    In the Tff magnitude image, magnitudes of moving people’s contour are high, while magnitudes of most of the background are close to zero. The summation of magnitudes in a cell represents the appearance of the cell. TffMV is extracted by concatenating the summation of pixels’ magnitudes in every cell. Before calculating the summation, the Tff magnitude image is filtered by a 5×5 averaging filter to reduce aliasing between cells. Consequently, the pedestrian windows can be discriminated from the background ones using TffMV.

    Local appearance and shape can be often characterized well by the distribution of local region’s gradients. To obtain better and sufficient representation, a histogram of oriented gradient is constructed for each cell. Firstly, each pixel’s magnitude is voted bilinearly to histograms of 2×2 neighboring cells according to the distances between the pixel and the cell centers. Next the histogram can be calculated by voting each magnitude to two adjacent orientation bins linearly according to its gradient orientation. HTffOG is the concatenation of all the 233 histograms of oriented gradient, resulting in a vector of 2097 dimensions. Due to the merits of Tff magnitude image, HTffOG can extract moving pedestrian’s appearance better than the traditional HOG for video surveillance.

    In order to alleviate lighting changing problem and imbalance of gradient magnitude among cells, histogram normalization is performed. The histogram of oriented gradient v is normalized for each cell

    (5)

    For general normalization, α is a constant whose value is 1. Consequently, histogram vnis irrelevant to ‖v‖1after normalization. In our method, α is set to 1/3 by experience, and M is set to the evaluated mean summation of Tff magnitude in every cell from the training data. Therefore the informative Tff magnitude cue ‖v‖1is partly preserved in vn.

    2 The detection method

    Linear SVM is adopted to train the pre-detector and the pedestrian detector with TffMV and HTffOG respectively. The detection process is based on scanning a 96×48 model window over the input image at discrete positions (with step size equal to cell size). Detectors are applied to classify each scanned window as a pedestrian candidate or background with TffMV or HTffOG. Background windows will be rejected by the detectors.

    The proposed method contains three steps. Firstly, for each scanned window, TffMV is extracted and runs the pre-detector to classify each window. As a result, most of background windows will be rejected, and only a few windows classified as pedestrian candidate pass the pre-detector. Secondly, the discriminative HTffOG is extracted for each remnant candidate window. HTffOG vectors are fed to the pedestrian detector to classify these windows as pedestrian or not. Some nearby windows corresponding to the same pedestrians usually pass the pedestrian detector. Finally, all the remnant windows are merged to obtain exact pedestrian positions by the mean shift algorithm[8].

    3 Experimental results

    3.1 Implementation details

    To evaluate the proposed detection method, the PETS 2009 dataset[9]is selected which includes many sequences recorded at 7 frames per second from a surveillance scene. The detectors are trained with cropped windows from sequence Time-14-03. 590 pedestrians’ windows (resized to 48×96) are cropped from Time-14-03 as positive training samples, and 5900 negative samples are cropped. The pre-detector and the pedestrian detector are trained by the public software LibSVM[10]. The method is tested after every tenth frame for Time-12-34, and after every fifth frame for Time-13-57. In Time-13-57, many people are in crowd and occlusion happens frequently. This sequence is challenging for the pedestrian detection task, while Time-12-34 is relatively easy. In surveillance scenes, people usually walk on a ground plane. A useful calibration technology[5]can be applied to determine the height of pedestrians at every image vertical coordinates. Then the method can run the detectors through a few scales instead of all scales.

    3.2 The performance of the pre-detector

    Fig.3 shows the output of the pre-detector at a single scanning scale. The 6×6 green patches are the centers of the candidate windows passed the pre-detector. Obviously, most of the background windows are precluded by the pre-detector. To evaluate the performance of the pre-detector, the number of passed windows per person in a frame (NPWP) is defined as a metric. Lower NPWP value indicates that more windows are precluded by the pre-detector. The evaluated average NPWP for Time-12-34 is 21.83. As shown in Table 1 in section 3.3, 85% of the persons are detected in this sequence. Therefore the real average value of NPWP for all the detected persons may be no more than 26. The number of the candidate windows of each frame is 18870. Therefore more than 18000 windows of the background are precluded by the pre-detector with a few computations.

    Fig.3 Outputs of the pre-detector

    TffMV is of only 233 dimensions, and thus the pre-detector can be very efficient to scan the image. HTffOG is of 2097 dimensions, while HOG is of 3780 dimensions. 18000 windows are precluded by the TffMV based pre-detector, and only less than 870 windows are required to calculate the HTffOG and send to

    the person detector. As compared, our method can be nearly 15 times faster than HOG based detection method, which indicates that the method should be suitable for real-time detection.

    3.3 Pedestrian detection results

    Recently Bolme, et al. proposed the ASEF Filter based detection method[11], and Felzenszwalb, et al. proposed the part model detection method. Experimental results of both methods on PETS 2009 dataset were presented in Ref.[11]. For evaluation purposes, the results of our method are compared with results of these methods. Table 1 and Table 2 show the detection results of the proposed method and results extracted from Ref.[11]. Two detection results with different detection thresholds are given for each method.

    Table 1 Results of sequence Time-14-03

    Table 2 Results of sequence Time-13-57

    For Time-12-34, the proposed method achieves a high recall rate 85.65% and a higher precision rate 96.91%. Our method performs better than the compared methods as shown in Table 1. In this sequence some people stand statically. If such kind of cases is not considered in statistics, the recall rate should be higher than 93%. Fig.5 shows the final results of three frames. In Fig.5, most of the pedestrians are detected well, except the person who stands statically in the first image.

    For Time-13-57, our method results in a lower recall rate 62.85% and a high precision rate 89.43%, under difficulties that half-body occlusion and whole-body occlusion happen frequently. Compared with other methods with the same recall rates, our precision rate is higher. During the calculation of the recall rate, all the pedestrians including whole-body occluded pedestrians contribute to the recall rate; thus the recall rate should be higher actually.

    Fig.5 Results of three frames of Time-12-34

    Fig.6 shows the final results of three frames for Time-13-57. Obviously, most of the pedestrians not occluded are detected well, while a few false positives and miss detections also exist. In the first image, there are two false positives on the upper left. The left one is produced between two pedestrians. The other one is produced by the upper-body of three pedestrians, and one miss happens among the dense crowds. In the second image, the pedestrian occluded by the billboard is detected well, due to the role of the motion cue and the discriminative HTffOG. In the third image, the upper left dense crowds are detected with high recall performance. Those persons overlapped with nearby ones are detected precisely. The above experimental results indicate that the proposed method achieves good performance for these two sequences.

    Fig.6 Results of three frames of Time-13-57

    4 Conclusions

    This study has exploited the motion cue by effective Tff processing. Based on the Tff processing, discriminative TffMV and HTffOG are proposed. The pre-detector can preclude most background regions rapidly, and the pedestrian detector detects pedestrians from crowded scenes well. Experimental results indicate that our method is robust in complex scenes and suitable for real-time surveillance applications. Based on the proposed Tff processing, it’s meaningful to do research on more informative features, or develop methods to detect lower-body occluded pedestrians by combination with the body model[13]in the future.

    [ 1] Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA,2005. 886-893

    [ 2] Wang X, Han T X, Yan S. An HOG-LBP human detector with partial occlusion handling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009. 32-39

    [ 3] Walk S, Majer N, Schindler K, et al. New Features and Insights for Pedestrian Detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010. 1030-1037

    [ 4] Viola P, Jones M J, Snow D. Detecting pedestrians using patterns of motion and appearance. In: Proceedings of the IEEE International Conference on Computer Vision, Nice, France, 2003. 734-741

    [ 5] Zhe L, Davis L S, Doermann D, et al. Hierarchical part-template matching for human detection and segmentation In: Proceedings of the IEEE International Conference on Computer Vision, Rio de Janeiro, Brazil, 2007. 1-8

    [ 6] Beleznai C, Bischof H. Fast Human Detection in Crowded Scenes by Contour Integration and Local Shape Estimation In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009. 2246-2253

    [ 7] Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Kauai, USA, 2001. 511-518

    [ 8] Comaniciu D, Ramesh V, Meer P. The variable bandwidth mean shift and data-driven scale selection. In: Proceedings of the IEEE International Conference on Computer Vision, Vancouver, British Columbia, Canada, 2001.438-445

    [ 9] Ferryman J, Shahrokni A. An overview of the pets2009 challenge. In: Proceedings of the IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, Miami, USA, 2009. 25-30

    [10] Chang C C, Lin C J. LIBSVM: a library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001

    [11] Bolme D S, Lui M Y, Draper B A, et al. Simple real-time human detection using a single correlation filter. In: Proceedings of the IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, Miami, USA, 2009. 1-8

    [12] Felzenszwalb P, McAllester D, Ramanan D. A discriminatively trained, multiscale, deformable part model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008. 1-8

    [13] Ramanan D. Learning to parse images of articulated bodies. In: Proceedings of the Conference on Neural Information Processing Systems, Vancouver, Canada, 2006. 1129-1136

    Lv Jingqin, born in 1984. He is currently a PhD candidate at the Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, China. He received his BS and MS in instrument science and technology from Harbin Institute of Technology, China, in 2005 and 2007, respectively. His research interests include visual surveillance, object detection, and pattern analysis.

    10.3772/j.issn.1006-6748.2015.03.013

    ①Supported by the National High Technology Research and Development Program of China (No.2007AA01Z164), and the National Natural Science Foundation of China (No.61273258).

    ②To whom correspondence should be addressed. E-mail: lvjingqin@sjtu.edu.cn Received on Jan. 7, 2014, Zhang Miaohui, Yang Jie

    久久久久精品人妻al黑| 国产激情久久老熟女| 丁香六月欧美| 美女视频免费永久观看网站| av在线观看视频网站免费| 看非洲黑人一级黄片| 成人影院久久| 日韩中文字幕欧美一区二区 | 波野结衣二区三区在线| 精品久久久久久电影网| 亚洲欧美一区二区三区久久| 亚洲精品在线美女| 久久亚洲国产成人精品v| 老鸭窝网址在线观看| 亚洲av男天堂| 一区二区三区乱码不卡18| 中文字幕亚洲精品专区| 成人免费观看视频高清| 极品人妻少妇av视频| 高清不卡的av网站| 亚洲图色成人| 丝袜美腿诱惑在线| 少妇的丰满在线观看| 中文字幕高清在线视频| 亚洲国产成人一精品久久久| 男女午夜视频在线观看| 午夜影院在线不卡| 波多野结衣av一区二区av| 国产日韩欧美亚洲二区| 十八禁高潮呻吟视频| 精品国产一区二区三区四区第35| 1024香蕉在线观看| videosex国产| 亚洲七黄色美女视频| 免费高清在线观看视频在线观看| 亚洲国产av新网站| 日韩av免费高清视频| 黄片播放在线免费| 夜夜骑夜夜射夜夜干| 日韩中文字幕欧美一区二区 | 国产熟女欧美一区二区| 精品久久蜜臀av无| 9热在线视频观看99| 搡老岳熟女国产| 精品国产一区二区三区久久久樱花| 国产国语露脸激情在线看| 免费观看性生交大片5| 一区二区三区激情视频| 亚洲国产日韩一区二区| 成人手机av| 国产亚洲欧美精品永久| 亚洲欧美日韩另类电影网站| 亚洲,欧美,日韩| 大香蕉久久成人网| 啦啦啦在线免费观看视频4| 亚洲av综合色区一区| 亚洲,欧美,日韩| 国产精品一国产av| 中文字幕高清在线视频| 日本欧美视频一区| 麻豆av在线久日| 久久久精品94久久精品| 亚洲精品中文字幕在线视频| 久久女婷五月综合色啪小说| 可以免费在线观看a视频的电影网站 | 悠悠久久av| 在线精品无人区一区二区三| 日韩不卡一区二区三区视频在线| 9191精品国产免费久久| 欧美精品高潮呻吟av久久| 男女之事视频高清在线观看 | 在线观看国产h片| 久热爱精品视频在线9| 国产午夜精品一二区理论片| 亚洲天堂av无毛| 啦啦啦中文免费视频观看日本| 黄色 视频免费看| 亚洲精品美女久久av网站| 亚洲天堂av无毛| 久久 成人 亚洲| 亚洲专区中文字幕在线 | 曰老女人黄片| 日韩精品免费视频一区二区三区| 黄片无遮挡物在线观看| 色播在线永久视频| 极品少妇高潮喷水抽搐| 一级,二级,三级黄色视频| 国产激情久久老熟女| 国产精品免费视频内射| 国产探花极品一区二区| av片东京热男人的天堂| 2021少妇久久久久久久久久久| 国产日韩欧美在线精品| 又大又爽又粗| 国产免费视频播放在线视频| 欧美在线黄色| 久久性视频一级片| 久久 成人 亚洲| 十八禁高潮呻吟视频| 黄频高清免费视频| 欧美精品av麻豆av| 亚洲美女搞黄在线观看| 永久免费av网站大全| √禁漫天堂资源中文www| 亚洲五月色婷婷综合| 久久亚洲国产成人精品v| 免费观看a级毛片全部| 黄色毛片三级朝国网站| 国产深夜福利视频在线观看| 满18在线观看网站| 黑人欧美特级aaaaaa片| 高清在线视频一区二区三区| 麻豆av在线久日| 国产成人av激情在线播放| 女人被躁到高潮嗷嗷叫费观| 中文字幕人妻丝袜制服| 国产视频首页在线观看| 嫩草影视91久久| 大陆偷拍与自拍| 中文精品一卡2卡3卡4更新| 水蜜桃什么品种好| 看免费成人av毛片| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美中文字幕日韩二区| 久久精品国产亚洲av涩爱| 久久这里只有精品19| 老司机深夜福利视频在线观看 | 久久久国产欧美日韩av| 最近最新中文字幕大全免费视频 | 青春草国产在线视频| 亚洲精品美女久久av网站| 精品一区二区免费观看| 2018国产大陆天天弄谢| 黄色视频在线播放观看不卡| 中文字幕人妻丝袜一区二区 | 日韩 欧美 亚洲 中文字幕| 久久99一区二区三区| 久久久国产一区二区| 亚洲欧美日韩另类电影网站| 国产高清不卡午夜福利| www.熟女人妻精品国产| 久久精品国产a三级三级三级| 国产精品av久久久久免费| 亚洲综合色网址| 国产精品99久久99久久久不卡 | 亚洲国产欧美网| tube8黄色片| 久久久久久久久久久久大奶| 国产1区2区3区精品| 91成人精品电影| 交换朋友夫妻互换小说| 日日爽夜夜爽网站| 两个人免费观看高清视频| 一区在线观看完整版| 嫩草影院入口| 亚洲第一青青草原| 久久99精品国语久久久| 一区二区av电影网| 少妇人妻 视频| 国产一区二区在线观看av| www.熟女人妻精品国产| netflix在线观看网站| 亚洲熟女毛片儿| 日韩视频在线欧美| 大陆偷拍与自拍| 精品一区二区三区四区五区乱码 | 高清av免费在线| 国产精品久久久久成人av| 亚洲av在线观看美女高潮| 十八禁网站网址无遮挡| 午夜老司机福利片| 精品少妇一区二区三区视频日本电影 | 一级,二级,三级黄色视频| 最近中文字幕高清免费大全6| 涩涩av久久男人的天堂| 一区二区三区精品91| 精品卡一卡二卡四卡免费| 日韩视频在线欧美| 亚洲美女视频黄频| 精品国产超薄肉色丝袜足j| 90打野战视频偷拍视频| 久久久精品94久久精品| 亚洲精品视频女| 男女高潮啪啪啪动态图| 热re99久久国产66热| 中国三级夫妇交换| av在线播放精品| 嫩草影视91久久| 色94色欧美一区二区| 欧美亚洲 丝袜 人妻 在线| 久久久国产一区二区| 不卡av一区二区三区| 国产精品久久久av美女十八| 日韩人妻精品一区2区三区| 黑人欧美特级aaaaaa片| 一区二区三区激情视频| 亚洲国产日韩一区二区| 日韩不卡一区二区三区视频在线| 精品第一国产精品| 少妇人妻精品综合一区二区| 两个人免费观看高清视频| 日韩大码丰满熟妇| 天美传媒精品一区二区| 欧美 日韩 精品 国产| 精品人妻熟女毛片av久久网站| 亚洲精品视频女| 国产精品三级大全| 一二三四在线观看免费中文在| 午夜影院在线不卡| 亚洲人成77777在线视频| 制服诱惑二区| 夫妻午夜视频| 无限看片的www在线观看| 精品人妻一区二区三区麻豆| 亚洲人成77777在线视频| 性少妇av在线| 好男人视频免费观看在线| 人人妻,人人澡人人爽秒播 | 三上悠亚av全集在线观看| 国产一区二区激情短视频 | 欧美激情 高清一区二区三区| 免费高清在线观看视频在线观看| 天堂8中文在线网| 热re99久久精品国产66热6| 女性生殖器流出的白浆| 人人澡人人妻人| 国产精品麻豆人妻色哟哟久久| 久久99精品国语久久久| 日韩大码丰满熟妇| 一区二区三区四区激情视频| 亚洲精华国产精华液的使用体验| 日韩中文字幕视频在线看片| 人人妻,人人澡人人爽秒播 | 精品久久蜜臀av无| 人人妻,人人澡人人爽秒播 | 成人三级做爰电影| 久久精品国产a三级三级三级| 国产精品国产三级专区第一集| 一本久久精品| 久久精品人人爽人人爽视色| 综合色丁香网| 亚洲成人国产一区在线观看 | 久久精品亚洲熟妇少妇任你| 精品酒店卫生间| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久精品国产欧美久久久 | 天天添夜夜摸| 美女中出高潮动态图| 少妇猛男粗大的猛烈进出视频| 久久久久久久久免费视频了| 两个人看的免费小视频| 两个人看的免费小视频| 日本av手机在线免费观看| 国产日韩一区二区三区精品不卡| 啦啦啦视频在线资源免费观看| 搡老乐熟女国产| 黄片播放在线免费| 水蜜桃什么品种好| 女性被躁到高潮视频| 我要看黄色一级片免费的| 日韩免费高清中文字幕av| 成年人午夜在线观看视频| 飞空精品影院首页| 亚洲,欧美精品.| 国产探花极品一区二区| 久久人妻熟女aⅴ| 超色免费av| 欧美国产精品一级二级三级| 国产精品久久久久成人av| 女的被弄到高潮叫床怎么办| 啦啦啦在线免费观看视频4| 99精国产麻豆久久婷婷| 欧美日本中文国产一区发布| 在线天堂中文资源库| 久久国产精品大桥未久av| 亚洲美女黄色视频免费看| 大码成人一级视频| 别揉我奶头~嗯~啊~动态视频 | 丝袜人妻中文字幕| 少妇人妻 视频| www.熟女人妻精品国产| 丝袜美足系列| 亚洲欧美激情在线| 91成人精品电影| 国产探花极品一区二区| 欧美精品一区二区大全| 亚洲国产av影院在线观看| 亚洲av电影在线观看一区二区三区| 久久国产亚洲av麻豆专区| 亚洲精品成人av观看孕妇| 十八禁高潮呻吟视频| 熟女av电影| 美女脱内裤让男人舔精品视频| 国产黄频视频在线观看| 各种免费的搞黄视频| 青春草亚洲视频在线观看| 中文字幕精品免费在线观看视频| 丝袜在线中文字幕| 国产午夜精品一二区理论片| 精品福利永久在线观看| 亚洲国产欧美一区二区综合| 中文字幕人妻熟女乱码| 女人精品久久久久毛片| 激情五月婷婷亚洲| 免费在线观看视频国产中文字幕亚洲 | 人妻一区二区av| 久久精品国产亚洲av涩爱| 18在线观看网站| 色综合欧美亚洲国产小说| av电影中文网址| 天天影视国产精品| 亚洲欧美一区二区三区黑人| 日韩中文字幕视频在线看片| √禁漫天堂资源中文www| 啦啦啦中文免费视频观看日本| 亚洲欧美一区二区三区久久| 五月天丁香电影| 热re99久久精品国产66热6| 亚洲成人免费av在线播放| 亚洲av电影在线进入| 少妇被粗大猛烈的视频| 久久久久精品国产欧美久久久 | 国语对白做爰xxxⅹ性视频网站| 麻豆乱淫一区二区| 在线精品无人区一区二区三| 婷婷色综合大香蕉| 桃花免费在线播放| av网站在线播放免费| 丁香六月欧美| 一区二区三区激情视频| 女性生殖器流出的白浆| 叶爱在线成人免费视频播放| 亚洲色图 男人天堂 中文字幕| 人人妻人人添人人爽欧美一区卜| 亚洲欧美一区二区三区国产| 国产日韩欧美在线精品| 免费女性裸体啪啪无遮挡网站| 制服诱惑二区| 久久久精品94久久精品| www日本在线高清视频| 亚洲av在线观看美女高潮| 欧美激情极品国产一区二区三区| 亚洲一区二区三区欧美精品| 亚洲一级一片aⅴ在线观看| 久久国产亚洲av麻豆专区| 国产成人欧美| 18禁国产床啪视频网站| 永久免费av网站大全| 色吧在线观看| 好男人视频免费观看在线| 久久久久久久国产电影| 亚洲,欧美,日韩| 青草久久国产| 国产精品三级大全| 欧美日韩国产mv在线观看视频| 久久久久久人人人人人| 看免费成人av毛片| 午夜日本视频在线| 精品午夜福利在线看| 一级毛片我不卡| 老汉色∧v一级毛片| 午夜福利乱码中文字幕| 日韩人妻精品一区2区三区| 国产亚洲最大av| 成年av动漫网址| 涩涩av久久男人的天堂| 国产一区二区激情短视频 | av在线播放精品| 精品亚洲乱码少妇综合久久| 久久女婷五月综合色啪小说| 一区二区av电影网| 亚洲欧洲国产日韩| 精品第一国产精品| 国产片特级美女逼逼视频| 国产午夜精品一二区理论片| 免费观看a级毛片全部| 日日摸夜夜添夜夜爱| 久久久久久人人人人人| 国产又色又爽无遮挡免| 日本黄色日本黄色录像| 亚洲精品自拍成人| 国产精品三级大全| 美女国产高潮福利片在线看| 丝袜在线中文字幕| 乱人伦中国视频| 大陆偷拍与自拍| 精品福利永久在线观看| 精品久久久久久电影网| 啦啦啦视频在线资源免费观看| 熟妇人妻不卡中文字幕| videosex国产| 精品一区二区三区四区五区乱码 | 久久免费观看电影| 丰满乱子伦码专区| 欧美国产精品va在线观看不卡| 国产日韩欧美在线精品| 欧美精品一区二区大全| 亚洲欧洲日产国产| 亚洲欧美精品综合一区二区三区| 男女无遮挡免费网站观看| 欧美精品一区二区大全| 人人澡人人妻人| 伊人久久大香线蕉亚洲五| 肉色欧美久久久久久久蜜桃| 一本色道久久久久久精品综合| 国产激情久久老熟女| 国产精品99久久99久久久不卡 | 久久免费观看电影| 丁香六月欧美| 精品国产一区二区三区四区第35| 国产黄频视频在线观看| 9191精品国产免费久久| 涩涩av久久男人的天堂| 秋霞伦理黄片| 只有这里有精品99| 亚洲婷婷狠狠爱综合网| 韩国精品一区二区三区| 亚洲av中文av极速乱| 男女国产视频网站| 国产精品国产三级国产专区5o| 老汉色av国产亚洲站长工具| 亚洲成国产人片在线观看| 韩国av在线不卡| 国产精品国产av在线观看| 1024视频免费在线观看| 久久热在线av| 熟妇人妻不卡中文字幕| 亚洲精品aⅴ在线观看| 亚洲精品国产色婷婷电影| 老司机靠b影院| 国产精品av久久久久免费| 欧美精品av麻豆av| 亚洲国产精品国产精品| 美女脱内裤让男人舔精品视频| 精品一区二区免费观看| 男人爽女人下面视频在线观看| 久久毛片免费看一区二区三区| 欧美日韩视频精品一区| 夜夜骑夜夜射夜夜干| 久久天堂一区二区三区四区| 99热国产这里只有精品6| 午夜福利视频精品| 97在线人人人人妻| 视频在线观看一区二区三区| 一二三四中文在线观看免费高清| 欧美av亚洲av综合av国产av | 一级毛片我不卡| 国产不卡av网站在线观看| 午夜老司机福利片| 国产精品久久久久久精品电影小说| 欧美97在线视频| 街头女战士在线观看网站| 国产成人a∨麻豆精品| avwww免费| 男的添女的下面高潮视频| 黄网站色视频无遮挡免费观看| 亚洲av电影在线进入| 欧美中文综合在线视频| 性色av一级| 国产精品av久久久久免费| 久久久久精品国产欧美久久久 | 日韩视频在线欧美| 在线亚洲精品国产二区图片欧美| 日韩av在线免费看完整版不卡| 精品卡一卡二卡四卡免费| 国产精品久久久人人做人人爽| 日韩一卡2卡3卡4卡2021年| 久久精品久久久久久久性| 男女之事视频高清在线观看 | 国产成人精品无人区| 亚洲色图综合在线观看| 日本欧美视频一区| 日本av免费视频播放| 又黄又粗又硬又大视频| 亚洲人成网站在线观看播放| 精品一区二区三区四区五区乱码 | 视频区图区小说| 免费在线观看视频国产中文字幕亚洲 | 国产成人精品福利久久| 国产亚洲欧美精品永久| 国产日韩欧美视频二区| 欧美激情极品国产一区二区三区| 中文字幕色久视频| 久久久久久人人人人人| 国产精品国产三级专区第一集| 无限看片的www在线观看| 日韩,欧美,国产一区二区三区| 满18在线观看网站| 精品国产乱码久久久久久男人| 多毛熟女@视频| 波多野结衣av一区二区av| 在线观看免费午夜福利视频| 狂野欧美激情性bbbbbb| 天堂中文最新版在线下载| 丰满乱子伦码专区| 欧美av亚洲av综合av国产av | 欧美人与性动交α欧美软件| 久久久久精品人妻al黑| 亚洲精品国产一区二区精华液| www.自偷自拍.com| 青草久久国产| 2021少妇久久久久久久久久久| 日韩,欧美,国产一区二区三区| 多毛熟女@视频| 国产精品麻豆人妻色哟哟久久| 久久久精品国产亚洲av高清涩受| 性色av一级| 国产成人精品久久二区二区91 | 老司机深夜福利视频在线观看 | 王馨瑶露胸无遮挡在线观看| 人人妻人人爽人人添夜夜欢视频| 一级片'在线观看视频| 亚洲图色成人| 成人手机av| 国产精品99久久99久久久不卡 | 免费观看性生交大片5| 欧美黑人精品巨大| 色吧在线观看| 伊人久久大香线蕉亚洲五| 国产黄频视频在线观看| 国产 精品1| 最近最新中文字幕大全免费视频 | 91精品国产国语对白视频| kizo精华| 国产成人啪精品午夜网站| 乱人伦中国视频| 免费观看a级毛片全部| 国产乱来视频区| 最新的欧美精品一区二区| 久久精品亚洲熟妇少妇任你| 国产一区二区激情短视频 | 国产xxxxx性猛交| bbb黄色大片| 亚洲精品在线美女| 久久免费观看电影| 不卡av一区二区三区| 90打野战视频偷拍视频| 我的亚洲天堂| 国产一卡二卡三卡精品 | 美国免费a级毛片| 亚洲国产日韩一区二区| svipshipincom国产片| 国产精品久久久av美女十八| 亚洲国产av新网站| 女人被躁到高潮嗷嗷叫费观| 国产精品国产三级专区第一集| 老司机影院成人| 欧美日韩亚洲综合一区二区三区_| 国精品久久久久久国模美| 午夜福利,免费看| 男女高潮啪啪啪动态图| tube8黄色片| 性少妇av在线| 啦啦啦中文免费视频观看日本| tube8黄色片| 操美女的视频在线观看| 成年av动漫网址| 美女主播在线视频| 国产无遮挡羞羞视频在线观看| 国产成人精品久久二区二区91 | 伊人久久大香线蕉亚洲五| 日本色播在线视频| 999精品在线视频| 欧美人与性动交α欧美精品济南到| 亚洲三区欧美一区| 久久天躁狠狠躁夜夜2o2o | 国产黄色视频一区二区在线观看| 男女之事视频高清在线观看 | 99久久精品国产亚洲精品| 伊人久久大香线蕉亚洲五| 精品国产乱码久久久久久小说| 黄色 视频免费看| 亚洲美女黄色视频免费看| 亚洲三区欧美一区| 黄片无遮挡物在线观看| 国产乱来视频区| 久久精品亚洲av国产电影网| 秋霞在线观看毛片| 汤姆久久久久久久影院中文字幕| 少妇人妻精品综合一区二区| 在线看a的网站| 美女国产高潮福利片在线看| 男女下面插进去视频免费观看| 9热在线视频观看99| 亚洲av欧美aⅴ国产| 国产精品免费视频内射| a级毛片在线看网站| 少妇 在线观看| 汤姆久久久久久久影院中文字幕| 亚洲欧美中文字幕日韩二区| 满18在线观看网站| 久久久久网色| 最近最新中文字幕大全免费视频 | 少妇猛男粗大的猛烈进出视频| 性高湖久久久久久久久免费观看| 久久精品国产综合久久久| 欧美xxⅹ黑人| 老司机影院成人| 免费高清在线观看视频在线观看| 久久久久久免费高清国产稀缺| 精品福利永久在线观看| 久久久久国产精品人妻一区二区| 亚洲国产欧美一区二区综合| 九色亚洲精品在线播放| 麻豆av在线久日| 国产乱来视频区| 如日韩欧美国产精品一区二区三区| 亚洲精品国产区一区二| 国产 一区精品| 纯流量卡能插随身wifi吗| 日韩精品有码人妻一区| 亚洲专区中文字幕在线 | 亚洲三区欧美一区| 国产精品一国产av| 亚洲精品国产av蜜桃|