• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dispersion of neutron spin resonance mode in Ba0.67K0.33Fe2As2?

    2021-12-22 06:44:32TaoXie謝濤ChangLiu劉暢TomFennellUweStuhrShiLiangLi李世亮andHuiQianLuo羅會(huì)仟
    Chinese Physics B 2021年12期
    關(guān)鍵詞:劉暢

    Tao Xie(謝濤) Chang Liu(劉暢) Tom Fennell Uwe StuhrShi-Liang Li(李世亮) and Hui-Qian Luo(羅會(huì)仟)

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100190,China

    3Laboratory for Neutron Scattering and Imaging,Paul Scherrer Institut,CH-5232 Villigen PSI,Switzerland

    4Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: iron-based superconductor,neutron spin resonance,magnetic excitations

    1. Introduction

    The neutron spin resonance mode is a prominent clue to understand the magnetically driven superconductivity in unconventional superconductors.[1,2]Experimentally, it is a sharp peak emerging in the low-energy spin excitations with intensity behaving like a superconducting order parameter,which has been extensively observed in copper-oxide,[3,4]heavy-fermion,[5,6]iron-pnictide,[7]and iron-chalcogenide superconductors.[8]The resonance energyERdefined at the peak point is generally proportional to the superconducting transition temperature(Tc)with a universal ratioER/kBTc=4–6.[1,2,9–12]Theoretically, the neutron spin resonance mode is commonly regarded as a spin exciton arising from the collective particle–hole excitations of gapped Cooper pairs. In this picture,the entire spin resonance should be below a spinflip continuum energy ˉhωcjust beneath the pair-breaking gap 2?(?is the superconducting gap),[1,2]and usually the mode energy follows another linear scalingER/2?≈0.6 for most of unconventional superconductors.[13,14]When the spin resonance disperses to high energy approaching ˉhωc, it will become weaker and weaker,then finally damps out after entering the particle–hole continuum.[1,2]Therefore,the superconducting gap determines not only the upper limit of the resonance energy, but also the shape of the resonance dispersion.[12,15]In cuprates with d-wave pairing, ˉhωcseems like a complete dome with a strong momentum dependence from antinodal(?max=?0) to nodal region (?min=0), resulting in a downward dispersion of spin resonance withER<2?0.[1]In ironbased superconductors, the superconducting pairing symmetry is generally believed as a sign-reversed s±-wave between the hole and electron Fermi pockets.[16,17]The spin resonance arises from quasiparticle excitations with a finite wavevectorQthat connects those sign-changed pairs of Fermi pockets,thus ˉhωcis defined by the total superconducting gap summed on them: ˉhωc=?tot=|?k|+|?k+Q|.?totis momentum independent when only two similar sized Fermi pockets nest with each other.[18–20]In this case,a magnon-like upward dispersion of spin resonance is expected to be beneath the near constant ceiling of?tot. This upward dispersion of spin resonance in the superconducting state is closely related to the anisotropic spin–spin correlation length in the normal state,but has a much lower velocity than the antiferromagnetic(AF)spin waves in parent compounds.[21–23]In most cases, the size mismatch of Fermi pockets together with the distribution of multiple gaps may further affect the dispersion of the resonance.[23,24]

    Although the spin resonance mode has been observed in almost all of iron-based superconductors and generally follows both linear relations:ER/kBTc≈4.9 andER/?tot≈0.64,[11–14]the resonance energy may exceed?totin several particular compounds such as KxFe2?y(Se1?zSz)2,[25](CaFe1?xPtxAs)10Pt3As8,[26](Li0.8Fe0.2)ODFeSe[27]andACa2Fe4As4F2(A= K, Cs).[12,28]Instead of the excitonic scenario under s±-pairing, some of them may be alternatively explained as the self-energy effect induced redistribution of spin excitations under sign-preserved (s++)pairing.[29,30]In addition to the mode energyERat antiferromagnetic wavevectorQAF, the dispersion of the spin resonance seems to highly depend on the magnetic interactions in different compounds.[9]Weak out-of-plane dispersion of the spin resonance mode alongLdirection has been found in those superconducting compounds proximate to the three-dimensional (3D) stripe-type AF order [e.g.,BaFe2?x(Ni,Co,Ru)xAs2,BaFe2(As1?xPx)2,NaFe1?xCoxAs,Ba1?xNaxFe2As2,etc.],[31–37]while in those compounds with weak spin–orbital coupling (such as Ca1?yLayFe1?xNixAs2)or stoichiometric superconductivity(such as KCa2Fe4As4F2),the spin resonance is two-dimensional (2D) in reciprocal space.[11,12]In the bilayer CaKFe4As4system, the resonance intensity splits into two opposite harmonic modulations showing odd and even symmetries alongLdirection with respect to the distance of Fe–Fe planes within the Fe–As bilayer unit,but the resonance energies for both odd and even modes areLindependent.[14]So far,the investigations on the in-plane dispersion (alongHorKdirection) of spin resonance are quite limited in iron-based superconductors,since it is a great challenge to map the weak resonant signals away from the zone centerQAFand peak energyER. Previous inelastic neutron scattering measurements on BaFe2?xNixAs2reveal an upward in-plane dispersion of the resonance mode, thus it supports the spin excitonic picture and also explains the weakLdispersion as a consequence of the residual weak interlayer spin correlations.[21,24]However, an unusual downward in-plane dispersion of the resonance was recently discovered in the quasi-2D KCa2Fe4As4F2, which apparently exceeds?totand deeply challenges the spin excitonic picture.[12]Therefore,it is essential to fully compare the in-plane dispersion of spin resonance mode with the superconducting gaps in each system of iron-based superconductors.

    It was noted that the ringlike upward in-plane dispersion of spin resonance in Ba0.67K0.33(Fe1?xCox)2As2probably arises from particle–hole excitations on the imperfectly nested electron–hole Fermi surfaces.[23]However, their measurements were undertaken by time-of-flight neutron scattering experiments with fixedki ‖c?, which means the energy transfer is always coupled with the momentum transfer alongLdirection. Previous reports on the band structure and superconducting gaps of Ba1?xKxFe2As2are controversial,thus the random phase approximation(RPA)calculation of the spin exciton model is inadequate to capture the details of the resonance dispersion.[22,23]Here, we measure the in-plane dispersion of spin resonance mode in Ba0.67K0.33Fe2As2in fixedLplanes in more detail using a triple-axis neutron scattering spectrometer,and compare with the gap distributions recently measured by high resolution angle resolved photoemission spectroscopy (ARPES). Our results show that the spin resonance quickly becomes incommensurate forE≥11 meV and disperses upwards at least up toE=26 meV, much higher than?totfor all kinds of combination of hole–electron pockets. Therefore,the dispersion of the spin resonance cannot be fully accounted by particle–hole excitons under s±-pairing,as it may not be restricted by superconducting gaps in such multiband systems.

    2. Experimental setup

    High quality single crystals of Ba0.67K0.33Fe2As2were grown by self-flux method using FeAs as flux.[38,39]The largest sizes of our crystals are near 20 mm with homogenous composition. For neutron scattering experiments, about 11 g of crystals were co-aligned on rectangular aluminum plates by x-ray Laue camera using CYTOP hydrogen-free glue[Fig.1(a)]. Resistivity measurements on typical samples show a very sharp superconducting transition atTc=38.2 K within ?T ≈1 K [Fig. 1(b)]. Magnetization measurements also show a sharp superconducting transition and a nearly full diamagnetic susceptibility 4πχ ≈?1 [Fig. 1(c)]. For easy comparison, we summarized the superconducting gap values measured by ARPES on optimally doped Ba1?xKxFe2As2in Fig. 1(d).[40–46]Since all measurements suggested isotropic(s-wave) gaps on each Fermi pockets at fixedkz, here?totis the sum of the absolute gap value on a pair of hole–electron pockets connected by momentum transferQ,as shown in the inset of Fig. 1(d), where the deviations from the center point[Q=(1,0)]are due to the mismatch of the connected hole and electron pockets, and the horizontal bars on the data points mark their distribution in the reciprocal space. The early ARPES measurements seemed to overestimate the gap value,giving?tot=16–24 meV[upper arc in Fig.1(d)].[40–42]From high resolution ARPES measurements based on high quality crystals,[43–45]especially the most recently published results based on laser-ARPES,[46]we estimated?tot=11–17 meV,which forms a lower downward arc shape along the longitudinal direction [Fig. 1(d)]. Neutron scattering experiments were performed using thermal neutron triple-axis spectrometers EIGER at the Swiss Spallation Neutron Source (SINQ),Paul Scherrer Institut, Switzerland, with fixed final energyEf= 14.7 meV.[47]The scattering plane [H,0,0]×[0,0,L]is defined by a pseudo-orthorhombic magnetic unit cell witha ≈b ≈5.52 ?A,c=13.22 ?A,and the vectorQin reciprocal space is defined asQ=Ha?+Kb?+Lc?,whereH,K,andLare Miller indices anda?= ?a2π/a,b?= ?b2π/b,c?= ?c2π/care reciprocal lattice basis vectors. In this case, the AF wave vector isQAF=[1,0,L](L=±1,±3,±5),andq=Q?QAFis the vector away from the zone center to describe the dispersion. The total sample mosaic, defined by the full-widthat-half-maximum (FWHM) of the rocking curve, was about 2.6?for peak (2, 0, 0) and 2.8?for peak (0, 0, 4). In Fig.1(e), we schematically depict the low-energy spin waves of the parent compound BaFe2As2,[48]together with the dispersion of spin resonance in a doped compound. If the spin resonance is indeed from particle–hole excitons under s±-pairing, it should be entirely below?totwith upward dispersions but much slower velocity than the spin waves in the parent compound.[21–24]

    Fig. 1. (a) Photo of Ba0.67K0.33Fe2As2 crystals used in our neutron scattering experiments. (b) Resistivity transition of superconductivity at Tc =38.2 K.(c)Magnetization transition of superconductivity under fieldcooling (FC) and zero-field-cooling (ZFC). (d) The total superconducting gaps ?tot =|?k|+|?k+Q| on the hole and electron Fermi pockets linked by wavevector Q obtained from ARPES results. (e) Comparison between the dispersion of spin resonance mode in the superconducting compound and the spin wave in the parent compound (BaFe2As2) as predicted by the magnetic exciton scenario under s±-pairing symmetry, here assuming?tot is momentum independent. (f) The neutron spin resonance peaks at Q = (1,0,L) (L = 2,3,4) deduced by subtracting the spin excitations at normal state (T =45 K) from those at superconducting state (T =1.5 K).(g)The neutron spin resonance peaks normalized by the magnetic form factor of Fe2+.

    3. Results and discussion

    We firstly identify the spin resonance peak by constant-Qscans(energy scans)atQ=(1,0,L)(L=2,3,4). By subtracting the spin excitations at normal state(T=45 K)from those at superconducting state (T=1.5 K), we find a strong peak with clear intensity gain from 8 meV to 20 meV in superconducting state,the peak position forL=2 and 4 is 15 meV,and forL=3 is slightly lower at 14 meV [Fig. 1(f)]. By further normalizing the intensity using the square of magnetic form factor of Fe2+(|F(Q)|2), it seems that all three peaks have similar shape except for a small shift to low energy side forL=3. Such results suggest that the spin resonance intensity does not have anyLmodulation,and theLdispersion ofERis very weak,namely,the resonance mode is nearly 2D in reciprocal space. These results are consistent with previous reports on the spin resonance energy and the weakkzmodulation in most of superconducting gaps.[23,39,45]

    To determine the in-plane dispersion of the spin resonance, we have performed constant-energy scans (Q-scans)alongQ=[H,0,3]fromE=3 meV to 24 meV both atT=1.5 K (superconducting state) andT=45 K (normal state).Due to the limitation from spectrometer itself and the scattering rule,the scattering triangle cannot be closed for lowQside ofE=22 meV and 24 meV with fixedL=3, we thus measured theE=26 meV alongQ=[H,0,4]. The raw data are shown in Fig. 2, the flat backgrounds are already subtracted.To confirm the 2D behavior, additional scans atE=3 meV,9 meV and 18 meV were also measured alongQ=[H,0,4](data not shown). The signals at high energy are contaminated by spurious scattering possibly from the phonons of the sample holder or multiple scattering of Bragg peaks,which should be almost temperature independent within the measured range 1.5–45 K but only broaden the peak width. We find clear enhancements of the intensity aboveE=9 meV atT=1.5 K from the spin resonance. Due to the opening of full superconducting gaps belowTc,the spin excitations atE=3 meV are nearly fully gapped[Fig.2(a)],and there are still intensity loss and peak sharpening atT=1.5 K for low energies 3–8 meV,which can be explained as a strengthened spin–spin correlation length responding to the superconducting order.[39]From the raw data,we cannot identify any incommensurate spin excitations even in the superconducting state. Thus we have simply performed the single Gaussian fitting for all raw data peaks both atT=1.5 K andT=45 K, as shown by solid lines in Fig. 2. The FWHM of such fitting roughly reflects the energy and temperature dependence of the spin–spin correlation length[Fig.4(c)].

    Fig. 2. Constant-energy scans along Q = [H,0,3] from E = 3 meV to 24 meV and along Q=[H,0,4] for E =3 meV , 18 meV and 26 meV measured both at T =1.5 K(red)and T =45 K(black). The solid lines are fitting curves by single Gaussian functions.

    Fig. 3. The difference between T =1.5 K and 45 K of constant-energy scans in Fig.2(?Int.=Int.(T =1.5 K)?Int.(T =45 K)). The solid lines for E=3 meV,5 meV,7 meV,8 meV,9 meV are obtained by the difference(1.5 K?45 K)of single Gaussian fitting in Fig.2,and other solid lines for E =10–26 meV are fitting curves by two symmetric Gaussian functions.For comparison,the results along Q=[H,0,4]at E =3 meV,18 meV and 26 meV are also presented by open symbols.

    From thoseQ-scans in Fig. 2, we obtain cleanQdistribution of the spin resonance by doing subtraction?Int.=Int.(T=1.5 K)?Int.(T=45 K),as shown in Fig.3.The spin gap atE=3 meV has similar peak width forL=3(FWHM=0.259 r.l.u.) andL= 4 (FWHM=0.245 r.l.u.)[Fig. 3(a)]. At the commensurate position ofQAF=(1,0,3)(Brillouin zone center withq= 0), the change of correlation length firstly induces a small tip in the center of ?Int atE= 5 meV [Fig. 3(b)], and evolves to two negative peaks atE= 7 meV [Fig. 3(c)] and a partially positive peak atE= 8 meV [Fig. 3(d)]. To identify the starting energy of resonance intensity, we integrate ?Int. and then find that it becomes positive whenE> 9 meV [Fig. 3(e)], as there is certainly a positive peak atE=10 meV [Fig. 3(f)]. Therefore,the spin resonance actually emerges between 9 meV and 10 meV, or even lower energy~8 meV if only considering the excitations nearq=0. The resonance peak quickly disperses to incommensurate positions as shown by the data aboveE=11 meV[Figs.3(g)–3(p)],because all of them can be well fitted by two symmetric gaussian functions. The incommensurabilityδalongHdoes not haveLdependence,as manifested by the nearly overlapped data points forL=3 andL=4 atE=18 meV within the experimental errors[Fig.3(i)].Thus we could track the in-plane dispersion of spin resonance by combining the results both fromL=3 andL=4 due to its 2D nature.

    The peak positions determined by the incommensurability are present in Fig. 4(a). ForE=9 meV, we simply show the commensurate position with a horizontal error bar to represent the estimated peak width of the positive part. The lower arc shape of?totfrom high resolution ARPES measurements shown in Fig.1(d)is also present in Fig.4(a)for direct comparison,and the gradient colors represent the intensity of ?Int.obtained from Fig. 3. Apparently,?totjust cuts through the waist of the resonance mode. Although the most intensity of ?Int. locates belowE= 17 meV, the dispersion of the resonance mode can break though?totand persist to at leastE=26 meV [Figs. 3(p) and 4(a)]. We replot the resonance peak in Fig. 4(b) by using the integrated intensity of ?Int.from constant-energy scans alongQ=[H,0,3]in Fig.3. The peak energy still locates atE=14 meV, but the peak shape slightly shifts to high energy in comparison to theE-scan atQ=(1,0,3) shown in Fig. 1(f). The peak widths from single Gaussian fitting in Fig. 2 are plotted in Fig. 4(c), both results atT= 1.5 K andT= 45 K linearly increase upon energy, but the two lines cross around the resonance energyER= 14 meV. Namely, the correlation length in superconducting state is elongated below the mode center energyER,but shorten aboveERdue to the effect from dispersion of the resonance.

    Fig.4. (a)Dispersion along H of the spin resonance. Here the solid squares mark the incommensurate peak positions from two-Gaussian-fitting of the resonance peaks,the horizontal bar at E=9 meV is the estimated width for positive part of ?Int.,and the contour colors represent the intensity obtained from the solid lines in Fig. 3. The distribution of ?tot is also shown as the white arc[same as the lower arc in Fig.1(d)].(b)Integrated intensity of ?Int.obtained from constant-energy scans along Q=[H,0,3]in Fig.3.The solid line is guide to eyes,and the dashed line is normalized intensity from the Escan at Q=(H,0,3)in Fig.1(f). (c)Comparison of the peak width between T =1.5 K and T =45 K along Q=[H,0,3] from single-Gaussian-fitting curves in Fig.2.

    4. Conclusion

    To summarize, we have carefully examined the in-plane dispersion of spin resonance mode in Ba0.67K0.33Fe2As2. The mode energy with maximum intensity locates atE=14 meV forQ=(1,0,3), but the resonance may emerge at lower energy(E=9–10 meV)and quickly disperse to incommensurate positions(q/=0)persisting up toE=26 meV.While the estimated resonance velocity by the spin exciton model agrees reasonably well with experimental observation,the dispersion of spin resonance breaks through the limit of the total superconducting gaps?tot. Our results suggest that the detailed behaviors of spin resonance in iron-based superconductors may be closely related to its multi-band nature.By comparing them among different systems would inspire new mechanisms of magnetically driven superconductivity.

    Acknowledgments

    The authors thanks the helpful discussion with Prof.Jiangping Hu and Prof. Jianxin Li. This work is based on neutron scattering experiments performed at the Swiss Spallation Neutron Source (SINQ), Paul Scherrer Institut, Villigen,Switzerland(Proposal No.20180227).

    猜你喜歡
    劉暢
    Measurement of International Competitiveness of Clothing Industry under the Background of Value Chain Reconstruction
    水蒸氣變戲法
    春來(lái)啦
    They are just kids
    愛(ài)挑剔的番茄
    珍視自我
    劉暢作品
    海參
    夏天咋來(lái)的
    月亮洗澡
    欧美最黄视频在线播放免费| 亚洲中文日韩欧美视频| 亚洲va在线va天堂va国产| 狠狠狠狠99中文字幕| videossex国产| 国产成人aa在线观看| 亚洲一区高清亚洲精品| 男人的好看免费观看在线视频| 国产真实乱freesex| av在线老鸭窝| 极品教师在线视频| 又爽又黄a免费视频| av黄色大香蕉| 免费观看精品视频网站| 人妻久久中文字幕网| 中文亚洲av片在线观看爽| av福利片在线观看| 国产三级在线视频| 亚洲av美国av| 免费观看人在逋| 99国产精品一区二区蜜桃av| 成人性生交大片免费视频hd| 日本黄色片子视频| 99热这里只有是精品50| 人妻制服诱惑在线中文字幕| 免费观看在线日韩| 美女大奶头视频| 久久精品国产亚洲av天美| 国产色爽女视频免费观看| 婷婷亚洲欧美| 国产av在哪里看| 男女做爰动态图高潮gif福利片| 国产av不卡久久| 中国美女看黄片| 18禁黄网站禁片午夜丰满| 国产大屁股一区二区在线视频| 搞女人的毛片| 黄色日韩在线| 亚洲第一区二区三区不卡| 国产精品久久久久久亚洲av鲁大| 搡女人真爽免费视频火全软件 | 看片在线看免费视频| 小蜜桃在线观看免费完整版高清| 亚洲av免费高清在线观看| 久久精品国产亚洲av香蕉五月| 免费看a级黄色片| 精品国产三级普通话版| 色吧在线观看| 亚洲av成人av| 亚洲熟妇熟女久久| 色哟哟·www| 露出奶头的视频| 日本爱情动作片www.在线观看 | 综合色av麻豆| а√天堂www在线а√下载| 夜夜爽天天搞| x7x7x7水蜜桃| 国产av一区在线观看免费| 不卡视频在线观看欧美| 精品一区二区免费观看| 好男人在线观看高清免费视频| 精品一区二区三区av网在线观看| 国产一级毛片七仙女欲春2| 亚洲精品色激情综合| 一本久久中文字幕| 日日夜夜操网爽| 1000部很黄的大片| 久久久精品欧美日韩精品| 国产中年淑女户外野战色| 色综合婷婷激情| 日韩精品青青久久久久久| 成人特级av手机在线观看| 亚洲人成伊人成综合网2020| 黄色配什么色好看| 色吧在线观看| 一级黄片播放器| 亚洲国产日韩欧美精品在线观看| 欧美日韩精品成人综合77777| 岛国在线免费视频观看| 特大巨黑吊av在线直播| 可以在线观看毛片的网站| 夜夜看夜夜爽夜夜摸| 国产高清激情床上av| 丝袜美腿在线中文| 久99久视频精品免费| 亚洲av成人精品一区久久| 欧美日韩国产亚洲二区| 国产精品久久久久久亚洲av鲁大| 女人十人毛片免费观看3o分钟| 老司机福利观看| h日本视频在线播放| 日韩欧美一区二区三区在线观看| 春色校园在线视频观看| 国产激情偷乱视频一区二区| 精品人妻视频免费看| 亚洲七黄色美女视频| 精品99又大又爽又粗少妇毛片 | 国产亚洲精品久久久com| 国内精品久久久久精免费| 欧美一区二区精品小视频在线| 久久久久久久午夜电影| 国产精品美女特级片免费视频播放器| 中文字幕高清在线视频| 黄片wwwwww| 久久午夜福利片| 国产大屁股一区二区在线视频| 永久网站在线| 欧美一区二区亚洲| 久久精品国产鲁丝片午夜精品 | 在线免费观看不下载黄p国产 | 中国美女看黄片| 亚洲人成网站高清观看| 波多野结衣高清无吗| 99九九线精品视频在线观看视频| 欧美国产日韩亚洲一区| 国产乱人视频| 欧美激情在线99| 日韩欧美在线二视频| 亚洲人成网站在线播放欧美日韩| a级毛片免费高清观看在线播放| 国产69精品久久久久777片| 日韩,欧美,国产一区二区三区 | 日韩一区二区视频免费看| 亚洲精品亚洲一区二区| 国内毛片毛片毛片毛片毛片| 老师上课跳d突然被开到最大视频| 亚洲专区国产一区二区| 变态另类丝袜制服| 精品午夜福利视频在线观看一区| 国产午夜福利久久久久久| 国产一区二区亚洲精品在线观看| 午夜福利成人在线免费观看| av在线蜜桃| 国产一区二区三区在线臀色熟女| 亚洲avbb在线观看| 日韩欧美 国产精品| 亚洲狠狠婷婷综合久久图片| 亚洲精品乱码久久久v下载方式| 夜夜看夜夜爽夜夜摸| 亚洲国产欧美人成| 亚洲精品乱码久久久v下载方式| 成人特级黄色片久久久久久久| 亚洲熟妇熟女久久| 免费看av在线观看网站| 亚洲国产高清在线一区二区三| 少妇的逼好多水| 99热这里只有是精品在线观看| 亚洲最大成人中文| 88av欧美| 国产一区二区在线观看日韩| 夜夜爽天天搞| 午夜免费男女啪啪视频观看 | 搡老妇女老女人老熟妇| 国产成人a区在线观看| 人妻夜夜爽99麻豆av| a级毛片a级免费在线| 人妻久久中文字幕网| 亚洲中文字幕日韩| 俄罗斯特黄特色一大片| 国产aⅴ精品一区二区三区波| 国产精品综合久久久久久久免费| 少妇猛男粗大的猛烈进出视频 | 亚洲国产精品久久男人天堂| 人人妻,人人澡人人爽秒播| а√天堂www在线а√下载| 亚洲天堂国产精品一区在线| 亚洲美女黄片视频| a在线观看视频网站| 国产av麻豆久久久久久久| 午夜影院日韩av| 男女视频在线观看网站免费| 成人欧美大片| 男人舔女人下体高潮全视频| 51国产日韩欧美| 国产亚洲精品综合一区在线观看| 色综合亚洲欧美另类图片| 成人性生交大片免费视频hd| .国产精品久久| 亚洲精品色激情综合| 一区二区三区免费毛片| 一级黄片播放器| 97超视频在线观看视频| 色精品久久人妻99蜜桃| 久久久国产成人精品二区| 中国美白少妇内射xxxbb| av中文乱码字幕在线| 观看美女的网站| 久久草成人影院| 赤兔流量卡办理| 波多野结衣高清无吗| 亚州av有码| 中国美女看黄片| 亚洲不卡免费看| 成年版毛片免费区| 无遮挡黄片免费观看| 国产一区二区亚洲精品在线观看| 亚洲av一区综合| 久久亚洲真实| 91精品国产九色| 国产精品99久久久久久久久| 成人国产麻豆网| 男插女下体视频免费在线播放| 免费看美女性在线毛片视频| 亚洲精品在线观看二区| 国产亚洲精品久久久久久毛片| 深夜a级毛片| 最近中文字幕高清免费大全6 | 又爽又黄无遮挡网站| 欧美高清成人免费视频www| 色哟哟哟哟哟哟| 午夜福利18| 麻豆国产97在线/欧美| 中国美女看黄片| 日韩欧美在线二视频| 久久久久国产精品人妻aⅴ院| 日韩人妻高清精品专区| 亚洲av美国av| 久久久久国内视频| 久久精品国产鲁丝片午夜精品 | 69av精品久久久久久| aaaaa片日本免费| 中国美白少妇内射xxxbb| 欧美又色又爽又黄视频| 国产一区二区激情短视频| 亚洲av电影不卡..在线观看| 免费看a级黄色片| 美女cb高潮喷水在线观看| 久久久久免费精品人妻一区二区| 88av欧美| 精品人妻一区二区三区麻豆 | 草草在线视频免费看| 在线免费十八禁| 成年版毛片免费区| 日本免费a在线| 精品一区二区三区av网在线观看| 午夜福利欧美成人| 色视频www国产| 午夜福利在线观看免费完整高清在 | 成年免费大片在线观看| h日本视频在线播放| 噜噜噜噜噜久久久久久91| 亚洲久久久久久中文字幕| 22中文网久久字幕| 亚洲av免费高清在线观看| 黄色配什么色好看| 欧美日韩乱码在线| 中文字幕久久专区| 日日撸夜夜添| 日本三级黄在线观看| 婷婷精品国产亚洲av在线| 99久久无色码亚洲精品果冻| 在线观看舔阴道视频| 99热只有精品国产| 在线播放国产精品三级| avwww免费| 非洲黑人性xxxx精品又粗又长| 全区人妻精品视频| 一个人观看的视频www高清免费观看| 大又大粗又爽又黄少妇毛片口| 国产主播在线观看一区二区| 亚洲精品456在线播放app | 婷婷丁香在线五月| av天堂在线播放| 亚洲欧美日韩高清专用| 在线观看66精品国产| 嫩草影院精品99| 男女那种视频在线观看| 男女下面进入的视频免费午夜| 韩国av在线不卡| 麻豆久久精品国产亚洲av| 一个人观看的视频www高清免费观看| 国产亚洲精品av在线| 深夜精品福利| 国产色爽女视频免费观看| avwww免费| 色视频www国产| ponron亚洲| 午夜免费激情av| 免费人成在线观看视频色| 国产白丝娇喘喷水9色精品| 成人一区二区视频在线观看| 欧美日韩综合久久久久久 | 五月玫瑰六月丁香| 国产精华一区二区三区| 国产综合懂色| 亚洲第一区二区三区不卡| 国产精品一区二区三区四区久久| 亚洲四区av| 中文在线观看免费www的网站| 免费无遮挡裸体视频| 黄色女人牲交| 午夜福利视频1000在线观看| 国产aⅴ精品一区二区三区波| 不卡一级毛片| 久久久久久大精品| 很黄的视频免费| 一个人看视频在线观看www免费| 日本 av在线| 性色avwww在线观看| 亚洲av中文字字幕乱码综合| 自拍偷自拍亚洲精品老妇| 日本爱情动作片www.在线观看 | 亚洲人成网站在线播放欧美日韩| 欧美成人一区二区免费高清观看| 免费av不卡在线播放| 午夜亚洲福利在线播放| 亚洲,欧美,日韩| 欧美一区二区国产精品久久精品| 午夜视频国产福利| 亚洲无线在线观看| 日韩欧美在线乱码| 久久久久久大精品| 免费一级毛片在线播放高清视频| 国产av不卡久久| 久久久久精品国产欧美久久久| 五月伊人婷婷丁香| 欧美丝袜亚洲另类 | 成年女人毛片免费观看观看9| 男人舔奶头视频| 国产真实乱freesex| 亚洲中文字幕一区二区三区有码在线看| 欧美成人一区二区免费高清观看| 一级黄色大片毛片| 在线观看午夜福利视频| 久久香蕉精品热| 亚洲五月天丁香| 人妻制服诱惑在线中文字幕| 日本a在线网址| 亚洲性久久影院| 九九热线精品视视频播放| 人妻丰满熟妇av一区二区三区| 国产精品一及| 亚洲人成网站高清观看| 国产男人的电影天堂91| 日韩大尺度精品在线看网址| 亚洲av成人av| 国产伦精品一区二区三区四那| 国产成年人精品一区二区| 久久久久精品国产欧美久久久| 久久这里只有精品中国| 又爽又黄a免费视频| 九九久久精品国产亚洲av麻豆| 国产精品久久电影中文字幕| 国内揄拍国产精品人妻在线| 亚洲第一电影网av| 亚洲av.av天堂| 亚洲国产精品久久男人天堂| 久久久久久久久大av| 久久久久久久久久久丰满 | 久久久国产成人精品二区| 精品人妻1区二区| 无人区码免费观看不卡| 国产男靠女视频免费网站| 欧美xxxx性猛交bbbb| 久久热精品热| 久久精品国产亚洲网站| 欧美日本亚洲视频在线播放| 91精品国产九色| 97人妻精品一区二区三区麻豆| 国产亚洲欧美98| 午夜福利在线在线| 麻豆精品久久久久久蜜桃| 嫩草影视91久久| 非洲黑人性xxxx精品又粗又长| 97碰自拍视频| 啦啦啦啦在线视频资源| 午夜福利欧美成人| 高清在线国产一区| 久久中文看片网| 日本一本二区三区精品| 亚洲熟妇熟女久久| 欧美高清成人免费视频www| or卡值多少钱| 不卡视频在线观看欧美| 毛片一级片免费看久久久久 | 一个人免费在线观看电影| 欧美日韩国产亚洲二区| 两个人视频免费观看高清| 久久久久国产精品人妻aⅴ院| 欧美成人性av电影在线观看| 婷婷亚洲欧美| 99riav亚洲国产免费| 在线天堂最新版资源| 午夜福利视频1000在线观看| 国产午夜福利久久久久久| 精品欧美国产一区二区三| 国产免费一级a男人的天堂| 真人一进一出gif抽搐免费| 国产一级毛片七仙女欲春2| 国产欧美日韩一区二区精品| 日韩欧美国产一区二区入口| 最新在线观看一区二区三区| 欧美bdsm另类| 国产在视频线在精品| 久久久久久伊人网av| 又黄又爽又刺激的免费视频.| 波多野结衣高清作品| 成人一区二区视频在线观看| 舔av片在线| 色5月婷婷丁香| 一个人免费在线观看电影| 欧美日韩瑟瑟在线播放| 色精品久久人妻99蜜桃| 身体一侧抽搐| 18禁黄网站禁片午夜丰满| 神马国产精品三级电影在线观看| 精品一区二区三区视频在线| 国产乱人伦免费视频| 久久国产乱子免费精品| 99热网站在线观看| 麻豆av噜噜一区二区三区| 欧美区成人在线视频| avwww免费| 成人特级av手机在线观看| 亚洲av成人精品一区久久| 中文字幕久久专区| 国内精品美女久久久久久| 我要看日韩黄色一级片| 国产在线精品亚洲第一网站| 日韩中字成人| 99精品久久久久人妻精品| h日本视频在线播放| 九九热线精品视视频播放| 观看免费一级毛片| 3wmmmm亚洲av在线观看| 简卡轻食公司| 色综合色国产| 国产精品日韩av在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲电影在线观看av| 亚洲无线在线观看| 亚洲图色成人| 日韩精品青青久久久久久| 91久久精品国产一区二区成人| 久久国产精品人妻蜜桃| 亚洲精品成人久久久久久| 久久九九热精品免费| 国产伦一二天堂av在线观看| 深夜精品福利| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利在线在线| 亚洲熟妇熟女久久| 亚洲成人久久爱视频| 亚洲国产精品合色在线| 色哟哟·www| 欧美高清性xxxxhd video| 精品一区二区三区视频在线观看免费| 国产精品三级大全| 久久久色成人| 国产白丝娇喘喷水9色精品| 五月玫瑰六月丁香| 非洲黑人性xxxx精品又粗又长| 亚洲国产精品合色在线| 亚洲美女视频黄频| 人妻少妇偷人精品九色| 国语自产精品视频在线第100页| 免费看美女性在线毛片视频| 成人综合一区亚洲| 最新中文字幕久久久久| 少妇人妻精品综合一区二区 | 大又大粗又爽又黄少妇毛片口| 日本 av在线| 成年免费大片在线观看| 欧美+亚洲+日韩+国产| 一个人免费在线观看电影| 日韩精品中文字幕看吧| 国产精品久久久久久av不卡| 成人特级黄色片久久久久久久| 一进一出抽搐动态| 村上凉子中文字幕在线| 中出人妻视频一区二区| 国产精品一及| 在线国产一区二区在线| 亚洲欧美日韩卡通动漫| 久久精品91蜜桃| 美女 人体艺术 gogo| 3wmmmm亚洲av在线观看| 九九爱精品视频在线观看| 日韩欧美三级三区| 韩国av一区二区三区四区| 制服丝袜大香蕉在线| 少妇熟女aⅴ在线视频| 丝袜美腿在线中文| 国产精品久久久久久久电影| 久久精品国产亚洲网站| 欧美日韩黄片免| 国产精品嫩草影院av在线观看 | 久久久久久大精品| 又爽又黄a免费视频| 日韩欧美国产一区二区入口| 色精品久久人妻99蜜桃| 欧美日本视频| 久久久久久久久久黄片| 亚洲美女搞黄在线观看 | 国产 一区精品| 中出人妻视频一区二区| av在线观看视频网站免费| 国产人妻一区二区三区在| 99久久精品一区二区三区| 小蜜桃在线观看免费完整版高清| 国产主播在线观看一区二区| 精品99又大又爽又粗少妇毛片 | 国产成人影院久久av| 人妻夜夜爽99麻豆av| 可以在线观看的亚洲视频| 亚洲乱码一区二区免费版| 如何舔出高潮| 国产精品av视频在线免费观看| 在线播放国产精品三级| 亚洲一级一片aⅴ在线观看| 国产av麻豆久久久久久久| 俄罗斯特黄特色一大片| 不卡视频在线观看欧美| 亚洲精品影视一区二区三区av| 亚洲第一区二区三区不卡| 18禁黄网站禁片午夜丰满| 无遮挡黄片免费观看| 极品教师在线视频| 少妇丰满av| 中文字幕人妻熟人妻熟丝袜美| 婷婷六月久久综合丁香| 国产高清三级在线| 欧美精品国产亚洲| 国产亚洲精品综合一区在线观看| 99九九线精品视频在线观看视频| 久久久久久久久久成人| 国产精品爽爽va在线观看网站| 国产在线男女| 欧美一区二区国产精品久久精品| 国产探花极品一区二区| videossex国产| 悠悠久久av| 久久久色成人| 国产极品精品免费视频能看的| 亚洲成人久久爱视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲一级一片aⅴ在线观看| 亚洲人成网站高清观看| 十八禁网站免费在线| 国产欧美日韩精品一区二区| 99久久久亚洲精品蜜臀av| 亚洲av成人av| 黄色欧美视频在线观看| 十八禁网站免费在线| av在线老鸭窝| a级毛片a级免费在线| 国内精品一区二区在线观看| а√天堂www在线а√下载| 看免费成人av毛片| videossex国产| 日本成人三级电影网站| 亚洲五月天丁香| h日本视频在线播放| 日韩欧美精品免费久久| 国产精品一区二区性色av| 五月玫瑰六月丁香| 真人一进一出gif抽搐免费| 变态另类成人亚洲欧美熟女| 桃红色精品国产亚洲av| 免费在线观看影片大全网站| 一进一出抽搐动态| 午夜影院日韩av| 特大巨黑吊av在线直播| 黄色女人牲交| 精品久久久久久久久久免费视频| 国产成人福利小说| 亚洲国产日韩欧美精品在线观看| 天美传媒精品一区二区| 国产乱人伦免费视频| 嫁个100分男人电影在线观看| 身体一侧抽搐| 别揉我奶头~嗯~啊~动态视频| 此物有八面人人有两片| 又爽又黄无遮挡网站| 草草在线视频免费看| 亚洲av成人精品一区久久| 久久久久久久午夜电影| 国产伦在线观看视频一区| 亚洲欧美日韩卡通动漫| 男女啪啪激烈高潮av片| 乱码一卡2卡4卡精品| 亚洲av第一区精品v没综合| 成人毛片a级毛片在线播放| 精品久久久久久成人av| 麻豆国产97在线/欧美| 国产精品一区二区三区四区免费观看 | 国产精品伦人一区二区| 他把我摸到了高潮在线观看| 看片在线看免费视频| 日韩av在线大香蕉| 欧美+亚洲+日韩+国产| 九九爱精品视频在线观看| 国产一区二区亚洲精品在线观看| 亚洲av五月六月丁香网| 亚洲成人久久爱视频| 午夜a级毛片| 日韩欧美在线乱码| 久久久久国内视频| 国产av在哪里看| 高清在线国产一区| 深爱激情五月婷婷| 免费观看在线日韩| 国产单亲对白刺激| 国产男人的电影天堂91| 少妇熟女aⅴ在线视频| 国产成人aa在线观看| 免费av毛片视频| 午夜免费男女啪啪视频观看 | 乱系列少妇在线播放| 国产主播在线观看一区二区| 成人精品一区二区免费| 毛片一级片免费看久久久久 | 少妇裸体淫交视频免费看高清| 亚洲成人免费电影在线观看| 干丝袜人妻中文字幕|