• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dispersion of neutron spin resonance mode in Ba0.67K0.33Fe2As2?

    2021-12-22 06:44:32TaoXie謝濤ChangLiu劉暢TomFennellUweStuhrShiLiangLi李世亮andHuiQianLuo羅會(huì)仟
    Chinese Physics B 2021年12期
    關(guān)鍵詞:劉暢

    Tao Xie(謝濤) Chang Liu(劉暢) Tom Fennell Uwe StuhrShi-Liang Li(李世亮) and Hui-Qian Luo(羅會(huì)仟)

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100190,China

    3Laboratory for Neutron Scattering and Imaging,Paul Scherrer Institut,CH-5232 Villigen PSI,Switzerland

    4Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: iron-based superconductor,neutron spin resonance,magnetic excitations

    1. Introduction

    The neutron spin resonance mode is a prominent clue to understand the magnetically driven superconductivity in unconventional superconductors.[1,2]Experimentally, it is a sharp peak emerging in the low-energy spin excitations with intensity behaving like a superconducting order parameter,which has been extensively observed in copper-oxide,[3,4]heavy-fermion,[5,6]iron-pnictide,[7]and iron-chalcogenide superconductors.[8]The resonance energyERdefined at the peak point is generally proportional to the superconducting transition temperature(Tc)with a universal ratioER/kBTc=4–6.[1,2,9–12]Theoretically, the neutron spin resonance mode is commonly regarded as a spin exciton arising from the collective particle–hole excitations of gapped Cooper pairs. In this picture,the entire spin resonance should be below a spinflip continuum energy ˉhωcjust beneath the pair-breaking gap 2?(?is the superconducting gap),[1,2]and usually the mode energy follows another linear scalingER/2?≈0.6 for most of unconventional superconductors.[13,14]When the spin resonance disperses to high energy approaching ˉhωc, it will become weaker and weaker,then finally damps out after entering the particle–hole continuum.[1,2]Therefore,the superconducting gap determines not only the upper limit of the resonance energy, but also the shape of the resonance dispersion.[12,15]In cuprates with d-wave pairing, ˉhωcseems like a complete dome with a strong momentum dependence from antinodal(?max=?0) to nodal region (?min=0), resulting in a downward dispersion of spin resonance withER<2?0.[1]In ironbased superconductors, the superconducting pairing symmetry is generally believed as a sign-reversed s±-wave between the hole and electron Fermi pockets.[16,17]The spin resonance arises from quasiparticle excitations with a finite wavevectorQthat connects those sign-changed pairs of Fermi pockets,thus ˉhωcis defined by the total superconducting gap summed on them: ˉhωc=?tot=|?k|+|?k+Q|.?totis momentum independent when only two similar sized Fermi pockets nest with each other.[18–20]In this case,a magnon-like upward dispersion of spin resonance is expected to be beneath the near constant ceiling of?tot. This upward dispersion of spin resonance in the superconducting state is closely related to the anisotropic spin–spin correlation length in the normal state,but has a much lower velocity than the antiferromagnetic(AF)spin waves in parent compounds.[21–23]In most cases, the size mismatch of Fermi pockets together with the distribution of multiple gaps may further affect the dispersion of the resonance.[23,24]

    Although the spin resonance mode has been observed in almost all of iron-based superconductors and generally follows both linear relations:ER/kBTc≈4.9 andER/?tot≈0.64,[11–14]the resonance energy may exceed?totin several particular compounds such as KxFe2?y(Se1?zSz)2,[25](CaFe1?xPtxAs)10Pt3As8,[26](Li0.8Fe0.2)ODFeSe[27]andACa2Fe4As4F2(A= K, Cs).[12,28]Instead of the excitonic scenario under s±-pairing, some of them may be alternatively explained as the self-energy effect induced redistribution of spin excitations under sign-preserved (s++)pairing.[29,30]In addition to the mode energyERat antiferromagnetic wavevectorQAF, the dispersion of the spin resonance seems to highly depend on the magnetic interactions in different compounds.[9]Weak out-of-plane dispersion of the spin resonance mode alongLdirection has been found in those superconducting compounds proximate to the three-dimensional (3D) stripe-type AF order [e.g.,BaFe2?x(Ni,Co,Ru)xAs2,BaFe2(As1?xPx)2,NaFe1?xCoxAs,Ba1?xNaxFe2As2,etc.],[31–37]while in those compounds with weak spin–orbital coupling (such as Ca1?yLayFe1?xNixAs2)or stoichiometric superconductivity(such as KCa2Fe4As4F2),the spin resonance is two-dimensional (2D) in reciprocal space.[11,12]In the bilayer CaKFe4As4system, the resonance intensity splits into two opposite harmonic modulations showing odd and even symmetries alongLdirection with respect to the distance of Fe–Fe planes within the Fe–As bilayer unit,but the resonance energies for both odd and even modes areLindependent.[14]So far,the investigations on the in-plane dispersion (alongHorKdirection) of spin resonance are quite limited in iron-based superconductors,since it is a great challenge to map the weak resonant signals away from the zone centerQAFand peak energyER. Previous inelastic neutron scattering measurements on BaFe2?xNixAs2reveal an upward in-plane dispersion of the resonance mode, thus it supports the spin excitonic picture and also explains the weakLdispersion as a consequence of the residual weak interlayer spin correlations.[21,24]However, an unusual downward in-plane dispersion of the resonance was recently discovered in the quasi-2D KCa2Fe4As4F2, which apparently exceeds?totand deeply challenges the spin excitonic picture.[12]Therefore,it is essential to fully compare the in-plane dispersion of spin resonance mode with the superconducting gaps in each system of iron-based superconductors.

    It was noted that the ringlike upward in-plane dispersion of spin resonance in Ba0.67K0.33(Fe1?xCox)2As2probably arises from particle–hole excitations on the imperfectly nested electron–hole Fermi surfaces.[23]However, their measurements were undertaken by time-of-flight neutron scattering experiments with fixedki ‖c?, which means the energy transfer is always coupled with the momentum transfer alongLdirection. Previous reports on the band structure and superconducting gaps of Ba1?xKxFe2As2are controversial,thus the random phase approximation(RPA)calculation of the spin exciton model is inadequate to capture the details of the resonance dispersion.[22,23]Here, we measure the in-plane dispersion of spin resonance mode in Ba0.67K0.33Fe2As2in fixedLplanes in more detail using a triple-axis neutron scattering spectrometer,and compare with the gap distributions recently measured by high resolution angle resolved photoemission spectroscopy (ARPES). Our results show that the spin resonance quickly becomes incommensurate forE≥11 meV and disperses upwards at least up toE=26 meV, much higher than?totfor all kinds of combination of hole–electron pockets. Therefore,the dispersion of the spin resonance cannot be fully accounted by particle–hole excitons under s±-pairing,as it may not be restricted by superconducting gaps in such multiband systems.

    2. Experimental setup

    High quality single crystals of Ba0.67K0.33Fe2As2were grown by self-flux method using FeAs as flux.[38,39]The largest sizes of our crystals are near 20 mm with homogenous composition. For neutron scattering experiments, about 11 g of crystals were co-aligned on rectangular aluminum plates by x-ray Laue camera using CYTOP hydrogen-free glue[Fig.1(a)]. Resistivity measurements on typical samples show a very sharp superconducting transition atTc=38.2 K within ?T ≈1 K [Fig. 1(b)]. Magnetization measurements also show a sharp superconducting transition and a nearly full diamagnetic susceptibility 4πχ ≈?1 [Fig. 1(c)]. For easy comparison, we summarized the superconducting gap values measured by ARPES on optimally doped Ba1?xKxFe2As2in Fig. 1(d).[40–46]Since all measurements suggested isotropic(s-wave) gaps on each Fermi pockets at fixedkz, here?totis the sum of the absolute gap value on a pair of hole–electron pockets connected by momentum transferQ,as shown in the inset of Fig. 1(d), where the deviations from the center point[Q=(1,0)]are due to the mismatch of the connected hole and electron pockets, and the horizontal bars on the data points mark their distribution in the reciprocal space. The early ARPES measurements seemed to overestimate the gap value,giving?tot=16–24 meV[upper arc in Fig.1(d)].[40–42]From high resolution ARPES measurements based on high quality crystals,[43–45]especially the most recently published results based on laser-ARPES,[46]we estimated?tot=11–17 meV,which forms a lower downward arc shape along the longitudinal direction [Fig. 1(d)]. Neutron scattering experiments were performed using thermal neutron triple-axis spectrometers EIGER at the Swiss Spallation Neutron Source (SINQ),Paul Scherrer Institut, Switzerland, with fixed final energyEf= 14.7 meV.[47]The scattering plane [H,0,0]×[0,0,L]is defined by a pseudo-orthorhombic magnetic unit cell witha ≈b ≈5.52 ?A,c=13.22 ?A,and the vectorQin reciprocal space is defined asQ=Ha?+Kb?+Lc?,whereH,K,andLare Miller indices anda?= ?a2π/a,b?= ?b2π/b,c?= ?c2π/care reciprocal lattice basis vectors. In this case, the AF wave vector isQAF=[1,0,L](L=±1,±3,±5),andq=Q?QAFis the vector away from the zone center to describe the dispersion. The total sample mosaic, defined by the full-widthat-half-maximum (FWHM) of the rocking curve, was about 2.6?for peak (2, 0, 0) and 2.8?for peak (0, 0, 4). In Fig.1(e), we schematically depict the low-energy spin waves of the parent compound BaFe2As2,[48]together with the dispersion of spin resonance in a doped compound. If the spin resonance is indeed from particle–hole excitons under s±-pairing, it should be entirely below?totwith upward dispersions but much slower velocity than the spin waves in the parent compound.[21–24]

    Fig. 1. (a) Photo of Ba0.67K0.33Fe2As2 crystals used in our neutron scattering experiments. (b) Resistivity transition of superconductivity at Tc =38.2 K.(c)Magnetization transition of superconductivity under fieldcooling (FC) and zero-field-cooling (ZFC). (d) The total superconducting gaps ?tot =|?k|+|?k+Q| on the hole and electron Fermi pockets linked by wavevector Q obtained from ARPES results. (e) Comparison between the dispersion of spin resonance mode in the superconducting compound and the spin wave in the parent compound (BaFe2As2) as predicted by the magnetic exciton scenario under s±-pairing symmetry, here assuming?tot is momentum independent. (f) The neutron spin resonance peaks at Q = (1,0,L) (L = 2,3,4) deduced by subtracting the spin excitations at normal state (T =45 K) from those at superconducting state (T =1.5 K).(g)The neutron spin resonance peaks normalized by the magnetic form factor of Fe2+.

    3. Results and discussion

    We firstly identify the spin resonance peak by constant-Qscans(energy scans)atQ=(1,0,L)(L=2,3,4). By subtracting the spin excitations at normal state(T=45 K)from those at superconducting state (T=1.5 K), we find a strong peak with clear intensity gain from 8 meV to 20 meV in superconducting state,the peak position forL=2 and 4 is 15 meV,and forL=3 is slightly lower at 14 meV [Fig. 1(f)]. By further normalizing the intensity using the square of magnetic form factor of Fe2+(|F(Q)|2), it seems that all three peaks have similar shape except for a small shift to low energy side forL=3. Such results suggest that the spin resonance intensity does not have anyLmodulation,and theLdispersion ofERis very weak,namely,the resonance mode is nearly 2D in reciprocal space. These results are consistent with previous reports on the spin resonance energy and the weakkzmodulation in most of superconducting gaps.[23,39,45]

    To determine the in-plane dispersion of the spin resonance, we have performed constant-energy scans (Q-scans)alongQ=[H,0,3]fromE=3 meV to 24 meV both atT=1.5 K (superconducting state) andT=45 K (normal state).Due to the limitation from spectrometer itself and the scattering rule,the scattering triangle cannot be closed for lowQside ofE=22 meV and 24 meV with fixedL=3, we thus measured theE=26 meV alongQ=[H,0,4]. The raw data are shown in Fig. 2, the flat backgrounds are already subtracted.To confirm the 2D behavior, additional scans atE=3 meV,9 meV and 18 meV were also measured alongQ=[H,0,4](data not shown). The signals at high energy are contaminated by spurious scattering possibly from the phonons of the sample holder or multiple scattering of Bragg peaks,which should be almost temperature independent within the measured range 1.5–45 K but only broaden the peak width. We find clear enhancements of the intensity aboveE=9 meV atT=1.5 K from the spin resonance. Due to the opening of full superconducting gaps belowTc,the spin excitations atE=3 meV are nearly fully gapped[Fig.2(a)],and there are still intensity loss and peak sharpening atT=1.5 K for low energies 3–8 meV,which can be explained as a strengthened spin–spin correlation length responding to the superconducting order.[39]From the raw data,we cannot identify any incommensurate spin excitations even in the superconducting state. Thus we have simply performed the single Gaussian fitting for all raw data peaks both atT=1.5 K andT=45 K, as shown by solid lines in Fig. 2. The FWHM of such fitting roughly reflects the energy and temperature dependence of the spin–spin correlation length[Fig.4(c)].

    Fig. 2. Constant-energy scans along Q = [H,0,3] from E = 3 meV to 24 meV and along Q=[H,0,4] for E =3 meV , 18 meV and 26 meV measured both at T =1.5 K(red)and T =45 K(black). The solid lines are fitting curves by single Gaussian functions.

    Fig. 3. The difference between T =1.5 K and 45 K of constant-energy scans in Fig.2(?Int.=Int.(T =1.5 K)?Int.(T =45 K)). The solid lines for E=3 meV,5 meV,7 meV,8 meV,9 meV are obtained by the difference(1.5 K?45 K)of single Gaussian fitting in Fig.2,and other solid lines for E =10–26 meV are fitting curves by two symmetric Gaussian functions.For comparison,the results along Q=[H,0,4]at E =3 meV,18 meV and 26 meV are also presented by open symbols.

    From thoseQ-scans in Fig. 2, we obtain cleanQdistribution of the spin resonance by doing subtraction?Int.=Int.(T=1.5 K)?Int.(T=45 K),as shown in Fig.3.The spin gap atE=3 meV has similar peak width forL=3(FWHM=0.259 r.l.u.) andL= 4 (FWHM=0.245 r.l.u.)[Fig. 3(a)]. At the commensurate position ofQAF=(1,0,3)(Brillouin zone center withq= 0), the change of correlation length firstly induces a small tip in the center of ?Int atE= 5 meV [Fig. 3(b)], and evolves to two negative peaks atE= 7 meV [Fig. 3(c)] and a partially positive peak atE= 8 meV [Fig. 3(d)]. To identify the starting energy of resonance intensity, we integrate ?Int. and then find that it becomes positive whenE> 9 meV [Fig. 3(e)], as there is certainly a positive peak atE=10 meV [Fig. 3(f)]. Therefore,the spin resonance actually emerges between 9 meV and 10 meV, or even lower energy~8 meV if only considering the excitations nearq=0. The resonance peak quickly disperses to incommensurate positions as shown by the data aboveE=11 meV[Figs.3(g)–3(p)],because all of them can be well fitted by two symmetric gaussian functions. The incommensurabilityδalongHdoes not haveLdependence,as manifested by the nearly overlapped data points forL=3 andL=4 atE=18 meV within the experimental errors[Fig.3(i)].Thus we could track the in-plane dispersion of spin resonance by combining the results both fromL=3 andL=4 due to its 2D nature.

    The peak positions determined by the incommensurability are present in Fig. 4(a). ForE=9 meV, we simply show the commensurate position with a horizontal error bar to represent the estimated peak width of the positive part. The lower arc shape of?totfrom high resolution ARPES measurements shown in Fig.1(d)is also present in Fig.4(a)for direct comparison,and the gradient colors represent the intensity of ?Int.obtained from Fig. 3. Apparently,?totjust cuts through the waist of the resonance mode. Although the most intensity of ?Int. locates belowE= 17 meV, the dispersion of the resonance mode can break though?totand persist to at leastE=26 meV [Figs. 3(p) and 4(a)]. We replot the resonance peak in Fig. 4(b) by using the integrated intensity of ?Int.from constant-energy scans alongQ=[H,0,3]in Fig.3. The peak energy still locates atE=14 meV, but the peak shape slightly shifts to high energy in comparison to theE-scan atQ=(1,0,3) shown in Fig. 1(f). The peak widths from single Gaussian fitting in Fig. 2 are plotted in Fig. 4(c), both results atT= 1.5 K andT= 45 K linearly increase upon energy, but the two lines cross around the resonance energyER= 14 meV. Namely, the correlation length in superconducting state is elongated below the mode center energyER,but shorten aboveERdue to the effect from dispersion of the resonance.

    Fig.4. (a)Dispersion along H of the spin resonance. Here the solid squares mark the incommensurate peak positions from two-Gaussian-fitting of the resonance peaks,the horizontal bar at E=9 meV is the estimated width for positive part of ?Int.,and the contour colors represent the intensity obtained from the solid lines in Fig. 3. The distribution of ?tot is also shown as the white arc[same as the lower arc in Fig.1(d)].(b)Integrated intensity of ?Int.obtained from constant-energy scans along Q=[H,0,3]in Fig.3.The solid line is guide to eyes,and the dashed line is normalized intensity from the Escan at Q=(H,0,3)in Fig.1(f). (c)Comparison of the peak width between T =1.5 K and T =45 K along Q=[H,0,3] from single-Gaussian-fitting curves in Fig.2.

    4. Conclusion

    To summarize, we have carefully examined the in-plane dispersion of spin resonance mode in Ba0.67K0.33Fe2As2. The mode energy with maximum intensity locates atE=14 meV forQ=(1,0,3), but the resonance may emerge at lower energy(E=9–10 meV)and quickly disperse to incommensurate positions(q/=0)persisting up toE=26 meV.While the estimated resonance velocity by the spin exciton model agrees reasonably well with experimental observation,the dispersion of spin resonance breaks through the limit of the total superconducting gaps?tot. Our results suggest that the detailed behaviors of spin resonance in iron-based superconductors may be closely related to its multi-band nature.By comparing them among different systems would inspire new mechanisms of magnetically driven superconductivity.

    Acknowledgments

    The authors thanks the helpful discussion with Prof.Jiangping Hu and Prof. Jianxin Li. This work is based on neutron scattering experiments performed at the Swiss Spallation Neutron Source (SINQ), Paul Scherrer Institut, Villigen,Switzerland(Proposal No.20180227).

    猜你喜歡
    劉暢
    Measurement of International Competitiveness of Clothing Industry under the Background of Value Chain Reconstruction
    水蒸氣變戲法
    春來(lái)啦
    They are just kids
    愛(ài)挑剔的番茄
    珍視自我
    劉暢作品
    海參
    夏天咋來(lái)的
    月亮洗澡
    日本色播在线视频| 日韩成人av中文字幕在线观看| 高清不卡的av网站| 成年人午夜在线观看视频| 狠狠精品人妻久久久久久综合| 精品视频人人做人人爽| 亚洲欧美精品自产自拍| 国产精品一及| 国产在视频线精品| tube8黄色片| 亚洲成色77777| 日本午夜av视频| 我要看日韩黄色一级片| 国产黄色视频一区二区在线观看| 小蜜桃在线观看免费完整版高清| 人妻夜夜爽99麻豆av| 欧美日韩精品成人综合77777| 午夜福利高清视频| 青春草国产在线视频| 插阴视频在线观看视频| 99久国产av精品国产电影| 大片免费播放器 马上看| 久久韩国三级中文字幕| 欧美 日韩 精品 国产| videos熟女内射| 精品亚洲成a人片在线观看 | 国产黄色免费在线视频| 午夜福利网站1000一区二区三区| 精品国产乱码久久久久久小说| 男女国产视频网站| 少妇猛男粗大的猛烈进出视频| 色婷婷久久久亚洲欧美| 建设人人有责人人尽责人人享有的 | 久久精品久久久久久久性| 亚洲国产成人一精品久久久| 亚洲精华国产精华液的使用体验| 精品国产一区二区三区久久久樱花 | 欧美xxⅹ黑人| 亚洲真实伦在线观看| 精品久久久久久电影网| av又黄又爽大尺度在线免费看| 成人影院久久| av不卡在线播放| 亚洲精品中文字幕在线视频 | 国产精品99久久99久久久不卡 | 最近2019中文字幕mv第一页| 欧美日韩国产mv在线观看视频 | 天堂中文最新版在线下载| 亚洲欧美精品自产自拍| 婷婷色麻豆天堂久久| 亚洲精品亚洲一区二区| 欧美日韩视频精品一区| 精华霜和精华液先用哪个| 国内揄拍国产精品人妻在线| 黑人高潮一二区| 少妇的逼好多水| 观看美女的网站| 亚洲综合精品二区| 成人综合一区亚洲| 三级国产精品欧美在线观看| 免费久久久久久久精品成人欧美视频 | 尤物成人国产欧美一区二区三区| 欧美三级亚洲精品| 啦啦啦在线观看免费高清www| 高清欧美精品videossex| 久久久久久久亚洲中文字幕| 成年美女黄网站色视频大全免费 | 亚洲精品,欧美精品| 18禁在线播放成人免费| 久热久热在线精品观看| 99视频精品全部免费 在线| 高清日韩中文字幕在线| 在线 av 中文字幕| 成人综合一区亚洲| 91午夜精品亚洲一区二区三区| 麻豆国产97在线/欧美| 亚洲欧美中文字幕日韩二区| 日韩在线高清观看一区二区三区| 婷婷色综合大香蕉| 18禁在线无遮挡免费观看视频| 久久精品国产亚洲av天美| 亚洲经典国产精华液单| 高清日韩中文字幕在线| 亚洲人与动物交配视频| 国产伦在线观看视频一区| 街头女战士在线观看网站| 深爱激情五月婷婷| 欧美高清性xxxxhd video| 网址你懂的国产日韩在线| 精品国产三级普通话版| 亚洲欧美清纯卡通| 18+在线观看网站| 免费高清在线观看视频在线观看| 国产av国产精品国产| 99热这里只有精品一区| 亚洲欧美一区二区三区黑人 | 欧美精品亚洲一区二区| 欧美人与善性xxx| 日韩中字成人| 夜夜骑夜夜射夜夜干| 欧美97在线视频| 日韩人妻高清精品专区| 色视频在线一区二区三区| 蜜桃亚洲精品一区二区三区| 国产熟女欧美一区二区| 免费av中文字幕在线| 少妇熟女欧美另类| 日韩,欧美,国产一区二区三区| 国产一区二区在线观看日韩| 美女福利国产在线 | 五月伊人婷婷丁香| 男男h啪啪无遮挡| 国产大屁股一区二区在线视频| 在线看a的网站| 麻豆国产97在线/欧美| 国产中年淑女户外野战色| 另类亚洲欧美激情| 国产 一区精品| 国产免费视频播放在线视频| tube8黄色片| av网站免费在线观看视频| 爱豆传媒免费全集在线观看| 美女xxoo啪啪120秒动态图| 深爱激情五月婷婷| 亚洲aⅴ乱码一区二区在线播放| 久久97久久精品| 中文乱码字字幕精品一区二区三区| 成人二区视频| 国产精品麻豆人妻色哟哟久久| 国产成人一区二区在线| 高清午夜精品一区二区三区| 亚洲成人中文字幕在线播放| xxx大片免费视频| 高清不卡的av网站| 亚洲欧美一区二区三区国产| 成年美女黄网站色视频大全免费 | 精品视频人人做人人爽| 亚洲欧美精品专区久久| 一级毛片我不卡| 国产免费又黄又爽又色| 亚洲成人中文字幕在线播放| 欧美日韩国产mv在线观看视频 | 天美传媒精品一区二区| 国产高清三级在线| 汤姆久久久久久久影院中文字幕| 好男人视频免费观看在线| 国产成人精品一,二区| 成人毛片60女人毛片免费| 青春草亚洲视频在线观看| 国产精品久久久久久久久免| 一级毛片黄色毛片免费观看视频| 免费大片18禁| 少妇精品久久久久久久| 国产精品无大码| 美女内射精品一级片tv| 日韩电影二区| 哪个播放器可以免费观看大片| 好男人视频免费观看在线| 久久精品熟女亚洲av麻豆精品| 日产精品乱码卡一卡2卡三| 啦啦啦视频在线资源免费观看| 老师上课跳d突然被开到最大视频| 亚洲av欧美aⅴ国产| 少妇裸体淫交视频免费看高清| 99热这里只有精品一区| 亚洲av国产av综合av卡| 午夜福利影视在线免费观看| 亚洲在久久综合| 九九久久精品国产亚洲av麻豆| 在线 av 中文字幕| 女性生殖器流出的白浆| 丰满乱子伦码专区| 久久久久久久大尺度免费视频| 日本免费在线观看一区| 免费大片18禁| 日韩电影二区| 国产真实伦视频高清在线观看| 99久久综合免费| 免费人成在线观看视频色| 国产一区二区三区av在线| 能在线免费看毛片的网站| 久热这里只有精品99| 精品人妻视频免费看| 欧美日韩国产mv在线观看视频 | 日日摸夜夜添夜夜爱| 久久久久久久亚洲中文字幕| 日本午夜av视频| 午夜福利影视在线免费观看| 成人高潮视频无遮挡免费网站| 日韩三级伦理在线观看| 成年免费大片在线观看| 1000部很黄的大片| av卡一久久| 国产淫语在线视频| 国产精品秋霞免费鲁丝片| av女优亚洲男人天堂| 亚洲久久久国产精品| 亚洲av男天堂| 欧美日韩亚洲高清精品| 国产女主播在线喷水免费视频网站| 校园人妻丝袜中文字幕| 男女无遮挡免费网站观看| 国产午夜精品久久久久久一区二区三区| 能在线免费看毛片的网站| 18+在线观看网站| 少妇人妻久久综合中文| 超碰97精品在线观看| 欧美日韩综合久久久久久| 伦理电影免费视频| 久久久久久久久久久丰满| 国内少妇人妻偷人精品xxx网站| 最近中文字幕高清免费大全6| 少妇精品久久久久久久| 欧美bdsm另类| 久久精品国产亚洲网站| 亚洲精品aⅴ在线观看| 国精品久久久久久国模美| 久久精品熟女亚洲av麻豆精品| 看非洲黑人一级黄片| 成年人午夜在线观看视频| 九草在线视频观看| 夫妻午夜视频| 久久久久久人妻| 国产永久视频网站| 大香蕉97超碰在线| 国产白丝娇喘喷水9色精品| 国产男女内射视频| 国产亚洲av片在线观看秒播厂| 日产精品乱码卡一卡2卡三| 最后的刺客免费高清国语| 国产成人午夜福利电影在线观看| 久久久久久伊人网av| 国产精品国产三级国产专区5o| 九九在线视频观看精品| 国产成人a∨麻豆精品| 小蜜桃在线观看免费完整版高清| 国产精品一及| 国产精品久久久久久久久免| 中文天堂在线官网| av国产久精品久网站免费入址| 亚洲人成网站在线观看播放| 国产精品人妻久久久影院| 婷婷色av中文字幕| 亚洲激情五月婷婷啪啪| 99久国产av精品国产电影| 大香蕉久久网| 美女xxoo啪啪120秒动态图| 免费少妇av软件| 26uuu在线亚洲综合色| 国产人妻一区二区三区在| 女性生殖器流出的白浆| 国产黄片视频在线免费观看| 秋霞伦理黄片| 久久99热这里只有精品18| 国产亚洲一区二区精品| 亚洲av中文av极速乱| 夜夜骑夜夜射夜夜干| 久久鲁丝午夜福利片| 激情五月婷婷亚洲| 精品亚洲乱码少妇综合久久| 日韩精品有码人妻一区| 国产v大片淫在线免费观看| 欧美精品人与动牲交sv欧美| 在现免费观看毛片| 国产有黄有色有爽视频| 色视频在线一区二区三区| 国产乱人偷精品视频| 欧美激情极品国产一区二区三区 | 十分钟在线观看高清视频www | 精品人妻一区二区三区麻豆| 免费播放大片免费观看视频在线观看| 一级av片app| 国产女主播在线喷水免费视频网站| 欧美成人a在线观看| 中国美白少妇内射xxxbb| 18禁裸乳无遮挡动漫免费视频| 18禁动态无遮挡网站| 中文字幕av成人在线电影| 日韩免费高清中文字幕av| 日韩,欧美,国产一区二区三区| 免费av中文字幕在线| 国产高清三级在线| 99久久中文字幕三级久久日本| 欧美成人精品欧美一级黄| 日韩av在线免费看完整版不卡| 成人无遮挡网站| 亚洲久久久国产精品| 国产精品欧美亚洲77777| 新久久久久国产一级毛片| av免费观看日本| 日韩 亚洲 欧美在线| 免费黄网站久久成人精品| 国产精品福利在线免费观看| 一级黄片播放器| 国产免费福利视频在线观看| 18禁裸乳无遮挡免费网站照片| 看免费成人av毛片| 校园人妻丝袜中文字幕| 国产又色又爽无遮挡免| av一本久久久久| 亚洲国产毛片av蜜桃av| 国产精品国产三级国产av玫瑰| 亚洲av不卡在线观看| freevideosex欧美| 亚洲欧美一区二区三区国产| 精品人妻偷拍中文字幕| 欧美精品亚洲一区二区| 中文天堂在线官网| 国产精品久久久久久精品电影小说 | 超碰av人人做人人爽久久| h视频一区二区三区| 爱豆传媒免费全集在线观看| 少妇精品久久久久久久| 亚州av有码| 尤物成人国产欧美一区二区三区| 亚洲国产精品专区欧美| av黄色大香蕉| 久久久久久伊人网av| 成年av动漫网址| 亚洲精品日韩av片在线观看| 蜜桃亚洲精品一区二区三区| 日本午夜av视频| 美女高潮的动态| 日韩一本色道免费dvd| 亚洲精品日本国产第一区| 精品国产露脸久久av麻豆| 男男h啪啪无遮挡| 国产在线视频一区二区| 亚洲精品久久午夜乱码| 一个人看视频在线观看www免费| 精品一区在线观看国产| 亚洲精品一二三| 麻豆国产97在线/欧美| 久久国产精品男人的天堂亚洲 | 亚洲av中文字字幕乱码综合| 一级毛片电影观看| 国产成人午夜福利电影在线观看| 国产精品爽爽va在线观看网站| h视频一区二区三区| 午夜激情久久久久久久| 免费人成在线观看视频色| 亚洲自偷自拍三级| 亚洲第一av免费看| 亚洲国产欧美在线一区| 一级毛片aaaaaa免费看小| 欧美精品国产亚洲| av专区在线播放| 国产亚洲欧美精品永久| h视频一区二区三区| 欧美精品国产亚洲| 国产欧美日韩精品一区二区| 久久久精品94久久精品| 亚洲精品一二三| 狂野欧美激情性xxxx在线观看| 日韩一区二区视频免费看| 高清av免费在线| 在线观看一区二区三区激情| xxx大片免费视频| 在线观看一区二区三区激情| 一边亲一边摸免费视频| 成人一区二区视频在线观看| 亚洲内射少妇av| 亚洲丝袜综合中文字幕| 色哟哟·www| 美女中出高潮动态图| 又粗又硬又长又爽又黄的视频| 一级爰片在线观看| 久久久国产一区二区| 亚洲三级黄色毛片| 精品久久久久久久久av| 另类亚洲欧美激情| 国产精品女同一区二区软件| 伊人久久精品亚洲午夜| 91精品国产国语对白视频| 黄色配什么色好看| 王馨瑶露胸无遮挡在线观看| 精品国产一区二区三区久久久樱花 | 中文字幕免费在线视频6| 男女下面进入的视频免费午夜| 欧美3d第一页| 婷婷色综合大香蕉| 国产久久久一区二区三区| 又大又黄又爽视频免费| 极品少妇高潮喷水抽搐| 十分钟在线观看高清视频www | h视频一区二区三区| 亚洲欧洲日产国产| 国产成人午夜福利电影在线观看| 天堂8中文在线网| 国产精品99久久久久久久久| 日韩成人av中文字幕在线观看| 一个人看视频在线观看www免费| 日本爱情动作片www.在线观看| www.av在线官网国产| 日日摸夜夜添夜夜爱| 亚洲av二区三区四区| av卡一久久| 亚洲成人av在线免费| 日韩欧美精品免费久久| 高清黄色对白视频在线免费看 | 人妻 亚洲 视频| 亚洲国产欧美人成| 国产成人一区二区在线| 91久久精品国产一区二区成人| 九草在线视频观看| 欧美日韩国产mv在线观看视频 | 国产精品一二三区在线看| av在线观看视频网站免费| 国产69精品久久久久777片| 哪个播放器可以免费观看大片| 纯流量卡能插随身wifi吗| 日本午夜av视频| 亚洲美女搞黄在线观看| 十分钟在线观看高清视频www | 麻豆成人av视频| 久久99热这里只频精品6学生| 欧美激情极品国产一区二区三区 | 亚洲,欧美,日韩| 国产亚洲最大av| 日韩成人伦理影院| 国产男女内射视频| 又黄又爽又刺激的免费视频.| 爱豆传媒免费全集在线观看| 成人午夜精彩视频在线观看| 嫩草影院入口| 国产有黄有色有爽视频| 乱系列少妇在线播放| 日产精品乱码卡一卡2卡三| 超碰97精品在线观看| 3wmmmm亚洲av在线观看| 蜜桃久久精品国产亚洲av| av在线观看视频网站免费| 男人爽女人下面视频在线观看| 国产精品99久久久久久久久| 国产精品国产三级国产av玫瑰| 午夜激情福利司机影院| 熟女电影av网| 成年人午夜在线观看视频| 男女边摸边吃奶| 亚洲成人一二三区av| 最黄视频免费看| av黄色大香蕉| 精品久久国产蜜桃| 内射极品少妇av片p| 少妇猛男粗大的猛烈进出视频| 美女脱内裤让男人舔精品视频| 久久久久网色| 亚洲欧美精品专区久久| 亚洲av在线观看美女高潮| 国产精品人妻久久久影院| 国产av一区二区精品久久 | 欧美一级a爱片免费观看看| 亚洲国产欧美人成| 久久精品国产亚洲av涩爱| 亚洲婷婷狠狠爱综合网| 永久免费av网站大全| 国产精品国产三级国产专区5o| 3wmmmm亚洲av在线观看| 少妇精品久久久久久久| 搡老乐熟女国产| 久久久久国产网址| 99久久精品国产国产毛片| 日韩av不卡免费在线播放| 欧美丝袜亚洲另类| 亚洲天堂av无毛| 高清在线视频一区二区三区| 国产精品欧美亚洲77777| 在线精品无人区一区二区三 | 天天躁夜夜躁狠狠久久av| 干丝袜人妻中文字幕| 哪个播放器可以免费观看大片| 欧美成人午夜免费资源| 国产亚洲欧美精品永久| 内射极品少妇av片p| 一区二区三区免费毛片| 久久热精品热| 嘟嘟电影网在线观看| 日日撸夜夜添| 国产午夜精品一二区理论片| av在线播放精品| 日本免费在线观看一区| 人妻系列 视频| 99热国产这里只有精品6| 亚洲国产毛片av蜜桃av| 成人漫画全彩无遮挡| 看十八女毛片水多多多| 亚洲国产精品成人久久小说| 亚洲精品日韩av片在线观看| 国产高清三级在线| 99九九线精品视频在线观看视频| 久久女婷五月综合色啪小说| 水蜜桃什么品种好| 欧美bdsm另类| 美女中出高潮动态图| 综合色丁香网| 欧美日韩一区二区视频在线观看视频在线| 欧美xxxx性猛交bbbb| 看非洲黑人一级黄片| 国产日韩欧美在线精品| 超碰av人人做人人爽久久| 欧美日韩综合久久久久久| 亚洲欧美一区二区三区国产| 又大又黄又爽视频免费| 在线观看免费视频网站a站| 日本爱情动作片www.在线观看| 熟女电影av网| 成年免费大片在线观看| av免费在线看不卡| 国产精品国产av在线观看| 久久97久久精品| 日本黄大片高清| 天堂俺去俺来也www色官网| 亚洲欧美成人综合另类久久久| 青春草视频在线免费观看| 校园人妻丝袜中文字幕| 亚洲欧美一区二区三区黑人 | 国产成人freesex在线| 国产亚洲精品久久久com| 在线观看免费日韩欧美大片 | 18禁动态无遮挡网站| 亚洲av福利一区| 欧美+日韩+精品| 日韩免费高清中文字幕av| 国产精品国产三级专区第一集| 亚洲av在线观看美女高潮| 久久久精品94久久精品| av福利片在线观看| 少妇 在线观看| 亚洲欧美成人综合另类久久久| 午夜免费观看性视频| 高清不卡的av网站| 欧美精品人与动牲交sv欧美| 免费黄网站久久成人精品| 国产精品三级大全| h日本视频在线播放| 丝袜脚勾引网站| 观看av在线不卡| 国产日韩欧美在线精品| 免费观看性生交大片5| 日本免费在线观看一区| 国产无遮挡羞羞视频在线观看| av免费在线看不卡| 麻豆成人av视频| 毛片女人毛片| 婷婷色综合大香蕉| 亚洲丝袜综合中文字幕| 91精品国产国语对白视频| 日韩人妻高清精品专区| 久久久久久久久久久丰满| 久久ye,这里只有精品| 99视频精品全部免费 在线| 国产视频内射| 亚洲精品乱久久久久久| 国产在线视频一区二区| 国产人妻一区二区三区在| 日韩不卡一区二区三区视频在线| 少妇的逼水好多| 大片免费播放器 马上看| 久久久午夜欧美精品| 伊人久久国产一区二区| 18禁在线播放成人免费| 国产成人精品久久久久久| 亚洲精品中文字幕在线视频 | 亚洲精品久久午夜乱码| 欧美精品一区二区大全| 国产爽快片一区二区三区| 激情五月婷婷亚洲| 插逼视频在线观看| 一级av片app| 国产男女内射视频| 国产精品一区二区在线观看99| 久久久久性生活片| 一本—道久久a久久精品蜜桃钙片| 亚洲无线观看免费| 大香蕉97超碰在线| 99热国产这里只有精品6| 亚洲人成网站在线观看播放| 亚洲va在线va天堂va国产| 精品人妻视频免费看| 一级毛片aaaaaa免费看小| 美女内射精品一级片tv| 亚洲精品,欧美精品| 日本欧美视频一区| 久久韩国三级中文字幕| 免费高清在线观看视频在线观看| 亚洲av成人精品一区久久| 免费观看无遮挡的男女| 亚洲精品日韩在线中文字幕| 丝袜喷水一区| 女人十人毛片免费观看3o分钟| 日韩av在线免费看完整版不卡| 中文在线观看免费www的网站| 青春草亚洲视频在线观看| 日本黄大片高清| 九九爱精品视频在线观看| 国产精品精品国产色婷婷| 亚洲欧美一区二区三区黑人 | av天堂中文字幕网| 青春草国产在线视频| 又粗又硬又长又爽又黄的视频| 亚洲av二区三区四区| 欧美3d第一页| 一级a做视频免费观看| 欧美区成人在线视频| 欧美成人精品欧美一级黄| 黑人猛操日本美女一级片| 欧美日韩综合久久久久久| 久热久热在线精品观看| 丰满乱子伦码专区| 日本-黄色视频高清免费观看| 亚洲人成网站在线播| 亚洲国产精品一区三区| 永久免费av网站大全| av黄色大香蕉| 一区二区三区四区激情视频|