• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparison of resonant tunneling diodes grown on freestanding GaN substrates and sapphire substrates by plasma-assisted molecular-beam epitaxy?

    2021-12-22 06:43:20XiangPengZhou周祥鵬HaiBingQiu邱海兵WenXianYang楊文獻(xiàn)ShuLongLu陸書(shū)龍XueZhang張雪ShanJin金山XueFeiLi李雪飛LiFengBian邊歷峰andHuaQin秦華
    Chinese Physics B 2021年12期
    關(guān)鍵詞:張雪金山文獻(xiàn)

    Xiang-Peng Zhou(周祥鵬) Hai-Bing Qiu(邱海兵) Wen-Xian Yang(楊文獻(xiàn)) Shu-Long Lu(陸書(shū)龍)Xue Zhang(張雪) Shan Jin(金山) Xue-Fei Li(李雪飛) Li-Feng Bian(邊歷峰) and Hua Qin(秦華)

    1School of Microelectronics,University of Science and Technology of China,Hefei 230026,China

    2School of Nano-Tech and Nano-Bionics,University of Science and Technology of China,Hefei 230026,China

    3Key Laboratory of Nanodevices and Applications,Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences,Suzhou 215123,China

    Keywords: resonant tunneling diodes,negative differential resistance,molecular beam epitaxy,III-nitrides

    1. Introduction

    Terahertz(THz)radiation technology has potential applications in many fields such as ultra-broadband wireless communication and security imaging.[1–3]Miniature and solidstate THz sources operated at room temperature are the key factor. Due to high fundamental oscillation frequency and high power,resonant tunneling diodes(RTDs)have been considered as one of the most promising candidates for roomtemperature operating THz oscillators. Kanayaet al.realized an oscillator with frequency of 1.42 THz and output power~1μW using AlAs/InGaAs/AlAs double-barrier RTDs grown on InP substrates.[4]However,the low output power of less than 1 mW limits the practical applications of InP-based RTD terahertz sources. III-nitride semiconductor materials are suitable for high frequency and power devices because of their excellent properties such as wide bandgap energy,high breakdown fields, high peak electron velocity, high saturated electron velocity,and strong thermal stability.[5,6]Therefore,GaNbased RTDs have attracted more attention in the research field of terahertz sources.[7–17]Many research groups have achieved stable reproducible negative differential resistance(NDR)utilizing RTDs at room temperature.[18–21]Encomenderoet al.reported GaN-based RTDs grown on freestanding GaN (FSGaN) substrates by plasma-assisted molecular beam epitaxy(PA-MBE)with the peak current density(Jp)of 220 kA/cm2,the fundamental frequency of~0.94 GHz,and output power of~3.0μW.[22]Later,theJphas been significantly improved and recently reached 1 MA/cm2.[23]In 2019, highly repeatable room temperature NDR was firstly achieved in AlN/GaN RTDs grown on sapphire (Al2O3) substrates by PA-MBE,and theJpwas 164 kA/cm2.[24]Moreover, researchers also studied the repeatable asymmetric resonant tunneling in Al-GaN/GaN double barrier structures grown on sapphire.[25]Based on this series of research results, researchers also proposed the AlN/GaN digital alloy double barrier structure to achieve room temperature NDR.[26]Progress of RTD-related fields have been greatly promoted. Then,Growdenet al.also observed repeatable room temperature NDR for GaN-based RTDs grown on sapphire substrates and obtained the peak current density of 930 kA/cm2.[27]Recently, Choet al.reported the experiment of N-polar RTDs grown on a singlecrystal N-polar GaN bulk substrate to achieve room temperature NDR.[28]In addition,in the past few months,Zhanget al.reported a highly repeatable room temperature NDR in a large area AlN/GaN double barrier RTDs.[29]Nevertheless,current results on RTDs mainly focus on the epitaxial wafers grown on FS-GaN substrates. The main reason is that GaN layers are mismatched with a sapphire substrate. A larger lattice mismatch and a thermal mismatch will bring higher defect densities to the device.More defects will greatly affect the transport of electrons in the vertical direction, resulting in poor device performance, and even the NDR cannot be achieved at room temperature in most cases.[30]However,there are few systematic studies on the effect of two types of substrates on the structure and performance of RTDs and mechanism analysis.

    In this work, GaN-based RTDs were grown on FS-GaN substrates and sapphire substrates separately. We obtain the NDR only grown on FS-GaN substrates with a maximum peak current density of 700 kA/cm2and peak-to-valley current ratio(PVCR)of 1.01 for forward bias. The micromorphology and crystal quality of these epitaxial wafers grown on two types of substrates are studied systematically by a variety of characterizations. It found that the main differences for two types of epitaxial wafers are surface morphology and quality of heterogeneous interfaces.

    2. Experiment

    A schematic of the layers thicknesses and doping of the optimized RTDs structures studied in this paper is given in Fig.1(a). Two 130-nm-thick heavily doped n-type GaN contacts were employed to inject electrons across the doublebarrier structure that consists of 4-nm-thick unintentionally doped(UID)GaN spacers next to each contact,two symmetric 1.5-nm AlN tunneling barriers,and a 2-nm GaN quantum well.The AlN/GaN double barrier structure was grown on FS-GaN substrates and a 4-μm-thick GaN template on sapphire substrates separately by PA-MBE.Silicon(Si)was used as n-type doping sources. The substrates were firstly solvent cleaned and loaded into the load lock chamber. Before growing,twostep out-gassing bakes need to be performed for thermal cleaning of the substrate’s surface at 250?C for 2 h and followed by 760?C for 0.5 h. Epitaxial layers of AlN/GaN RTDs were grown sequentially according to the simulated epitaxial structure. The growth temperature of the active region was maintained at 810?C. The nitrogen flow rate and the rf-plasma power were 1.5 sccm and 350 W, respectively. The growth temperature was monitored by using BandiT, and the surface conditions were monitoredin situusing reflection high energy electron diffraction (RHEED). The growth rates of AlN and GaN layers estimated from their thicknesses were 135 nm/h and 145 nm/h,respectively. RTDs grown on the sapphire substrates and FS-GaN substrates were marked as samples A and B,respectively.

    Fig.1. (a)The epitaxial structure schematic of GaN-based RTDs grown on two types of substrates,(b)optical microphotograph,and(c)SEM picture of RTDs.

    The RTDs were fabricated using conventional semiconductor device processing methods.The devices went through a standard cleaning process using H2SO4and H2O2with a ratio of 7:3 for moving metal droplets from the surface. After that,the surface was covered with a photoresist of AZ6130. Immediately following the resist treatment, optical lithography was used to forming etching patterns. The mesa was defined using ICP that has a high power to ensure vertical sidewalls through the active region. The second photomask was used to define the top contact. Electron beam(e-beam)evaporation was used to deposit a Ti/Al/Ni/Au top contact. Afterward,device isolation pads were defined with the third photomask. A passivation layer of SiO2was deposited by plasma-enhanced chemical vapor deposition to ensure the insulation between pads. The optical microphotograph and scanning electron microscopy (SEM) of RTDs were shown in Figs. 1(b) and 1(c),respectively.

    Electrical characterization of the RTDs was carried out with a Keysight 4200 semiconductor parameter analyzer.Atomic force microscopy (AFM), cathode-luminescence(CL), high-resolution x-ray diffraction (HRXRD), and scanning transmission electron microscopy (STEM) were used to characterize the micromorphology and crystal quality of RTD epitaxial wafers.

    3. Results and discussion

    3.1. The I–V measurement results of RTDs grown on different substrates

    Figures 2(a) and 2(b) displaces theI–Vcharacteristic curves of RTDs grown on different substrates. RTDs grown on FS-GaN substrates exhibit clear NDR at room temperature for forward bias as described in Fig.2(b)with theJpof 175–700 kA/cm2and the PVCR of 1.01–1.21,while NDR is not observed in the RTDs grown on sapphire substrates as shown in Fig.2(a).The RTDs mesa diameter is 4μm in Fig.2(b).Moreover,two resonant peaks are observed in some RTDs grown on FS-GaN substrates at room temperature as displaced in the inset of Fig.2(b). Regrettably,the room-temperature NDR characteristic could be observed in the first scan of these samples,but it disappears in the subsequent scans as shown in the blue curve in Fig.2(b). Figure 2(c)shows the room-temperatureI–Vcurves of RTDs with mesa diameters of 1/2/4/8μm. As can be seen from Fig.2(c),NDR occurs for RTDs of different sizes under forward bias,although only once. This phenomenon is consistent with the RTDs observed earlier and may be due to the current instability caused by the trap effect.[30]In addition, the simulation results of the device are compared with the experimental results. Here, 1, 2, and 3 marked in the figure indicate the resonant tunneling locations. Figures 2(b)and 2(c)are the experimental measurements,Fig.2(d)is the simulation result of the device structure. The voltage ranges at position 1 are 4.27–4.5 V,the voltage ranges at position 2 are 4.86–5.43 V, and the voltage ranges at position 3 are 5.7 V in Figs. 2(b) and 2(c). By comparing (b), (c), and (d), it can be seen that although the experimental value and the design value are not perfectly consistent,they are basically within the corresponding ranges.

    Fig. 2. The I–V characteristic of RTDs grown on (a) sapphire substrates and (b) FS-GaN substrates. The inset shows two resonant peaks in some devices. (c)The I–V relationships for different device sizes. (d)Simulation results of the device.

    We speculate that the main cause of problems including no NDR in the RTDs grown on sapphire substrates and unreproducible NDR in the RTDs grown on FS-GaN substrates is attributed to microstructure and crystal quality. Therefore,we studied it systematically by analyzing and comparing the microscopic differences between the epitaxial wafers of RTDs grown on the two types of substrates.

    3.2. Comparison of epitaxial growth characterization of devices

    AFM images of samples A (sapphire substrates) and B(FS-GaN substrates)were illustrated in Figs.3(a)and 3(b),respectively. The rms roughness of the surface with a scanning area of 5μm×5μm was 0.49 nm and 0.28 nm,respectively. It can be seen that sample A has a hill-rock morphology, while sample B exhibits a regular step-flow feature and atomically smooth surface. This result may be related to lower thermal conductivity and larger dislocation densities of the sapphire substrates. On the one hand,at the same growth temperature,gallium (Ga) atoms have lower mobility at the front surface on sapphire substrates which affect the atoms distribution and step coverage of thin films; on the other hand, GaN epitaxial wafers grown on the sapphire substrates will naturally result in higher dislocation densities due to the larger lattice mismatch.The effects of silicon doping and high dislocation densities for sapphire substrates even lead to the generation of defect pits as shown in Fig. 3(a).[31]Consequently, a poor surface was obtained for RTD wafer grown on sapphire substrates.

    Fig.3.AFM images of RTD wafers grown on(a)sapphire substrate and(b)FS-GaN substrate.

    Dislocation is one of the important factors for RTD wafer quality, and its density will affect greatly on NDR characteristic and peak current densities of the device. As shown in Fig. 4, the x-ray diffraction rocking curves of GaN epitaxial layers grown on sapphire substrates and FS-GaN substrates were measured to estimate total dislocation densities.[32,33]

    The full widths at half maximum (FWHMs) of x-ray rocking curves along the (002) plane for the two samples are 248 arcsec and 135 arcsec,and those are 285 arcsec and 91 arcsec along the(102)plane, respectively. The densities of total dislocations were calculated using the formulae[34]

    where TDDt, DDs, and DDtare the total dislocation density,screw dislocation density, and edge dislocation density, respectively;βrepresents the FWHMs that are measured by HRXRD rocking curves, andbis the Burgers vector length to be 0.5185 nm and 0.3189 nm, respectively.[35]According to formulae (1)–(3), the calculated GaN layers edge and screw densities values are listed in Table 1. The total dislocation densities of the GaN epitaxial layer grown on sapphire substrates and FS-GaN substrates are 5.5×108cm?2and 8.1×107cm?2, respectively. These results are higher than the dislocation density threshold of 3.96×107cm?2reported in the literature for observable repeated NDR.[29]As for GaN-based RTDs,these defects can be acted as carrier traps to induce current leakage and even mask the resonant tunneling transport.[36,37]Thus, the trap effect may be the main direct reason for no NDR in sample A and irreproducible NDR in sample B at room temperature.Therefore,the dislocation densities of GaN-based RTD wafers need to be decreased further to achieve stable NDR.

    Fig. 4. X-ray diffraction rocking curves along (a) the (002) plane and(b)the(102)plane of RTD wafers grown on two types of substrates.

    Table 1. Dislocation densities of GaN epitaxial layers grown on two types of substrates.

    Furthermore, we employ CL to realize the macroscopic characteristics of threading dislocations,and the approximate dislocation densities can be estimated based on the surface luminescence.[38]Figure 5 presents the CL images of samples A and B,where the black dots in the figure indicate threading dislocations. It can be found that the dislocation densities of sample A are significantly higher than those of sample B.The calculated dislocation densities of RTDs grown on sapphire substrates and FS-GaN substrates are 108cm?2and 106cm?2,respectively.

    High-quality ultrathin AlN/GaN double-barrier structure is the key to achieving NDR in GaN-based RTD. Figure 6 presents STEM images of the AlN/GaN double-barrier structure in two RTD samples. Firstly, clear and abrupt AlN/GaN hetero-interfaces are observed in sample B grown on FS-GaN substrates, whereas hetero-interfaces are indistinct for sample A grown on sapphire substrates. Secondly, the deviation between the measured thickness and the design thickness of AlN barrier layers is within 0.2 nm, but the thickness deviations of GaN well for the two RTD samples reach 28% and 1%, respectively. Consistent with the AFM measurement results, FS-GaN substrates can enhance nucleation and crystallization of GaN and AlN material because of atomic mobility and incorporation effectively and few defects during the epitaxial growth. Consequently, the thicknesses of epitaxial layers are controlled atomically and abrupt hetero-interfaces are achieved in GaN-based RTDs grown on FS-GaN substrates.

    Fig. 5. CL images over 25.5 μm×25.5 μm of RTD epitaxial wafers grown on(a)sapphire substrate and(b)FS-GaN substrate.

    Fig. 6. STEM images of the AlN/GaN double barrier structure in RTDs grown on(a)sapphire substrates and(b)FS-GaN substrates,respectively.

    4. Conclusion

    In summary, AlN/GaN RTDs grown on sapphire substrates and FS-GaN substrates by PA-MBE have been prepared separately. Two resonant peaks were observed for RTDs grown on FS-GaN substrates, and the peak current densities range from 175 kA·cm?2to 700 kA·cm?2under forward bias at room temperature. Furthermore, no NDR was observed in RTDs grown on the sapphire substrates. A series of comparative experimental results show that RTD epitaxial wafers grown on FS-GaN substrates have lower dislocation densities,better surface morphology, and sharper heterogeneous interfaces, which are the keys to achieving reproducible NDR at room temperature. Therefore, the growth and mechanism of GaN-based RTDs on two types of substrates by MBE need to be investigated more deeply.

    猜你喜歡
    張雪金山文獻(xiàn)
    Hostile takeovers in China and Japan
    速讀·下旬(2021年11期)2021-10-12 01:10:43
    金山之夢(mèng)
    Cultural and Religious Context of the Two Ancient Egyptian Stelae An Opening Paragraph
    大東方(2019年12期)2019-10-20 13:12:49
    Constraints on H0 from WMAP and BAO Measurements?
    The Application of the Situational Teaching Method in English Classroom Teaching at Vocational Colleges
    搶險(xiǎn)當(dāng)金山
    Clinical observation of kidney-qi deficiency syndrome patients with hypertension by Bushenjiangya decoction
    翠掛金山
    寶藏(2017年4期)2017-05-17 03:34:38
    The Role and Significant of Professional Ethics in Accounting and Auditing
    商情(2017年1期)2017-03-22 16:56:36
    The Traditional and Religious Meaning of Christmas and Easter
    只有这里有精品99| 国产不卡av网站在线观看| 精品一品国产午夜福利视频| 最黄视频免费看| 亚洲精品国产一区二区精华液| 久久韩国三级中文字幕| 亚洲国产欧美日韩在线播放| 亚洲欧美成人精品一区二区| 亚洲av中文av极速乱| 成人三级做爰电影| 婷婷色综合www| 亚洲av在线观看美女高潮| 精品国产一区二区三区四区第35| 天天操日日干夜夜撸| 18禁裸乳无遮挡动漫免费视频| 热re99久久国产66热| 国产精品国产三级国产专区5o| 精品一品国产午夜福利视频| 丝袜人妻中文字幕| 免费av中文字幕在线| 在线 av 中文字幕| 午夜免费观看性视频| 国产成人精品久久二区二区91 | 国产亚洲午夜精品一区二区久久| 午夜激情av网站| 久久国产精品男人的天堂亚洲| 黑丝袜美女国产一区| 久久精品久久久久久噜噜老黄| 久久久久人妻精品一区果冻| 啦啦啦啦在线视频资源| 成年人免费黄色播放视频| 青草久久国产| 久久人人爽av亚洲精品天堂| 亚洲国产成人一精品久久久| 成人亚洲精品一区在线观看| 亚洲一级一片aⅴ在线观看| 亚洲国产最新在线播放| 午夜福利视频在线观看免费| 国产福利在线免费观看视频| 久久ye,这里只有精品| 国产精品免费视频内射| avwww免费| 高清黄色对白视频在线免费看| 亚洲成国产人片在线观看| 日韩欧美精品免费久久| 精品国产一区二区三区四区第35| 婷婷色麻豆天堂久久| 黑人猛操日本美女一级片| 777久久人妻少妇嫩草av网站| 国产色婷婷99| 午夜福利网站1000一区二区三区| 大片电影免费在线观看免费| 久久人人爽人人片av| 午夜免费男女啪啪视频观看| 成人手机av| 久久热在线av| 男人舔女人的私密视频| 国产av码专区亚洲av| 极品人妻少妇av视频| 大片免费播放器 马上看| 成年av动漫网址| 伦理电影大哥的女人| 免费在线观看黄色视频的| 在线观看免费高清a一片| 午夜精品国产一区二区电影| 人人妻人人澡人人爽人人夜夜| 又大又黄又爽视频免费| 大片免费播放器 马上看| 人人妻,人人澡人人爽秒播 | 国产黄频视频在线观看| 国产免费视频播放在线视频| 97在线人人人人妻| 制服丝袜香蕉在线| 69精品国产乱码久久久| 精品午夜福利在线看| 丁香六月欧美| 国产精品一区二区精品视频观看| 国产欧美日韩一区二区三区在线| 亚洲欧美色中文字幕在线| 久久毛片免费看一区二区三区| 国产成人精品福利久久| 免费观看人在逋| 中文欧美无线码| 七月丁香在线播放| 国产精品女同一区二区软件| 高清欧美精品videossex| 五月天丁香电影| 热re99久久国产66热| av女优亚洲男人天堂| 老司机靠b影院| 午夜免费观看性视频| 亚洲一区二区三区欧美精品| 啦啦啦中文免费视频观看日本| 女人被躁到高潮嗷嗷叫费观| 大香蕉久久网| av又黄又爽大尺度在线免费看| 男人爽女人下面视频在线观看| 欧美黑人精品巨大| 免费高清在线观看视频在线观看| 啦啦啦中文免费视频观看日本| 久久人人97超碰香蕉20202| 波野结衣二区三区在线| 欧美中文综合在线视频| 亚洲五月色婷婷综合| 亚洲欧美成人精品一区二区| 国产一区二区在线观看av| 午夜福利影视在线免费观看| 国产成人午夜福利电影在线观看| 如日韩欧美国产精品一区二区三区| 黄色怎么调成土黄色| 中文字幕亚洲精品专区| 男女之事视频高清在线观看 | 色视频在线一区二区三区| 欧美成人精品欧美一级黄| 亚洲中文av在线| 少妇人妻久久综合中文| 九色亚洲精品在线播放| 国产在线免费精品| 国产男女内射视频| 纯流量卡能插随身wifi吗| 国产男女超爽视频在线观看| 黑人猛操日本美女一级片| 国产精品久久久久久精品电影小说| 日韩制服丝袜自拍偷拍| 免费看不卡的av| 国产成人精品在线电影| 欧美亚洲 丝袜 人妻 在线| 一级毛片 在线播放| 精品一品国产午夜福利视频| 黄色视频不卡| 亚洲精品久久久久久婷婷小说| 精品午夜福利在线看| 国产av国产精品国产| 九色亚洲精品在线播放| 亚洲图色成人| 99re6热这里在线精品视频| 国产有黄有色有爽视频| 国产片内射在线| 婷婷色av中文字幕| 国产av码专区亚洲av| 午夜久久久在线观看| 亚洲精品在线美女| 亚洲欧美精品自产自拍| 午夜免费鲁丝| 青春草视频在线免费观看| 国产极品天堂在线| 国产免费视频播放在线视频| 亚洲第一av免费看| 亚洲精品,欧美精品| 亚洲精品av麻豆狂野| av在线老鸭窝| 日本色播在线视频| 亚洲综合精品二区| 深夜精品福利| av网站在线播放免费| 国产精品国产三级国产专区5o| 精品酒店卫生间| 国产97色在线日韩免费| 激情视频va一区二区三区| 国产精品一区二区在线观看99| 在线观看三级黄色| 在线亚洲精品国产二区图片欧美| 纵有疾风起免费观看全集完整版| 啦啦啦视频在线资源免费观看| 一个人免费看片子| 婷婷色麻豆天堂久久| 国产免费视频播放在线视频| 国产成人午夜福利电影在线观看| 日韩大片免费观看网站| 欧美亚洲日本最大视频资源| 精品国产露脸久久av麻豆| 国产精品三级大全| av在线app专区| 电影成人av| 观看美女的网站| 国产日韩欧美亚洲二区| 波多野结衣一区麻豆| 国产在视频线精品| 成年人免费黄色播放视频| 中文字幕色久视频| 女人被躁到高潮嗷嗷叫费观| 日韩一本色道免费dvd| 中文字幕av电影在线播放| 国产精品久久久av美女十八| 精品国产乱码久久久久久小说| 日本欧美国产在线视频| 亚洲成av片中文字幕在线观看| 日韩一卡2卡3卡4卡2021年| av女优亚洲男人天堂| 久久久久精品人妻al黑| 中文精品一卡2卡3卡4更新| 亚洲熟女毛片儿| 国产精品一区二区在线观看99| 美女扒开内裤让男人捅视频| 久久精品国产a三级三级三级| 日韩人妻精品一区2区三区| 亚洲色图综合在线观看| 国产色婷婷99| 一区在线观看完整版| 欧美日韩国产mv在线观看视频| 国产日韩欧美亚洲二区| 国产免费又黄又爽又色| 久久久精品94久久精品| 中文字幕最新亚洲高清| 不卡av一区二区三区| 一区二区日韩欧美中文字幕| 1024视频免费在线观看| 91老司机精品| 亚洲av综合色区一区| 91精品三级在线观看| 如日韩欧美国产精品一区二区三区| 男女国产视频网站| 天天躁夜夜躁狠狠躁躁| 成年美女黄网站色视频大全免费| 男女边吃奶边做爰视频| 国产精品蜜桃在线观看| 啦啦啦 在线观看视频| bbb黄色大片| 久久综合国产亚洲精品| 纯流量卡能插随身wifi吗| 久久久国产精品麻豆| 大码成人一级视频| 麻豆精品久久久久久蜜桃| 看免费成人av毛片| 少妇的丰满在线观看| 国产片特级美女逼逼视频| 宅男免费午夜| 欧美日韩亚洲综合一区二区三区_| 久久这里只有精品19| 人妻人人澡人人爽人人| 国产免费又黄又爽又色| 最新的欧美精品一区二区| 日日摸夜夜添夜夜爱| 国产亚洲精品第一综合不卡| 一级毛片黄色毛片免费观看视频| 可以免费在线观看a视频的电影网站 | 国产精品国产av在线观看| 中文天堂在线官网| 午夜久久久在线观看| 99热全是精品| 在线精品无人区一区二区三| 欧美日韩一级在线毛片| 亚洲精品av麻豆狂野| 亚洲专区中文字幕在线 | 丁香六月欧美| 久久人人97超碰香蕉20202| 亚洲av电影在线进入| 日韩一卡2卡3卡4卡2021年| 国产精品久久久久成人av| 天天影视国产精品| a级毛片在线看网站| 日本爱情动作片www.在线观看| av在线app专区| 51午夜福利影视在线观看| 精品一区二区三区四区五区乱码 | 伊人久久大香线蕉亚洲五| 亚洲精品视频女| 一级毛片我不卡| 久久精品国产亚洲av涩爱| 午夜久久久在线观看| 精品人妻一区二区三区麻豆| 久久精品久久久久久噜噜老黄| 亚洲五月色婷婷综合| 51午夜福利影视在线观看| 久久 成人 亚洲| kizo精华| 国产精品 欧美亚洲| 国产在线一区二区三区精| 街头女战士在线观看网站| 老司机亚洲免费影院| 国产一区二区激情短视频 | 不卡视频在线观看欧美| 久久影院123| 一级爰片在线观看| 一级毛片 在线播放| 亚洲国产成人一精品久久久| 波多野结衣一区麻豆| 一二三四在线观看免费中文在| 大陆偷拍与自拍| 校园人妻丝袜中文字幕| 男女床上黄色一级片免费看| 久久久久人妻精品一区果冻| 欧美黑人精品巨大| 十分钟在线观看高清视频www| 天堂俺去俺来也www色官网| 高清黄色对白视频在线免费看| 中文字幕av电影在线播放| 午夜免费男女啪啪视频观看| 亚洲av福利一区| av线在线观看网站| 亚洲欧美成人综合另类久久久| 精品国产超薄肉色丝袜足j| 电影成人av| av不卡在线播放| 国产午夜精品一二区理论片| 亚洲一卡2卡3卡4卡5卡精品中文| 久久99精品国语久久久| 亚洲欧美一区二区三区黑人| av网站在线播放免费| 少妇 在线观看| 精品国产一区二区三区四区第35| 老鸭窝网址在线观看| 在线观看国产h片| 激情视频va一区二区三区| 捣出白浆h1v1| 免费在线观看黄色视频的| 一级毛片我不卡| 秋霞伦理黄片| 十八禁人妻一区二区| 久久综合国产亚洲精品| 韩国精品一区二区三区| 狠狠婷婷综合久久久久久88av| 色综合欧美亚洲国产小说| 麻豆乱淫一区二区| 九草在线视频观看| 国产一区亚洲一区在线观看| 97精品久久久久久久久久精品| 尾随美女入室| 亚洲伊人久久精品综合| 午夜激情av网站| 亚洲,欧美,日韩| √禁漫天堂资源中文www| 欧美在线黄色| 国产一区二区三区av在线| 一本久久精品| 麻豆乱淫一区二区| 亚洲精品国产av蜜桃| 80岁老熟妇乱子伦牲交| 国产免费福利视频在线观看| 国产亚洲最大av| 欧美日韩亚洲高清精品| 久久毛片免费看一区二区三区| 国产精品久久久人人做人人爽| 亚洲精品自拍成人| 国产免费视频播放在线视频| 国产日韩欧美在线精品| 国产黄色视频一区二区在线观看| 久久久国产精品麻豆| 制服丝袜香蕉在线| 亚洲成人国产一区在线观看 | av在线老鸭窝| 久热这里只有精品99| 一级黄片播放器| 精品少妇内射三级| 午夜日韩欧美国产| 国产精品无大码| 国产亚洲欧美精品永久| 老司机影院成人| 久久精品人人爽人人爽视色| 一区二区三区四区激情视频| 搡老岳熟女国产| 久久久久精品久久久久真实原创| 999久久久国产精品视频| 亚洲精品,欧美精品| 久久久久国产精品人妻一区二区| 欧美激情高清一区二区三区 | 亚洲av电影在线进入| 色视频在线一区二区三区| 欧美在线黄色| 国产亚洲欧美精品永久| 一区二区日韩欧美中文字幕| 国产精品 欧美亚洲| 国产精品麻豆人妻色哟哟久久| 精品久久久久久电影网| 丝瓜视频免费看黄片| 观看av在线不卡| 97精品久久久久久久久久精品| 亚洲av欧美aⅴ国产| 老司机影院成人| 亚洲七黄色美女视频| 亚洲国产最新在线播放| 亚洲成人国产一区在线观看 | 亚洲三区欧美一区| 国产熟女欧美一区二区| 多毛熟女@视频| 在线观看国产h片| 国产亚洲最大av| 久久人人爽人人片av| 19禁男女啪啪无遮挡网站| 亚洲av电影在线观看一区二区三区| 久久久精品免费免费高清| 国产精品免费大片| 少妇被粗大的猛进出69影院| 欧美精品av麻豆av| 免费在线观看完整版高清| 国产精品一区二区在线不卡| 欧美黄色片欧美黄色片| 我的亚洲天堂| 黄色视频不卡| 午夜日韩欧美国产| 黄频高清免费视频| 亚洲精品日本国产第一区| 看十八女毛片水多多多| 午夜激情久久久久久久| 九色亚洲精品在线播放| 丝瓜视频免费看黄片| 国产深夜福利视频在线观看| 巨乳人妻的诱惑在线观看| 欧美97在线视频| 肉色欧美久久久久久久蜜桃| 国产日韩一区二区三区精品不卡| 久久人人爽人人片av| 日韩,欧美,国产一区二区三区| 亚洲精品日韩在线中文字幕| 欧美乱码精品一区二区三区| 免费观看人在逋| 丝袜美足系列| 精品国产露脸久久av麻豆| 美女福利国产在线| 99精国产麻豆久久婷婷| 曰老女人黄片| 欧美在线一区亚洲| 免费黄色在线免费观看| 街头女战士在线观看网站| 韩国高清视频一区二区三区| 美女主播在线视频| 欧美成人午夜精品| 欧美激情高清一区二区三区 | 女性被躁到高潮视频| 免费少妇av软件| 亚洲在久久综合| 伊人亚洲综合成人网| 国产麻豆69| 午夜福利视频精品| 精品一品国产午夜福利视频| 亚洲精品视频女| 99久国产av精品国产电影| 男的添女的下面高潮视频| 亚洲精品日本国产第一区| 搡老岳熟女国产| 中文天堂在线官网| 免费不卡黄色视频| 国产精品一区二区在线不卡| 亚洲国产欧美网| 九九爱精品视频在线观看| 午夜福利免费观看在线| 国产精品三级大全| 欧美成人精品欧美一级黄| 美女高潮到喷水免费观看| xxx大片免费视频| 男人舔女人的私密视频| 色吧在线观看| 男人添女人高潮全过程视频| 精品一区在线观看国产| 精品人妻熟女毛片av久久网站| 高清不卡的av网站| 亚洲成人av在线免费| 无限看片的www在线观看| 制服丝袜香蕉在线| 国产精品国产三级国产专区5o| 国产日韩欧美在线精品| 中文精品一卡2卡3卡4更新| 秋霞伦理黄片| 欧美日韩视频高清一区二区三区二| 女性生殖器流出的白浆| 一本大道久久a久久精品| 国产成人精品无人区| 久热爱精品视频在线9| 国产 一区精品| 久久久久久人妻| 成人国产av品久久久| 欧美精品一区二区免费开放| 亚洲专区中文字幕在线 | 久久婷婷青草| 日韩成人av中文字幕在线观看| 女性生殖器流出的白浆| 国产老妇伦熟女老妇高清| 亚洲精品自拍成人| 国产爽快片一区二区三区| e午夜精品久久久久久久| 久久国产精品男人的天堂亚洲| 成人影院久久| 成人亚洲精品一区在线观看| 老司机亚洲免费影院| 国产黄色免费在线视频| 中文字幕制服av| 如日韩欧美国产精品一区二区三区| 久久久久网色| 在线天堂中文资源库| 国产片内射在线| 男女午夜视频在线观看| 免费高清在线观看视频在线观看| 嫩草影院入口| 精品视频人人做人人爽| 久久精品久久久久久噜噜老黄| 亚洲欧美精品综合一区二区三区| 成人亚洲精品一区在线观看| xxxhd国产人妻xxx| 80岁老熟妇乱子伦牲交| 精品一区二区三区av网在线观看 | 熟女av电影| 成年女人毛片免费观看观看9 | 女性生殖器流出的白浆| 大片电影免费在线观看免费| 九九爱精品视频在线观看| 国产精品无大码| 免费看av在线观看网站| 亚洲欧美成人综合另类久久久| 精品国产一区二区三区四区第35| 搡老乐熟女国产| 人人妻人人澡人人爽人人夜夜| 老司机深夜福利视频在线观看 | 欧美激情高清一区二区三区 | 一区二区av电影网| 久久久精品免费免费高清| 丁香六月欧美| 亚洲一码二码三码区别大吗| 国产亚洲一区二区精品| 国产一区二区在线观看av| 精品人妻在线不人妻| 久久久久久久精品精品| 你懂的网址亚洲精品在线观看| 久热爱精品视频在线9| 成人国产麻豆网| 欧美在线黄色| av国产精品久久久久影院| 亚洲,欧美,日韩| 亚洲情色 制服丝袜| 免费看不卡的av| 免费久久久久久久精品成人欧美视频| 国产精品麻豆人妻色哟哟久久| 最近最新中文字幕免费大全7| 国产日韩欧美视频二区| 亚洲成av片中文字幕在线观看| 色94色欧美一区二区| 国产免费视频播放在线视频| 日韩欧美一区视频在线观看| 亚洲美女视频黄频| 韩国高清视频一区二区三区| 中文天堂在线官网| 亚洲色图综合在线观看| h视频一区二区三区| 18禁裸乳无遮挡动漫免费视频| 另类精品久久| 亚洲精品久久久久久婷婷小说| 久久久久国产精品人妻一区二区| 国产女主播在线喷水免费视频网站| 日韩一区二区三区影片| 极品人妻少妇av视频| 亚洲视频免费观看视频| 一级毛片我不卡| 日韩一本色道免费dvd| 国产深夜福利视频在线观看| 国产亚洲最大av| 国产高清不卡午夜福利| 一二三四在线观看免费中文在| 操出白浆在线播放| 久久婷婷青草| 色播在线永久视频| 永久免费av网站大全| 下体分泌物呈黄色| av网站免费在线观看视频| 国产片特级美女逼逼视频| 看十八女毛片水多多多| 天美传媒精品一区二区| 精品一品国产午夜福利视频| 欧美日韩亚洲国产一区二区在线观看 | 中国国产av一级| 国产伦理片在线播放av一区| av不卡在线播放| 美女主播在线视频| 精品人妻在线不人妻| 大片免费播放器 马上看| 国产极品天堂在线| 97在线人人人人妻| 成人18禁高潮啪啪吃奶动态图| 欧美日韩综合久久久久久| 在线观看www视频免费| 人人妻人人澡人人看| 99久久人妻综合| 日韩大片免费观看网站| 女人高潮潮喷娇喘18禁视频| 又大又黄又爽视频免费| 久久久久久人人人人人| 国产精品无大码| 丰满饥渴人妻一区二区三| 又大又爽又粗| 秋霞在线观看毛片| 亚洲国产欧美一区二区综合| 一二三四在线观看免费中文在| 麻豆av在线久日| 建设人人有责人人尽责人人享有的| 99香蕉大伊视频| 极品少妇高潮喷水抽搐| 成人漫画全彩无遮挡| 最近最新中文字幕大全免费视频 | 伊人久久大香线蕉亚洲五| 极品人妻少妇av视频| 国产成人系列免费观看| 久久久久视频综合| 精品人妻一区二区三区麻豆| 日韩一卡2卡3卡4卡2021年| 久久久久久久国产电影| 少妇人妻久久综合中文| 日日啪夜夜爽| 少妇的丰满在线观看| 久久婷婷青草| 激情五月婷婷亚洲| 精品人妻在线不人妻| 亚洲情色 制服丝袜| 成人免费观看视频高清| 欧美人与性动交α欧美软件| 哪个播放器可以免费观看大片| 人妻 亚洲 视频| 夜夜骑夜夜射夜夜干| 日本午夜av视频| 午夜免费观看性视频| 日韩免费高清中文字幕av| 日本色播在线视频| 精品一品国产午夜福利视频| 人妻人人澡人人爽人人| av福利片在线| 日本91视频免费播放| 亚洲欧洲日产国产| 欧美日本中文国产一区发布|