• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ab initio study of dynamical properties of U–Nb alloy melt?

    2021-12-22 06:49:46YongPengShi時永鵬MingFengLiu劉鳴鳳YunChen陳云WenLinMo莫文林DianZhongLi李殿中TaoFa法濤BinBai白彬XiaoLinWang汪小琳andXingQiuChen陳星秋
    Chinese Physics B 2021年12期
    關(guān)鍵詞:鳴鳳文林陳云

    Yong-Peng Shi(時永鵬) Ming-Feng Liu(劉鳴鳳) Yun Chen(陳云) Wen-Lin Mo(莫文林) Dian-Zhong Li(李殿中)Tao Fa(法濤) Bin Bai(白彬) Xiao-Lin Wang(汪小琳) and Xing-Qiu Chen(陳星秋)

    1Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China 2School of Materials Science and Engineering,University of Science and Technology of China,Shenyang 110016,China

    3Institute of Materials,China Academy of Engineering Physics,Jiangyou 621907,China

    Keywords: U–Nb alloy melt,dynamical properties,ab initio study

    1. Introduction

    The dynamical properties of metallic melt,including density, diffusivity, and viscosity, which have a crucial effect on the solidification behavior,solidified microstructure,and their final properties, are indispensably applied to the design of the high-performance materials.[1–4]The density, as one of the fundamental properties for metallic melt, is mainly used to describe the thermal expansion behavior of metallic melt.Change in density will lead the convection and composition uniformity of metallic melt to change, thereby affecting the other dynamical properties. Hence, the first step in studying the dynamical properties of metallic melt should be to determine variations of its density with surrounding factors, such as temperature,composition,and external pressure. The analyses of diffusivity and viscosity can reflect the transport characterization of atoms in the metallic melt. Previous research has proved that the change of diffusion coefficient in metallic melt will directly result in the change of solidified microstructure and chemical composition distribution. The diffusivity plays an important role in the solidification process of metallic melt and thus is considered to be the key kinetic parameter that affects the nucleation and growth of crystal.[2]Whereas the viscosity is a sensitive parameter to local structures,which is usually introduced to characterize the tiny changes of local structures. Through the above description,we can see that except for the processing technology, the dynamical properties play a decisive role in solidifying the metallic melt.[1]Hence,in order to reveal the effects of dynamical properties of metallic melt on the microstructure and chemical composition distribution of its solid and finally achieve the preparation of high-performance materials, it is necessary to fundamentally understand the dynamical properties of metallic melt.

    However,it is still challenging to experimentally characterize the dynamical properties of metallic melt,in particular,it will be extremely difficult for the metals to possess higher melting point and active chemical properties. It is not only because of the brash operation environment at high temperature but also due to the intense high-temperature oxidation. In addition, the influence of temperature instability and impurities on the precision of experimental measurements are also unavoidable. Hence, so far, there appear largish errors in the experimental measurements. The existing experimental difficulties have seriously hindered the research of metallic melts.Whereas the rapid development of the computational material sciences provides us with a chance to achieve theoretical studies of metallic melts. Recently, theab initiomolecular dynamics (AIMD) simulations have been widely used to study the amorphous materials. The computations provide in-depth knowledge of their structures and properties, which are remarkably consistent with experimental data.[5–8]And,in previous work, we have studied the evolution of local atomic structure during solidification[9]and Nb distribution[10]in U–Nb alloy melt by AIMD simulations,and constructed the equations of diffusion coefficients, and viscosities for U116Nb12melt.[9]Based on this, in this work, we further systematically investigate the dynamical properties of the U–Nb alloy melt and establish the corresponding mathematical models to achieve the rapid calculations of densities, diffusion coefficients,viscosities,and their activation energy in the whole U–Nb liquid region. These results are useful to facilitate the construction of the nuclear material database as well as to provide a new idea for investigating the dynamical properties of binary alloy melts and promoting the development of melt research.

    2. Computational details

    Fig.1. Variations of(a)temperature,(b)energy,and(d)external pressure with simulation time of 13.28-at.%Nb-containing U–Nb alloy;(c)variation of pair correlation function with r of 13.28-at.%Nb-containing U–Nb alloy at 2600 K;and(e)shots showing atomic structure evolution of 13.28-at.%Nb-containing U–Nb alloy melt at different times including the initially artificial structure at 0 picosecond.

    Our AIMD study of the U–Nb alloy melt was carried out within the framework of density function theory(DFT)[11–13]implemented in the Viennaab-initiosimulation package (VASP).[14,15]All AIMD calculations were carried out by using the generalized gradient approximation(GGA)[16,17]of the PW91 functional developed by Perdew and Wang[18]for the description of the electronic exchange and correlation. An energy cutoff of 220 eV was used to expand the wave function, and the electronic configurations of 6s26p65f36d17s2for U and 4p65s14d4for Nb are treated as the semi-core electrons for our selected PAW potentials. Only theΓpoint was used to sample the Brillion zone of supercell.A canonical NVT ensemble with a Nose thermostat[19,20]for temperature control was employed. A typical time step of 3 fs was used via the Verlet algorithm to integrate the Newton’s equation of motion in our AIMD simulations.

    The crystal structure ofγ-U with space groupIm-3m(No. 229) has a lattice constant of 3.475 ?A.[21]The Bravais lattice of the conventional cell is body-centered cubic with a U atom occupying the position(0, 0, 0). In our AIMD simulations,based on the periodic boundary conditions,a 4×4×4 supercell of thex-at.%Nb(x=5.47,9.38,13.28,17.19,21.09,39.06,62.50,76.56,90.63)-containing U–Nb alloy,including 128 atoms,were constructed in which all the atoms exhibited random distribution. The initial configuration was heated at 2600 K (well above the melting point) with 104MD steps for 30 ps to remove the memory effects and reach the thermal equilibrium. As described by the temperatures and energy of system with simulation time in Figs.1(a)and 1(b),the 104MD running has established a robust thermal equilibrium within our supercell,and the calculated pair correlation function (PCF) [Fig. 1(c)] of the system further demonstrated the achievement of the standard liquid state at 2600 K. Furthermore, in order to illustrate the evolution of the molten process at 2600 K, four snapshots at different times have been complied in Fig. 1(e). We can see that with time going on,the atomic arrangement becomes more disordered, evidencing the transition from a solid to a molten state. Adopting the above method, the equilibrium liquid state of thex-at.%Nb(x=5.47, 9.38, 13.28, 17.19, 21.09, 39.06, 62.50, 76.56,90.63)-containing U–Nb alloys at 2600 K were obtained, respectively. Note that the 90.63-at.%Nb-containing U–Nb alloy was fully melted at 3100 K(well above the melting point of 2594 K)with 104MD steps to reach thermal equilibrium. It was then sequentially cooled down to 2400 K,2200 K,2000 K,1800 K,and finally to their melting points with a rate of 100 K per 1500 MD steps. At each temperature, the system was thermally equilibrated. Afterwards, the external pressure of molten model was made close to zero[Fig.1(d)]by adjusting the box size,[22]aiming to obtain the equilibrium volumes of the U–Nb alloy melt at different temperatures. Finally, using the derived equilibrium configuration with full molten status at the given temperatures,another 4000 AIMD steps were carried out for statistical analyses.

    The diffusion coefficient (D) of the U–Nb alloy melt could be derived from the mean square displacements(MSDs)as a function of simulation time through the Einstein relation[23]as follows:

    where parametertis the simulation time and〈R2(t)〉denotes the mean-square displacement (MSD) as a function of time.Based on the derived total-,U-,and Nb-diffusion coefficients,the pre-exponential factor and diffusion activation energy of the U–Nb alloy melt were obtained by fitting the logarithm of the diffusion coefficient with the reciprocal of temperature through the Arrhenius relation[24]as follows:

    where the parameters ofD,E,R,andTare the pre-exponential factor,activation energy,molar gas constant,and temperature,respectively. We had derived the radial distribution functions(RDFs)and the diffusions coefficient,hence,the viscosity(η)for the U–Nb alloy melt could can be calculated at the given temperatureTthrough the Stokes–Einstein relation[24]as follows:

    where the parameters ofk,T, andDare the Boltzmann’s constant, temperature, and diffusion coefficient, respectively,parameterarepresents the effective atomic diameter, which could be determined by the position of the first peak in the RDFs at a given temperature.

    Note that the conventional DFT method may not be sufficient to describe the strongly correlated 5f electrons in U atoms. More advanced methods, such as DFT+U, are required to properly model the electronic and magnetic properties of uranium compounds, such as UO2[25]and UN.[26]However,there is no consensus on whether DFT+Umethod is necessary to correctly describe U metal and its alloys. Meanwhile,previous studies have suggested that conventional DFT is sufficient for U,[27]UZr alloys,[28]and UAl system.[29–31]Furthermore, in this work, we just consider the structure and energy of U–Nb alloy melt, but do not involve its electronic and magnetic properties. Therefore,in this work conventional DFT method is believed to be sufficient.

    3. Results and discussion

    3.1. Density

    As is well known, the density of the metallic melt is mainly determined by temperature and its composition.Whereas the effect of pressure on the density of the liquid is relatively weak. Taking water for example,when the external pressure is increased by 5 atm(1 atm=1.01325×105Pa),the density change of water is the same as that caused by temperature reducing 1 K.[32]Therefore,if the change range of pressure is relatively narrow,it is reasonable to completely ignore the effect of pressure on the density of the liquid. In this work,we have introduced two variables of temperature and composition to establish the mathematical model of the density for the U–Nb alloy melt. This model can be used to rapidly calculate the densities of the UNb alloy melts,thereby achieving high-throughput modeling.

    Here, we first illustrate the basic physical consideration of our model. For a perfect bcc U crystal, its density can be described byρU=mU/VU,wheremUis the mass per U atom andVUis the equivalent volume per U atom in its bcc phase.Similarly, the density of bcc Nb isρNb=mNb/VNb. Based on the two equations, for U–Nb alloy where part of U atoms are replaced by Nb atoms,its density can be simply written asρU?Nb=(cUmU+cNbmNb)/(cUVU+cNbVNb), wherecUandcNbare the content of U and Nb in U–Nb alloy and they satisfycU+cNb=1. It is noticed thatVUandVNbare two constants derived from the bcc phase of U and Nb. Since the atoms in U–Nb alloy melt are extremely disordered, the density equation derived from perfect crystal is not applicable. Therefore,in our model of the density of U–Nb alloy melt, the form of density expression adopts the Taylor expansion of the density equation from perfect crystal and,the first three items of Taylor expansion are retained.Therefore,the relationship between density and content of Nb is a quadratic function,which is also evidenced by the results from our firstprinciples calculations,and we will discuss this part later. Furthermore,when Nb content is a constant, the relationship between density and temperature is nearly linear, which has been evidenced by previous work.[1]Note that the effect of coupling between temperature and Nb content on density is also necessarily considered.Based on the above theoretical basis, the density equation is established in the following part.

    Fig.2. AIMD simulated density varying with Nb concentration and temperature for U–Nb alloy melt.

    Figure 2 shows the derived densities of thex-at.% Nb(x= 5.47, 9.38, 13.28, 17.19, 21.09, 39.06, 62.50, 76.56 90.63)-containing U–Nb alloy melt at different temperatures.It can be found that at the same Nb concentration the densities of U–Nb alloy melts decrease linearly with temperature increasing from their melting points to 2600 K, which is attributed to the volumetric expansion by temperature.However,when the temperature keeps constant the densities each exhibit a parabolically decreasing tendency with Nb concentration increasing. This feature results mainly from the fact that the Nb atom has much smaller mass than U atom. Furthermore,figure 2 shows that all the derived densities of the U–Nb alloy melts fall on a curved surface, therefore, we can fit them with an expression with temperature(T)and Nb concentration(xat.%)as follows:

    Fig.3. Variations of(a)total and partial mean square displacements at different temperatures with simulation time in 5.47-at.%Nb-containing U–Nb alloy melts: (b)U in U121Nb7 and(c)Nb in U121Nb7. (d)Logarithmic total-,U-,and Nb-diffusion coefficients varying with reciprocal of temperature in 5.47-at.%Nb-containing U–Nb alloy melt.

    So far,there has been a lack of the theoretical and experimental data of the U–Nb alloy melt at high temperatures. In order to attest to the accuracy of our calculated results,we use Eq.(4)to calculate the densities of pure U melt at 1405 K and pure Nb melt at 2740 K,respectively,and compare them with the available experimental data in Refs. [1,33]. We have found that our derived densities of pure U melt at 1405 K and pure Nb melt at 2740 K are 17.92 g/cm3and 7.59 g/cm3,respectively,which are in agreement with the available experimental data(U melt: 17.47 g/cm3at 1405 K[33]and Nb melt: 7.83 g/cm3at 2740 K[1]). This comparison attests to the reliability of our calculated results.

    3.2. Diffusivity

    Diffusivity is usually used to reveal the effect on structural evolution and composition distribution during the solidification of metallic melt, and it is the crucial property of the metallic melt. In this subsection, we perform numerous calculations about diffusivity of the U–Nb alloy melt and constructe the statistical equation of the diffusion coefficients for the U–Nb alloy melt in order to achieve the rapid calculations of diffusion coefficients and diffusion activation energy in the whole U–Nb liquid region.

    Figures 3(a)–3(c) show the total-, U-, and Nb-MSDs of the 5.47-at.%Nb-containing U–Nb alloy melt at different temperatures. The distinctly linear dependence of MSDs on simulation time indicates that the thermal equilibrium configurations are generated in our AIMD simulations. Through the Einstein relation [Eq. (1)], we further derive the total-, U-,and Nb-diffusion coefficients (D) by fitting their MSDs as a function of time. The detailed results are summarized in Fig. 3(d). It shows that the total-, U-, and Nb-diffusion coefficients display the continuously increasing tendencies with temperature increasing from melting points to 2600 K. Similarly,by the above method,the diffusion coefficients ofx-at.%Nb(x=9.38,13.28,17.19,21.09,39.06,62.50,76.56 90.63)-containing U–Nb alloy melt are further calculated. Note that figure 3(d) displays that the logarithmic total-, U-, and Nbdiffusion coefficients with respect to the reciprocal of temperature each exhibit an approximately linear relationship,which completely satisfies the Arrhenius relation [Eq. (2)]. Hence,by fitting Eq.(2)we can obtain the pre-exponential factor(D)and diffusion activation energy (E) and establish the thermal diffusion equations for the U–Nb alloy melt, which are summarized in Table 1. In addition,figures 4–6 show the logarithmic e total-,U-,and Nb-diffusion coefficients with respect to Nb concentration and reciprocal of temperature for the U–Nb alloy melts. It can be found that all the total-, U-, and Nbdiffusion coefficients fall on their corresponding curved surfaces, respectively. Therefore, for the U–Nb alloy melt, its total-, U-, and Nb-diffusion coefficients can be expressed as follows:

    It should be pointed out that the total-, U-, and Nb-diffusion coefficients of the U–Nb alloy melt at any composition and temperature can be calculated quickly by using Eqs. (5)–(7).That is to say, we can easily establish the Arrhenius equation for the U–Nb alloy melt with any composition and, thus achieve the rapid calculations of the diffusion activation energy in the whole U–Nb liquid region.

    Fig. 4. Logarithmic total-diffusion coefficients varying with Nb concentration and reciprocal of temperature for U–Nb alloy melts from our AIMD simulations.

    Fig. 5. Logarithmic U-diffusion coefficients varying with Nb concentration and reciprocal of temperature for U atoms in U–Nb alloy melts from our AIMD simulations.

    Fig.6. Logarithmic Nb-diffusion coefficients varying with Nb concentration and reciprocal of temperature for Nb atoms in U–Nb alloy melts from our AIMD simulations.

    3.3. Viscosity

    Because we have already obtained the diffusion coefficients (D) and the positions of the first peaks in the RDFs at each temperature,the viscosities(η)of the UNb alloy melts at different temperatures can be calculated by using the Stokes–Einstein equation[Eq.(3)]. The results are shown in Table 1.Contrary to the tendency of the diffusion coefficients with temperature, the viscosities of the UNb alloy melts continuously decrease with temperature increasing from melting points to 2600 K. But the relationship between logarithmic viscosities and reciprocal of temperature also satisfies the Arrhenius relation. So,according to the Arrhenius relation of the viscosities we derive the pre-exponential factors(η),viscosity activation energy (E) and finally established viscosity equations for the U–Nb alloy melt, and the results are shown in Table 2. Furthermore, we have compiled the logarithmic viscosities as a function of Nb concentration and reciprocal of temperature of the U–Nb alloy melt in Fig.7. It can be seen that all the viscosities fall on a curved surface, hence, we can fit it with the viscosity equation for the U–Nb alloy melt as follows:

    However, there has been no report on the experimental and theoretical viscosities of the U–Nb alloy melts yet. In order to verify the accuracy of our calculated results,we use Eq.(8)to calculate the viscosities of the pure U melt in the temperature range from 1405 K to 2973 K and compare the derived results with the available theoretical data. The results are ilisted in Fig.8.It can be seen that our calculated viscosities show an increasing tendency with temperature decreasing,and they are in agreement with the other theoretical data,[34,35]but at the same temperature our theoretical viscosity is a bit bigger. However,the data in Ref. [34] were derived by using model potential of interatomic interaction. In fact, this method has a certain error, which has been discussed in Ref. [34]. Therefore, it is reasonable that our calculated results are slightly different from the data in Refs. [34,35]. Furthermore, in this part, the calculations of viscosities for the U–Nb alloy melt are based on the derived diffusion coefficients, hence, the accuracy of our calculated viscosities also attests to the reliability of our calculated diffusion coefficients.

    Table 1. Pre-exponential factor D0 (10?8 m2/s),diffusion activation energy E (kJ/mol)and thermal diffusion equation of x at.%Nb(x=5.47,9.38,13.28,17.19,21.09,39.06,62.50)-containing U–Nb alloy melt.

    Table 2. Viscosity η (in units mPa·s),pre-exponential factor η0 (in units mPa·s),viscosity activation energy E (in units kJ/mol),and viscosity equation of x-at.%Nb(x=5.47,9.38,13.28,17.19,21.09,39.06,62.50,76.56,90.63)-containing U–Nb alloy melt.

    Fig.7. Logarithmic viscosities varying with Nb concentration and reciprocal of temperature for U–Nb alloy melts from our AIMD simulations.

    Fig.8. Variations of viscosities derived from Eq.(8)for the U melt with temperature from our AIMD simulations, compared with available theoretical data.[34,35]

    4. Conclusion

    In this work,the dynamical properties of the U–Nb alloy melt are systematically calculated by using the AIMD simulations. The conclusions are summarized as follows. (i) At the same Nb concentration the densities of U–Nb alloy melts decrease linearly with temperature increasing.However,when the temperature keeps constant,the densities exhibit a parabolically decreasing tendency with Nb concentration decreasing;(ii) The total-, U-, and Nb-diffusion coefficients display the continuously increasing tendencies with temperature increasing,whereas the viscosities of U–Nb alloy melts show a contrary tendency. In addition, the mathematical models of densities,diffusion coefficients,and viscosities are constructed to achieve the rapid calculations of dynamical properties in the whole U–Nb liquid region. These results will be useful in facilitating the construction of the nuclear material database as well as in providing a new idea for the investigation of dynamical properties of binary alloy melts and promoting the development of melt research.

    Acknowledgement

    All calculations were performed on the high-performance computational cluster in the Shenyang National University Science and Technology Park.

    猜你喜歡
    鳴鳳文林陳云
    外源硒對油菜硒積累及土壤硒殘留的影響
    你的三觀,我很喜歡
    話雖不多,句句砸鍋
    話雖不多,句句砸鍋
    初中生世界(2021年9期)2021-03-15 08:25:46
    有用的人,都在讀無用的書
    向死而生
    美文(2019年20期)2019-10-18 05:19:47
    不同乎?相同也!
    美文(2019年20期)2019-10-18 05:19:47
    My plan for new term
    向陳云學(xué)習(xí)錘煉“筆力”
    TransitivityandCharacterization:AnalysisonDickinTenderisTheNight
    中文字幕人妻丝袜一区二区 | 热99久久久久精品小说推荐| 国产精品.久久久| 精品人妻偷拍中文字幕| 十分钟在线观看高清视频www| 成人影院久久| 国产精品久久久久久精品电影小说| 国产乱人偷精品视频| 亚洲精华国产精华液的使用体验| 满18在线观看网站| 日韩av免费高清视频| 人妻人人澡人人爽人人| 久久人人97超碰香蕉20202| 国产伦理片在线播放av一区| 日本av免费视频播放| av又黄又爽大尺度在线免费看| 久久韩国三级中文字幕| 乱人伦中国视频| 国产欧美亚洲国产| 亚洲人成电影观看| 黄片播放在线免费| 国产精品蜜桃在线观看| 老汉色av国产亚洲站长工具| 91aial.com中文字幕在线观看| 国产片内射在线| 下体分泌物呈黄色| 日韩在线高清观看一区二区三区| a级毛片在线看网站| 两性夫妻黄色片| 国产日韩欧美亚洲二区| 国产日韩欧美视频二区| 亚洲国产欧美日韩在线播放| 99久久人妻综合| 亚洲三级黄色毛片| 国产不卡av网站在线观看| 国产毛片在线视频| 五月开心婷婷网| 久久人妻熟女aⅴ| 日产精品乱码卡一卡2卡三| 日本wwww免费看| 26uuu在线亚洲综合色| 欧美日韩一级在线毛片| 久久精品国产自在天天线| 七月丁香在线播放| 国产激情久久老熟女| 亚洲精品国产色婷婷电影| 久久99热这里只频精品6学生| 咕卡用的链子| 97人妻天天添夜夜摸| 欧美亚洲日本最大视频资源| 亚洲国产精品国产精品| 亚洲精品久久成人aⅴ小说| 深夜精品福利| 国产熟女欧美一区二区| 美女大奶头黄色视频| 街头女战士在线观看网站| 又粗又硬又长又爽又黄的视频| 一区二区三区乱码不卡18| 精品亚洲成a人片在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲天堂av无毛| 综合色丁香网| 国产精品久久久久久精品古装| 亚洲久久久国产精品| 久久99蜜桃精品久久| 亚洲av电影在线观看一区二区三区| 午夜激情av网站| 在线观看免费视频网站a站| 国产福利在线免费观看视频| 国产精品免费大片| 免费黄色在线免费观看| 99国产精品免费福利视频| 国产精品成人在线| 国产成人av激情在线播放| 精品国产超薄肉色丝袜足j| 亚洲国产精品999| 国产黄频视频在线观看| 校园人妻丝袜中文字幕| 乱人伦中国视频| 黑丝袜美女国产一区| 性少妇av在线| 夜夜骑夜夜射夜夜干| 久久久a久久爽久久v久久| 人体艺术视频欧美日本| 高清av免费在线| a级毛片黄视频| 男女无遮挡免费网站观看| av网站免费在线观看视频| 国产激情久久老熟女| 久久精品夜色国产| 午夜福利,免费看| 亚洲天堂av无毛| 亚洲 欧美一区二区三区| 纯流量卡能插随身wifi吗| 五月开心婷婷网| 亚洲国产av影院在线观看| 亚洲国产欧美网| 国产乱人偷精品视频| 一级毛片黄色毛片免费观看视频| 91久久精品国产一区二区三区| 久久久久久免费高清国产稀缺| 赤兔流量卡办理| 日韩av在线免费看完整版不卡| 国产精品免费大片| 一边摸一边做爽爽视频免费| 精品酒店卫生间| 久久久精品国产亚洲av高清涩受| 热99国产精品久久久久久7| 国产色婷婷99| av网站免费在线观看视频| 亚洲内射少妇av| 欧美精品亚洲一区二区| 欧美激情 高清一区二区三区| 欧美日韩视频精品一区| 青青草视频在线视频观看| 亚洲婷婷狠狠爱综合网| 18在线观看网站| 免费人妻精品一区二区三区视频| 视频在线观看一区二区三区| 久久久精品国产亚洲av高清涩受| 久久久精品94久久精品| 久久精品国产综合久久久| 青春草国产在线视频| 一个人免费看片子| 久久精品国产亚洲av涩爱| 高清黄色对白视频在线免费看| 看非洲黑人一级黄片| www.熟女人妻精品国产| 国语对白做爰xxxⅹ性视频网站| 国产无遮挡羞羞视频在线观看| 伦理电影大哥的女人| 视频区图区小说| 丰满少妇做爰视频| 另类亚洲欧美激情| 亚洲欧美成人综合另类久久久| 精品久久久精品久久久| 宅男免费午夜| 成人国语在线视频| 天堂俺去俺来也www色官网| 久久精品国产亚洲av涩爱| 亚洲国产av新网站| 国产精品99久久99久久久不卡 | 久久精品国产亚洲av涩爱| 亚洲欧美成人综合另类久久久| 春色校园在线视频观看| 欧美激情 高清一区二区三区| 看非洲黑人一级黄片| 久久精品国产综合久久久| 美女中出高潮动态图| 日产精品乱码卡一卡2卡三| 日日爽夜夜爽网站| 精品一品国产午夜福利视频| 美女主播在线视频| 曰老女人黄片| 久久精品人人爽人人爽视色| 91久久精品国产一区二区三区| 晚上一个人看的免费电影| 久久国产精品大桥未久av| 爱豆传媒免费全集在线观看| 少妇熟女欧美另类| 国产精品av久久久久免费| 欧美日韩亚洲国产一区二区在线观看 | 国产成人精品福利久久| 久久久国产一区二区| 三级国产精品片| 国产白丝娇喘喷水9色精品| 国产精品人妻久久久影院| 少妇 在线观看| 老汉色av国产亚洲站长工具| 欧美中文综合在线视频| 18禁观看日本| 男女啪啪激烈高潮av片| 9191精品国产免费久久| 1024香蕉在线观看| 国产麻豆69| 亚洲精品日本国产第一区| 欧美+日韩+精品| 十分钟在线观看高清视频www| 国产精品免费视频内射| 成人亚洲欧美一区二区av| 国产亚洲欧美精品永久| 三上悠亚av全集在线观看| 精品国产乱码久久久久久男人| www.熟女人妻精品国产| 91成人精品电影| 午夜日本视频在线| 国产成人a∨麻豆精品| 日韩电影二区| 少妇人妻久久综合中文| 天堂俺去俺来也www色官网| 国产男女超爽视频在线观看| 在线观看国产h片| 九九爱精品视频在线观看| 亚洲国产精品一区二区三区在线| 亚洲精品av麻豆狂野| 国产一区有黄有色的免费视频| av网站免费在线观看视频| 高清不卡的av网站| 久久毛片免费看一区二区三区| 日韩不卡一区二区三区视频在线| 亚洲国产精品成人久久小说| 久久精品人人爽人人爽视色| 黄片播放在线免费| 精品一品国产午夜福利视频| av免费在线看不卡| 国产精品久久久久久久久免| 久久免费观看电影| 婷婷色综合www| 人人妻人人爽人人添夜夜欢视频| 高清av免费在线| 久久久久久久大尺度免费视频| av.在线天堂| 亚洲国产精品一区三区| 伊人久久国产一区二区| 如日韩欧美国产精品一区二区三区| 精品久久久精品久久久| 久久鲁丝午夜福利片| 精品午夜福利在线看| 老汉色∧v一级毛片| 国产免费福利视频在线观看| 国产成人免费无遮挡视频| av在线老鸭窝| 一区在线观看完整版| 2021少妇久久久久久久久久久| 人人妻人人爽人人添夜夜欢视频| √禁漫天堂资源中文www| 中文字幕亚洲精品专区| 只有这里有精品99| 美女国产高潮福利片在线看| 夫妻性生交免费视频一级片| 欧美国产精品一级二级三级| 九九爱精品视频在线观看| 91午夜精品亚洲一区二区三区| 国产成人a∨麻豆精品| 午夜免费男女啪啪视频观看| 777米奇影视久久| 国产成人欧美| 欧美亚洲 丝袜 人妻 在线| 日本vs欧美在线观看视频| 不卡av一区二区三区| 久久av网站| av又黄又爽大尺度在线免费看| 欧美亚洲日本最大视频资源| 欧美亚洲 丝袜 人妻 在线| 国产爽快片一区二区三区| 成年美女黄网站色视频大全免费| 毛片一级片免费看久久久久| 深夜精品福利| 777米奇影视久久| 一级a爱视频在线免费观看| 欧美精品亚洲一区二区| 97人妻天天添夜夜摸| 午夜免费男女啪啪视频观看| 丝袜美腿诱惑在线| 2022亚洲国产成人精品| 色吧在线观看| 国产av国产精品国产| 亚洲三区欧美一区| 一区二区日韩欧美中文字幕| 中文字幕人妻丝袜制服| 亚洲美女视频黄频| 免费观看性生交大片5| 国产精品国产三级国产专区5o| 老女人水多毛片| 在线天堂中文资源库| 成人国产麻豆网| 中文字幕精品免费在线观看视频| 成年动漫av网址| av网站免费在线观看视频| 中文字幕最新亚洲高清| 亚洲成人一二三区av| 国产一区二区三区综合在线观看| 日韩中字成人| 国产精品久久久久久av不卡| 侵犯人妻中文字幕一二三四区| 国产野战对白在线观看| 中文字幕人妻丝袜制服| 天堂8中文在线网| 男女无遮挡免费网站观看| 精品一区二区免费观看| 亚洲国产成人一精品久久久| 成人黄色视频免费在线看| 国产 精品1| 99国产综合亚洲精品| 国产成人av激情在线播放| 国产乱人偷精品视频| 国产在线免费精品| 黑人巨大精品欧美一区二区蜜桃| 欧美人与善性xxx| 精品国产乱码久久久久久小说| 99久久精品国产国产毛片| 国产一区二区 视频在线| 亚洲,一卡二卡三卡| 欧美 日韩 精品 国产| 久久久久久久久久人人人人人人| 成人国语在线视频| 最近的中文字幕免费完整| 在线天堂中文资源库| 少妇被粗大猛烈的视频| 亚洲成人手机| 青春草视频在线免费观看| 美女大奶头黄色视频| 久久久久人妻精品一区果冻| 国产精品久久久久久精品古装| 夫妻性生交免费视频一级片| 日本vs欧美在线观看视频| 秋霞在线观看毛片| 黄片小视频在线播放| 少妇人妻久久综合中文| 激情视频va一区二区三区| 国产成人精品福利久久| 精品午夜福利在线看| 国产无遮挡羞羞视频在线观看| 男女免费视频国产| 久久97久久精品| 精品人妻在线不人妻| 精品国产一区二区久久| 国产精品免费视频内射| 国产男女超爽视频在线观看| 美女国产视频在线观看| 三级国产精品片| 午夜福利在线免费观看网站| 777米奇影视久久| 伊人久久大香线蕉亚洲五| 欧美精品一区二区大全| 观看美女的网站| 亚洲欧美日韩另类电影网站| 香蕉丝袜av| 久久ye,这里只有精品| 国产在线一区二区三区精| 成人手机av| 日本欧美国产在线视频| 国产精品.久久久| 成人漫画全彩无遮挡| 在线观看人妻少妇| 久久精品国产自在天天线| 亚洲欧美日韩另类电影网站| 看免费成人av毛片| 性少妇av在线| 亚洲av综合色区一区| 黄频高清免费视频| 十分钟在线观看高清视频www| 久久久久久人人人人人| 丝袜美腿诱惑在线| 国产精品三级大全| 在线亚洲精品国产二区图片欧美| 日韩av在线免费看完整版不卡| 春色校园在线视频观看| 国产精品不卡视频一区二区| 国产精品人妻久久久影院| 纯流量卡能插随身wifi吗| 亚洲欧美精品自产自拍| 久久 成人 亚洲| 国产不卡av网站在线观看| 国产麻豆69| 亚洲精品第二区| av.在线天堂| 毛片一级片免费看久久久久| 人妻一区二区av| 免费久久久久久久精品成人欧美视频| 男女午夜视频在线观看| 久久精品亚洲av国产电影网| 五月天丁香电影| 深夜精品福利| 日韩av免费高清视频| 亚洲国产精品国产精品| 婷婷色麻豆天堂久久| 高清不卡的av网站| 久久毛片免费看一区二区三区| 人人妻人人澡人人看| 最近2019中文字幕mv第一页| 国产精品av久久久久免费| 久久久久久久久免费视频了| 美女视频免费永久观看网站| 欧美激情极品国产一区二区三区| 国产97色在线日韩免费| 免费在线观看视频国产中文字幕亚洲 | 国产免费一区二区三区四区乱码| 午夜福利一区二区在线看| 久久这里只有精品19| 下体分泌物呈黄色| 五月开心婷婷网| 国产人伦9x9x在线观看 | 精品一区二区免费观看| 韩国av在线不卡| 欧美激情高清一区二区三区 | 国产精品麻豆人妻色哟哟久久| 国产福利在线免费观看视频| 中文字幕av电影在线播放| 精品人妻熟女毛片av久久网站| 人人澡人人妻人| 国产精品二区激情视频| 国产1区2区3区精品| 岛国毛片在线播放| videossex国产| 一级毛片黄色毛片免费观看视频| 亚洲精品日本国产第一区| 午夜福利网站1000一区二区三区| 人妻少妇偷人精品九色| 最新的欧美精品一区二区| 天堂俺去俺来也www色官网| 欧美精品一区二区免费开放| 久热久热在线精品观看| 国产欧美日韩综合在线一区二区| 新久久久久国产一级毛片| 国产一区二区在线观看av| 精品99又大又爽又粗少妇毛片| 亚洲欧洲国产日韩| av在线老鸭窝| 国产亚洲午夜精品一区二区久久| 18+在线观看网站| 青春草亚洲视频在线观看| 欧美人与善性xxx| 国精品久久久久久国模美| 亚洲经典国产精华液单| 欧美 亚洲 国产 日韩一| 欧美日韩一区二区视频在线观看视频在线| 下体分泌物呈黄色| 91国产中文字幕| 久久久久久久大尺度免费视频| 亚洲欧美成人综合另类久久久| 韩国精品一区二区三区| 国产一区亚洲一区在线观看| 午夜福利乱码中文字幕| 久久久久久久久免费视频了| 欧美激情极品国产一区二区三区| 精品久久久精品久久久| 精品福利永久在线观看| 国产日韩欧美视频二区| 免费在线观看黄色视频的| 精品亚洲乱码少妇综合久久| 一级片'在线观看视频| 热99久久久久精品小说推荐| 久久精品久久精品一区二区三区| 99精国产麻豆久久婷婷| 女性被躁到高潮视频| 日韩av不卡免费在线播放| 亚洲三区欧美一区| 日本午夜av视频| 免费黄网站久久成人精品| 一级毛片 在线播放| 在线观看一区二区三区激情| 国产亚洲最大av| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 涩涩av久久男人的天堂| 啦啦啦在线观看免费高清www| 国产午夜精品一二区理论片| av在线播放精品| 国产精品一区二区在线观看99| 国产片内射在线| 国产xxxxx性猛交| 91久久精品国产一区二区三区| 亚洲,欧美,日韩| 国产av国产精品国产| 99精国产麻豆久久婷婷| 黄色视频在线播放观看不卡| 国产精品无大码| 欧美 日韩 精品 国产| 亚洲综合色惰| 国产免费又黄又爽又色| 国产高清国产精品国产三级| 性高湖久久久久久久久免费观看| 亚洲av免费高清在线观看| 满18在线观看网站| 精品国产超薄肉色丝袜足j| 免费播放大片免费观看视频在线观看| 国产日韩欧美在线精品| 在线观看国产h片| 大香蕉久久网| 美国免费a级毛片| 美女大奶头黄色视频| 少妇人妻精品综合一区二区| 久久99精品国语久久久| 成年av动漫网址| 国产一区亚洲一区在线观看| 国产又色又爽无遮挡免| 少妇猛男粗大的猛烈进出视频| 国产有黄有色有爽视频| 秋霞在线观看毛片| 少妇被粗大猛烈的视频| 国产免费又黄又爽又色| 国产精品女同一区二区软件| 五月开心婷婷网| 热re99久久精品国产66热6| 一区在线观看完整版| 国产亚洲精品第一综合不卡| 激情五月婷婷亚洲| 性高湖久久久久久久久免费观看| 在线 av 中文字幕| 只有这里有精品99| 九九爱精品视频在线观看| 欧美精品国产亚洲| 久久av网站| 王馨瑶露胸无遮挡在线观看| 纵有疾风起免费观看全集完整版| 激情视频va一区二区三区| 国产麻豆69| 亚洲精品久久成人aⅴ小说| 黄色怎么调成土黄色| 亚洲成人av在线免费| a级毛片黄视频| 国产 一区精品| 97在线人人人人妻| 亚洲精品国产色婷婷电影| 国产精品.久久久| a级毛片黄视频| 亚洲天堂av无毛| 国产精品麻豆人妻色哟哟久久| 制服人妻中文乱码| 欧美日韩综合久久久久久| 最近的中文字幕免费完整| 久久精品国产自在天天线| 欧美在线黄色| 久久青草综合色| 精品国产一区二区三区久久久樱花| 国产精品久久久久久精品电影小说| 国产 一区精品| 久久久久久久亚洲中文字幕| 亚洲情色 制服丝袜| 国产成人精品在线电影| 狂野欧美激情性bbbbbb| 久久久精品国产亚洲av高清涩受| 人妻 亚洲 视频| 美女福利国产在线| 日韩一本色道免费dvd| 熟妇人妻不卡中文字幕| 色哟哟·www| 黄色一级大片看看| www日本在线高清视频| 成人黄色视频免费在线看| 一级爰片在线观看| 日本av手机在线免费观看| 狠狠婷婷综合久久久久久88av| 少妇熟女欧美另类| 桃花免费在线播放| 午夜福利,免费看| 最近手机中文字幕大全| 成人手机av| 天天躁狠狠躁夜夜躁狠狠躁| 成人18禁高潮啪啪吃奶动态图| 90打野战视频偷拍视频| 一二三四在线观看免费中文在| 亚洲欧洲国产日韩| 另类亚洲欧美激情| 99九九在线精品视频| 91午夜精品亚洲一区二区三区| 国产深夜福利视频在线观看| 欧美精品av麻豆av| 国产男女超爽视频在线观看| 人妻系列 视频| 99久久中文字幕三级久久日本| 免费在线观看完整版高清| 国产在视频线精品| 亚洲色图 男人天堂 中文字幕| 一个人免费看片子| 久久久久久久精品精品| 久久99一区二区三区| 国产精品久久久久久精品古装| 777米奇影视久久| 国产欧美亚洲国产| 777久久人妻少妇嫩草av网站| 久久精品久久久久久噜噜老黄| 两个人免费观看高清视频| 好男人视频免费观看在线| 国产精品国产三级专区第一集| videos熟女内射| 丰满迷人的少妇在线观看| 美女脱内裤让男人舔精品视频| 久久精品久久久久久久性| av又黄又爽大尺度在线免费看| 亚洲精品美女久久av网站| 久久久久精品性色| 亚洲国产av影院在线观看| 国产精品不卡视频一区二区| 免费在线观看视频国产中文字幕亚洲 | 热re99久久国产66热| 视频在线观看一区二区三区| 涩涩av久久男人的天堂| 天美传媒精品一区二区| 中文天堂在线官网| 国产乱人偷精品视频| 久久人人爽av亚洲精品天堂| 亚洲欧美一区二区三区黑人 | 中文字幕色久视频| 国产欧美亚洲国产| 97精品久久久久久久久久精品| 亚洲av.av天堂| 亚洲久久久国产精品| 曰老女人黄片| 亚洲伊人久久精品综合| 国产精品不卡视频一区二区| 亚洲av免费高清在线观看| 久久久久精品久久久久真实原创| 国产av一区二区精品久久| 精品国产国语对白av| av在线观看视频网站免费| av在线老鸭窝| 啦啦啦视频在线资源免费观看| 日韩人妻精品一区2区三区| 男女午夜视频在线观看| 精品少妇久久久久久888优播| 美女大奶头黄色视频| 极品少妇高潮喷水抽搐| 亚洲精品久久午夜乱码| xxx大片免费视频| 欧美日本中文国产一区发布| 一级a爱视频在线免费观看| 日韩大片免费观看网站| 黄色配什么色好看| 韩国av在线不卡| 亚洲av福利一区| 夫妻性生交免费视频一级片| 啦啦啦啦在线视频资源| 熟女少妇亚洲综合色aaa.| 成人亚洲欧美一区二区av|