• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers?

    2021-12-22 06:42:36XiaXiaNiu牛夏夏YiFengYang楊依楓ZhaoQuan全昭ChunLeiYu于春雷QinLingZhou周秦嶺HuiShen沈輝BingHe何兵andJunZhou周軍
    Chinese Physics B 2021年12期
    關(guān)鍵詞:周軍春雷秦嶺

    Xia-Xia Niu(牛夏夏) Yi-Feng Yang(楊依楓) Zhao Quan(全昭) Chun-Lei Yu(于春雷)Qin-Ling Zhou(周秦嶺) Hui Shen(沈輝) Bing He(何兵) and Jun Zhou(周軍)

    1Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: stimulated Brillouin scattering,Brillouin gain spectrum,large-mode-area fibers,fiber laser

    1. Introduction

    The applications of high-power narrow-linewidth fiber lasers to coherent beam combining and spectral beam combining have attracted widespread attention in recent years.[1,2]Stimulated Brillouin scattering (SBS) is the most limiting effect in terms of power handling capacity in high-power narrow-linewidth fiber lasers.[3,4]Over the decades, a variety of techniques have been implemented in order to suppress SBS,[5]such as introducing nonuniformities by stressing the optical fiber,[6]reducing the overlap between the light wave field and the sound wave field in the core by changing the doping composition and distribution in the core,[7–10]reducing effective fiber length,[11]broadening spectral linewidth of seed by pure phase modulation,etc.[12–15]Specifically,white noise source (WNS)[16–19]and pseudo-random binary sequence(PRBS)[20–23]phase modulation become the leading linewidth broadening schemes for high power fiber amplifiers which are required to balance the narrow-linewidth and the output power. In the commonly used PRBS phase modulation scheme,the SBS suppression capability can be determined by the separation between the discrete adjacent sidebands lying within the envelope, which should be appreciably more than twice the Brillouin gain spectrum(BGS)bandwidth.[14]In this scenario,the BGS characteristics become essential for designing the PRBS phase modulation scheme.

    As is well known,the core dimensions and GeO2concentration of the fibers can dramatically affect the BGS characteristics, especially the Brillouin frequency shift (BFS) and the BGS bandwidth. Some efforts have devoted to studying the BGS in single-mode fiber(SMF).Nikleset al.have studied the influence of germanium concentration on BFS and BGS bandwidths,and they found that the change between BFS and GeO2concentrations is?94 MHz/wt%, while the change between BGS bandwidth and GeO2concentration is 1.4 MHz/wt%.[24]Liet al.reported the BFS is reduced by~1 GHz and BGS bandwidth is increased by~2 MHz when the core diameter decreases from 8.8 μm to 3 μm.[25]It is noticed that the germanium concentration of the fiber with a core diameter of 8.8 μm in Ref. [25] is 4 wt%, while the germanium concentration of the fiber with a core diameter of 3 μm is 19 wt%,showing the germanium concentrations of the fibers with different core diameters are different, and the BFS with GeO2concentration is about?89 MHz/wt%.[26]Liet al.showed that core doping GeO2concentration has a greater influence on the BFS than the core diameter and reducing fiber core diameter will result in a wider BGS bandwidth.[25]The above results are based on the SMF reported. However, the dependence of BGS characteristics on the GeO2concentration and core diameter in large-mode-area (LMA) fibers have not yet been studied in detail.

    The purpose of this work is to examine the relationship between the GeO2concentration and the Brillouin gain spectrum characteristics in the LMA fibers. We first numerically simulate the dependence of BFS and BGS bandwidths on GeO2concentration. Then we present the BGS bandwidth as a function of single-pass gain to explain the BGS bandwidth measured in this work under the condition of Brillouin gain narrowing. Moreover,the BGSs are experimentally characterized in four types of fibers with different GeO2concentrations and core diameters of 10μm and 20μm by using heterodyne detection method,indicating the dependence of BFS and BGS bandwidths on GeO2concentration under the same core diameter fiber.Finally,the BGSs of three fibers with core diameters of 10μm,25μm,and 30μm are tested to demonstrate the influence of the core diameter on the BGS bandwidth.

    2. Theory

    In the kinetics of spontaneous Brillouin scattering, the BGS line is Lorentzian according to the exponential decay of phonons.[27]In a fiber system,spectral density function of the Stokes radiation,S(ω),[28]can be defined as

    wherehis the Planck’s constant,Nis the mean number of phonons per mode of acoustic field,ωsis the Stokes frequency,Ais the effective cross-section area, andΓBis the phonon intensity decay rate,ωis the laser frequency,nis the effective refractive index of the pump mode,cis the propagation speed of light in vacuum.Gis the single-pass gain, which can be defined as

    whereg0is the peak value of the Brillouin gain,Leffis the effective length,Aeffis the effective cross-sectional area of the interaction region,andPis the incident laser power. The gain factorgcan be defined as

    whereγeis the electrostrictive constant of silica,ρ0is the mass density,andυAis the acoustic velocity. As shown in Eq.(1),the spectral shape of the Stokes light depends on the singlepass gainGand the phonon intensity decay rateΓB. The BGS bandwidthΓ=ΓB/(2π) is the full width at half maximum(FWHM)of the BGS,which can be expressed as

    According to Ref.[28],the refractive indexnof the medium,the acoustic velocityυA, and the mass densityρ0vary with GeO2concentrationωGe[in unit wt%]and F concentrationωF[in unit wt%]and can be expressed respectively as[29]

    The BGS bandwidth ?νnarrows as single-pass gain increases,which can be given by[28,30]

    For smallG(such asG<5 Np),the shape of the Brillouin gain spectrum is Lorentzian curve with a bandwidth of ?ν=Γ.On the other hand,the Stokes spectrum bandwidth has almost no obvious change for largeG(such asG>20 Np).[31]

    Fig. 1. (a) Simulated BFS versus GeO2 concentration, and (b) calculated BGS bandwidth and tested bandwidth versus GeO2 concentration for four types of fibers.

    The generated Stokes frequency depends on the optical and acoustic properties of the propagation material as well as the pump wavelength. The BFS in an LMA fiber can be defined as[32]

    whereλis the laser wavelength,andθis the scattering angle of a mode. In the simulation, the influence of the scattering angle on the BFS is ignored. The BFS and BGS bandwidths as a function of GeO2concentration are shown in Figs. 1(a)and 1(b). The parameters and the values used in the simulation are shown in Table 1. Figure 1(a) shows that the BFS is inversely proportional to GeO2concentration and the relationship is linear. Figure 1(b)shows that the BGS bandwidth initially increases linearly and then decreases. The gain factor and single-pass gain will increase when the germanium concentration exceeds 80%, thus causing the narrowed Brillouin bandwidth to decrease. The red line is the linear fit with a slope of 0.085.

    Table 1. Parameters and values used in simulation.

    The relationship between Brillouin gain factorg0and GeO2concentration is obtained by substituting Eqs. (4)–(7)into Eq.(3),and the results are shown in Fig.2(a).It is demonstrated that as the GeO2concentration increases,Brillouin gain factor decreases initially, and then increases when the GeO2concertation exceeds 80%. Firstly, the phonon intensity attenuation rate, the refractive index, and the medium density increase faster than the sound velocity decreases, so the gain factor is reduced. With the increase of germanium concentration, the attenuation rate of the phonon intensity, the rate of increase of refractive index, and the medium density are lower than the rate of decrease of sound velocity, as a result,the gain factor has a minimum value, and then gradually increases. The single-pass gain dependence of BGS bandwidth can be obtained based on Eq. (8), and is plotted in Fig. 2(b).The results indicate that as the GeO2concentration increases,Brillouin gain factor initially decreases, and then increases.The Brillouin gain narrowing is shown in Fig.2(b).

    Fig.3. Experimental setup of Brillouin gain spetrum measurement. MFA:mode field adapter;YDFA:Yb-doped fiber amplifier;PD:photodetector;RFA:radio frequency analyzer.

    Fig. 2. (a) Simulated Brillouin gain factor versus GeO2 concentration, and(b)calculated BGS bandwidth versus single-pass gain G and the experimental bandwidth of fibers with different core diameters.

    3. Experimental setup

    The BGSs of the LMA fibers are measured. The schematic diagram of the setup is shown in Fig.3.

    A 1067-nm,60-mW,3-kHz linewidth(the Rock,NP Photonics) single-frequency fiber laser is used as a light source.The laser signal is amplified to 10 W by a Yb-doped fiber amplifier (YDFA). The output laser is divided into two arms by an 80/20 coupler(coupler 1),where 80%of the laser pass through a circulator,and then connected to the input end of the fiber under test(FUT).All the fibers are in a temperature range of 20?C–22?C and maintain the same bend radius to ensure the same experimental conditions. The generated backward Stokes light in the fiber is coupled into the 50/5 coupler(coupler 2)through port 3 of the circulator. The MFAs here is used to adapt the mode field. In the other arm, 20% of the laser acts as the reference light, and the power is controlled by an optical attenuator to maximize the visibility of the beat signal. The backward light and the reference light then beat in coupler 2, and the beat signal is detected by a photodetector(1014,Newport)with a maximum bandwidth of 46 GHz,and analyzed by a radio frequency analyzer (RFA, DSOX4024A,KEYSIGHT).The output end of the FUT is cleaved with 8?to prevent feedback.

    4. Results and discussion

    Six passive fibers (I–VI) are investigated in the experimental setup, of which the detailed parameters are listed in Table 2. The input laser power is the output power of the amplifier when the beat frequency output power is 1 mW.The values of single-pass gainGfor all the FUTs are much larger than 25, which means that all the Brillouin bandwidths we tested are gain-narrowed.

    Table 2. Experimental parameters and their values.

    Fig.4. X-ray signal intensity distribution for(a)fibers I and II and(b)fibers III and IV.

    For comparing the core germanium concentrations of fibers with the same core diameter,we use the electron probe microanalysis(EPMA)to test the x-ray signal intensity of Ge doped in 10/125 and 20/400 polarization-maintaining and unpolarized fibers(fibers I–IV).The cross-sectional x-ray signal intensity distribution results for the four fibers are shown in Fig. 4. The x-ray signal intensity of each fiber is expressed by averaging the x-ray signal intensities in the core. The xray signal intensity can be used to characterize the germanium doping concentration because it is positively correlated with the content of GeO2in fiber. Figures 4(a)and 4(b)show that the germanium concentration of the polarization-maintaining fiber is higher than that of the unpolarized fiber, and the germanium concentration of the 10/125 fiber is higher than that of the 20/400 fiber.

    The BFS and BGS bandwidths for fibers I–IV are measured using the experimental setup shown in Fig.3. Gaussian fitting is performed on the BGS of each fiber and the BFS and Brillouin bandwidth of each fiber are recorded as shown in Fig.5. For fibers I and II as shown in Figs.5(a)and 5(b),the BFSs are 16.065 GHz and 16.102 GHz and the BGS bandwidths are 15.54 MHz and 12.31 MHz, respectively. This difference in BFS can be explained by Eq. (9). The difference in dopant concentration between the two fibers results in the differences in the acoustic velocity and the refractive index. This difference in BGS bandwidth is explained as being due to the fact that the increasing of GeO2will result in a decrease in phonon lifetime and an increase in bandwidth.Although not each group of fibers is tested at the same length and the same input power,it is clear that the output SBS power is the same, and the product of the fiber length and the input power in the polarization-maintaining fiber is larger,which is the opposite to the influence of germanium concentration on the bandwidth. The results indicate that in LMA fibers with the same core diameter,the BFS decreases and the BGS bandwidth increases with the augment of doped germanium concentration in the core. This result is consistent with that of an SMF.[24]The same conclusion is applicable to the fibers III–IV as shown in Figs.5(c)and 5(d). The BFSs are 16.123 GHz and 16.134 GHz, respectively, and the BGS bandwidths are 15.54 MHz and 12.31 MHz,respectively. The BFS and BGS bandwidth changes of the 10/125 fiber are greater than that of 20/400 fiber. The reason for this result is that the difference in germanium concentration between the two 10/125 fibers is higher than that between the two 20/400 fibers.

    Fig.5. Comparison of(a)BFS and(b)BGS bandwidth gain spectra between fibers I and II.Comparison of(c)BFS and(d)BGS bandwidth gain spectra between fibers III and IV.

    The tests of the BGS bandwidth for fibers I–IV are shown in Fig.1(b),which are compared with the simulations. The diamond, square, circle, and the triangle symbols in Fig. 1(b)indicate the tested BGS bandwidth of the fibers I, II, III, and IV,respectively.

    The measured fiber bandwidth is positively correlated with the x-ray signal intensity, and the simulated bandwidth is also proportional to the germanium concentration. That is,as the doped germanium concentration in the core increases,the BGS bandwidth increases. However, there is some obvious departure between the tested value and the simulation one. Besides the fact that the coefficients of Eqs. (4)–(6) are not universal, the germanium concentration used in our fiber is not an absolute concentration but the x-ray signal intensity.

    Figure 6(a)shows x-ray signal intensities of GeO2doped in the core of three passive optical fibers with different core diameters. The curves represent the x-ray signal intensity distributions in the cross sections of the fibers. The x-ray signal intensity at the core of each fiber is averaged to characterize the core germanium concentration in each fiber.The average x-ray signal intensity in the core of the fibers I,V,and VI are 43.568,38.17, and 34.17, respectively. Result shows that the smallcore fiber has a higher germanium concentration. Figure 6(b)shows the BGS measurement results of three fibers with different core diameters. The lengths of the different fibers range from 20 m to 150 m. We find that the BGSs of three types of fibers all exhibit a Gaussian distribution. The BFS for fibers I,V, and VI are 16.102, 16.138, and 16.168 GHz, respectively,and the BGS bandwidths are 12.31,14.22,and 15.93 MHz respectively. BGS bandwidth is increased by~2 MHz when the core diameter increases from 10 μm to 30 μm. Fiber I has a higher germanium concentration, but the bandwidth is narrower than that of fiber VI,indicating that the core diameter has a greater effect on the bandwidth than the germanium concentration in the LMA fiber.

    We also compare the numerical solution and measured BGS bandwidth of the three fibers with different core diameters, which is shown in Fig. 2(b). It should be noted that single-pass gainGfor each fiber is calculated under the condition that the x-ray signal intensity is regarded as the germanium concentration. The circle, square, and triangle symbols indicate the measured BGS bandwidths of fibers I,V,and VI,respectively. The reason for this difference may be that in an LMA fiber, when pump light is coupled into the fiber, multiple conduction transverse modes can be excited. The Stokes light generated by the inelastic collision of the optical photons with the acoustic phonons in the optical fiber also excites multiple conduction modes. The superposition of multiple modes of Stokes light will broaden the BGS bandwidth. Previous literature has reported[33]that the increasing of the number of optical modes can lead the BGS bandwidth to broaden.

    Fig. 6. Comparison among (a) x-ray signal intensities for 10/125, 25/250,and 30/250 fibers and(b)BGSs of fibers for different core diameters.

    5. Conclusions

    In this work,the dependence of BFS bandwidth and BGS bandwidth on GeO2concentration are simulated. It is shown that BGS bandwidth initially increases, then decreases and BFS decreases as the GeO2concentration increases. We also provide direct experimental evidence that BFS reduces and the linewidth broadens with the increase of germanium concentration in LMA fiber. Moreover, it is demonstrated experimentally that BGS bandwidth increases as the core diameter increases, and that the BGS bandwidth broadening is because the superposition of multiple transmission modes of Stokes light in LMA fibers causes the entire Brillouin scattering spectrum to broaden. This work will provide reference for multiwavelength Brillouin lasers.

    猜你喜歡
    周軍春雷秦嶺
    春雷響
    幼兒100(2024年11期)2024-03-27 08:32:56
    《拓荒者》
    民族藝林(2022年4期)2023-01-19 04:06:16
    暑期秦嶺游
    洞穿秦嶺
    花事
    周軍:手握“最準(zhǔn)的尺”,從“0”到“∞”篤信前行
    好忙好忙的秦嶺
    “軸對(duì)稱(chēng)”復(fù)習(xí)點(diǎn)睛
    春雷
    春雷乍響活驚蟄
    一夜夜www| 俄罗斯特黄特色一大片| 女生性感内裤真人,穿戴方法视频| 国产成人福利小说| 俄罗斯特黄特色一大片| 一区二区三区四区激情视频 | 亚洲成人久久爱视频| 又爽又黄无遮挡网站| 99热这里只有精品一区| 国产色婷婷99| 午夜日韩欧美国产| 两性午夜刺激爽爽歪歪视频在线观看| 成人国产综合亚洲| 精品一区二区三区人妻视频| 午夜影院日韩av| 亚洲片人在线观看| 久久久久久久久久黄片| 国产精品野战在线观看| 少妇熟女aⅴ在线视频| 精品不卡国产一区二区三区| 久久精品91蜜桃| 欧美又色又爽又黄视频| 午夜a级毛片| 天堂√8在线中文| 日本免费a在线| 久久久久久久精品吃奶| 色精品久久人妻99蜜桃| 免费观看的影片在线观看| 麻豆av噜噜一区二区三区| 欧美成人免费av一区二区三区| 亚洲av不卡在线观看| 久久国产精品人妻蜜桃| 国产亚洲精品综合一区在线观看| 少妇高潮的动态图| ponron亚洲| 国产一区二区在线观看日韩| 精品乱码久久久久久99久播| 中文字幕熟女人妻在线| 亚洲精品影视一区二区三区av| 久9热在线精品视频| 99久国产av精品| 国产色婷婷99| 国产毛片a区久久久久| 国产极品精品免费视频能看的| 亚洲专区中文字幕在线| eeuss影院久久| 久久人人爽人人爽人人片va | 两人在一起打扑克的视频| 亚洲久久久久久中文字幕| 国产探花在线观看一区二区| 人妻制服诱惑在线中文字幕| 夜夜看夜夜爽夜夜摸| 国产三级中文精品| 热99在线观看视频| АⅤ资源中文在线天堂| 一级毛片久久久久久久久女| 高清毛片免费观看视频网站| 欧美xxxx性猛交bbbb| 亚洲不卡免费看| 麻豆一二三区av精品| 婷婷亚洲欧美| 国内精品美女久久久久久| 国产午夜精品久久久久久一区二区三区 | 亚洲av成人不卡在线观看播放网| 国产一区二区在线观看日韩| 国产一区二区在线av高清观看| 男女之事视频高清在线观看| 久久久久九九精品影院| 欧美丝袜亚洲另类 | 淫妇啪啪啪对白视频| 一本综合久久免费| 999久久久精品免费观看国产| 日本与韩国留学比较| 99久久99久久久精品蜜桃| 国产亚洲欧美98| 久久久精品大字幕| 国内精品一区二区在线观看| 久久久久久九九精品二区国产| 久久精品国产自在天天线| 精品久久国产蜜桃| 亚洲国产精品成人综合色| 精品熟女少妇八av免费久了| 午夜福利成人在线免费观看| 免费人成在线观看视频色| 免费无遮挡裸体视频| 午夜福利在线在线| 在线免费观看的www视频| 国产伦人伦偷精品视频| 欧美乱妇无乱码| 色综合欧美亚洲国产小说| 亚洲欧美日韩高清在线视频| 国产精品乱码一区二三区的特点| 三级国产精品欧美在线观看| 91av网一区二区| 我的女老师完整版在线观看| 69人妻影院| 美女 人体艺术 gogo| 天堂影院成人在线观看| 亚洲午夜理论影院| 成年女人看的毛片在线观看| 人人妻人人澡欧美一区二区| 亚洲av免费在线观看| 国产高清有码在线观看视频| 欧美成狂野欧美在线观看| 免费看日本二区| 99久久99久久久精品蜜桃| 国产精品一区二区性色av| 最新中文字幕久久久久| 国产精品爽爽va在线观看网站| 国产成人影院久久av| 99久国产av精品| 小蜜桃在线观看免费完整版高清| 亚洲av二区三区四区| 亚洲精品一区av在线观看| 亚洲自偷自拍三级| 欧美在线一区亚洲| 一级黄片播放器| 国产高清三级在线| 欧美日韩瑟瑟在线播放| 日韩免费av在线播放| 久久婷婷人人爽人人干人人爱| 一个人免费在线观看电影| 午夜激情欧美在线| 精华霜和精华液先用哪个| 国产一区二区在线观看日韩| 俄罗斯特黄特色一大片| 精品人妻熟女av久视频| 久久国产精品人妻蜜桃| 国产黄片美女视频| 国产男靠女视频免费网站| 丰满的人妻完整版| 亚洲av熟女| 欧美xxxx性猛交bbbb| 久久草成人影院| 淫妇啪啪啪对白视频| 国产精品98久久久久久宅男小说| 无遮挡黄片免费观看| 亚洲av日韩精品久久久久久密| 男插女下体视频免费在线播放| 尤物成人国产欧美一区二区三区| 欧美不卡视频在线免费观看| 日本五十路高清| 丰满乱子伦码专区| 日本一二三区视频观看| 精品久久久久久成人av| 特级一级黄色大片| 日韩精品青青久久久久久| 日韩欧美三级三区| 99久久无色码亚洲精品果冻| 老司机午夜福利在线观看视频| 日韩欧美在线乱码| 日韩免费av在线播放| 亚洲内射少妇av| 国产亚洲精品久久久com| 宅男免费午夜| 我要看日韩黄色一级片| 国产美女午夜福利| 免费一级毛片在线播放高清视频| 亚洲中文字幕一区二区三区有码在线看| 国产主播在线观看一区二区| 国产精品女同一区二区软件 | 久久久久性生活片| 亚洲,欧美,日韩| 无遮挡黄片免费观看| 天堂√8在线中文| 国产人妻一区二区三区在| 最近最新中文字幕大全电影3| 国语自产精品视频在线第100页| 国产午夜精品久久久久久一区二区三区 | 性色avwww在线观看| 亚洲avbb在线观看| 色5月婷婷丁香| 嫩草影视91久久| 美女高潮喷水抽搐中文字幕| www.www免费av| 欧美另类亚洲清纯唯美| 亚洲无线观看免费| 好男人电影高清在线观看| 久久精品国产清高在天天线| 最近中文字幕高清免费大全6 | 中国美女看黄片| 老司机福利观看| 亚洲午夜理论影院| 亚洲专区中文字幕在线| 一二三四社区在线视频社区8| 中亚洲国语对白在线视频| 欧美黄色淫秽网站| 日日摸夜夜添夜夜添小说| 亚洲精品在线美女| 黄色女人牲交| 观看美女的网站| 在线免费观看不下载黄p国产 | 亚洲在线观看片| 99久久九九国产精品国产免费| 又粗又爽又猛毛片免费看| 国产精品一区二区三区四区久久| 欧美在线一区亚洲| 久久精品国产99精品国产亚洲性色| 欧美潮喷喷水| 不卡一级毛片| 97超视频在线观看视频| 久久午夜福利片| 特大巨黑吊av在线直播| 特级一级黄色大片| 国产午夜精品久久久久久一区二区三区 | 高清毛片免费观看视频网站| 亚洲男人的天堂狠狠| 久久久久国产精品人妻aⅴ院| 日本与韩国留学比较| or卡值多少钱| av国产免费在线观看| 九九久久精品国产亚洲av麻豆| 日本免费a在线| 欧美丝袜亚洲另类 | 欧美最黄视频在线播放免费| 欧美日韩黄片免| 日本精品一区二区三区蜜桃| 国产精品久久视频播放| 国产精品伦人一区二区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲真实伦在线观看| 有码 亚洲区| 简卡轻食公司| 人妻丰满熟妇av一区二区三区| 又黄又爽又免费观看的视频| 好男人电影高清在线观看| 宅男免费午夜| 老鸭窝网址在线观看| 最新在线观看一区二区三区| a级一级毛片免费在线观看| 久久精品人妻少妇| 色哟哟·www| 青草久久国产| 日韩欧美在线二视频| 赤兔流量卡办理| 日本黄大片高清| 国产真实伦视频高清在线观看 | 亚洲综合色惰| 18禁在线播放成人免费| 午夜精品在线福利| 黄色丝袜av网址大全| 99国产精品一区二区三区| 久久国产乱子伦精品免费另类| 中文字幕熟女人妻在线| 男人和女人高潮做爰伦理| 亚洲美女搞黄在线观看 | 中国美女看黄片| 别揉我奶头 嗯啊视频| 成人国产综合亚洲| 热99在线观看视频| 亚洲欧美日韩卡通动漫| 亚洲avbb在线观看| 伦理电影大哥的女人| 3wmmmm亚洲av在线观看| 91在线精品国自产拍蜜月| 国产精品久久久久久久久免 | 高清日韩中文字幕在线| 高清毛片免费观看视频网站| 国内精品久久久久精免费| 国产一区二区三区视频了| 黄片小视频在线播放| 欧美乱妇无乱码| 99热精品在线国产| 中文字幕av成人在线电影| 中文字幕熟女人妻在线| 成人鲁丝片一二三区免费| 国产精品一区二区三区四区免费观看 | 亚洲欧美清纯卡通| 淫妇啪啪啪对白视频| 12—13女人毛片做爰片一| 国产黄a三级三级三级人| 非洲黑人性xxxx精品又粗又长| 成人精品一区二区免费| 久久久久亚洲av毛片大全| 俄罗斯特黄特色一大片| 男人狂女人下面高潮的视频| 激情在线观看视频在线高清| 黄色女人牲交| 成年人黄色毛片网站| 窝窝影院91人妻| 神马国产精品三级电影在线观看| 亚洲av电影在线进入| 国产成人欧美在线观看| 国内精品一区二区在线观看| 他把我摸到了高潮在线观看| 18禁裸乳无遮挡免费网站照片| 观看免费一级毛片| 国产高清视频在线播放一区| a级毛片免费高清观看在线播放| 一级黄片播放器| 在线观看舔阴道视频| av中文乱码字幕在线| 制服丝袜大香蕉在线| 久久草成人影院| 欧美精品啪啪一区二区三区| 中文字幕人成人乱码亚洲影| 嫩草影院入口| 国产在视频线在精品| 亚洲人成网站在线播放欧美日韩| 他把我摸到了高潮在线观看| 最后的刺客免费高清国语| 亚洲人成网站高清观看| 麻豆久久精品国产亚洲av| 哪里可以看免费的av片| 99精品久久久久人妻精品| 午夜免费男女啪啪视频观看 | 国内久久婷婷六月综合欲色啪| 亚洲电影在线观看av| 国产成人福利小说| 免费在线观看亚洲国产| 欧美日韩国产亚洲二区| 久久这里只有精品中国| 久久九九热精品免费| 免费一级毛片在线播放高清视频| 国产三级在线视频| 欧美成人性av电影在线观看| 国产av一区在线观看免费| 亚洲一区二区三区色噜噜| 久久久久久大精品| 91麻豆av在线| 亚洲中文字幕日韩| 国产一区二区在线av高清观看| 美女高潮的动态| 三级男女做爰猛烈吃奶摸视频| 欧美黑人欧美精品刺激| 国产美女午夜福利| 久久久久久久久久成人| 九九久久精品国产亚洲av麻豆| 成人av在线播放网站| 国产熟女xx| 久久这里只有精品中国| 好男人在线观看高清免费视频| 国产亚洲精品av在线| 国产精品av视频在线免费观看| 桃红色精品国产亚洲av| 中文字幕av在线有码专区| 亚洲国产精品sss在线观看| 欧美成人一区二区免费高清观看| 搞女人的毛片| 大型黄色视频在线免费观看| 国产精品女同一区二区软件 | 91麻豆av在线| h日本视频在线播放| 高清日韩中文字幕在线| 十八禁人妻一区二区| 成人美女网站在线观看视频| 免费看a级黄色片| 男女之事视频高清在线观看| 特大巨黑吊av在线直播| 国内精品美女久久久久久| 嫩草影院精品99| 国产单亲对白刺激| 九九在线视频观看精品| 亚洲无线在线观看| 亚洲一区高清亚洲精品| 在线观看免费视频日本深夜| 国产一区二区亚洲精品在线观看| 女人被狂操c到高潮| 国产白丝娇喘喷水9色精品| 久久精品影院6| 婷婷丁香在线五月| 永久网站在线| 成人毛片a级毛片在线播放| 有码 亚洲区| 欧美高清性xxxxhd video| 91久久精品电影网| 天美传媒精品一区二区| 黄色丝袜av网址大全| 日韩欧美国产一区二区入口| 亚洲精华国产精华精| 亚洲av中文字字幕乱码综合| 一级a爱片免费观看的视频| 桃红色精品国产亚洲av| 亚洲无线观看免费| 久久久久久久久久黄片| 免费看日本二区| 日韩中文字幕欧美一区二区| 我要看日韩黄色一级片| 又爽又黄a免费视频| 日韩免费av在线播放| 亚洲五月天丁香| 少妇的逼水好多| 久久婷婷人人爽人人干人人爱| 午夜激情欧美在线| 在线观看66精品国产| 亚洲最大成人av| www.熟女人妻精品国产| 成人国产一区最新在线观看| 天天躁日日操中文字幕| 国产精品人妻久久久久久| 91麻豆精品激情在线观看国产| 在线看三级毛片| 欧美日韩综合久久久久久 | 亚洲 欧美 日韩 在线 免费| 国产伦人伦偷精品视频| 国产综合懂色| av在线观看视频网站免费| 97热精品久久久久久| 在线播放无遮挡| 国产蜜桃级精品一区二区三区| 亚洲人与动物交配视频| 国内精品一区二区在线观看| 久久亚洲精品不卡| 18美女黄网站色大片免费观看| 99热这里只有是精品50| 亚洲精品日韩av片在线观看| 色精品久久人妻99蜜桃| 国产精品野战在线观看| 男女做爰动态图高潮gif福利片| 真人一进一出gif抽搐免费| 欧美日韩国产亚洲二区| 国产精品av视频在线免费观看| 三级毛片av免费| 搞女人的毛片| 美女黄网站色视频| 亚洲久久久久久中文字幕| 国内精品美女久久久久久| 欧美在线一区亚洲| 赤兔流量卡办理| 亚洲综合色惰| 精品日产1卡2卡| 此物有八面人人有两片| 午夜福利视频1000在线观看| 在线十欧美十亚洲十日本专区| 长腿黑丝高跟| 老司机福利观看| 久久欧美精品欧美久久欧美| 久久性视频一级片| 成人高潮视频无遮挡免费网站| 亚洲av日韩精品久久久久久密| 国产大屁股一区二区在线视频| 精品人妻1区二区| 日韩亚洲欧美综合| 在线观看66精品国产| 精品免费久久久久久久清纯| 中文在线观看免费www的网站| 亚洲成人精品中文字幕电影| 熟女人妻精品中文字幕| 小说图片视频综合网站| 一级黄片播放器| 亚洲午夜理论影院| 色吧在线观看| 很黄的视频免费| 全区人妻精品视频| 综合色av麻豆| 久久久久久久亚洲中文字幕 | 午夜免费激情av| 久久久久国产精品人妻aⅴ院| 国产av不卡久久| 别揉我奶头 嗯啊视频| 丁香欧美五月| 简卡轻食公司| 人妻夜夜爽99麻豆av| 99久久无色码亚洲精品果冻| 午夜日韩欧美国产| 国产成人福利小说| 亚洲不卡免费看| 国产一区二区在线观看日韩| 三级毛片av免费| 国产免费一级a男人的天堂| 成人无遮挡网站| 欧美+日韩+精品| 久久久精品欧美日韩精品| 啦啦啦观看免费观看视频高清| avwww免费| 国产精品伦人一区二区| 国产av在哪里看| 日韩 亚洲 欧美在线| 精品一区二区三区视频在线观看免费| 狠狠狠狠99中文字幕| 国产午夜精品论理片| 长腿黑丝高跟| 国产在线精品亚洲第一网站| 99久久精品热视频| 国产亚洲欧美98| 中文字幕av成人在线电影| 1024手机看黄色片| 欧美区成人在线视频| 男女之事视频高清在线观看| 波多野结衣巨乳人妻| 色噜噜av男人的天堂激情| 97超级碰碰碰精品色视频在线观看| 亚洲专区中文字幕在线| 久久性视频一级片| 看十八女毛片水多多多| 免费看美女性在线毛片视频| 国产伦精品一区二区三区四那| 国产高清视频在线观看网站| 国产又黄又爽又无遮挡在线| 男女下面进入的视频免费午夜| 老司机午夜福利在线观看视频| 最好的美女福利视频网| 亚洲成人久久爱视频| 每晚都被弄得嗷嗷叫到高潮| 高清毛片免费观看视频网站| 国产精品98久久久久久宅男小说| 日日干狠狠操夜夜爽| 国产精品不卡视频一区二区 | 黄色丝袜av网址大全| 一a级毛片在线观看| 色视频www国产| 免费看a级黄色片| 精品熟女少妇八av免费久了| 精品国产亚洲在线| 欧美xxxx黑人xx丫x性爽| 好看av亚洲va欧美ⅴa在| 国产精品日韩av在线免费观看| 日韩大尺度精品在线看网址| 日韩欧美一区二区三区在线观看| 亚洲人成网站在线播| 国产av在哪里看| 男人的好看免费观看在线视频| 免费无遮挡裸体视频| 亚洲狠狠婷婷综合久久图片| 精品久久久久久久久久久久久| 色噜噜av男人的天堂激情| 色av中文字幕| 国产一区二区在线观看日韩| 亚洲第一欧美日韩一区二区三区| 精品人妻视频免费看| 成年女人毛片免费观看观看9| 亚洲精品一区av在线观看| 国产视频内射| 午夜影院日韩av| 久久久国产成人精品二区| 久久国产乱子免费精品| 国产精品伦人一区二区| 少妇人妻一区二区三区视频| 免费在线观看成人毛片| 亚洲av成人不卡在线观看播放网| 国产美女午夜福利| 国产精品影院久久| 日本撒尿小便嘘嘘汇集6| 国产三级在线视频| 99精品久久久久人妻精品| 国内少妇人妻偷人精品xxx网站| 精品熟女少妇八av免费久了| 精品人妻偷拍中文字幕| 熟女人妻精品中文字幕| 国产三级中文精品| 亚洲成a人片在线一区二区| 亚洲美女黄片视频| 老司机午夜福利在线观看视频| 亚洲精品成人久久久久久| 精品久久久久久成人av| 久久99热这里只有精品18| 中文在线观看免费www的网站| 在线免费观看的www视频| 国产色婷婷99| 女生性感内裤真人,穿戴方法视频| 真人做人爱边吃奶动态| 午夜福利免费观看在线| 日韩欧美在线乱码| 少妇裸体淫交视频免费看高清| 日本熟妇午夜| 波多野结衣高清无吗| 18禁裸乳无遮挡免费网站照片| 欧美区成人在线视频| 久久午夜福利片| 成人特级黄色片久久久久久久| 最后的刺客免费高清国语| 一区二区三区激情视频| 男插女下体视频免费在线播放| 全区人妻精品视频| 日本一二三区视频观看| 亚洲国产高清在线一区二区三| 亚洲av免费高清在线观看| 午夜福利高清视频| bbb黄色大片| 村上凉子中文字幕在线| 老司机午夜十八禁免费视频| 亚洲国产精品999在线| 国产精品久久久久久久久免 | 欧美一区二区亚洲| 久久久久久久久中文| 成人特级av手机在线观看| 看免费av毛片| 欧美黑人欧美精品刺激| 又黄又爽又刺激的免费视频.| 美女黄网站色视频| 久久久久精品国产欧美久久久| 男女做爰动态图高潮gif福利片| 午夜福利成人在线免费观看| 色在线成人网| 91麻豆av在线| 成人国产一区最新在线观看| 无人区码免费观看不卡| 91午夜精品亚洲一区二区三区 | 男女视频在线观看网站免费| 亚洲经典国产精华液单 | 精品久久久久久久人妻蜜臀av| 亚洲无线在线观看| 午夜视频国产福利| 丰满乱子伦码专区| 欧美乱色亚洲激情| 一区二区三区四区激情视频 | 一本精品99久久精品77| 国产精品,欧美在线| 国产又黄又爽又无遮挡在线| 美女高潮喷水抽搐中文字幕| 国产色婷婷99| a级毛片免费高清观看在线播放| 中文字幕高清在线视频| 最近视频中文字幕2019在线8| 久久久久久久久久成人| 最近中文字幕高清免费大全6 | 久久性视频一级片| 欧美三级亚洲精品| 国产人妻一区二区三区在| 此物有八面人人有两片| 日本黄色片子视频| 中文字幕人成人乱码亚洲影| 欧美国产日韩亚洲一区| 在线免费观看的www视频| 啦啦啦韩国在线观看视频|