• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers?

    2021-12-22 06:42:36XiaXiaNiu牛夏夏YiFengYang楊依楓ZhaoQuan全昭ChunLeiYu于春雷QinLingZhou周秦嶺HuiShen沈輝BingHe何兵andJunZhou周軍
    Chinese Physics B 2021年12期
    關(guān)鍵詞:周軍春雷秦嶺

    Xia-Xia Niu(牛夏夏) Yi-Feng Yang(楊依楓) Zhao Quan(全昭) Chun-Lei Yu(于春雷)Qin-Ling Zhou(周秦嶺) Hui Shen(沈輝) Bing He(何兵) and Jun Zhou(周軍)

    1Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: stimulated Brillouin scattering,Brillouin gain spectrum,large-mode-area fibers,fiber laser

    1. Introduction

    The applications of high-power narrow-linewidth fiber lasers to coherent beam combining and spectral beam combining have attracted widespread attention in recent years.[1,2]Stimulated Brillouin scattering (SBS) is the most limiting effect in terms of power handling capacity in high-power narrow-linewidth fiber lasers.[3,4]Over the decades, a variety of techniques have been implemented in order to suppress SBS,[5]such as introducing nonuniformities by stressing the optical fiber,[6]reducing the overlap between the light wave field and the sound wave field in the core by changing the doping composition and distribution in the core,[7–10]reducing effective fiber length,[11]broadening spectral linewidth of seed by pure phase modulation,etc.[12–15]Specifically,white noise source (WNS)[16–19]and pseudo-random binary sequence(PRBS)[20–23]phase modulation become the leading linewidth broadening schemes for high power fiber amplifiers which are required to balance the narrow-linewidth and the output power. In the commonly used PRBS phase modulation scheme,the SBS suppression capability can be determined by the separation between the discrete adjacent sidebands lying within the envelope, which should be appreciably more than twice the Brillouin gain spectrum(BGS)bandwidth.[14]In this scenario,the BGS characteristics become essential for designing the PRBS phase modulation scheme.

    As is well known,the core dimensions and GeO2concentration of the fibers can dramatically affect the BGS characteristics, especially the Brillouin frequency shift (BFS) and the BGS bandwidth. Some efforts have devoted to studying the BGS in single-mode fiber(SMF).Nikleset al.have studied the influence of germanium concentration on BFS and BGS bandwidths,and they found that the change between BFS and GeO2concentrations is?94 MHz/wt%, while the change between BGS bandwidth and GeO2concentration is 1.4 MHz/wt%.[24]Liet al.reported the BFS is reduced by~1 GHz and BGS bandwidth is increased by~2 MHz when the core diameter decreases from 8.8 μm to 3 μm.[25]It is noticed that the germanium concentration of the fiber with a core diameter of 8.8 μm in Ref. [25] is 4 wt%, while the germanium concentration of the fiber with a core diameter of 3 μm is 19 wt%,showing the germanium concentrations of the fibers with different core diameters are different, and the BFS with GeO2concentration is about?89 MHz/wt%.[26]Liet al.showed that core doping GeO2concentration has a greater influence on the BFS than the core diameter and reducing fiber core diameter will result in a wider BGS bandwidth.[25]The above results are based on the SMF reported. However, the dependence of BGS characteristics on the GeO2concentration and core diameter in large-mode-area (LMA) fibers have not yet been studied in detail.

    The purpose of this work is to examine the relationship between the GeO2concentration and the Brillouin gain spectrum characteristics in the LMA fibers. We first numerically simulate the dependence of BFS and BGS bandwidths on GeO2concentration. Then we present the BGS bandwidth as a function of single-pass gain to explain the BGS bandwidth measured in this work under the condition of Brillouin gain narrowing. Moreover,the BGSs are experimentally characterized in four types of fibers with different GeO2concentrations and core diameters of 10μm and 20μm by using heterodyne detection method,indicating the dependence of BFS and BGS bandwidths on GeO2concentration under the same core diameter fiber.Finally,the BGSs of three fibers with core diameters of 10μm,25μm,and 30μm are tested to demonstrate the influence of the core diameter on the BGS bandwidth.

    2. Theory

    In the kinetics of spontaneous Brillouin scattering, the BGS line is Lorentzian according to the exponential decay of phonons.[27]In a fiber system,spectral density function of the Stokes radiation,S(ω),[28]can be defined as

    wherehis the Planck’s constant,Nis the mean number of phonons per mode of acoustic field,ωsis the Stokes frequency,Ais the effective cross-section area, andΓBis the phonon intensity decay rate,ωis the laser frequency,nis the effective refractive index of the pump mode,cis the propagation speed of light in vacuum.Gis the single-pass gain, which can be defined as

    whereg0is the peak value of the Brillouin gain,Leffis the effective length,Aeffis the effective cross-sectional area of the interaction region,andPis the incident laser power. The gain factorgcan be defined as

    whereγeis the electrostrictive constant of silica,ρ0is the mass density,andυAis the acoustic velocity. As shown in Eq.(1),the spectral shape of the Stokes light depends on the singlepass gainGand the phonon intensity decay rateΓB. The BGS bandwidthΓ=ΓB/(2π) is the full width at half maximum(FWHM)of the BGS,which can be expressed as

    According to Ref.[28],the refractive indexnof the medium,the acoustic velocityυA, and the mass densityρ0vary with GeO2concentrationωGe[in unit wt%]and F concentrationωF[in unit wt%]and can be expressed respectively as[29]

    The BGS bandwidth ?νnarrows as single-pass gain increases,which can be given by[28,30]

    For smallG(such asG<5 Np),the shape of the Brillouin gain spectrum is Lorentzian curve with a bandwidth of ?ν=Γ.On the other hand,the Stokes spectrum bandwidth has almost no obvious change for largeG(such asG>20 Np).[31]

    Fig. 1. (a) Simulated BFS versus GeO2 concentration, and (b) calculated BGS bandwidth and tested bandwidth versus GeO2 concentration for four types of fibers.

    The generated Stokes frequency depends on the optical and acoustic properties of the propagation material as well as the pump wavelength. The BFS in an LMA fiber can be defined as[32]

    whereλis the laser wavelength,andθis the scattering angle of a mode. In the simulation, the influence of the scattering angle on the BFS is ignored. The BFS and BGS bandwidths as a function of GeO2concentration are shown in Figs. 1(a)and 1(b). The parameters and the values used in the simulation are shown in Table 1. Figure 1(a) shows that the BFS is inversely proportional to GeO2concentration and the relationship is linear. Figure 1(b)shows that the BGS bandwidth initially increases linearly and then decreases. The gain factor and single-pass gain will increase when the germanium concentration exceeds 80%, thus causing the narrowed Brillouin bandwidth to decrease. The red line is the linear fit with a slope of 0.085.

    Table 1. Parameters and values used in simulation.

    The relationship between Brillouin gain factorg0and GeO2concentration is obtained by substituting Eqs. (4)–(7)into Eq.(3),and the results are shown in Fig.2(a).It is demonstrated that as the GeO2concentration increases,Brillouin gain factor decreases initially, and then increases when the GeO2concertation exceeds 80%. Firstly, the phonon intensity attenuation rate, the refractive index, and the medium density increase faster than the sound velocity decreases, so the gain factor is reduced. With the increase of germanium concentration, the attenuation rate of the phonon intensity, the rate of increase of refractive index, and the medium density are lower than the rate of decrease of sound velocity, as a result,the gain factor has a minimum value, and then gradually increases. The single-pass gain dependence of BGS bandwidth can be obtained based on Eq. (8), and is plotted in Fig. 2(b).The results indicate that as the GeO2concentration increases,Brillouin gain factor initially decreases, and then increases.The Brillouin gain narrowing is shown in Fig.2(b).

    Fig.3. Experimental setup of Brillouin gain spetrum measurement. MFA:mode field adapter;YDFA:Yb-doped fiber amplifier;PD:photodetector;RFA:radio frequency analyzer.

    Fig. 2. (a) Simulated Brillouin gain factor versus GeO2 concentration, and(b)calculated BGS bandwidth versus single-pass gain G and the experimental bandwidth of fibers with different core diameters.

    3. Experimental setup

    The BGSs of the LMA fibers are measured. The schematic diagram of the setup is shown in Fig.3.

    A 1067-nm,60-mW,3-kHz linewidth(the Rock,NP Photonics) single-frequency fiber laser is used as a light source.The laser signal is amplified to 10 W by a Yb-doped fiber amplifier (YDFA). The output laser is divided into two arms by an 80/20 coupler(coupler 1),where 80%of the laser pass through a circulator,and then connected to the input end of the fiber under test(FUT).All the fibers are in a temperature range of 20?C–22?C and maintain the same bend radius to ensure the same experimental conditions. The generated backward Stokes light in the fiber is coupled into the 50/5 coupler(coupler 2)through port 3 of the circulator. The MFAs here is used to adapt the mode field. In the other arm, 20% of the laser acts as the reference light, and the power is controlled by an optical attenuator to maximize the visibility of the beat signal. The backward light and the reference light then beat in coupler 2, and the beat signal is detected by a photodetector(1014,Newport)with a maximum bandwidth of 46 GHz,and analyzed by a radio frequency analyzer (RFA, DSOX4024A,KEYSIGHT).The output end of the FUT is cleaved with 8?to prevent feedback.

    4. Results and discussion

    Six passive fibers (I–VI) are investigated in the experimental setup, of which the detailed parameters are listed in Table 2. The input laser power is the output power of the amplifier when the beat frequency output power is 1 mW.The values of single-pass gainGfor all the FUTs are much larger than 25, which means that all the Brillouin bandwidths we tested are gain-narrowed.

    Table 2. Experimental parameters and their values.

    Fig.4. X-ray signal intensity distribution for(a)fibers I and II and(b)fibers III and IV.

    For comparing the core germanium concentrations of fibers with the same core diameter,we use the electron probe microanalysis(EPMA)to test the x-ray signal intensity of Ge doped in 10/125 and 20/400 polarization-maintaining and unpolarized fibers(fibers I–IV).The cross-sectional x-ray signal intensity distribution results for the four fibers are shown in Fig. 4. The x-ray signal intensity of each fiber is expressed by averaging the x-ray signal intensities in the core. The xray signal intensity can be used to characterize the germanium doping concentration because it is positively correlated with the content of GeO2in fiber. Figures 4(a)and 4(b)show that the germanium concentration of the polarization-maintaining fiber is higher than that of the unpolarized fiber, and the germanium concentration of the 10/125 fiber is higher than that of the 20/400 fiber.

    The BFS and BGS bandwidths for fibers I–IV are measured using the experimental setup shown in Fig.3. Gaussian fitting is performed on the BGS of each fiber and the BFS and Brillouin bandwidth of each fiber are recorded as shown in Fig.5. For fibers I and II as shown in Figs.5(a)and 5(b),the BFSs are 16.065 GHz and 16.102 GHz and the BGS bandwidths are 15.54 MHz and 12.31 MHz, respectively. This difference in BFS can be explained by Eq. (9). The difference in dopant concentration between the two fibers results in the differences in the acoustic velocity and the refractive index. This difference in BGS bandwidth is explained as being due to the fact that the increasing of GeO2will result in a decrease in phonon lifetime and an increase in bandwidth.Although not each group of fibers is tested at the same length and the same input power,it is clear that the output SBS power is the same, and the product of the fiber length and the input power in the polarization-maintaining fiber is larger,which is the opposite to the influence of germanium concentration on the bandwidth. The results indicate that in LMA fibers with the same core diameter,the BFS decreases and the BGS bandwidth increases with the augment of doped germanium concentration in the core. This result is consistent with that of an SMF.[24]The same conclusion is applicable to the fibers III–IV as shown in Figs.5(c)and 5(d). The BFSs are 16.123 GHz and 16.134 GHz, respectively, and the BGS bandwidths are 15.54 MHz and 12.31 MHz,respectively. The BFS and BGS bandwidth changes of the 10/125 fiber are greater than that of 20/400 fiber. The reason for this result is that the difference in germanium concentration between the two 10/125 fibers is higher than that between the two 20/400 fibers.

    Fig.5. Comparison of(a)BFS and(b)BGS bandwidth gain spectra between fibers I and II.Comparison of(c)BFS and(d)BGS bandwidth gain spectra between fibers III and IV.

    The tests of the BGS bandwidth for fibers I–IV are shown in Fig.1(b),which are compared with the simulations. The diamond, square, circle, and the triangle symbols in Fig. 1(b)indicate the tested BGS bandwidth of the fibers I, II, III, and IV,respectively.

    The measured fiber bandwidth is positively correlated with the x-ray signal intensity, and the simulated bandwidth is also proportional to the germanium concentration. That is,as the doped germanium concentration in the core increases,the BGS bandwidth increases. However, there is some obvious departure between the tested value and the simulation one. Besides the fact that the coefficients of Eqs. (4)–(6) are not universal, the germanium concentration used in our fiber is not an absolute concentration but the x-ray signal intensity.

    Figure 6(a)shows x-ray signal intensities of GeO2doped in the core of three passive optical fibers with different core diameters. The curves represent the x-ray signal intensity distributions in the cross sections of the fibers. The x-ray signal intensity at the core of each fiber is averaged to characterize the core germanium concentration in each fiber.The average x-ray signal intensity in the core of the fibers I,V,and VI are 43.568,38.17, and 34.17, respectively. Result shows that the smallcore fiber has a higher germanium concentration. Figure 6(b)shows the BGS measurement results of three fibers with different core diameters. The lengths of the different fibers range from 20 m to 150 m. We find that the BGSs of three types of fibers all exhibit a Gaussian distribution. The BFS for fibers I,V, and VI are 16.102, 16.138, and 16.168 GHz, respectively,and the BGS bandwidths are 12.31,14.22,and 15.93 MHz respectively. BGS bandwidth is increased by~2 MHz when the core diameter increases from 10 μm to 30 μm. Fiber I has a higher germanium concentration, but the bandwidth is narrower than that of fiber VI,indicating that the core diameter has a greater effect on the bandwidth than the germanium concentration in the LMA fiber.

    We also compare the numerical solution and measured BGS bandwidth of the three fibers with different core diameters, which is shown in Fig. 2(b). It should be noted that single-pass gainGfor each fiber is calculated under the condition that the x-ray signal intensity is regarded as the germanium concentration. The circle, square, and triangle symbols indicate the measured BGS bandwidths of fibers I,V,and VI,respectively. The reason for this difference may be that in an LMA fiber, when pump light is coupled into the fiber, multiple conduction transverse modes can be excited. The Stokes light generated by the inelastic collision of the optical photons with the acoustic phonons in the optical fiber also excites multiple conduction modes. The superposition of multiple modes of Stokes light will broaden the BGS bandwidth. Previous literature has reported[33]that the increasing of the number of optical modes can lead the BGS bandwidth to broaden.

    Fig. 6. Comparison among (a) x-ray signal intensities for 10/125, 25/250,and 30/250 fibers and(b)BGSs of fibers for different core diameters.

    5. Conclusions

    In this work,the dependence of BFS bandwidth and BGS bandwidth on GeO2concentration are simulated. It is shown that BGS bandwidth initially increases, then decreases and BFS decreases as the GeO2concentration increases. We also provide direct experimental evidence that BFS reduces and the linewidth broadens with the increase of germanium concentration in LMA fiber. Moreover, it is demonstrated experimentally that BGS bandwidth increases as the core diameter increases, and that the BGS bandwidth broadening is because the superposition of multiple transmission modes of Stokes light in LMA fibers causes the entire Brillouin scattering spectrum to broaden. This work will provide reference for multiwavelength Brillouin lasers.

    猜你喜歡
    周軍春雷秦嶺
    春雷響
    幼兒100(2024年11期)2024-03-27 08:32:56
    《拓荒者》
    民族藝林(2022年4期)2023-01-19 04:06:16
    暑期秦嶺游
    洞穿秦嶺
    花事
    周軍:手握“最準(zhǔn)的尺”,從“0”到“∞”篤信前行
    好忙好忙的秦嶺
    “軸對(duì)稱(chēng)”復(fù)習(xí)點(diǎn)睛
    春雷
    春雷乍響活驚蟄
    啦啦啦 在线观看视频| a级毛片黄视频| 一级毛片我不卡| 亚洲精品国产av成人精品| 两个人看的免费小视频| 亚洲欧洲国产日韩| 亚洲成国产人片在线观看| 男女高潮啪啪啪动态图| 国产精品 欧美亚洲| av天堂久久9| 一级毛片电影观看| 午夜91福利影院| 丰满少妇做爰视频| 老汉色∧v一级毛片| 亚洲精品国产av蜜桃| 欧美av亚洲av综合av国产av | 成人亚洲欧美一区二区av| 欧美最新免费一区二区三区| 国产精品偷伦视频观看了| 美女主播在线视频| 国产一区亚洲一区在线观看| 黄色怎么调成土黄色| 色播在线永久视频| 久久久久国产精品人妻一区二区| 嫩草影视91久久| 天堂俺去俺来也www色官网| 亚洲av成人不卡在线观看播放网 | 王馨瑶露胸无遮挡在线观看| 亚洲三区欧美一区| 国产日韩欧美在线精品| 国产一区二区三区综合在线观看| 成人亚洲精品一区在线观看| 操出白浆在线播放| 成人影院久久| 久久精品亚洲熟妇少妇任你| 悠悠久久av| 亚洲,欧美精品.| 亚洲成人av在线免费| 国产一区二区三区综合在线观看| 一级毛片黄色毛片免费观看视频| 女性生殖器流出的白浆| 中文欧美无线码| 国产伦人伦偷精品视频| 日本色播在线视频| 99精品久久久久人妻精品| 日韩制服骚丝袜av| 成人三级做爰电影| 国产一区二区三区av在线| 中文字幕最新亚洲高清| av不卡在线播放| 男人舔女人的私密视频| 成人午夜精彩视频在线观看| 一级爰片在线观看| 亚洲,欧美,日韩| 亚洲精华国产精华液的使用体验| 国产成人精品久久久久久| 欧美亚洲 丝袜 人妻 在线| 国产欧美日韩综合在线一区二区| 午夜日韩欧美国产| 秋霞在线观看毛片| 少妇精品久久久久久久| 精品国产露脸久久av麻豆| 亚洲国产欧美一区二区综合| 久久久久精品久久久久真实原创| av网站在线播放免费| 狂野欧美激情性xxxx| 一区二区三区四区激情视频| 秋霞在线观看毛片| 午夜免费观看性视频| 国产精品一区二区在线观看99| a级毛片在线看网站| 久久久久精品久久久久真实原创| 观看美女的网站| 色播在线永久视频| 一边摸一边做爽爽视频免费| 狠狠精品人妻久久久久久综合| 日本欧美国产在线视频| 国产无遮挡羞羞视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利乱码中文字幕| 欧美日韩综合久久久久久| 婷婷色麻豆天堂久久| 又大又黄又爽视频免费| 国产成人a∨麻豆精品| 亚洲欧美精品综合一区二区三区| 免费少妇av软件| 人人妻人人爽人人添夜夜欢视频| 汤姆久久久久久久影院中文字幕| 最新在线观看一区二区三区 | 久久av网站| 免费高清在线观看日韩| 久久久久久久久久久久大奶| 国产激情久久老熟女| 精品少妇内射三级| 在线亚洲精品国产二区图片欧美| 精品一品国产午夜福利视频| 国产成人精品久久二区二区91 | 99久久99久久久精品蜜桃| 欧美日韩精品网址| 97在线人人人人妻| 成人亚洲精品一区在线观看| 精品国产乱码久久久久久小说| 制服人妻中文乱码| 丝袜脚勾引网站| 亚洲图色成人| 无遮挡黄片免费观看| 欧美精品高潮呻吟av久久| 91精品三级在线观看| 久久久亚洲精品成人影院| 少妇人妻 视频| 久久久久精品国产欧美久久久 | 国产日韩欧美在线精品| 欧美激情极品国产一区二区三区| 两性夫妻黄色片| 可以免费在线观看a视频的电影网站 | 国产精品亚洲av一区麻豆 | 80岁老熟妇乱子伦牲交| 欧美激情高清一区二区三区 | 国产在视频线精品| 欧美成人精品欧美一级黄| 亚洲视频免费观看视频| 国产熟女欧美一区二区| 日韩制服骚丝袜av| 欧美乱码精品一区二区三区| 97在线人人人人妻| 欧美激情极品国产一区二区三区| av免费观看日本| 国产亚洲午夜精品一区二区久久| 下体分泌物呈黄色| 久久精品熟女亚洲av麻豆精品| 最近中文字幕2019免费版| 一区在线观看完整版| 久久久久国产一级毛片高清牌| 91精品国产国语对白视频| 亚洲五月色婷婷综合| 国产一级毛片在线| 高清视频免费观看一区二区| 视频在线观看一区二区三区| 国产精品欧美亚洲77777| 亚洲精品国产av成人精品| 老汉色∧v一级毛片| 精品国产一区二区三区四区第35| 制服丝袜香蕉在线| 性少妇av在线| 亚洲色图综合在线观看| 在线观看www视频免费| av女优亚洲男人天堂| 国产精品99久久99久久久不卡 | 日韩人妻精品一区2区三区| 午夜老司机福利片| 91老司机精品| 超碰97精品在线观看| 国产av一区二区精品久久| 久久人妻熟女aⅴ| 国产精品偷伦视频观看了| 夫妻午夜视频| 国产野战对白在线观看| 黄色一级大片看看| 亚洲第一区二区三区不卡| 免费不卡黄色视频| 在线观看免费高清a一片| 欧美在线一区亚洲| 日韩不卡一区二区三区视频在线| 久久精品久久久久久噜噜老黄| 一级毛片 在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品日韩在线中文字幕| 亚洲av中文av极速乱| 水蜜桃什么品种好| 王馨瑶露胸无遮挡在线观看| 亚洲国产精品成人久久小说| 亚洲欧美激情在线| 99九九在线精品视频| 少妇猛男粗大的猛烈进出视频| 国产极品粉嫩免费观看在线| 成人三级做爰电影| 国产精品一区二区在线不卡| 国产成人免费观看mmmm| 亚洲国产av影院在线观看| 最近最新中文字幕免费大全7| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩一级在线毛片| 久久久久精品久久久久真实原创| 精品国产一区二区久久| 色吧在线观看| 精品午夜福利在线看| av片东京热男人的天堂| av又黄又爽大尺度在线免费看| 熟女少妇亚洲综合色aaa.| 毛片一级片免费看久久久久| 免费看av在线观看网站| 女人被躁到高潮嗷嗷叫费观| 亚洲伊人色综图| 国产一区有黄有色的免费视频| 久久久欧美国产精品| 老汉色av国产亚洲站长工具| 成人亚洲欧美一区二区av| 国产女主播在线喷水免费视频网站| 成年人免费黄色播放视频| 亚洲国产欧美在线一区| 久久热在线av| 国产精品 欧美亚洲| 丰满少妇做爰视频| 丝袜脚勾引网站| 美女视频免费永久观看网站| 丁香六月天网| av视频免费观看在线观看| 日韩一区二区视频免费看| 久久天堂一区二区三区四区| 啦啦啦 在线观看视频| 一级毛片黄色毛片免费观看视频| 欧美日韩一区二区视频在线观看视频在线| av网站免费在线观看视频| 国产一区二区激情短视频 | 亚洲欧洲国产日韩| 亚洲一码二码三码区别大吗| videosex国产| 亚洲成人av在线免费| 国产av码专区亚洲av| 伊人亚洲综合成人网| 久久99精品国语久久久| 免费观看a级毛片全部| 桃花免费在线播放| www.熟女人妻精品国产| av国产精品久久久久影院| 色播在线永久视频| 777久久人妻少妇嫩草av网站| 韩国av在线不卡| 亚洲专区中文字幕在线 | 国产精品一区二区在线观看99| 日韩一本色道免费dvd| 亚洲天堂av无毛| 亚洲色图综合在线观看| 国产精品免费视频内射| 五月开心婷婷网| 亚洲国产av影院在线观看| 国产99久久九九免费精品| 久久久久久免费高清国产稀缺| 中文字幕人妻丝袜一区二区 | 精品国产超薄肉色丝袜足j| 久久亚洲国产成人精品v| 亚洲国产欧美在线一区| 午夜福利视频在线观看免费| 免费黄频网站在线观看国产| 亚洲国产看品久久| 国产一区二区 视频在线| 精品少妇内射三级| 99久国产av精品国产电影| 超碰97精品在线观看| 免费在线观看完整版高清| 巨乳人妻的诱惑在线观看| 国产探花极品一区二区| 国产熟女午夜一区二区三区| 亚洲,一卡二卡三卡| 亚洲国产成人一精品久久久| 啦啦啦 在线观看视频| 亚洲精品久久久久久婷婷小说| 一区二区av电影网| 日日摸夜夜添夜夜爱| 欧美 日韩 精品 国产| 在线观看免费视频网站a站| www日本在线高清视频| 欧美成人精品欧美一级黄| 亚洲欧美成人精品一区二区| 人成视频在线观看免费观看| 午夜激情久久久久久久| 国产片内射在线| 国产麻豆69| 国产一区二区在线观看av| 又黄又粗又硬又大视频| 国产日韩欧美在线精品| 免费女性裸体啪啪无遮挡网站| 成人国产av品久久久| 99热网站在线观看| 又黄又粗又硬又大视频| 午夜影院在线不卡| 亚洲欧美精品自产自拍| 免费在线观看黄色视频的| 国产97色在线日韩免费| √禁漫天堂资源中文www| 卡戴珊不雅视频在线播放| 777久久人妻少妇嫩草av网站| 新久久久久国产一级毛片| 久久久精品免费免费高清| 国产免费现黄频在线看| 久久久久久久久久久久大奶| 国产精品久久久久久人妻精品电影 | 美女大奶头黄色视频| 91aial.com中文字幕在线观看| 亚洲国产欧美在线一区| 欧美日韩一级在线毛片| 国产午夜精品一二区理论片| 亚洲国产精品国产精品| 免费少妇av软件| 中文字幕人妻丝袜一区二区 | 精品福利永久在线观看| 日韩伦理黄色片| 欧美日韩亚洲国产一区二区在线观看 | 久久久久精品性色| 亚洲欧美色中文字幕在线| 丰满迷人的少妇在线观看| 天天躁日日躁夜夜躁夜夜| 国产日韩欧美亚洲二区| 久久免费观看电影| 国产男人的电影天堂91| 免费日韩欧美在线观看| 欧美精品亚洲一区二区| 亚洲久久久国产精品| 免费观看a级毛片全部| 亚洲国产欧美网| 国产色婷婷99| 中文欧美无线码| av卡一久久| 久久人人97超碰香蕉20202| 免费观看人在逋| 欧美中文综合在线视频| 久久久精品区二区三区| 亚洲精品一二三| 国产国语露脸激情在线看| 婷婷色综合www| 久久婷婷青草| 免费在线观看黄色视频的| 久久国产亚洲av麻豆专区| videos熟女内射| 免费女性裸体啪啪无遮挡网站| 日韩av在线免费看完整版不卡| 纵有疾风起免费观看全集完整版| 久久久久久久国产电影| 狠狠精品人妻久久久久久综合| 毛片一级片免费看久久久久| a级毛片黄视频| 久热爱精品视频在线9| 国产黄色视频一区二区在线观看| 国产男女内射视频| 国产精品欧美亚洲77777| 亚洲色图综合在线观看| 97人妻天天添夜夜摸| 久久久久网色| 国产精品亚洲av一区麻豆 | 精品少妇久久久久久888优播| 九色亚洲精品在线播放| 性色av一级| 久久ye,这里只有精品| netflix在线观看网站| av国产精品久久久久影院| 丰满饥渴人妻一区二区三| 亚洲专区中文字幕在线 | 波多野结衣av一区二区av| 你懂的网址亚洲精品在线观看| 国产熟女午夜一区二区三区| 黄色怎么调成土黄色| 亚洲五月色婷婷综合| 精品视频人人做人人爽| 你懂的网址亚洲精品在线观看| 免费不卡黄色视频| av在线播放精品| 中文字幕亚洲精品专区| 捣出白浆h1v1| 波多野结衣一区麻豆| 国产成人av激情在线播放| 热re99久久精品国产66热6| 在线精品无人区一区二区三| 汤姆久久久久久久影院中文字幕| 国产亚洲最大av| 下体分泌物呈黄色| 在线 av 中文字幕| 国产一区二区 视频在线| 午夜激情av网站| 女人高潮潮喷娇喘18禁视频| 成年人免费黄色播放视频| 一级,二级,三级黄色视频| 男女国产视频网站| 精品少妇一区二区三区视频日本电影 | 女人精品久久久久毛片| 十八禁高潮呻吟视频| 岛国毛片在线播放| 在线观看免费日韩欧美大片| 亚洲av福利一区| 超碰成人久久| 久久狼人影院| 这个男人来自地球电影免费观看 | 一区二区av电影网| 亚洲精品久久午夜乱码| 热re99久久精品国产66热6| 亚洲欧美成人精品一区二区| 国产精品成人在线| 久久久久人妻精品一区果冻| 亚洲精品在线美女| 在线 av 中文字幕| 男女下面插进去视频免费观看| 国产淫语在线视频| 美女主播在线视频| 日韩 亚洲 欧美在线| 女性生殖器流出的白浆| 国产高清国产精品国产三级| 精品亚洲成a人片在线观看| 亚洲精品久久久久久婷婷小说| 天天躁日日躁夜夜躁夜夜| 亚洲,欧美,日韩| 亚洲综合色网址| 天天躁夜夜躁狠狠躁躁| 又大又爽又粗| 2021少妇久久久久久久久久久| 日韩,欧美,国产一区二区三区| 国产亚洲欧美精品永久| 自线自在国产av| 国产极品天堂在线| 老司机在亚洲福利影院| 国产黄色免费在线视频| 国产精品久久久久久精品古装| 香蕉国产在线看| 如何舔出高潮| 性少妇av在线| 欧美97在线视频| 国产成人啪精品午夜网站| 一区二区日韩欧美中文字幕| 黑人欧美特级aaaaaa片| 欧美日本中文国产一区发布| 精品国产国语对白av| 丁香六月天网| 亚洲av国产av综合av卡| 亚洲成人一二三区av| 亚洲天堂av无毛| 女人被躁到高潮嗷嗷叫费观| 少妇人妻久久综合中文| 一级爰片在线观看| 精品一区在线观看国产| 在线精品无人区一区二区三| 大片免费播放器 马上看| 国产精品一区二区在线观看99| 国语对白做爰xxxⅹ性视频网站| 国产熟女欧美一区二区| 老司机在亚洲福利影院| 亚洲精品日韩在线中文字幕| 亚洲精品中文字幕在线视频| 成人国产麻豆网| 老司机靠b影院| 日本一区二区免费在线视频| 婷婷色综合www| 尾随美女入室| 国产成人免费观看mmmm| 午夜激情av网站| 国产在线视频一区二区| 成人漫画全彩无遮挡| 亚洲精品久久成人aⅴ小说| 午夜av观看不卡| 黄色视频在线播放观看不卡| 人体艺术视频欧美日本| 人人妻人人添人人爽欧美一区卜| tube8黄色片| av福利片在线| 日韩中文字幕欧美一区二区 | 日韩伦理黄色片| 下体分泌物呈黄色| 捣出白浆h1v1| 制服人妻中文乱码| 亚洲少妇的诱惑av| 日本午夜av视频| 精品少妇一区二区三区视频日本电影 | 宅男免费午夜| 可以免费在线观看a视频的电影网站 | 99国产精品免费福利视频| 亚洲av福利一区| 精品亚洲乱码少妇综合久久| 久久免费观看电影| 一本大道久久a久久精品| 国产成人精品福利久久| 国产日韩一区二区三区精品不卡| 精品一品国产午夜福利视频| 亚洲成国产人片在线观看| 99久久人妻综合| 美女主播在线视频| 在线观看www视频免费| 1024视频免费在线观看| 一边摸一边抽搐一进一出视频| 免费高清在线观看日韩| 中文字幕av电影在线播放| 国产精品二区激情视频| 日本猛色少妇xxxxx猛交久久| 久久久久久久大尺度免费视频| 亚洲激情五月婷婷啪啪| 色视频在线一区二区三区| 久久久精品免费免费高清| 亚洲国产av影院在线观看| 女人被躁到高潮嗷嗷叫费观| 汤姆久久久久久久影院中文字幕| 成年人午夜在线观看视频| 国产熟女欧美一区二区| 美女福利国产在线| 日韩,欧美,国产一区二区三区| 成人漫画全彩无遮挡| av视频免费观看在线观看| 欧美日韩亚洲国产一区二区在线观看 | 欧美最新免费一区二区三区| 精品少妇久久久久久888优播| 亚洲国产精品999| 激情五月婷婷亚洲| 日韩欧美一区视频在线观看| xxx大片免费视频| 国产成人系列免费观看| 国产精品亚洲av一区麻豆 | 一级毛片 在线播放| 97在线人人人人妻| 性少妇av在线| 久久精品国产a三级三级三级| 日本vs欧美在线观看视频| 黑人巨大精品欧美一区二区蜜桃| 哪个播放器可以免费观看大片| 一区二区三区激情视频| 婷婷色麻豆天堂久久| 黑人欧美特级aaaaaa片| 青春草国产在线视频| 电影成人av| 五月天丁香电影| 亚洲七黄色美女视频| 美国免费a级毛片| 国产男女超爽视频在线观看| 久久久久久久精品精品| 亚洲成av片中文字幕在线观看| 国产精品女同一区二区软件| 80岁老熟妇乱子伦牲交| 一级毛片电影观看| 久久国产精品男人的天堂亚洲| 久久久久视频综合| 丝袜喷水一区| av网站在线播放免费| 一级爰片在线观看| 国产女主播在线喷水免费视频网站| 日本色播在线视频| 亚洲三区欧美一区| 交换朋友夫妻互换小说| 精品国产国语对白av| 成人免费观看视频高清| 国精品久久久久久国模美| 捣出白浆h1v1| 精品少妇久久久久久888优播| 99re6热这里在线精品视频| 久久综合国产亚洲精品| 一本一本久久a久久精品综合妖精| 伦理电影免费视频| 亚洲精品一二三| 国产视频首页在线观看| 亚洲精品一二三| 成人18禁高潮啪啪吃奶动态图| 另类亚洲欧美激情| 国产亚洲午夜精品一区二区久久| 国产av一区二区精品久久| 国产亚洲午夜精品一区二区久久| 精品人妻在线不人妻| √禁漫天堂资源中文www| av视频免费观看在线观看| 搡老乐熟女国产| 国产伦理片在线播放av一区| 国产一区二区 视频在线| 99国产精品免费福利视频| 午夜免费鲁丝| 国产一区二区激情短视频 | 亚洲成色77777| 少妇人妻精品综合一区二区| 国产一区二区在线观看av| 国产成人午夜福利电影在线观看| 嫩草影院入口| 亚洲一区二区三区欧美精品| 精品人妻一区二区三区麻豆| 9色porny在线观看| 国产精品av久久久久免费| 韩国av在线不卡| 最近最新中文字幕免费大全7| 国产伦理片在线播放av一区| 亚洲欧美清纯卡通| 制服诱惑二区| 国产xxxxx性猛交| 中文字幕av电影在线播放| 久久免费观看电影| av在线app专区| 国产一区二区 视频在线| 男女之事视频高清在线观看 | www.自偷自拍.com| 中文字幕最新亚洲高清| 精品国产乱码久久久久久男人| 一区二区三区激情视频| 亚洲国产欧美在线一区| 国产一区二区激情短视频 | 亚洲国产最新在线播放| 街头女战士在线观看网站| 极品少妇高潮喷水抽搐| 男女高潮啪啪啪动态图| 成人亚洲欧美一区二区av| 在线观看www视频免费| 亚洲综合色网址| 不卡视频在线观看欧美| 久久久久精品性色| 亚洲伊人久久精品综合| 久久亚洲国产成人精品v| 久久精品亚洲熟妇少妇任你| 日韩伦理黄色片| 两个人免费观看高清视频| 国产成人免费无遮挡视频| 永久免费av网站大全| 日韩制服丝袜自拍偷拍| av天堂久久9| 中文字幕另类日韩欧美亚洲嫩草| 在线免费观看不下载黄p国产| 黄片无遮挡物在线观看| 高清不卡的av网站| 久久人人97超碰香蕉20202| 99久久精品国产亚洲精品| 97在线人人人人妻| 操美女的视频在线观看| 欧美在线黄色| av天堂久久9| 亚洲,欧美精品.| 一边摸一边抽搐一进一出视频| 一区二区三区精品91| 女人被躁到高潮嗷嗷叫费观|