• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers?

    2021-12-22 06:42:36XiaXiaNiu牛夏夏YiFengYang楊依楓ZhaoQuan全昭ChunLeiYu于春雷QinLingZhou周秦嶺HuiShen沈輝BingHe何兵andJunZhou周軍
    Chinese Physics B 2021年12期
    關(guān)鍵詞:周軍春雷秦嶺

    Xia-Xia Niu(牛夏夏) Yi-Feng Yang(楊依楓) Zhao Quan(全昭) Chun-Lei Yu(于春雷)Qin-Ling Zhou(周秦嶺) Hui Shen(沈輝) Bing He(何兵) and Jun Zhou(周軍)

    1Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: stimulated Brillouin scattering,Brillouin gain spectrum,large-mode-area fibers,fiber laser

    1. Introduction

    The applications of high-power narrow-linewidth fiber lasers to coherent beam combining and spectral beam combining have attracted widespread attention in recent years.[1,2]Stimulated Brillouin scattering (SBS) is the most limiting effect in terms of power handling capacity in high-power narrow-linewidth fiber lasers.[3,4]Over the decades, a variety of techniques have been implemented in order to suppress SBS,[5]such as introducing nonuniformities by stressing the optical fiber,[6]reducing the overlap between the light wave field and the sound wave field in the core by changing the doping composition and distribution in the core,[7–10]reducing effective fiber length,[11]broadening spectral linewidth of seed by pure phase modulation,etc.[12–15]Specifically,white noise source (WNS)[16–19]and pseudo-random binary sequence(PRBS)[20–23]phase modulation become the leading linewidth broadening schemes for high power fiber amplifiers which are required to balance the narrow-linewidth and the output power. In the commonly used PRBS phase modulation scheme,the SBS suppression capability can be determined by the separation between the discrete adjacent sidebands lying within the envelope, which should be appreciably more than twice the Brillouin gain spectrum(BGS)bandwidth.[14]In this scenario,the BGS characteristics become essential for designing the PRBS phase modulation scheme.

    As is well known,the core dimensions and GeO2concentration of the fibers can dramatically affect the BGS characteristics, especially the Brillouin frequency shift (BFS) and the BGS bandwidth. Some efforts have devoted to studying the BGS in single-mode fiber(SMF).Nikleset al.have studied the influence of germanium concentration on BFS and BGS bandwidths,and they found that the change between BFS and GeO2concentrations is?94 MHz/wt%, while the change between BGS bandwidth and GeO2concentration is 1.4 MHz/wt%.[24]Liet al.reported the BFS is reduced by~1 GHz and BGS bandwidth is increased by~2 MHz when the core diameter decreases from 8.8 μm to 3 μm.[25]It is noticed that the germanium concentration of the fiber with a core diameter of 8.8 μm in Ref. [25] is 4 wt%, while the germanium concentration of the fiber with a core diameter of 3 μm is 19 wt%,showing the germanium concentrations of the fibers with different core diameters are different, and the BFS with GeO2concentration is about?89 MHz/wt%.[26]Liet al.showed that core doping GeO2concentration has a greater influence on the BFS than the core diameter and reducing fiber core diameter will result in a wider BGS bandwidth.[25]The above results are based on the SMF reported. However, the dependence of BGS characteristics on the GeO2concentration and core diameter in large-mode-area (LMA) fibers have not yet been studied in detail.

    The purpose of this work is to examine the relationship between the GeO2concentration and the Brillouin gain spectrum characteristics in the LMA fibers. We first numerically simulate the dependence of BFS and BGS bandwidths on GeO2concentration. Then we present the BGS bandwidth as a function of single-pass gain to explain the BGS bandwidth measured in this work under the condition of Brillouin gain narrowing. Moreover,the BGSs are experimentally characterized in four types of fibers with different GeO2concentrations and core diameters of 10μm and 20μm by using heterodyne detection method,indicating the dependence of BFS and BGS bandwidths on GeO2concentration under the same core diameter fiber.Finally,the BGSs of three fibers with core diameters of 10μm,25μm,and 30μm are tested to demonstrate the influence of the core diameter on the BGS bandwidth.

    2. Theory

    In the kinetics of spontaneous Brillouin scattering, the BGS line is Lorentzian according to the exponential decay of phonons.[27]In a fiber system,spectral density function of the Stokes radiation,S(ω),[28]can be defined as

    wherehis the Planck’s constant,Nis the mean number of phonons per mode of acoustic field,ωsis the Stokes frequency,Ais the effective cross-section area, andΓBis the phonon intensity decay rate,ωis the laser frequency,nis the effective refractive index of the pump mode,cis the propagation speed of light in vacuum.Gis the single-pass gain, which can be defined as

    whereg0is the peak value of the Brillouin gain,Leffis the effective length,Aeffis the effective cross-sectional area of the interaction region,andPis the incident laser power. The gain factorgcan be defined as

    whereγeis the electrostrictive constant of silica,ρ0is the mass density,andυAis the acoustic velocity. As shown in Eq.(1),the spectral shape of the Stokes light depends on the singlepass gainGand the phonon intensity decay rateΓB. The BGS bandwidthΓ=ΓB/(2π) is the full width at half maximum(FWHM)of the BGS,which can be expressed as

    According to Ref.[28],the refractive indexnof the medium,the acoustic velocityυA, and the mass densityρ0vary with GeO2concentrationωGe[in unit wt%]and F concentrationωF[in unit wt%]and can be expressed respectively as[29]

    The BGS bandwidth ?νnarrows as single-pass gain increases,which can be given by[28,30]

    For smallG(such asG<5 Np),the shape of the Brillouin gain spectrum is Lorentzian curve with a bandwidth of ?ν=Γ.On the other hand,the Stokes spectrum bandwidth has almost no obvious change for largeG(such asG>20 Np).[31]

    Fig. 1. (a) Simulated BFS versus GeO2 concentration, and (b) calculated BGS bandwidth and tested bandwidth versus GeO2 concentration for four types of fibers.

    The generated Stokes frequency depends on the optical and acoustic properties of the propagation material as well as the pump wavelength. The BFS in an LMA fiber can be defined as[32]

    whereλis the laser wavelength,andθis the scattering angle of a mode. In the simulation, the influence of the scattering angle on the BFS is ignored. The BFS and BGS bandwidths as a function of GeO2concentration are shown in Figs. 1(a)and 1(b). The parameters and the values used in the simulation are shown in Table 1. Figure 1(a) shows that the BFS is inversely proportional to GeO2concentration and the relationship is linear. Figure 1(b)shows that the BGS bandwidth initially increases linearly and then decreases. The gain factor and single-pass gain will increase when the germanium concentration exceeds 80%, thus causing the narrowed Brillouin bandwidth to decrease. The red line is the linear fit with a slope of 0.085.

    Table 1. Parameters and values used in simulation.

    The relationship between Brillouin gain factorg0and GeO2concentration is obtained by substituting Eqs. (4)–(7)into Eq.(3),and the results are shown in Fig.2(a).It is demonstrated that as the GeO2concentration increases,Brillouin gain factor decreases initially, and then increases when the GeO2concertation exceeds 80%. Firstly, the phonon intensity attenuation rate, the refractive index, and the medium density increase faster than the sound velocity decreases, so the gain factor is reduced. With the increase of germanium concentration, the attenuation rate of the phonon intensity, the rate of increase of refractive index, and the medium density are lower than the rate of decrease of sound velocity, as a result,the gain factor has a minimum value, and then gradually increases. The single-pass gain dependence of BGS bandwidth can be obtained based on Eq. (8), and is plotted in Fig. 2(b).The results indicate that as the GeO2concentration increases,Brillouin gain factor initially decreases, and then increases.The Brillouin gain narrowing is shown in Fig.2(b).

    Fig.3. Experimental setup of Brillouin gain spetrum measurement. MFA:mode field adapter;YDFA:Yb-doped fiber amplifier;PD:photodetector;RFA:radio frequency analyzer.

    Fig. 2. (a) Simulated Brillouin gain factor versus GeO2 concentration, and(b)calculated BGS bandwidth versus single-pass gain G and the experimental bandwidth of fibers with different core diameters.

    3. Experimental setup

    The BGSs of the LMA fibers are measured. The schematic diagram of the setup is shown in Fig.3.

    A 1067-nm,60-mW,3-kHz linewidth(the Rock,NP Photonics) single-frequency fiber laser is used as a light source.The laser signal is amplified to 10 W by a Yb-doped fiber amplifier (YDFA). The output laser is divided into two arms by an 80/20 coupler(coupler 1),where 80%of the laser pass through a circulator,and then connected to the input end of the fiber under test(FUT).All the fibers are in a temperature range of 20?C–22?C and maintain the same bend radius to ensure the same experimental conditions. The generated backward Stokes light in the fiber is coupled into the 50/5 coupler(coupler 2)through port 3 of the circulator. The MFAs here is used to adapt the mode field. In the other arm, 20% of the laser acts as the reference light, and the power is controlled by an optical attenuator to maximize the visibility of the beat signal. The backward light and the reference light then beat in coupler 2, and the beat signal is detected by a photodetector(1014,Newport)with a maximum bandwidth of 46 GHz,and analyzed by a radio frequency analyzer (RFA, DSOX4024A,KEYSIGHT).The output end of the FUT is cleaved with 8?to prevent feedback.

    4. Results and discussion

    Six passive fibers (I–VI) are investigated in the experimental setup, of which the detailed parameters are listed in Table 2. The input laser power is the output power of the amplifier when the beat frequency output power is 1 mW.The values of single-pass gainGfor all the FUTs are much larger than 25, which means that all the Brillouin bandwidths we tested are gain-narrowed.

    Table 2. Experimental parameters and their values.

    Fig.4. X-ray signal intensity distribution for(a)fibers I and II and(b)fibers III and IV.

    For comparing the core germanium concentrations of fibers with the same core diameter,we use the electron probe microanalysis(EPMA)to test the x-ray signal intensity of Ge doped in 10/125 and 20/400 polarization-maintaining and unpolarized fibers(fibers I–IV).The cross-sectional x-ray signal intensity distribution results for the four fibers are shown in Fig. 4. The x-ray signal intensity of each fiber is expressed by averaging the x-ray signal intensities in the core. The xray signal intensity can be used to characterize the germanium doping concentration because it is positively correlated with the content of GeO2in fiber. Figures 4(a)and 4(b)show that the germanium concentration of the polarization-maintaining fiber is higher than that of the unpolarized fiber, and the germanium concentration of the 10/125 fiber is higher than that of the 20/400 fiber.

    The BFS and BGS bandwidths for fibers I–IV are measured using the experimental setup shown in Fig.3. Gaussian fitting is performed on the BGS of each fiber and the BFS and Brillouin bandwidth of each fiber are recorded as shown in Fig.5. For fibers I and II as shown in Figs.5(a)and 5(b),the BFSs are 16.065 GHz and 16.102 GHz and the BGS bandwidths are 15.54 MHz and 12.31 MHz, respectively. This difference in BFS can be explained by Eq. (9). The difference in dopant concentration between the two fibers results in the differences in the acoustic velocity and the refractive index. This difference in BGS bandwidth is explained as being due to the fact that the increasing of GeO2will result in a decrease in phonon lifetime and an increase in bandwidth.Although not each group of fibers is tested at the same length and the same input power,it is clear that the output SBS power is the same, and the product of the fiber length and the input power in the polarization-maintaining fiber is larger,which is the opposite to the influence of germanium concentration on the bandwidth. The results indicate that in LMA fibers with the same core diameter,the BFS decreases and the BGS bandwidth increases with the augment of doped germanium concentration in the core. This result is consistent with that of an SMF.[24]The same conclusion is applicable to the fibers III–IV as shown in Figs.5(c)and 5(d). The BFSs are 16.123 GHz and 16.134 GHz, respectively, and the BGS bandwidths are 15.54 MHz and 12.31 MHz,respectively. The BFS and BGS bandwidth changes of the 10/125 fiber are greater than that of 20/400 fiber. The reason for this result is that the difference in germanium concentration between the two 10/125 fibers is higher than that between the two 20/400 fibers.

    Fig.5. Comparison of(a)BFS and(b)BGS bandwidth gain spectra between fibers I and II.Comparison of(c)BFS and(d)BGS bandwidth gain spectra between fibers III and IV.

    The tests of the BGS bandwidth for fibers I–IV are shown in Fig.1(b),which are compared with the simulations. The diamond, square, circle, and the triangle symbols in Fig. 1(b)indicate the tested BGS bandwidth of the fibers I, II, III, and IV,respectively.

    The measured fiber bandwidth is positively correlated with the x-ray signal intensity, and the simulated bandwidth is also proportional to the germanium concentration. That is,as the doped germanium concentration in the core increases,the BGS bandwidth increases. However, there is some obvious departure between the tested value and the simulation one. Besides the fact that the coefficients of Eqs. (4)–(6) are not universal, the germanium concentration used in our fiber is not an absolute concentration but the x-ray signal intensity.

    Figure 6(a)shows x-ray signal intensities of GeO2doped in the core of three passive optical fibers with different core diameters. The curves represent the x-ray signal intensity distributions in the cross sections of the fibers. The x-ray signal intensity at the core of each fiber is averaged to characterize the core germanium concentration in each fiber.The average x-ray signal intensity in the core of the fibers I,V,and VI are 43.568,38.17, and 34.17, respectively. Result shows that the smallcore fiber has a higher germanium concentration. Figure 6(b)shows the BGS measurement results of three fibers with different core diameters. The lengths of the different fibers range from 20 m to 150 m. We find that the BGSs of three types of fibers all exhibit a Gaussian distribution. The BFS for fibers I,V, and VI are 16.102, 16.138, and 16.168 GHz, respectively,and the BGS bandwidths are 12.31,14.22,and 15.93 MHz respectively. BGS bandwidth is increased by~2 MHz when the core diameter increases from 10 μm to 30 μm. Fiber I has a higher germanium concentration, but the bandwidth is narrower than that of fiber VI,indicating that the core diameter has a greater effect on the bandwidth than the germanium concentration in the LMA fiber.

    We also compare the numerical solution and measured BGS bandwidth of the three fibers with different core diameters, which is shown in Fig. 2(b). It should be noted that single-pass gainGfor each fiber is calculated under the condition that the x-ray signal intensity is regarded as the germanium concentration. The circle, square, and triangle symbols indicate the measured BGS bandwidths of fibers I,V,and VI,respectively. The reason for this difference may be that in an LMA fiber, when pump light is coupled into the fiber, multiple conduction transverse modes can be excited. The Stokes light generated by the inelastic collision of the optical photons with the acoustic phonons in the optical fiber also excites multiple conduction modes. The superposition of multiple modes of Stokes light will broaden the BGS bandwidth. Previous literature has reported[33]that the increasing of the number of optical modes can lead the BGS bandwidth to broaden.

    Fig. 6. Comparison among (a) x-ray signal intensities for 10/125, 25/250,and 30/250 fibers and(b)BGSs of fibers for different core diameters.

    5. Conclusions

    In this work,the dependence of BFS bandwidth and BGS bandwidth on GeO2concentration are simulated. It is shown that BGS bandwidth initially increases, then decreases and BFS decreases as the GeO2concentration increases. We also provide direct experimental evidence that BFS reduces and the linewidth broadens with the increase of germanium concentration in LMA fiber. Moreover, it is demonstrated experimentally that BGS bandwidth increases as the core diameter increases, and that the BGS bandwidth broadening is because the superposition of multiple transmission modes of Stokes light in LMA fibers causes the entire Brillouin scattering spectrum to broaden. This work will provide reference for multiwavelength Brillouin lasers.

    猜你喜歡
    周軍春雷秦嶺
    春雷響
    幼兒100(2024年11期)2024-03-27 08:32:56
    《拓荒者》
    民族藝林(2022年4期)2023-01-19 04:06:16
    暑期秦嶺游
    洞穿秦嶺
    花事
    周軍:手握“最準(zhǔn)的尺”,從“0”到“∞”篤信前行
    好忙好忙的秦嶺
    “軸對(duì)稱(chēng)”復(fù)習(xí)點(diǎn)睛
    春雷
    春雷乍響活驚蟄
    国产在视频线精品| 国产欧美日韩综合在线一区二区| 嘟嘟电影网在线观看| 欧美日韩视频精品一区| 水蜜桃什么品种好| 自拍欧美九色日韩亚洲蝌蚪91| 国产免费福利视频在线观看| 少妇精品久久久久久久| 夫妻午夜视频| 一区二区三区精品91| 伦理电影大哥的女人| 精品亚洲乱码少妇综合久久| 丝袜美足系列| 欧美精品国产亚洲| 国产成人精品无人区| 国产av一区二区精品久久| 亚洲精品成人av观看孕妇| 免费观看性生交大片5| 久久久久久伊人网av| 国产极品天堂在线| 国产精品不卡视频一区二区| 午夜激情福利司机影院| 国产亚洲欧美精品永久| av.在线天堂| 精品久久久噜噜| 亚洲国产最新在线播放| 2022亚洲国产成人精品| 亚洲,欧美,日韩| 黄色视频在线播放观看不卡| 女人精品久久久久毛片| 你懂的网址亚洲精品在线观看| 三上悠亚av全集在线观看| 一级毛片我不卡| 国产国拍精品亚洲av在线观看| 观看av在线不卡| 日韩成人伦理影院| 亚洲欧美日韩另类电影网站| 日韩强制内射视频| 五月伊人婷婷丁香| 美女脱内裤让男人舔精品视频| 成人午夜精彩视频在线观看| 纯流量卡能插随身wifi吗| 午夜91福利影院| 大码成人一级视频| av在线观看视频网站免费| 精品国产露脸久久av麻豆| 国产欧美亚洲国产| 亚洲第一av免费看| 久热久热在线精品观看| 91精品国产国语对白视频| 欧美精品国产亚洲| 国产极品天堂在线| 亚洲成色77777| 一级爰片在线观看| 少妇熟女欧美另类| 男人爽女人下面视频在线观看| 观看美女的网站| 日本午夜av视频| 日韩一本色道免费dvd| 国产白丝娇喘喷水9色精品| 日日摸夜夜添夜夜添av毛片| 黑人巨大精品欧美一区二区蜜桃 | 国产日韩欧美在线精品| 亚洲五月色婷婷综合| 一边亲一边摸免费视频| 午夜日本视频在线| 2018国产大陆天天弄谢| 亚洲精品日韩av片在线观看| 寂寞人妻少妇视频99o| 欧美激情极品国产一区二区三区 | 美女国产高潮福利片在线看| 国产高清有码在线观看视频| 我的女老师完整版在线观看| 日韩成人伦理影院| 亚洲精品国产av蜜桃| 成年人午夜在线观看视频| xxxhd国产人妻xxx| 国产一区二区三区av在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产男人的电影天堂91| videosex国产| 九九爱精品视频在线观看| 国语对白做爰xxxⅹ性视频网站| 精品一区在线观看国产| 91aial.com中文字幕在线观看| 精品人妻在线不人妻| av线在线观看网站| 大片免费播放器 马上看| 国产高清国产精品国产三级| 一本色道久久久久久精品综合| 一级,二级,三级黄色视频| 久久女婷五月综合色啪小说| 欧美变态另类bdsm刘玥| 久久精品久久久久久久性| 成人无遮挡网站| 一二三四中文在线观看免费高清| 又粗又硬又长又爽又黄的视频| 成人手机av| 欧美xxⅹ黑人| 欧美日本中文国产一区发布| 日本91视频免费播放| 亚洲av综合色区一区| 99热全是精品| 午夜老司机福利剧场| 美女福利国产在线| 在线观看国产h片| 欧美人与性动交α欧美精品济南到 | 亚洲伊人久久精品综合| 久久热精品热| 亚洲经典国产精华液单| 国产在线视频一区二区| 国产午夜精品一二区理论片| 婷婷色av中文字幕| 国产精品嫩草影院av在线观看| 午夜激情福利司机影院| 曰老女人黄片| 免费大片18禁| 久久久久人妻精品一区果冻| 亚洲精品色激情综合| 成年美女黄网站色视频大全免费 | 日韩人妻高清精品专区| 国产在线视频一区二区| 欧美97在线视频| 午夜精品国产一区二区电影| 久久久久国产精品人妻一区二区| 日韩欧美精品免费久久| 成人18禁高潮啪啪吃奶动态图 | 爱豆传媒免费全集在线观看| 日韩伦理黄色片| 日本与韩国留学比较| 午夜福利网站1000一区二区三区| 免费av不卡在线播放| 性高湖久久久久久久久免费观看| 不卡视频在线观看欧美| 考比视频在线观看| 日韩视频在线欧美| 免费少妇av软件| 十八禁高潮呻吟视频| 在线亚洲精品国产二区图片欧美 | 熟女av电影| av黄色大香蕉| 麻豆精品久久久久久蜜桃| 国产乱来视频区| 欧美性感艳星| 欧美精品人与动牲交sv欧美| 国产午夜精品一二区理论片| 蜜桃久久精品国产亚洲av| 欧美3d第一页| 青春草国产在线视频| 在线 av 中文字幕| 国产精品嫩草影院av在线观看| 国产精品嫩草影院av在线观看| 99久久精品国产国产毛片| 国模一区二区三区四区视频| 黄色毛片三级朝国网站| 黄片播放在线免费| 黑人猛操日本美女一级片| 哪个播放器可以免费观看大片| 久久久亚洲精品成人影院| 日韩熟女老妇一区二区性免费视频| 在线精品无人区一区二区三| 97超碰精品成人国产| av在线老鸭窝| 亚洲av在线观看美女高潮| 天堂俺去俺来也www色官网| 秋霞在线观看毛片| 欧美 亚洲 国产 日韩一| 18禁在线无遮挡免费观看视频| av卡一久久| av一本久久久久| 丰满迷人的少妇在线观看| 天美传媒精品一区二区| 欧美日韩视频高清一区二区三区二| 国产成人av激情在线播放 | av国产久精品久网站免费入址| 91精品伊人久久大香线蕉| 亚洲婷婷狠狠爱综合网| 国产免费视频播放在线视频| 国模一区二区三区四区视频| 2021少妇久久久久久久久久久| 热99国产精品久久久久久7| 久久精品夜色国产| 999精品在线视频| 久久精品国产a三级三级三级| 亚洲av不卡在线观看| 狠狠精品人妻久久久久久综合| 纯流量卡能插随身wifi吗| 国产色爽女视频免费观看| 精品人妻在线不人妻| 久久鲁丝午夜福利片| 最近中文字幕2019免费版| 在线看a的网站| 国产精品无大码| 亚洲综合色惰| 一本色道久久久久久精品综合| 男女边吃奶边做爰视频| 9色porny在线观看| 日本av手机在线免费观看| 国产精品久久久久久av不卡| 日韩免费高清中文字幕av| a级毛片黄视频| 最近的中文字幕免费完整| 久久99热6这里只有精品| 久久精品熟女亚洲av麻豆精品| 伦理电影大哥的女人| 肉色欧美久久久久久久蜜桃| 日韩av在线免费看完整版不卡| freevideosex欧美| 免费播放大片免费观看视频在线观看| 中国三级夫妇交换| 国产视频首页在线观看| 卡戴珊不雅视频在线播放| 国产在视频线精品| 51国产日韩欧美| 久热久热在线精品观看| 国产色爽女视频免费观看| 亚洲国产精品999| 亚洲国产日韩一区二区| 国产av精品麻豆| 天天躁夜夜躁狠狠久久av| 26uuu在线亚洲综合色| 在线观看三级黄色| 中国国产av一级| 免费日韩欧美在线观看| 另类精品久久| 精品亚洲乱码少妇综合久久| 美女中出高潮动态图| 国产不卡av网站在线观看| 国产av码专区亚洲av| 两个人的视频大全免费| 久久99精品国语久久久| 日韩中字成人| 我的女老师完整版在线观看| 国产亚洲最大av| 亚洲情色 制服丝袜| 人妻人人澡人人爽人人| 亚洲欧美一区二区三区国产| 三上悠亚av全集在线观看| 中文字幕久久专区| 91精品一卡2卡3卡4卡| 国产精品一区二区在线观看99| 欧美精品一区二区大全| 五月伊人婷婷丁香| 日韩av免费高清视频| 观看美女的网站| 老司机亚洲免费影院| 国产精品蜜桃在线观看| 久久久a久久爽久久v久久| 在线天堂最新版资源| 成人国语在线视频| 免费日韩欧美在线观看| 日韩精品免费视频一区二区三区 | 亚洲,欧美,日韩| 少妇被粗大猛烈的视频| 国产精品一二三区在线看| 大陆偷拍与自拍| 黑人猛操日本美女一级片| 极品少妇高潮喷水抽搐| 日韩不卡一区二区三区视频在线| 久久精品国产亚洲网站| 高清黄色对白视频在线免费看| 少妇猛男粗大的猛烈进出视频| 免费看不卡的av| 黑人高潮一二区| 午夜精品国产一区二区电影| 日本-黄色视频高清免费观看| 久久久国产一区二区| 欧美成人午夜免费资源| 在线看a的网站| 黑人猛操日本美女一级片| videos熟女内射| 美女主播在线视频| 亚洲成人一二三区av| 久久热精品热| 亚洲欧美中文字幕日韩二区| 日本黄大片高清| 午夜福利视频精品| 久久久久国产网址| 日本av手机在线免费观看| av视频免费观看在线观看| 亚洲一级一片aⅴ在线观看| 中文字幕亚洲精品专区| 黄片无遮挡物在线观看| 99热这里只有是精品在线观看| 午夜福利网站1000一区二区三区| 我要看黄色一级片免费的| av有码第一页| 一区二区三区四区激情视频| 十八禁网站网址无遮挡| 观看美女的网站| 欧美变态另类bdsm刘玥| 精品久久国产蜜桃| 亚洲丝袜综合中文字幕| 少妇的逼好多水| 老女人水多毛片| 搡女人真爽免费视频火全软件| 亚洲成人一二三区av| 亚洲精品乱码久久久久久按摩| 久久国内精品自在自线图片| 插逼视频在线观看| 人妻人人澡人人爽人人| 美女脱内裤让男人舔精品视频| 国产av国产精品国产| 国产不卡av网站在线观看| 国产亚洲欧美精品永久| 免费少妇av软件| 少妇人妻久久综合中文| 伊人久久国产一区二区| 亚洲欧洲国产日韩| 欧美成人午夜免费资源| 搡女人真爽免费视频火全软件| 91精品国产九色| 蜜臀久久99精品久久宅男| 久久久久网色| 全区人妻精品视频| 一本大道久久a久久精品| 亚洲中文av在线| 校园人妻丝袜中文字幕| 欧美人与善性xxx| 日韩强制内射视频| 亚洲精华国产精华液的使用体验| 国产精品一区二区在线不卡| 国产精品不卡视频一区二区| 成人18禁高潮啪啪吃奶动态图 | 成人国产av品久久久| 欧美日韩成人在线一区二区| 秋霞在线观看毛片| 亚洲精品久久久久久婷婷小说| 日韩免费高清中文字幕av| 人人妻人人澡人人爽人人夜夜| 国产综合精华液| 欧美变态另类bdsm刘玥| 国产片内射在线| 亚洲精品久久成人aⅴ小说 | 高清在线视频一区二区三区| 看非洲黑人一级黄片| 国产无遮挡羞羞视频在线观看| 婷婷色麻豆天堂久久| 熟女人妻精品中文字幕| av网站免费在线观看视频| 色婷婷久久久亚洲欧美| 人成视频在线观看免费观看| 人妻少妇偷人精品九色| 男女边摸边吃奶| 国产 精品1| 我的老师免费观看完整版| 午夜福利影视在线免费观看| 你懂的网址亚洲精品在线观看| 人人妻人人添人人爽欧美一区卜| 人妻一区二区av| 国产精品一区二区在线不卡| 国产毛片在线视频| 精品少妇久久久久久888优播| 色5月婷婷丁香| 久久影院123| 国产精品人妻久久久久久| 欧美另类一区| 在线播放无遮挡| 中文字幕最新亚洲高清| 午夜免费男女啪啪视频观看| 国产亚洲最大av| 赤兔流量卡办理| 免费av中文字幕在线| 天天影视国产精品| 一级a做视频免费观看| 国产淫语在线视频| 男女国产视频网站| 色5月婷婷丁香| 一级二级三级毛片免费看| a级片在线免费高清观看视频| 午夜久久久在线观看| 成年女人在线观看亚洲视频| 久久久精品94久久精品| 人妻一区二区av| 青青草视频在线视频观看| 高清视频免费观看一区二区| 亚洲色图综合在线观看| 欧美最新免费一区二区三区| 能在线免费看毛片的网站| 美女脱内裤让男人舔精品视频| 一级毛片我不卡| 国产熟女欧美一区二区| 免费日韩欧美在线观看| 精品人妻偷拍中文字幕| 久久人人爽人人片av| 最新的欧美精品一区二区| 51国产日韩欧美| 国产黄色免费在线视频| 成人二区视频| 日韩中字成人| 高清在线视频一区二区三区| 精品久久蜜臀av无| 两个人免费观看高清视频| 男女高潮啪啪啪动态图| 麻豆成人av视频| 国产综合精华液| 一个人看视频在线观看www免费| xxxhd国产人妻xxx| 夫妻性生交免费视频一级片| av不卡在线播放| 亚洲精品aⅴ在线观看| 曰老女人黄片| 日产精品乱码卡一卡2卡三| 麻豆乱淫一区二区| 69精品国产乱码久久久| 国产在线一区二区三区精| 七月丁香在线播放| 国产淫语在线视频| 国产精品一区二区在线不卡| 国产在线视频一区二区| 国产免费一区二区三区四区乱码| 欧美xxⅹ黑人| 午夜激情福利司机影院| 免费观看a级毛片全部| 精品99又大又爽又粗少妇毛片| 又大又黄又爽视频免费| 久久久a久久爽久久v久久| 中文精品一卡2卡3卡4更新| 一级毛片aaaaaa免费看小| 国产片内射在线| 国产成人一区二区在线| 国产高清有码在线观看视频| 国产成人精品在线电影| 在现免费观看毛片| 18在线观看网站| 国产一级毛片在线| 草草在线视频免费看| 精品亚洲成a人片在线观看| 一本—道久久a久久精品蜜桃钙片| 成人综合一区亚洲| 青春草亚洲视频在线观看| 春色校园在线视频观看| a级毛片在线看网站| 国产精品一二三区在线看| 哪个播放器可以免费观看大片| 成年av动漫网址| 亚洲国产av影院在线观看| 国产色爽女视频免费观看| 亚洲内射少妇av| 亚洲人成网站在线观看播放| 久久精品久久精品一区二区三区| 99精国产麻豆久久婷婷| 精品一区二区三区视频在线| 蜜臀久久99精品久久宅男| 欧美日韩亚洲高清精品| 七月丁香在线播放| 两个人免费观看高清视频| 黄片播放在线免费| 亚洲人成77777在线视频| 热99国产精品久久久久久7| 久久久亚洲精品成人影院| 久久精品久久久久久久性| 最新中文字幕久久久久| 在线观看一区二区三区激情| 激情五月婷婷亚洲| 一个人看视频在线观看www免费| 日韩成人av中文字幕在线观看| 欧美97在线视频| 777米奇影视久久| 欧美精品高潮呻吟av久久| 最近中文字幕2019免费版| 欧美bdsm另类| 亚洲精品成人av观看孕妇| 国产黄色免费在线视频| 男女免费视频国产| 国产成人91sexporn| 午夜激情福利司机影院| 满18在线观看网站| 18禁在线无遮挡免费观看视频| 伊人久久精品亚洲午夜| 97在线视频观看| 91成人精品电影| 搡女人真爽免费视频火全软件| 亚洲精品中文字幕在线视频| 2022亚洲国产成人精品| 亚洲av免费高清在线观看| 久久精品人人爽人人爽视色| 黄色怎么调成土黄色| 热99久久久久精品小说推荐| 又粗又硬又长又爽又黄的视频| 新久久久久国产一级毛片| 日韩中字成人| 国产69精品久久久久777片| 成人毛片a级毛片在线播放| 日韩免费高清中文字幕av| 精品酒店卫生间| 欧美日韩视频高清一区二区三区二| 国产又色又爽无遮挡免| 人人澡人人妻人| 老司机影院毛片| 人妻少妇偷人精品九色| 3wmmmm亚洲av在线观看| 成人综合一区亚洲| 亚洲精品久久午夜乱码| 欧美xxⅹ黑人| 另类精品久久| 一本—道久久a久久精品蜜桃钙片| 少妇的逼水好多| 久久 成人 亚洲| 午夜福利在线观看免费完整高清在| 麻豆乱淫一区二区| 亚洲国产精品专区欧美| 欧美变态另类bdsm刘玥| 热re99久久国产66热| 人成视频在线观看免费观看| 飞空精品影院首页| 亚洲综合色网址| 国产精品99久久久久久久久| 中文字幕精品免费在线观看视频 | 亚洲精品日韩av片在线观看| 又黄又爽又刺激的免费视频.| 久久久久人妻精品一区果冻| 老司机影院毛片| 亚洲人与动物交配视频| 视频区图区小说| 国产免费又黄又爽又色| 黄片播放在线免费| av.在线天堂| 国产精品一二三区在线看| 色婷婷av一区二区三区视频| 免费看不卡的av| 亚洲高清免费不卡视频| 22中文网久久字幕| 熟妇人妻不卡中文字幕| 国产亚洲午夜精品一区二区久久| 女人久久www免费人成看片| 亚洲国产色片| 少妇丰满av| 久久婷婷青草| 在线观看免费高清a一片| av网站免费在线观看视频| 在线亚洲精品国产二区图片欧美 | 99国产精品免费福利视频| 我要看黄色一级片免费的| 亚洲精品,欧美精品| 国产亚洲av片在线观看秒播厂| 制服人妻中文乱码| 国产熟女欧美一区二区| 久久精品久久久久久久性| 十分钟在线观看高清视频www| 国产精品不卡视频一区二区| 插阴视频在线观看视频| 91aial.com中文字幕在线观看| tube8黄色片| 国产精品女同一区二区软件| 肉色欧美久久久久久久蜜桃| 蜜桃国产av成人99| 大片电影免费在线观看免费| 五月开心婷婷网| 国产黄色视频一区二区在线观看| 日本wwww免费看| 国产又色又爽无遮挡免| 人妻人人澡人人爽人人| 亚洲美女黄色视频免费看| 老女人水多毛片| 国产成人av激情在线播放 | 好男人视频免费观看在线| 亚洲一区二区三区欧美精品| 久久精品国产a三级三级三级| 狂野欧美激情性xxxx在线观看| 免费av不卡在线播放| 人妻系列 视频| 国产精品国产三级国产av玫瑰| 久久久久久久久久成人| 国产老妇伦熟女老妇高清| 日本午夜av视频| 一级毛片aaaaaa免费看小| 91精品国产国语对白视频| 亚洲精品乱码久久久久久按摩| 国产乱人偷精品视频| 久久综合国产亚洲精品| 在线看a的网站| 国产爽快片一区二区三区| 国产片内射在线| 国产精品久久久久久久电影| 啦啦啦啦在线视频资源| 亚洲综合色惰| 亚洲久久久国产精品| 国产精品久久久久久精品电影小说| 亚洲欧洲国产日韩| 欧美激情 高清一区二区三区| 久久国内精品自在自线图片| 美女主播在线视频| 欧美变态另类bdsm刘玥| 亚洲综合精品二区| 日本午夜av视频| 午夜视频国产福利| 午夜91福利影院| 国产一区二区三区av在线| 夜夜爽夜夜爽视频| 男男h啪啪无遮挡| 亚洲精品久久久久久婷婷小说| tube8黄色片| 啦啦啦视频在线资源免费观看| 午夜日本视频在线| 欧美精品高潮呻吟av久久| 国产av国产精品国产| 午夜日本视频在线| 亚洲欧美色中文字幕在线| 黄色毛片三级朝国网站| 国产极品天堂在线| 黄色欧美视频在线观看| 丝袜美足系列| 国产精品无大码| 在线观看免费视频网站a站| 日韩欧美精品免费久久| 亚洲天堂av无毛| 亚洲精品久久成人aⅴ小说 | 久久久久国产网址| 97精品久久久久久久久久精品| 爱豆传媒免费全集在线观看| 亚洲中文av在线| 久久99热6这里只有精品| 九色成人免费人妻av| 夫妻性生交免费视频一级片|