• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-OMe?

    2021-12-22 06:44:02MuZhenLi李慕臻FeiYanLi李飛雁QunZhang張群KaiZhang張凱YuZhiSong宋玉志JianZhongFan范建忠ChuanKuiWang王傳奎andLiLiLin藺麗麗
    Chinese Physics B 2021年12期
    關(guān)鍵詞:飛雁張凱麗麗

    Mu-Zhen Li(李慕臻), Fei-Yan Li(李飛雁), Qun Zhang(張群), Kai Zhang(張凱), Yu-Zhi Song(宋玉志),Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王傳奎), and Li-Li Lin(藺麗麗)

    Shandong Key Laboratory of Medical Physics and Image Processing&Shandong Provincial Engineering and Technical Center of Light Manipulations,School of Physics and Electronics,Shandong Normal University,Jinan 250358,China

    Keywords: organic light-emitting diodes,thermally activated delayed fluorescence,intermolecular hydrogen bond,decay rates

    1. Introduction

    Compared with the liquid crystal display(LCD),organic light-emitting diodes(OLEDs)display,which are thinner provide better image quality and contrast.[1]On the basis of the spin-statistics,the ratio of singlet excitons produced in organic electroluminescent materials is one-quarter, and the ratio of triplet excitons is three-quarters.[2,3]For conventional fluorescent OLEDs, the internal quantum efficiency (IQE) is much lower than other OLDEs due to the unavailability of triplet excitons. Since OLEDs with thermally activated delayed fluorescence (TADF) emitters which can obtain luminous singlet and triplet excited states through an effective reverse intersystem crossover (RISC) process were reported to achieve nearly 100%exciton efficiency,TADF materials have attracted widespread attention.[4–6]Although the current application of TADF-OLEDs is still far inferior to phosphorescent OLEDs,due to the high cost and limited resources of phosphorescent materials, TADF-OLEDs still has a lot of room for development as next-generation electroluminescent material.[7–11]For TADF molecules, the most common structure is the donor–acceptor (D–A) or D–A–D configuration. The separation of highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital(LUMO)relies on such twisted,spiral or bulky connection structures, which will effectively reduce the overlap between HOMO and LUMO,and thus reduce the energy gap between S1and T1(?EST).[12–14]There is also TADF produced in the host–guest doped system.[15–17]The characteristics of the host can directly affect the energy of the charge transfer (CT) state and the the ?ESTof the singlet state and the triplet state.[18]As host usually has a large energy gap, the vibration of singlet excitons on the TADF guest are generally well restricted.[19]Recent studies have found that the production of TADF can be assisted by intramolecular or intermolecular hydrogen bonds,[20,21]which indicates that intra-or intermolecular interactions can also promote the formation of TADF,while lack of theoretical verification made it difficult to be understood. Therefore,theoretical studies of the photophysical properties of TADF molecules with intra- or intermolecular hydrogen bonds will contribute to the understanding of the TADF luminescence mechanism. In this paper, we focus on 4-(4-((4-methoxyphenyl)sulfonyl) phenyl) dibenzo[b,d]furan (SOBF-OMe) and 4-(4-(phenylsulfonyl)phenyl)dibenzo[b,d]furan (SOBF-H) (as shown in Fig. 1(a), Fig. S1(a)) reported by Chi’s group.[22]Therein, the TADF is observed for the SOBF-OMe in crystalline state, while no TADF is observed for it in solvent or for SOBF-H in crystalline state. It is deduced that the TADF for SOBF-OMe is generated through intermolecular hydrogen bond. To verify the generation mechanism of TADF in SOBF-OMe, adopting the quantum mechanics and molecular mechanics (QM/MM) method to simulated the lightemitting property of two molecules in crystalline state.[23]Both monomers and dimers are used as models to exploring the origin of TADF.Our results will help to better understand the TADF phenomenon in SOBF-OME crystals, and expand the luminescence mechanism of TADF molecules, thus promoting the development of new multifunctional luminescent TADF molecules.

    2. Theoretical methods

    In this work, density functional theory (DFT) was used to optimize the ground state (S0). We used the DFT method to optimize the ground state structures of molecules SOBFOMe and SOBF-H.In addition,the excited state properties of TADF molecules directly determine the luminescence properties, the time-dependent density functional theory (TD-DFT)to optimize the excited states. The frequency calculation of the optimized structure confirms the stability of the obtained geometric structure. In order to simulate the solvent of toluene,we used the polarizable continuum model(PCM),which can accurately predict the effect of solvents on TADF molecules.[24–26]The combination of quantum mechanics and molecular mechanics(QM/MM)is used to simulate the properties of molecules in the aggregation state which has been proven reliable.[27–30]Meanwhile,we use a two-layer ONIOM model(as shown in Fig.1(b),and Fig.S1(b))with the center as the high layer and the surrounding as the low layer,where the high layer is calculated using the QM method and the low layer is calculated using the MM method. Further more,we use the universal force field(UFF)and TD-DFT methods for the components of MM and QM,respectively.[31–33]Three functionals(TPSSH, B3LYP, BMK) and two range separation functionals(CAM-B3LYP,ωB97XD)are tested and the 6-31G(d)basis set is used (as listed in Table 1). For dimers, the above functional combined with the empirical dispersion correlation(GD3)is calculated.[34]The calculated emission wavelengths of SOBF-OMe and SOBF-H in the solid phase calculated with the B3LYP functional are found to be similar to the experimental results.Therefore,the subsequent calculations were carried out at the level of B3LYP/6-31G(d). Perform the above calculation process in the Gaussian 16 program.[35]

    Table 1. Emission wavelengths calculated value with different functionals for SOBF-H and SOBF-OMe in aggregation state(in unit nm).

    Fig.1. (a)Chemical structures of SOBF-OMe. (b)ONIOM model of SOBFOMe: the center molecule is the high layer,and the others molecules are the low layer.

    For the radiative decay rate, the Einstein’s spontaneous emission formula is

    whereistands for the atomic ordinal number and ?ρrepresents the gradient vector;abs(?ρ)is that every component of?ρvector takes the absolute value.

    Besides, energy decomposition analysis based on the molecular force field is performed to characterize various weak interactions.[41]Most molecular force fields use the form of pair potential to calculate the electrostatic,exchange repulsion and dispersion attraction parts of the non-bonded interaction between atoms.[42]The relevant formula applied is as follows:

    where A and B are the atomic labels,qstands for the atomic charge,ris the distance between atoms,εis the depth of the van der Waals potential well, andR0is the non-bonded distance between atoms.

    3. Results and discussion

    The light-emitting properties of monomers are studied first to check its possible contribution for TADF.Based on the initial structure in crystal, we optimized the geometry of the molecule in the ground state(S0),the first singlet excited state(S1), and the triplet excited state (TN) in the toluene and aggregation state respectively. At the same time,the root-meansquare displacement (RMSD) method in Multiwfn is combined to show the structural differences between the different states(ground and excited). Moreover,due to different restriction conditions, there is a difference between the optimized molecular geometry in toluene and the optimized molecular geometry in the aggregate state as shown in Fig. 2. It can also be found that there are significant differences between the dibenzofuran and benzene rings. The RMSD values in toluene is much larger than that in aggregation state, indicating that intermolecular interaction could limit the motion of the units in aggregation when they are excited. For TADF molecules,the up-conversion process is closely related to the energy difference between S1and T1(?EST).

    Therefore, the adiabatic excitation energies for SOBFOMe in toluene and aggregation state are calculated respectively (see Fig. 3). Further more, the calculated ?ESTin toluene and aggregation state is 1.22 eV and 1.08 eV respectively, indicating that ?ESTcan be reduced by intermolecular interaction. It also indicates that it is difficult for them to realize up-conversion from T1to S1. In addition,the comparison of excited state energy levels in toluene shows that T2,T3,T4,and T5are not only lower than S1but also close to S1in terms of energy. It is suggested that not only T1but also T2, T3,T4,and T5may participate in ISC and RISC processes. In the aggregation state(as shown in Fig.3(b)),we find that the energy of S1is 0.01 eV lower than that of T5. The higher triplet states that close to S1in energy may favor the ISC process,which would be disadvantage to the emission. By comparing the energy structures of molecules in toluene and aggregation state,it is concluded that the interaction between molecules in aggregation state will affect the energy level structure and the ISC and RISC processes of the excited state.

    Fig. 2. Geometry difference between S (blue), S1 (red), and T1 (black) in toluene[(a),(b),(c)]and in aggregation state[(d),(e),(f)].

    Fig.3. Energy levels for SOBF-OMe in toluene(a)and in aggregation state(b)respectively.

    In order to further elucidate the excited state transition properties of SOBF-OMe,we analyzed the natural transition orbital(NTO)and the corresponding transition properties of SOBF-OMe(as shown in Fig.4). Through the transformation of molecular orbital,we qualitatively describe the mechanism of electron excitation.[43,44]The local excited(LE)state(with the LE components are 75%–100%)predicts a large orbital overlap. While the charge transfer(CT)state with strong charge transfer properties(with the LE components are 0%–40%)leads to a small S1–T1energy gap due to significant orbital separation. The hybridized local and charge transfer(HLCT)excited state(with the LE components are 40%–75%)is the LE and CT are mixed,with both LE and CT properties.[45–47]Figures 4(a)and 4(b)show the NTOs of S1and TNobtained by Multiwfn in toluene and aggregated state. We can intuitively see that S1is a typical hybridized local and charge-transfer excited state,there is significant overlap in the conjugation chain between electron and hole,whether it is in toluene or in aggregation state. However,the transitions of the triplet state are mainly distributed in the benzene ring and the dibenzofuran group,except for the T3state. The aggregation state has little effect on the transition properties,compared with that in toluene.

    Fig.4. NTOs for S1 and TN sates of SOBF-OMe for monomer in toluene(a)and aggregation state(b)respectively(isovalue is 0.02).

    Based on the energy levels of excited states,the ISC processes from S1to TNshould be quite possible in both toluene and aggregation state. The ISC process is not only related to?EST,but also to the spin–orbit coupling(SOC)constant. Table 2 lists the SOC values in toluene and aggregation state,calculated with the quadratic response function method in Dalton package.[48]In aggregation state, the ISC rate between S1and T1(2.03×107s?1) is greater than that in toluene(8.89×105s?1), may be induced by the small SOC constant in toluene. The RISC rates are also calculated based on the SOC values calculated in triplet states. The values are all quite small due to the large energy gap between them. Although the RISC values from T5to S1is comparable to the ISC value,it is meaningless since little excitons would distribute on T5.It proves that it is impossible for the RISC process to happen in the single molecule. Moreover, the radiation decay rate in toluene is 4.43×108s?1, which is larger than that in aggregate state (5.23×107s?1). The main reason should be that the energy difference between S1and S0in aggregate state(3.69 eV) is smaller than that of toluene (3.75 eV). The nonradiation rate in aggregation(1.06×1011s?1)is a little lower than that in toluene(2.92×1011s?1),which may be induced by the confinement of the surroundings.

    Table 2. Spin–orbit coupling (SOC) constant, intersystem crossing (ISC)rate,and reverse intersystem crossing(RISC)rate between S1 and TN.

    The photophysical properties for SOBF-H are also studied in both toluenet and aggregation state. From the energy level of the excited state(see Fig.S2),we find that the excited state energy level of SOBF-H is similar to the SOBF-OMe molecule. In aggregation state, the energy gap between S1and T1(1.18 eV) is slightly larger than that for SOBF-OMe(1.08 eV).The transition orbitals change slightly between the two molecules (see Fig. S3), where the LE component for SOBF-H decreases in S1and increases in T1. In addition,the SOC constant between S1and T5in aggregate state is decreased to (0.368 cm?1) and the ISC rate is increased to(4.30×107s?1) (see Table S1). The RISC rate between S1and T5of SOBF-H(4.44×101s?1)is so small, it is difficult to produce thermally activated delayed fluorescence.

    Fig.5. Intermolecular interactions for several dimers described[SOBF-H(a)and SOBF-OMe(b)]through the IGM method.

    In experiment, TADF was found for the SOBF-OMe in aggregation. Our calculation results of single molecules indicates that TADF could not be contributed by single molecules.Thus dimers which may contribute to TADF emission are studied. Based on the crystal structure of SOBF-H and SOBFOMe,several dimers are studied,and the interaction between molecules was analyzed by the IGM method (see Fig. 5).Based on the energy decomposition of the AMBER force field, the interaction energy between neighboring molecules is shown in Table 3. For SOBF-OMe it can be seen that the intermolecular interaction of dimer-2 and dimer-4 is weaker,and the intermolecular interaction of dimer-1 is the strongest.Through further analysis, it is found that the dispersion between the two molecules dominates the intermolecular interaction. In addition,there is aπ–πinteraction in dimer-5,it is mainly theπ–πinteraction between dibenzofuran groups. In the same way,π–πinteraction also exists in dimer-3,and theπ–πstacking exists in the donor benzene ring. For SOBF-H the intermolecular interaction of dimer-1 and dimer-2 is weak.Through further analysis,we find that the dispersion between the two molecules dominates the intermolecular interaction.Using IGM analysis,it is found that SOBF-OMe dimer-2 and dimer-4 have obvious intermolecular hydrogen bond interactions.It is also found that dimer-3 and dimer-5 have significantπ–πinterraction. Then several pairs of dimers for SOBF-H and SOBF-OMe are optimized with the QM/MM model. The emission wavelengths and the S1–T1energy gap for all the dimers are shown in Table 4. It can be seen that the calculated emission wavelengths of dimer-2 and dimer-4 for SOBF-OMe consistent with the experimental results of TADF.In addition,the ?ESTof S1and T1in dimer-2 is also much smaller than other dimers, which also predicts the possible up-conversion from triplest states to S1. The NTOs of SOBF-H and SOBFOMe dimer are also analyzed (see Fig. S4). It is found that both two dimers of SOBF-H have delocalized NTOs with electron distributed on both two molecules and significant overlap can be found for transition orbitals. However, the NTOs for dimers except for dimer-5 of SOBF-OMe indicate that electrons transit from one molecule to the other when they are excited. Although dimer-5 has strongπ–πinteraction, it is meaningless to the TADF emission. It favors the emission of phosphorescence.For the energy diagram of excited states,we can find that there are several states lying between S1and T1,which may favor the ISC process and the emission of phosphorescence(see Figs.S5 and S6). The calculated wavelength of T1for all the dimers is also in consistent with the experimental result,which further illustrates that dimers except those with H-bond may favor the phosphorescence emission(see Table S2). Therefore,we believe that the intermolecular H-bond could induce smaller S1–T1energy gap,thus the TADF could be generated. Dimers withπ–πinteraction would favor the phosphorescence emission.

    Table 3. Intermolecular interaction energy including electronic, repulsion,and dispersion interactions in several dimers studied.

    Table 4.Calculated fluorescence wavelength,?EST and oscillator strength of SOBF-OMe and SOBF-H for dimer based on their single crystal structures using TD-DFT method.

    4. Conclusion

    The excited state properties and decay rates of SOBFOMe in toluene and aggregation state are studied respectively.The results show that the intermolecular interaction could limit the geometric change of molecules when they are excited in aggregation state. The energy gaps between S1and T1are reduced to some extent, while the transition properties have little changed. Theoretical simulation of the single molecular emission in toluene and in aggregation state agrees well the prompt fluorescence and phosphorescence. It is also indicated that TADF could not be generated by single SOBF-OMe molecules but dimers with intermolecular H-bond in crystal.In addition, emission properties of SOBF-H are also investigated for comparison,which shows that dimers without intermolecular H-bond are unable to generate TADF.Our calculation results confirms experimental results that TADF could be induced by dimers with intermolecular H-bond,although that single molecules with large S1–T1energy gap have no contribution to it. The results would favor the development of new type light-emitting molecules with TADF emission.

    猜你喜歡
    飛雁張凱麗麗
    茄子
    快點(diǎn) 快點(diǎn)
    基于改進(jìn)Mask RCNN的俯視群養(yǎng)豬圖像的分割
    軟件(2020年3期)2020-04-20 01:44:52
    畫一畫
    減蘭·秋游王家河
    Pressure characteristics of hydrodynamic cavitation reactor due to the combination of Venturi tubes with multi-orifice plates *
    荷塘秋色
    飛雁
    憶長征
    I love my family
    欧美乱妇无乱码| 99国产精品一区二区蜜桃av| 18禁裸乳无遮挡免费网站照片 | 中亚洲国语对白在线视频| 热99re8久久精品国产| 人人澡人人妻人| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美国产一区二区入口| 久久精品影院6| 国产成人影院久久av| 亚洲成国产人片在线观看| 精品高清国产在线一区| 亚洲 国产 在线| 长腿黑丝高跟| 操出白浆在线播放| 热re99久久国产66热| 身体一侧抽搐| 91精品三级在线观看| 亚洲人成电影观看| 我的亚洲天堂| 国产一区二区三区视频了| 久久精品国产清高在天天线| 在线观看免费日韩欧美大片| 欧美一级a爱片免费观看看 | 老司机在亚洲福利影院| 午夜福利一区二区在线看| av视频在线观看入口| 国产成人欧美在线观看| 美女国产高潮福利片在线看| 欧美在线黄色| 日本 欧美在线| 一卡2卡三卡四卡精品乱码亚洲| 久久精品亚洲精品国产色婷小说| 巨乳人妻的诱惑在线观看| 亚洲九九香蕉| 操美女的视频在线观看| 99国产精品一区二区三区| 亚洲少妇的诱惑av| 欧美成人性av电影在线观看| 亚洲国产精品久久男人天堂| 国产精品亚洲一级av第二区| 久热这里只有精品99| 欧美激情高清一区二区三区| 久久草成人影院| 又黄又粗又硬又大视频| 两个人免费观看高清视频| 99国产精品一区二区蜜桃av| 亚洲天堂国产精品一区在线| 999精品在线视频| 1024香蕉在线观看| 又大又爽又粗| 国产99久久九九免费精品| 国产成人欧美| 成人亚洲精品一区在线观看| 亚洲成国产人片在线观看| 又黄又粗又硬又大视频| 欧美黑人精品巨大| 久久九九热精品免费| 两个人看的免费小视频| 国产精品综合久久久久久久免费 | www.熟女人妻精品国产| 一区二区三区激情视频| 久久久久久国产a免费观看| av福利片在线| 国产精品亚洲美女久久久| 午夜福利18| 国内毛片毛片毛片毛片毛片| 精品欧美一区二区三区在线| 欧美精品亚洲一区二区| 亚洲熟妇中文字幕五十中出| 国产熟女午夜一区二区三区| 韩国av一区二区三区四区| 最好的美女福利视频网| 老鸭窝网址在线观看| 国产精品 欧美亚洲| av免费在线观看网站| 一区二区日韩欧美中文字幕| tocl精华| 亚洲国产日韩欧美精品在线观看 | av电影中文网址| 人人澡人人妻人| 看免费av毛片| 亚洲色图综合在线观看| 97人妻天天添夜夜摸| 波多野结衣高清无吗| 亚洲视频免费观看视频| 免费女性裸体啪啪无遮挡网站| 在线观看免费日韩欧美大片| 老司机午夜福利在线观看视频| 国产99久久九九免费精品| 亚洲av五月六月丁香网| 日本免费一区二区三区高清不卡 | 国产亚洲欧美精品永久| 黄色a级毛片大全视频| 不卡av一区二区三区| 欧美日本亚洲视频在线播放| 高清黄色对白视频在线免费看| 亚洲男人的天堂狠狠| 一二三四在线观看免费中文在| 国产一卡二卡三卡精品| 国产成人av教育| 精品久久久精品久久久| 黄色女人牲交| 别揉我奶头~嗯~啊~动态视频| 黄色毛片三级朝国网站| 大型av网站在线播放| www.精华液| 久久香蕉精品热| 亚洲成av片中文字幕在线观看| 午夜精品久久久久久毛片777| 日日夜夜操网爽| 神马国产精品三级电影在线观看 | 美女高潮到喷水免费观看| 人人妻人人澡人人看| 国产熟女xx| 巨乳人妻的诱惑在线观看| 母亲3免费完整高清在线观看| 正在播放国产对白刺激| 天天躁夜夜躁狠狠躁躁| 欧美在线一区亚洲| 欧美一级a爱片免费观看看 | 国产高清视频在线播放一区| 制服丝袜大香蕉在线| 国产激情久久老熟女| 在线观看免费视频日本深夜| 视频区欧美日本亚洲| 久久久久久亚洲精品国产蜜桃av| 免费无遮挡裸体视频| 国产一卡二卡三卡精品| 操美女的视频在线观看| 一边摸一边做爽爽视频免费| 90打野战视频偷拍视频| 亚洲第一电影网av| 伊人久久大香线蕉亚洲五| 制服丝袜大香蕉在线| 午夜久久久在线观看| 亚洲熟女毛片儿| 国产黄a三级三级三级人| 97超级碰碰碰精品色视频在线观看| 免费在线观看视频国产中文字幕亚洲| 欧美午夜高清在线| av片东京热男人的天堂| 97人妻天天添夜夜摸| 亚洲第一青青草原| 国产亚洲欧美98| 亚洲av五月六月丁香网| 色综合站精品国产| 欧美国产日韩亚洲一区| 99国产极品粉嫩在线观看| 亚洲av熟女| 成人18禁高潮啪啪吃奶动态图| 成人av一区二区三区在线看| cao死你这个sao货| 中文字幕av电影在线播放| 村上凉子中文字幕在线| 日韩高清综合在线| 一本综合久久免费| 人人妻人人爽人人添夜夜欢视频| 狂野欧美激情性xxxx| 又紧又爽又黄一区二区| 女性生殖器流出的白浆| 国内久久婷婷六月综合欲色啪| 国产一级毛片七仙女欲春2 | 欧美国产日韩亚洲一区| 国产男靠女视频免费网站| 亚洲黑人精品在线| 国产99久久九九免费精品| 亚洲成人精品中文字幕电影| 久9热在线精品视频| 成人永久免费在线观看视频| 十八禁网站免费在线| 日本撒尿小便嘘嘘汇集6| 免费无遮挡裸体视频| 一二三四社区在线视频社区8| 老司机午夜十八禁免费视频| 欧美日韩精品网址| 日韩视频一区二区在线观看| 国产aⅴ精品一区二区三区波| www.自偷自拍.com| 久久精品成人免费网站| 精品卡一卡二卡四卡免费| 日韩精品免费视频一区二区三区| 热99re8久久精品国产| 手机成人av网站| 啦啦啦 在线观看视频| 可以免费在线观看a视频的电影网站| 亚洲熟女毛片儿| or卡值多少钱| 人人澡人人妻人| 亚洲美女黄片视频| 国产亚洲av嫩草精品影院| 国产亚洲精品综合一区在线观看 | 亚洲国产精品999在线| 久久久久国内视频| 超碰成人久久| 天堂动漫精品| 日韩欧美在线二视频| 日韩免费av在线播放| 国产精品久久久久久人妻精品电影| 久久人妻av系列| 国产精品影院久久| 男人操女人黄网站| 九色亚洲精品在线播放| 国产av精品麻豆| 最新美女视频免费是黄的| 人人妻人人澡欧美一区二区 | 久久人人97超碰香蕉20202| 69av精品久久久久久| 日日爽夜夜爽网站| 18禁国产床啪视频网站| 99久久综合精品五月天人人| 日韩欧美国产一区二区入口| 99riav亚洲国产免费| 亚洲国产日韩欧美精品在线观看 | 午夜精品在线福利| 国产伦一二天堂av在线观看| 亚洲成av片中文字幕在线观看| 中文字幕色久视频| 97碰自拍视频| 91国产中文字幕| 亚洲专区字幕在线| 人人妻人人爽人人添夜夜欢视频| www.精华液| 伊人久久大香线蕉亚洲五| 午夜福利在线观看吧| 99久久99久久久精品蜜桃| 一进一出好大好爽视频| 亚洲欧美精品综合久久99| 悠悠久久av| 啪啪无遮挡十八禁网站| 一本综合久久免费| 亚洲中文av在线| 午夜久久久在线观看| 久久欧美精品欧美久久欧美| 国产熟女午夜一区二区三区| 777久久人妻少妇嫩草av网站| 午夜福利免费观看在线| 亚洲欧美日韩高清在线视频| avwww免费| 国产成人av教育| 黑人巨大精品欧美一区二区mp4| 俄罗斯特黄特色一大片| 窝窝影院91人妻| 少妇被粗大的猛进出69影院| 日本vs欧美在线观看视频| 午夜两性在线视频| 色精品久久人妻99蜜桃| 又黄又粗又硬又大视频| 国产精品自产拍在线观看55亚洲| 日日摸夜夜添夜夜添小说| 午夜福利一区二区在线看| 国产97色在线日韩免费| 一区二区三区高清视频在线| 高清毛片免费观看视频网站| 97人妻天天添夜夜摸| 给我免费播放毛片高清在线观看| 国产乱人伦免费视频| or卡值多少钱| 一级毛片高清免费大全| 亚洲熟妇中文字幕五十中出| xxx96com| 18禁国产床啪视频网站| 亚洲avbb在线观看| 在线视频色国产色| e午夜精品久久久久久久| 不卡一级毛片| 一区二区三区精品91| 欧美精品啪啪一区二区三区| av在线天堂中文字幕| 我的亚洲天堂| 午夜福利,免费看| 成人亚洲精品av一区二区| 自线自在国产av| 一区二区三区精品91| 美女国产高潮福利片在线看| 日本a在线网址| 色综合婷婷激情| 欧美黑人欧美精品刺激| 久久伊人香网站| 亚洲国产毛片av蜜桃av| 欧美色欧美亚洲另类二区 | 操美女的视频在线观看| 亚洲午夜精品一区,二区,三区| 国产xxxxx性猛交| 成人18禁在线播放| 两个人看的免费小视频| 精品福利观看| 国产精品免费一区二区三区在线| 69精品国产乱码久久久| 亚洲午夜精品一区,二区,三区| 人人妻人人爽人人添夜夜欢视频| 婷婷丁香在线五月| 亚洲中文字幕一区二区三区有码在线看 | 一本久久中文字幕| 国产精品一区二区在线不卡| 一区二区三区高清视频在线| 91av网站免费观看| 午夜成年电影在线免费观看| 久久精品91蜜桃| 90打野战视频偷拍视频| 精品久久久久久成人av| 欧美日韩黄片免| 国产精品自产拍在线观看55亚洲| 欧洲精品卡2卡3卡4卡5卡区| 精品国产超薄肉色丝袜足j| 久久精品人人爽人人爽视色| 色综合欧美亚洲国产小说| 在线观看免费视频日本深夜| 欧美日韩中文字幕国产精品一区二区三区 | 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产高清在线一区二区三 | 国产精品一区二区三区四区久久 | 成年女人毛片免费观看观看9| 波多野结衣高清无吗| 一级作爱视频免费观看| 女人被躁到高潮嗷嗷叫费观| 99香蕉大伊视频| 国产午夜福利久久久久久| 18美女黄网站色大片免费观看| 天天一区二区日本电影三级 | 国产视频一区二区在线看| 日韩av在线大香蕉| 一本大道久久a久久精品| 露出奶头的视频| 日日爽夜夜爽网站| 国产精品日韩av在线免费观看 | 制服丝袜大香蕉在线| 亚洲国产欧美网| 琪琪午夜伦伦电影理论片6080| 精品国内亚洲2022精品成人| 变态另类丝袜制服| 国产精品野战在线观看| 一二三四社区在线视频社区8| 久久国产精品人妻蜜桃| 午夜a级毛片| 久久草成人影院| 久久人人精品亚洲av| aaaaa片日本免费| ponron亚洲| 亚洲精品久久国产高清桃花| 亚洲成人免费电影在线观看| 在线观看免费日韩欧美大片| 国产一区二区三区视频了| 一边摸一边抽搐一进一小说| 色老头精品视频在线观看| 狠狠狠狠99中文字幕| 91九色精品人成在线观看| 露出奶头的视频| 波多野结衣巨乳人妻| 男女床上黄色一级片免费看| 欧美最黄视频在线播放免费| 国产午夜精品久久久久久| 成人18禁高潮啪啪吃奶动态图| 日韩欧美一区视频在线观看| 亚洲欧美精品综合久久99| 美女免费视频网站| 欧美另类亚洲清纯唯美| 中文字幕人成人乱码亚洲影| 法律面前人人平等表现在哪些方面| 日韩 欧美 亚洲 中文字幕| 国内精品久久久久久久电影| 日韩欧美国产一区二区入口| 欧美丝袜亚洲另类 | 啪啪无遮挡十八禁网站| bbb黄色大片| 99精品在免费线老司机午夜| 午夜两性在线视频| 岛国视频午夜一区免费看| 日韩有码中文字幕| 超碰成人久久| 国产一区二区三区综合在线观看| 欧美丝袜亚洲另类 | 精品国产乱子伦一区二区三区| 啦啦啦免费观看视频1| 精品欧美国产一区二区三| 国产精品亚洲美女久久久| 男女下面进入的视频免费午夜 | 一个人观看的视频www高清免费观看 | 国产成人精品久久二区二区91| 国内精品久久久久精免费| 免费高清视频大片| 中文字幕高清在线视频| 日韩视频一区二区在线观看| 日韩国内少妇激情av| 久久精品国产亚洲av高清一级| 亚洲国产精品合色在线| 亚洲五月天丁香| 激情在线观看视频在线高清| 母亲3免费完整高清在线观看| 亚洲专区国产一区二区| 欧美成狂野欧美在线观看| 一区二区三区激情视频| 在线观看日韩欧美| 精品人妻1区二区| 成人国语在线视频| 97人妻精品一区二区三区麻豆 | 在线播放国产精品三级| 深夜精品福利| 看片在线看免费视频| 国产一区二区激情短视频| 夜夜看夜夜爽夜夜摸| 禁无遮挡网站| 18禁观看日本| 精品一区二区三区四区五区乱码| 国产精品久久久av美女十八| 法律面前人人平等表现在哪些方面| 日韩欧美一区二区三区在线观看| 欧美一级a爱片免费观看看 | 少妇被粗大的猛进出69影院| 色尼玛亚洲综合影院| 国产免费av片在线观看野外av| 校园春色视频在线观看| 亚洲视频免费观看视频| 日日夜夜操网爽| 亚洲人成77777在线视频| 美国免费a级毛片| 黄频高清免费视频| 亚洲色图av天堂| 亚洲精华国产精华精| 欧美成人午夜精品| 如日韩欧美国产精品一区二区三区| 一边摸一边做爽爽视频免费| 一个人观看的视频www高清免费观看 | 久久伊人香网站| 日本欧美视频一区| 免费在线观看黄色视频的| 变态另类成人亚洲欧美熟女 | 久久精品亚洲精品国产色婷小说| 亚洲精品国产精品久久久不卡| 黑人欧美特级aaaaaa片| 精品国产一区二区三区四区第35| 99久久国产精品久久久| 在线观看www视频免费| 亚洲熟妇中文字幕五十中出| 午夜成年电影在线免费观看| 日韩成人在线观看一区二区三区| 人人妻人人澡人人看| 老汉色∧v一级毛片| 午夜福利在线观看吧| 夜夜夜夜夜久久久久| 夜夜看夜夜爽夜夜摸| 99精品久久久久人妻精品| 亚洲av成人不卡在线观看播放网| 欧美一级毛片孕妇| 黄色女人牲交| 脱女人内裤的视频| 俄罗斯特黄特色一大片| 国产精品99久久99久久久不卡| 男人的好看免费观看在线视频 | 国产亚洲av高清不卡| 亚洲成av人片免费观看| www.自偷自拍.com| 色av中文字幕| 99精品欧美一区二区三区四区| 日日爽夜夜爽网站| 性色av乱码一区二区三区2| netflix在线观看网站| 99精品欧美一区二区三区四区| 国产午夜精品久久久久久| 亚洲男人的天堂狠狠| av天堂在线播放| av福利片在线| 麻豆成人av在线观看| 日韩av在线大香蕉| 国产精品野战在线观看| 国产精品免费一区二区三区在线| 成人亚洲精品av一区二区| 精品久久久久久,| 国产麻豆成人av免费视频| 国产一级毛片七仙女欲春2 | 嫁个100分男人电影在线观看| 九色亚洲精品在线播放| 久久久久久久精品吃奶| 757午夜福利合集在线观看| av在线天堂中文字幕| 精品卡一卡二卡四卡免费| 琪琪午夜伦伦电影理论片6080| 窝窝影院91人妻| 国产欧美日韩精品亚洲av| 黄片播放在线免费| 91麻豆精品激情在线观看国产| 色尼玛亚洲综合影院| 久久婷婷人人爽人人干人人爱 | 丁香欧美五月| 国产av一区在线观看免费| 国产午夜精品久久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 嫩草影视91久久| 日本一区二区免费在线视频| 女人被躁到高潮嗷嗷叫费观| 香蕉国产在线看| 亚洲电影在线观看av| 一本久久中文字幕| 国产精品亚洲一级av第二区| 一边摸一边抽搐一进一小说| 777久久人妻少妇嫩草av网站| 淫秽高清视频在线观看| 黄色毛片三级朝国网站| 日韩三级视频一区二区三区| 精品国内亚洲2022精品成人| 一二三四社区在线视频社区8| 高潮久久久久久久久久久不卡| 日本精品一区二区三区蜜桃| 人人澡人人妻人| 天堂动漫精品| 高潮久久久久久久久久久不卡| 免费高清视频大片| 国产99久久九九免费精品| АⅤ资源中文在线天堂| 黄色a级毛片大全视频| www.999成人在线观看| 淫妇啪啪啪对白视频| 深夜精品福利| 高潮久久久久久久久久久不卡| 亚洲av成人av| 久久 成人 亚洲| 亚洲av电影在线进入| 欧美乱码精品一区二区三区| а√天堂www在线а√下载| 黄色成人免费大全| 国产色视频综合| 一进一出抽搐gif免费好疼| 亚洲成av人片免费观看| 99久久久亚洲精品蜜臀av| 国产极品粉嫩免费观看在线| 在线观看免费视频网站a站| 国产精品一区二区免费欧美| 欧美黑人欧美精品刺激| 免费一级毛片在线播放高清视频 | 日韩中文字幕欧美一区二区| 首页视频小说图片口味搜索| 黄片小视频在线播放| 亚洲一区二区三区不卡视频| 亚洲人成电影观看| 村上凉子中文字幕在线| 国产成人av激情在线播放| 黄频高清免费视频| 国产成人欧美| 亚洲精品国产一区二区精华液| 国产一区二区三区综合在线观看| 色老头精品视频在线观看| av福利片在线| 两个人免费观看高清视频| 色综合婷婷激情| 又大又爽又粗| 亚洲自拍偷在线| 黄色a级毛片大全视频| 亚洲精品中文字幕一二三四区| 亚洲精品中文字幕在线视频| 91麻豆av在线| 欧美激情极品国产一区二区三区| 国语自产精品视频在线第100页| 国产麻豆成人av免费视频| 国产免费av片在线观看野外av| 怎么达到女性高潮| 久久久国产精品麻豆| 好看av亚洲va欧美ⅴa在| 香蕉丝袜av| 成人国产综合亚洲| 久久精品成人免费网站| 国产一级毛片七仙女欲春2 | 国产精品亚洲av一区麻豆| 亚洲国产看品久久| www.熟女人妻精品国产| 99国产精品免费福利视频| 99国产精品99久久久久| 极品教师在线免费播放| 成人国产综合亚洲| 高清毛片免费观看视频网站| 午夜视频精品福利| 国产人伦9x9x在线观看| 亚洲av成人av| 亚洲午夜理论影院| 日日干狠狠操夜夜爽| 亚洲专区国产一区二区| tocl精华| 午夜免费成人在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 免费av毛片视频| 99精品在免费线老司机午夜| 大陆偷拍与自拍| 午夜激情av网站| 国产色视频综合| 亚洲av成人不卡在线观看播放网| 大码成人一级视频| 国产免费av片在线观看野外av| 高潮久久久久久久久久久不卡| 久久精品人人爽人人爽视色| 又黄又爽又免费观看的视频| 国产亚洲av嫩草精品影院| 久久人人97超碰香蕉20202| 国产区一区二久久| 在线视频色国产色| 国内久久婷婷六月综合欲色啪| 99精品欧美一区二区三区四区| 精品久久久久久久人妻蜜臀av | √禁漫天堂资源中文www| av有码第一页| 亚洲中文字幕日韩| 大码成人一级视频| 亚洲无线在线观看| 国产99白浆流出| 法律面前人人平等表现在哪些方面| av在线天堂中文字幕| 亚洲国产欧美日韩在线播放| 欧美国产日韩亚洲一区| 国内毛片毛片毛片毛片毛片| 亚洲精品一卡2卡三卡4卡5卡| 一区在线观看完整版| 久久久国产欧美日韩av| 久久伊人香网站| 国产一区二区在线av高清观看| 91在线观看av| 亚洲七黄色美女视频| 一边摸一边做爽爽视频免费|