• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-OMe?

    2021-12-22 06:44:02MuZhenLi李慕臻FeiYanLi李飛雁QunZhang張群KaiZhang張凱YuZhiSong宋玉志JianZhongFan范建忠ChuanKuiWang王傳奎andLiLiLin藺麗麗
    Chinese Physics B 2021年12期
    關(guān)鍵詞:飛雁張凱麗麗

    Mu-Zhen Li(李慕臻), Fei-Yan Li(李飛雁), Qun Zhang(張群), Kai Zhang(張凱), Yu-Zhi Song(宋玉志),Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王傳奎), and Li-Li Lin(藺麗麗)

    Shandong Key Laboratory of Medical Physics and Image Processing&Shandong Provincial Engineering and Technical Center of Light Manipulations,School of Physics and Electronics,Shandong Normal University,Jinan 250358,China

    Keywords: organic light-emitting diodes,thermally activated delayed fluorescence,intermolecular hydrogen bond,decay rates

    1. Introduction

    Compared with the liquid crystal display(LCD),organic light-emitting diodes(OLEDs)display,which are thinner provide better image quality and contrast.[1]On the basis of the spin-statistics,the ratio of singlet excitons produced in organic electroluminescent materials is one-quarter, and the ratio of triplet excitons is three-quarters.[2,3]For conventional fluorescent OLEDs, the internal quantum efficiency (IQE) is much lower than other OLDEs due to the unavailability of triplet excitons. Since OLEDs with thermally activated delayed fluorescence (TADF) emitters which can obtain luminous singlet and triplet excited states through an effective reverse intersystem crossover (RISC) process were reported to achieve nearly 100%exciton efficiency,TADF materials have attracted widespread attention.[4–6]Although the current application of TADF-OLEDs is still far inferior to phosphorescent OLEDs,due to the high cost and limited resources of phosphorescent materials, TADF-OLEDs still has a lot of room for development as next-generation electroluminescent material.[7–11]For TADF molecules, the most common structure is the donor–acceptor (D–A) or D–A–D configuration. The separation of highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital(LUMO)relies on such twisted,spiral or bulky connection structures, which will effectively reduce the overlap between HOMO and LUMO,and thus reduce the energy gap between S1and T1(?EST).[12–14]There is also TADF produced in the host–guest doped system.[15–17]The characteristics of the host can directly affect the energy of the charge transfer (CT) state and the the ?ESTof the singlet state and the triplet state.[18]As host usually has a large energy gap, the vibration of singlet excitons on the TADF guest are generally well restricted.[19]Recent studies have found that the production of TADF can be assisted by intramolecular or intermolecular hydrogen bonds,[20,21]which indicates that intra-or intermolecular interactions can also promote the formation of TADF,while lack of theoretical verification made it difficult to be understood. Therefore,theoretical studies of the photophysical properties of TADF molecules with intra- or intermolecular hydrogen bonds will contribute to the understanding of the TADF luminescence mechanism. In this paper, we focus on 4-(4-((4-methoxyphenyl)sulfonyl) phenyl) dibenzo[b,d]furan (SOBF-OMe) and 4-(4-(phenylsulfonyl)phenyl)dibenzo[b,d]furan (SOBF-H) (as shown in Fig. 1(a), Fig. S1(a)) reported by Chi’s group.[22]Therein, the TADF is observed for the SOBF-OMe in crystalline state, while no TADF is observed for it in solvent or for SOBF-H in crystalline state. It is deduced that the TADF for SOBF-OMe is generated through intermolecular hydrogen bond. To verify the generation mechanism of TADF in SOBF-OMe, adopting the quantum mechanics and molecular mechanics (QM/MM) method to simulated the lightemitting property of two molecules in crystalline state.[23]Both monomers and dimers are used as models to exploring the origin of TADF.Our results will help to better understand the TADF phenomenon in SOBF-OME crystals, and expand the luminescence mechanism of TADF molecules, thus promoting the development of new multifunctional luminescent TADF molecules.

    2. Theoretical methods

    In this work, density functional theory (DFT) was used to optimize the ground state (S0). We used the DFT method to optimize the ground state structures of molecules SOBFOMe and SOBF-H.In addition,the excited state properties of TADF molecules directly determine the luminescence properties, the time-dependent density functional theory (TD-DFT)to optimize the excited states. The frequency calculation of the optimized structure confirms the stability of the obtained geometric structure. In order to simulate the solvent of toluene,we used the polarizable continuum model(PCM),which can accurately predict the effect of solvents on TADF molecules.[24–26]The combination of quantum mechanics and molecular mechanics(QM/MM)is used to simulate the properties of molecules in the aggregation state which has been proven reliable.[27–30]Meanwhile,we use a two-layer ONIOM model(as shown in Fig.1(b),and Fig.S1(b))with the center as the high layer and the surrounding as the low layer,where the high layer is calculated using the QM method and the low layer is calculated using the MM method. Further more,we use the universal force field(UFF)and TD-DFT methods for the components of MM and QM,respectively.[31–33]Three functionals(TPSSH, B3LYP, BMK) and two range separation functionals(CAM-B3LYP,ωB97XD)are tested and the 6-31G(d)basis set is used (as listed in Table 1). For dimers, the above functional combined with the empirical dispersion correlation(GD3)is calculated.[34]The calculated emission wavelengths of SOBF-OMe and SOBF-H in the solid phase calculated with the B3LYP functional are found to be similar to the experimental results.Therefore,the subsequent calculations were carried out at the level of B3LYP/6-31G(d). Perform the above calculation process in the Gaussian 16 program.[35]

    Table 1. Emission wavelengths calculated value with different functionals for SOBF-H and SOBF-OMe in aggregation state(in unit nm).

    Fig.1. (a)Chemical structures of SOBF-OMe. (b)ONIOM model of SOBFOMe: the center molecule is the high layer,and the others molecules are the low layer.

    For the radiative decay rate, the Einstein’s spontaneous emission formula is

    whereistands for the atomic ordinal number and ?ρrepresents the gradient vector;abs(?ρ)is that every component of?ρvector takes the absolute value.

    Besides, energy decomposition analysis based on the molecular force field is performed to characterize various weak interactions.[41]Most molecular force fields use the form of pair potential to calculate the electrostatic,exchange repulsion and dispersion attraction parts of the non-bonded interaction between atoms.[42]The relevant formula applied is as follows:

    where A and B are the atomic labels,qstands for the atomic charge,ris the distance between atoms,εis the depth of the van der Waals potential well, andR0is the non-bonded distance between atoms.

    3. Results and discussion

    The light-emitting properties of monomers are studied first to check its possible contribution for TADF.Based on the initial structure in crystal, we optimized the geometry of the molecule in the ground state(S0),the first singlet excited state(S1), and the triplet excited state (TN) in the toluene and aggregation state respectively. At the same time,the root-meansquare displacement (RMSD) method in Multiwfn is combined to show the structural differences between the different states(ground and excited). Moreover,due to different restriction conditions, there is a difference between the optimized molecular geometry in toluene and the optimized molecular geometry in the aggregate state as shown in Fig. 2. It can also be found that there are significant differences between the dibenzofuran and benzene rings. The RMSD values in toluene is much larger than that in aggregation state, indicating that intermolecular interaction could limit the motion of the units in aggregation when they are excited. For TADF molecules,the up-conversion process is closely related to the energy difference between S1and T1(?EST).

    Therefore, the adiabatic excitation energies for SOBFOMe in toluene and aggregation state are calculated respectively (see Fig. 3). Further more, the calculated ?ESTin toluene and aggregation state is 1.22 eV and 1.08 eV respectively, indicating that ?ESTcan be reduced by intermolecular interaction. It also indicates that it is difficult for them to realize up-conversion from T1to S1. In addition,the comparison of excited state energy levels in toluene shows that T2,T3,T4,and T5are not only lower than S1but also close to S1in terms of energy. It is suggested that not only T1but also T2, T3,T4,and T5may participate in ISC and RISC processes. In the aggregation state(as shown in Fig.3(b)),we find that the energy of S1is 0.01 eV lower than that of T5. The higher triplet states that close to S1in energy may favor the ISC process,which would be disadvantage to the emission. By comparing the energy structures of molecules in toluene and aggregation state,it is concluded that the interaction between molecules in aggregation state will affect the energy level structure and the ISC and RISC processes of the excited state.

    Fig. 2. Geometry difference between S (blue), S1 (red), and T1 (black) in toluene[(a),(b),(c)]and in aggregation state[(d),(e),(f)].

    Fig.3. Energy levels for SOBF-OMe in toluene(a)and in aggregation state(b)respectively.

    In order to further elucidate the excited state transition properties of SOBF-OMe,we analyzed the natural transition orbital(NTO)and the corresponding transition properties of SOBF-OMe(as shown in Fig.4). Through the transformation of molecular orbital,we qualitatively describe the mechanism of electron excitation.[43,44]The local excited(LE)state(with the LE components are 75%–100%)predicts a large orbital overlap. While the charge transfer(CT)state with strong charge transfer properties(with the LE components are 0%–40%)leads to a small S1–T1energy gap due to significant orbital separation. The hybridized local and charge transfer(HLCT)excited state(with the LE components are 40%–75%)is the LE and CT are mixed,with both LE and CT properties.[45–47]Figures 4(a)and 4(b)show the NTOs of S1and TNobtained by Multiwfn in toluene and aggregated state. We can intuitively see that S1is a typical hybridized local and charge-transfer excited state,there is significant overlap in the conjugation chain between electron and hole,whether it is in toluene or in aggregation state. However,the transitions of the triplet state are mainly distributed in the benzene ring and the dibenzofuran group,except for the T3state. The aggregation state has little effect on the transition properties,compared with that in toluene.

    Fig.4. NTOs for S1 and TN sates of SOBF-OMe for monomer in toluene(a)and aggregation state(b)respectively(isovalue is 0.02).

    Based on the energy levels of excited states,the ISC processes from S1to TNshould be quite possible in both toluene and aggregation state. The ISC process is not only related to?EST,but also to the spin–orbit coupling(SOC)constant. Table 2 lists the SOC values in toluene and aggregation state,calculated with the quadratic response function method in Dalton package.[48]In aggregation state, the ISC rate between S1and T1(2.03×107s?1) is greater than that in toluene(8.89×105s?1), may be induced by the small SOC constant in toluene. The RISC rates are also calculated based on the SOC values calculated in triplet states. The values are all quite small due to the large energy gap between them. Although the RISC values from T5to S1is comparable to the ISC value,it is meaningless since little excitons would distribute on T5.It proves that it is impossible for the RISC process to happen in the single molecule. Moreover, the radiation decay rate in toluene is 4.43×108s?1, which is larger than that in aggregate state (5.23×107s?1). The main reason should be that the energy difference between S1and S0in aggregate state(3.69 eV) is smaller than that of toluene (3.75 eV). The nonradiation rate in aggregation(1.06×1011s?1)is a little lower than that in toluene(2.92×1011s?1),which may be induced by the confinement of the surroundings.

    Table 2. Spin–orbit coupling (SOC) constant, intersystem crossing (ISC)rate,and reverse intersystem crossing(RISC)rate between S1 and TN.

    The photophysical properties for SOBF-H are also studied in both toluenet and aggregation state. From the energy level of the excited state(see Fig.S2),we find that the excited state energy level of SOBF-H is similar to the SOBF-OMe molecule. In aggregation state, the energy gap between S1and T1(1.18 eV) is slightly larger than that for SOBF-OMe(1.08 eV).The transition orbitals change slightly between the two molecules (see Fig. S3), where the LE component for SOBF-H decreases in S1and increases in T1. In addition,the SOC constant between S1and T5in aggregate state is decreased to (0.368 cm?1) and the ISC rate is increased to(4.30×107s?1) (see Table S1). The RISC rate between S1and T5of SOBF-H(4.44×101s?1)is so small, it is difficult to produce thermally activated delayed fluorescence.

    Fig.5. Intermolecular interactions for several dimers described[SOBF-H(a)and SOBF-OMe(b)]through the IGM method.

    In experiment, TADF was found for the SOBF-OMe in aggregation. Our calculation results of single molecules indicates that TADF could not be contributed by single molecules.Thus dimers which may contribute to TADF emission are studied. Based on the crystal structure of SOBF-H and SOBFOMe,several dimers are studied,and the interaction between molecules was analyzed by the IGM method (see Fig. 5).Based on the energy decomposition of the AMBER force field, the interaction energy between neighboring molecules is shown in Table 3. For SOBF-OMe it can be seen that the intermolecular interaction of dimer-2 and dimer-4 is weaker,and the intermolecular interaction of dimer-1 is the strongest.Through further analysis, it is found that the dispersion between the two molecules dominates the intermolecular interaction. In addition,there is aπ–πinteraction in dimer-5,it is mainly theπ–πinteraction between dibenzofuran groups. In the same way,π–πinteraction also exists in dimer-3,and theπ–πstacking exists in the donor benzene ring. For SOBF-H the intermolecular interaction of dimer-1 and dimer-2 is weak.Through further analysis,we find that the dispersion between the two molecules dominates the intermolecular interaction.Using IGM analysis,it is found that SOBF-OMe dimer-2 and dimer-4 have obvious intermolecular hydrogen bond interactions.It is also found that dimer-3 and dimer-5 have significantπ–πinterraction. Then several pairs of dimers for SOBF-H and SOBF-OMe are optimized with the QM/MM model. The emission wavelengths and the S1–T1energy gap for all the dimers are shown in Table 4. It can be seen that the calculated emission wavelengths of dimer-2 and dimer-4 for SOBF-OMe consistent with the experimental results of TADF.In addition,the ?ESTof S1and T1in dimer-2 is also much smaller than other dimers, which also predicts the possible up-conversion from triplest states to S1. The NTOs of SOBF-H and SOBFOMe dimer are also analyzed (see Fig. S4). It is found that both two dimers of SOBF-H have delocalized NTOs with electron distributed on both two molecules and significant overlap can be found for transition orbitals. However, the NTOs for dimers except for dimer-5 of SOBF-OMe indicate that electrons transit from one molecule to the other when they are excited. Although dimer-5 has strongπ–πinteraction, it is meaningless to the TADF emission. It favors the emission of phosphorescence.For the energy diagram of excited states,we can find that there are several states lying between S1and T1,which may favor the ISC process and the emission of phosphorescence(see Figs.S5 and S6). The calculated wavelength of T1for all the dimers is also in consistent with the experimental result,which further illustrates that dimers except those with H-bond may favor the phosphorescence emission(see Table S2). Therefore,we believe that the intermolecular H-bond could induce smaller S1–T1energy gap,thus the TADF could be generated. Dimers withπ–πinteraction would favor the phosphorescence emission.

    Table 3. Intermolecular interaction energy including electronic, repulsion,and dispersion interactions in several dimers studied.

    Table 4.Calculated fluorescence wavelength,?EST and oscillator strength of SOBF-OMe and SOBF-H for dimer based on their single crystal structures using TD-DFT method.

    4. Conclusion

    The excited state properties and decay rates of SOBFOMe in toluene and aggregation state are studied respectively.The results show that the intermolecular interaction could limit the geometric change of molecules when they are excited in aggregation state. The energy gaps between S1and T1are reduced to some extent, while the transition properties have little changed. Theoretical simulation of the single molecular emission in toluene and in aggregation state agrees well the prompt fluorescence and phosphorescence. It is also indicated that TADF could not be generated by single SOBF-OMe molecules but dimers with intermolecular H-bond in crystal.In addition, emission properties of SOBF-H are also investigated for comparison,which shows that dimers without intermolecular H-bond are unable to generate TADF.Our calculation results confirms experimental results that TADF could be induced by dimers with intermolecular H-bond,although that single molecules with large S1–T1energy gap have no contribution to it. The results would favor the development of new type light-emitting molecules with TADF emission.

    猜你喜歡
    飛雁張凱麗麗
    茄子
    快點(diǎn) 快點(diǎn)
    基于改進(jìn)Mask RCNN的俯視群養(yǎng)豬圖像的分割
    軟件(2020年3期)2020-04-20 01:44:52
    畫一畫
    減蘭·秋游王家河
    Pressure characteristics of hydrodynamic cavitation reactor due to the combination of Venturi tubes with multi-orifice plates *
    荷塘秋色
    飛雁
    憶長征
    I love my family
    精华霜和精华液先用哪个| 大又大粗又爽又黄少妇毛片口| 插逼视频在线观看| 少妇高潮的动态图| 中文字幕精品亚洲无线码一区| 久久午夜福利片| 禁无遮挡网站| 成人鲁丝片一二三区免费| av在线天堂中文字幕| 狂野欧美激情性xxxx在线观看| 久久久久久大精品| 日本欧美国产在线视频| 精品人妻一区二区三区麻豆| 国产高清不卡午夜福利| 亚洲精品日韩av片在线观看| 国产精品爽爽va在线观看网站| 少妇熟女aⅴ在线视频| 国产老妇女一区| 国产三级在线视频| 青青草视频在线视频观看| 成人性生交大片免费视频hd| 亚洲丝袜综合中文字幕| 成人毛片60女人毛片免费| 美女国产视频在线观看| 国产黄片视频在线免费观看| 欧美成人免费av一区二区三区| 免费一级毛片在线播放高清视频| 国产精品综合久久久久久久免费| 九色成人免费人妻av| 午夜老司机福利剧场| 中文字幕制服av| 欧美日本视频| 亚洲成人精品中文字幕电影| 免费观看人在逋| 亚洲成人久久爱视频| 国产高清三级在线| 国产成人精品久久久久久| 菩萨蛮人人尽说江南好唐韦庄 | 97热精品久久久久久| 欧美3d第一页| 亚洲欧美日韩东京热| 婷婷色麻豆天堂久久 | 亚洲国产日韩欧美精品在线观看| 国产av在哪里看| 久久久久久国产a免费观看| 国语对白做爰xxxⅹ性视频网站| 特大巨黑吊av在线直播| 精品酒店卫生间| 村上凉子中文字幕在线| 国产黄色小视频在线观看| 秋霞在线观看毛片| 国产午夜精品论理片| 久久精品人妻少妇| 噜噜噜噜噜久久久久久91| 成人av在线播放网站| 国产成人精品一,二区| 免费av不卡在线播放| 国产一区二区在线观看日韩| 六月丁香七月| 久久久a久久爽久久v久久| 亚洲av二区三区四区| 婷婷色综合大香蕉| 国产精品久久久久久av不卡| 高清在线视频一区二区三区 | 九九热线精品视视频播放| 欧美色视频一区免费| 久久久国产成人免费| 69人妻影院| 嫩草影院新地址| 五月玫瑰六月丁香| 成人特级av手机在线观看| 99热网站在线观看| 久久亚洲精品不卡| 在线天堂最新版资源| 中国美白少妇内射xxxbb| 夜夜爽夜夜爽视频| 直男gayav资源| 亚洲国产精品久久男人天堂| 国产单亲对白刺激| 干丝袜人妻中文字幕| 女的被弄到高潮叫床怎么办| 午夜福利成人在线免费观看| 亚洲精品乱码久久久v下载方式| 丝袜喷水一区| 国产日韩欧美在线精品| 国产一级毛片七仙女欲春2| 美女黄网站色视频| 乱系列少妇在线播放| 啦啦啦观看免费观看视频高清| 国产一级毛片七仙女欲春2| 国产成年人精品一区二区| 插阴视频在线观看视频| 欧美97在线视频| av在线蜜桃| 亚洲18禁久久av| 日本欧美国产在线视频| 久久久欧美国产精品| 久久欧美精品欧美久久欧美| 狠狠狠狠99中文字幕| 91精品国产九色| 麻豆成人av视频| 只有这里有精品99| 免费搜索国产男女视频| 99久久成人亚洲精品观看| h日本视频在线播放| 亚洲怡红院男人天堂| 免费观看性生交大片5| 干丝袜人妻中文字幕| 国产精品不卡视频一区二区| 在线观看一区二区三区| 97热精品久久久久久| 国产综合懂色| 欧美一区二区精品小视频在线| 少妇的逼好多水| 午夜爱爱视频在线播放| 高清视频免费观看一区二区 | 国产精品爽爽va在线观看网站| 三级国产精品片| 欧美日韩国产亚洲二区| 久久精品久久久久久噜噜老黄 | 精品一区二区三区人妻视频| 一级毛片电影观看 | 身体一侧抽搐| 在线观看美女被高潮喷水网站| 成人二区视频| 熟女电影av网| 97在线视频观看| 国产乱来视频区| 欧美人与善性xxx| 久久精品国产自在天天线| 好男人视频免费观看在线| 天堂影院成人在线观看| 国产三级中文精品| 免费观看性生交大片5| 中文字幕免费在线视频6| h日本视频在线播放| 国产精品永久免费网站| 精品熟女少妇av免费看| 激情 狠狠 欧美| 男人狂女人下面高潮的视频| 精品国产露脸久久av麻豆 | 综合色av麻豆| 午夜精品国产一区二区电影 | 国产精品久久电影中文字幕| 成人毛片60女人毛片免费| 久久久精品94久久精品| 亚洲一区高清亚洲精品| 精品国产露脸久久av麻豆 | 18禁在线播放成人免费| 色尼玛亚洲综合影院| 全区人妻精品视频| av在线天堂中文字幕| 中文字幕制服av| 人人妻人人澡人人爽人人夜夜 | 精品欧美国产一区二区三| 国产不卡一卡二| 日本wwww免费看| 久久这里只有精品中国| 亚洲国产精品成人久久小说| 国产毛片a区久久久久| 国产成人91sexporn| 老司机影院成人| 日韩在线高清观看一区二区三区| 免费播放大片免费观看视频在线观看 | 欧美日韩在线观看h| 亚洲aⅴ乱码一区二区在线播放| 国产在线一区二区三区精 | 久久午夜福利片| 夜夜爽夜夜爽视频| 欧美bdsm另类| 亚洲成人久久爱视频| 内射极品少妇av片p| 国产精品久久久久久精品电影| 国产精品熟女久久久久浪| 麻豆一二三区av精品| 91aial.com中文字幕在线观看| 国产成人a∨麻豆精品| 男女那种视频在线观看| 日日啪夜夜撸| 久久国内精品自在自线图片| 欧美激情国产日韩精品一区| 久久精品影院6| 色视频www国产| 欧美最新免费一区二区三区| or卡值多少钱| 久久久精品大字幕| 欧美bdsm另类| 麻豆乱淫一区二区| 亚洲第一区二区三区不卡| 国产视频首页在线观看| 精品久久久久久久久久久久久| 大话2 男鬼变身卡| 久久久久久久久久黄片| 天堂中文最新版在线下载 | 黄色一级大片看看| 97人妻精品一区二区三区麻豆| 91久久精品国产一区二区三区| videossex国产| 欧美成人免费av一区二区三区| 日本-黄色视频高清免费观看| 我要看日韩黄色一级片| 国产高清三级在线| 成人国产麻豆网| 熟女人妻精品中文字幕| 欧美日韩综合久久久久久| 一级毛片电影观看 | 午夜福利在线在线| 男人和女人高潮做爰伦理| 日日摸夜夜添夜夜添av毛片| 国产男人的电影天堂91| 欧美成人午夜免费资源| 日本五十路高清| 精品久久久久久久末码| 小蜜桃在线观看免费完整版高清| 日韩大片免费观看网站 | av在线蜜桃| 久久6这里有精品| 夜夜爽夜夜爽视频| 国产精品av视频在线免费观看| 麻豆成人午夜福利视频| av福利片在线观看| 91在线精品国自产拍蜜月| 夜夜爽夜夜爽视频| 久久久久久伊人网av| 一级黄片播放器| 亚洲经典国产精华液单| 成人漫画全彩无遮挡| 观看免费一级毛片| 26uuu在线亚洲综合色| 成人性生交大片免费视频hd| 欧美日韩一区二区视频在线观看视频在线 | av专区在线播放| 免费播放大片免费观看视频在线观看 | 99热这里只有是精品50| 亚洲欧美日韩无卡精品| 亚洲欧美一区二区三区国产| 日本黄色视频三级网站网址| 色播亚洲综合网| 久久这里有精品视频免费| 男人舔女人下体高潮全视频| 水蜜桃什么品种好| 大话2 男鬼变身卡| 亚洲va在线va天堂va国产| 久久久久久久久久成人| 亚洲熟妇中文字幕五十中出| 中文在线观看免费www的网站| 免费看a级黄色片| 亚洲四区av| 亚洲欧美日韩东京热| 国产一区二区在线av高清观看| 国产91av在线免费观看| 亚洲欧美精品专区久久| 久久人人爽人人片av| 美女脱内裤让男人舔精品视频| 免费观看人在逋| 国产淫语在线视频| 国产一区亚洲一区在线观看| 国产av一区在线观看免费| 村上凉子中文字幕在线| 热99re8久久精品国产| 精品不卡国产一区二区三区| 久久韩国三级中文字幕| 国产又色又爽无遮挡免| 久久久久久国产a免费观看| av黄色大香蕉| 亚洲美女视频黄频| 特大巨黑吊av在线直播| 亚洲国产精品sss在线观看| 国产人妻一区二区三区在| 一级黄色大片毛片| 亚洲av熟女| 久久久欧美国产精品| 国产一区亚洲一区在线观看| 亚洲精品乱码久久久v下载方式| 久久99精品国语久久久| 一二三四中文在线观看免费高清| 久久精品国产亚洲av涩爱| 亚洲国产欧美人成| 久久精品熟女亚洲av麻豆精品 | 国产精品麻豆人妻色哟哟久久 | 中文天堂在线官网| 国产精品人妻久久久影院| 好男人视频免费观看在线| 成人亚洲精品av一区二区| 大又大粗又爽又黄少妇毛片口| 欧美日韩一区二区视频在线观看视频在线 | 丝袜喷水一区| 国产白丝娇喘喷水9色精品| 亚洲自拍偷在线| 久久韩国三级中文字幕| 国产精品永久免费网站| 欧美最新免费一区二区三区| 国产亚洲午夜精品一区二区久久 | 欧美日韩国产亚洲二区| 你懂的网址亚洲精品在线观看 | 国产又黄又爽又无遮挡在线| 亚洲精品aⅴ在线观看| 中文字幕熟女人妻在线| 超碰97精品在线观看| 亚洲经典国产精华液单| 高清av免费在线| 三级毛片av免费| 不卡视频在线观看欧美| 婷婷六月久久综合丁香| 老司机影院成人| 97超碰精品成人国产| 精华霜和精华液先用哪个| 亚洲国产最新在线播放| 黄色欧美视频在线观看| 国产三级中文精品| 亚洲aⅴ乱码一区二区在线播放| 国产成人a区在线观看| 久久99精品国语久久久| 亚洲国产精品成人综合色| 国产又黄又爽又无遮挡在线| 七月丁香在线播放| 国产av一区在线观看免费| 日韩中字成人| 国产精品蜜桃在线观看| 欧美日韩在线观看h| 日韩 亚洲 欧美在线| 国产精品一区二区性色av| videossex国产| 黄色一级大片看看| 91久久精品国产一区二区成人| 伦精品一区二区三区| 舔av片在线| 亚洲人成网站在线观看播放| 国产一区二区亚洲精品在线观看| 久久精品熟女亚洲av麻豆精品 | 一级毛片电影观看 | 亚洲伊人久久精品综合 | 日本与韩国留学比较| 免费黄色在线免费观看| 午夜福利在线在线| 韩国高清视频一区二区三区| 亚洲乱码一区二区免费版| 国产成人aa在线观看| 成人毛片60女人毛片免费| 午夜福利视频1000在线观看| av.在线天堂| 国产精品久久视频播放| 亚洲精华国产精华液的使用体验| 国产伦精品一区二区三区视频9| 国产女主播在线喷水免费视频网站 | 18禁动态无遮挡网站| 亚洲在久久综合| 床上黄色一级片| 久久精品国产亚洲av天美| 久久欧美精品欧美久久欧美| 久久6这里有精品| 高清毛片免费看| 亚洲电影在线观看av| 国产黄a三级三级三级人| 秋霞在线观看毛片| 国产精品.久久久| 国产国拍精品亚洲av在线观看| 国产一级毛片在线| 国产免费福利视频在线观看| 一级毛片久久久久久久久女| 亚洲天堂国产精品一区在线| 日日啪夜夜撸| 日韩高清综合在线| av在线亚洲专区| www.色视频.com| 热99re8久久精品国产| 亚洲成色77777| 国产精品爽爽va在线观看网站| 亚洲精品乱码久久久v下载方式| 日韩av不卡免费在线播放| 久久午夜福利片| 成人一区二区视频在线观看| 变态另类丝袜制服| 看片在线看免费视频| 变态另类丝袜制服| 国产又色又爽无遮挡免| 少妇裸体淫交视频免费看高清| 国产精品不卡视频一区二区| 欧美性猛交╳xxx乱大交人| 国产亚洲精品av在线| av在线天堂中文字幕| 色5月婷婷丁香| 美女xxoo啪啪120秒动态图| 亚洲成av人片在线播放无| 男女国产视频网站| 亚洲,欧美,日韩| 午夜亚洲福利在线播放| 成人高潮视频无遮挡免费网站| 视频中文字幕在线观看| 国产精品一区二区三区四区免费观看| videossex国产| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久久国产电影| 九九久久精品国产亚洲av麻豆| 亚洲精品一区蜜桃| 黑人高潮一二区| 男女那种视频在线观看| 精品久久国产蜜桃| 免费av观看视频| 18禁在线播放成人免费| 九草在线视频观看| 最后的刺客免费高清国语| 高清午夜精品一区二区三区| 老司机影院成人| 男的添女的下面高潮视频| 51国产日韩欧美| 神马国产精品三级电影在线观看| 国产精品伦人一区二区| 亚洲怡红院男人天堂| 午夜久久久久精精品| 国产精品国产三级国产av玫瑰| 亚洲在线自拍视频| a级毛片免费高清观看在线播放| 免费av观看视频| 超碰av人人做人人爽久久| 天天一区二区日本电影三级| 国产免费视频播放在线视频 | 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品aⅴ在线观看| 能在线免费观看的黄片| 亚洲欧美精品专区久久| 亚洲av电影不卡..在线观看| www.色视频.com| 国产精品麻豆人妻色哟哟久久 | 日本欧美国产在线视频| 又粗又爽又猛毛片免费看| 99热6这里只有精品| 欧美日韩在线观看h| 久久久久久久国产电影| 免费不卡的大黄色大毛片视频在线观看 | 成人一区二区视频在线观看| 亚洲av电影在线观看一区二区三区 | 欧美性猛交黑人性爽| 秋霞在线观看毛片| 久久99热这里只频精品6学生 | 久久久久久久国产电影| 永久网站在线| 91久久精品国产一区二区成人| 看免费成人av毛片| 国产精品人妻久久久影院| 午夜精品国产一区二区电影 | 校园人妻丝袜中文字幕| 级片在线观看| 亚洲自拍偷在线| 日本欧美国产在线视频| .国产精品久久| 又粗又硬又长又爽又黄的视频| 免费黄网站久久成人精品| 久久欧美精品欧美久久欧美| 久久久国产成人精品二区| 亚洲欧洲国产日韩| 日韩视频在线欧美| 偷拍熟女少妇极品色| 国产精品.久久久| 亚洲欧美清纯卡通| 亚洲精品自拍成人| 91精品国产九色| 国产成人91sexporn| 国产色婷婷99| 国产精品精品国产色婷婷| 免费av毛片视频| 国产综合懂色| 成年女人永久免费观看视频| 欧美日本视频| 99久久无色码亚洲精品果冻| 永久网站在线| 三级国产精品片| 日韩精品有码人妻一区| 国产高清三级在线| 国产精品爽爽va在线观看网站| 亚洲最大成人中文| 男人的好看免费观看在线视频| 午夜福利高清视频| 色视频www国产| 亚洲美女视频黄频| 国产探花在线观看一区二区| 偷拍熟女少妇极品色| 国语自产精品视频在线第100页| 亚洲最大成人手机在线| 又粗又爽又猛毛片免费看| 蜜桃亚洲精品一区二区三区| 99热网站在线观看| 成人午夜精彩视频在线观看| av在线播放精品| 日本黄色视频三级网站网址| 99热全是精品| 看非洲黑人一级黄片| 亚洲人成网站高清观看| 国产高清国产精品国产三级 | 18禁裸乳无遮挡免费网站照片| 中文天堂在线官网| 嘟嘟电影网在线观看| 我的女老师完整版在线观看| 国产精品野战在线观看| 一区二区三区四区激情视频| 天堂中文最新版在线下载 | 亚洲最大成人av| 亚洲国产精品合色在线| 99久久精品国产国产毛片| 汤姆久久久久久久影院中文字幕 | 我要看日韩黄色一级片| 亚洲四区av| 国产色爽女视频免费观看| 日韩大片免费观看网站 | 联通29元200g的流量卡| 麻豆国产97在线/欧美| 美女被艹到高潮喷水动态| 国产精品爽爽va在线观看网站| 中文资源天堂在线| 中国国产av一级| 91狼人影院| 成人特级av手机在线观看| 特大巨黑吊av在线直播| 日日啪夜夜撸| 久99久视频精品免费| 在线观看av片永久免费下载| av女优亚洲男人天堂| 免费观看在线日韩| 日韩欧美精品免费久久| 小说图片视频综合网站| 天天躁日日操中文字幕| 欧美激情久久久久久爽电影| 日韩成人av中文字幕在线观看| 亚洲在久久综合| 久久6这里有精品| 女人久久www免费人成看片 | 大香蕉久久网| 丝袜美腿在线中文| .国产精品久久| 97热精品久久久久久| 欧美三级亚洲精品| 欧美成人a在线观看| 免费av不卡在线播放| 天天躁日日操中文字幕| 亚洲成人av在线免费| 18禁裸乳无遮挡免费网站照片| 亚洲国产日韩欧美精品在线观看| 久久综合国产亚洲精品| 男女那种视频在线观看| 国产一区亚洲一区在线观看| 99热这里只有精品一区| 国产精品一及| 可以在线观看毛片的网站| av在线天堂中文字幕| 亚洲经典国产精华液单| 国产淫片久久久久久久久| 国产精品国产三级专区第一集| 午夜福利成人在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久久亚洲中文字幕| 99在线人妻在线中文字幕| 在线播放无遮挡| 丝袜美腿在线中文| 亚洲中文字幕日韩| 午夜激情欧美在线| 国产一区二区在线观看日韩| 久久久a久久爽久久v久久| 麻豆国产97在线/欧美| 尾随美女入室| 亚洲aⅴ乱码一区二区在线播放| av福利片在线观看| 在线免费十八禁| 自拍偷自拍亚洲精品老妇| 久久久国产成人精品二区| 搡女人真爽免费视频火全软件| videos熟女内射| 国产av不卡久久| 尾随美女入室| 久久韩国三级中文字幕| 午夜福利网站1000一区二区三区| 国产亚洲av嫩草精品影院| 国产女主播在线喷水免费视频网站 | 一级毛片久久久久久久久女| 三级男女做爰猛烈吃奶摸视频| 国产老妇伦熟女老妇高清| 村上凉子中文字幕在线| 内地一区二区视频在线| 国产精品一区二区三区四区久久| 在线播放无遮挡| av国产久精品久网站免费入址| ponron亚洲| 亚洲精品456在线播放app| 99热网站在线观看| 少妇的逼水好多| 亚洲欧美日韩卡通动漫| 免费av观看视频| 好男人视频免费观看在线| 1000部很黄的大片| 国产片特级美女逼逼视频| 我的老师免费观看完整版| 美女被艹到高潮喷水动态| 男女边吃奶边做爰视频| 亚洲,欧美,日韩| 97热精品久久久久久| 亚洲中文字幕一区二区三区有码在线看| 国产麻豆成人av免费视频| 黄片wwwwww| 国产色婷婷99| 免费大片18禁| 精品国产一区二区三区久久久樱花 | 亚洲伊人久久精品综合 | av在线观看视频网站免费| 久久久久久久国产电影| 日韩制服骚丝袜av| 天堂av国产一区二区熟女人妻| 一区二区三区四区激情视频| 国产成人精品久久久久久| 免费在线观看成人毛片| 26uuu在线亚洲综合色| 又黄又爽又刺激的免费视频.| 九色成人免费人妻av| 久久久久国产网址| 亚洲最大成人手机在线| 日本五十路高清| 高清在线视频一区二区三区 |